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CONTINUOUS ORDER REPRESENTABILITY PROPERTIES

OF TOPOLOGICAL SPACES

AND ALGEBRAIC STRUCTURES

Maŕıa Jesús Campión, Juan Carlos Candeal, Esteban Induráin,

and Ghanshyam Bhagvandas Mehta

Abstract. In the present paper, we study the relationship between con-
tinuous order-representability and the fulfillment of the usual covering
properties on topological spaces. We also consider the case of some al-
gebraic structures providing an application of our results to the social

choice theory context.

1. Introduction

A topology τ defined on a nonempty set X is said to satisfy the continuous
representability property (CRP) if every continuous total preorder ≾ defined
on X admits a numerical representation by means of a continuous real-valued
order-monomorphism (i.e., a continuous map u : X → R such that x ≾ y ⇐⇒
u(x) ≤ u(y) for every x, y ∈ X). There are different motivations to study this
order-representability property (CRP). It is interesting from a topological point
of view because it can be used to characterize other topological properties of the
given space X. To cite two recent examples, we can say that it has already been
used to analyze order-extension properties of topological spaces (see Yi [37] or
Campión et al. [5, 7]), as well as to characterize various classical topological
properties of a Banach space (see Campión et al. [4]) in functional analysis.

The study of covering properties on topological totally ordered spaces is
classical in the mathematical theory of ordered structures (see e.g. Lutzer and
Bennet [29]). A further step consists in considering topological spaces (not
necessarily endowed a priori with any ordering) and then investigate the family
of all the continuous total preorders that may be defined there. This is equiv-
alent to start from a topology τ on a nonempty set X and consider the family
of all its subtopologies that are preorderable. Obviously, properties of these
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preorderable subtopologies will reflect properties of the given topological space
(X, τ), and vice versa. In the present paper we work in this direction, pay-
ing special attention to covering properties of the preorderable subtopologies
of a given topology, in order to analyze the structure, closely related to those
covering properties, of topological spaces that satisfy the continuous order-
representability property (CRP).

The structure of the paper goes as follows: after the introduction (Section
1) and preliminaries (Section 2), we include a preparatory Section 3 containing
results on the topological properties of order topologies, that will be used in
the main Section 4 to achieve a characterization of topological spaces satisfying
CRP. The key characterization given in Theorem 4.1 is stated in terms of the
fulfillment of the second countability axiom for every preorderable subtopol-
ogy of the given topology. This implies that any topological property that
makes every preorderable subtopology to be second countable provides a suffi-
cient condition for CRP to be held. Properties of this kind appear throughout
Section 4. In Section 5, an extension of CRP in the algebraic setting, called
continuous algebraic representability property (shortly, CARP), is introduced.
Basically, whereas CRP asks for continuous numerical representations, CARP
asks for those which are continuous and, in addition, preserve the algebraic
structure. In Section 6, we develop an application of the previous algebraic
approach to social choice theory.

2. Preliminaries

A preorder ≾ on an arbitrary nonempty set X is a binary relation on X
which is reflexive and transitive.

An antisymmetric preorder is said to be an order . A total preorder ≾ on a
set X is a preorder such that if x, y ∈ X, then [x ≾ y] or [y ≾ x].

If ≾ is a preorder on X, then as usual we denote the associated asymmetric

relation by≺ and the associated equivalence relation by∼ and these are defined,
respectively, by [x ≺ y ⇐⇒ (x ≾ y)∧¬(y ≾ x)] and [x ∼ y ⇐⇒ (x ≾ y)∧(y ≾
x)]. Also, the associated dual preorder ≾d is defined by [x ≾d y ⇐⇒ y ≾ x].

Let (X,≾) be a totally preordered set and let X/ ∼ be the set of equivalence
classes. If x ∈ X we denote the equivalence class of x by [x]. The preorder ≾
on X induces a natural order ⪯ on X/ ∼ defined by [x] ⪯ [y] ⇐⇒ x ≾ y.

Let [x], [y] be two equivalence classes in X/ ∼. Then we say that the ordered
pair ([x], [y]) ∈ (X/ ∼)× (X/ ∼) is a jump if there is no [z] ∈ X/ ∼ such that
[x] < [z] < [y], where < denotes the asymmetric part of ⪯. If ([x], [y]) is a
jump, then we sometimes abuse notation and say that (x, y) is a jump in X.
But it should be remembered that a jump is only defined for the corresponding
equivalence classes.

A totally preordered set (X,≾) is said to be densely ordered if it has no
jumps. A subset Z of X is said to be order-dense in X with respect to ≾, if
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x, y ∈ X and x ≺ y imply that there exists z ∈ Z such that x ≾ z ≾ y. (X,≾)
is said to be order-separable if it has a countable order-dense subset.

A totally preordered set (X,≾) is said to be Dedekind-complete if each
nonempty subset F that has an upper bound has a least upper bound.

Let (X,≾) be a totally preordered set. A subset Z ⊆ X is said to be coinitial
(respectively, cofinal) in X if for every x ∈ X there exists some z ∈ Z such that
z ≾ x (respectively, such that x ≾ z). The preorder ≾ is said to be countably

bounded if there exists a countable subset Z ⊆ X that is coinitial and cofinal
in X.

If (X,≾) is a preordered set, then a real-valued function u : X → R is said
to be

(i) increasing if for every x, y ∈ X, [x ≾ y ⇒ u(x) ≤ u(y)],
(ii) order-preserving if f is increasing and [x ≺ y ⇒ u(x) < u(y)].

An order-preserving function is also said to be an order-monomorphism.
If a nonempty set X is endowed with a topology τ , then a total preorder

≾ on X is said to be continuously representable if there exists an order-
monomorphism u : X → R that is continuous.

Let (X,≾) be a totally preordered set. The family of all sets of the form
L(x) = {a ∈ X : a ≺ x} and G(x) = {a ∈ X : x ≺ a}, where x ∈ X is a
subbasis for a topology τ≾ on X. The pair (X, τ≾) is called the order topology

on X. The pair (X, τ≾) is called a preordered topological space.

If (X,≾) is a preordered set and τ is a topology on X, then the preorder ≾
is said to be τ -continuous on X if for each x ∈ X the sets {a ∈ X : x ≾ a} and
{b ∈ X : b ≾ x} are τ -closed in X. If ≾ is a total preorder on X, then it is easy
to prove that the continuity of ≾ amounts to the fact that the graph of ≾ (i.e.,
{(x, y) ∈ X ×X; x ≾ y}) is a closed subset of X2 = X ×X endowed with the
product topology τX × τX . A topology τ on (X,≾) is said to be natural if ≾
is τ -continuous. Thus, if ≾ is continuous with respect to a topology τ on X,
then τ≾ ⊆ τ .

Given a nonempty set X endowed with a topology τ (i.e., (X, τ) is a topolog-

ical space), the topology τ on X is said to have the continuous representability

property (CRP) if every continuous total preorder ≾ defined on X admits a
representation by means of a continuous order-monomorphism. Topologies of
this kind were introduced by Herden [25] under the name of “useful topologies”
(see also Herden and Pallack [26]). Among the topologies that have CRP are
the second countable ones (see Debreu [17]), the connected plus separable ones
(see Eilenberg [19]) and the locally connected plus separable ones (see Campión
et al. [8]).

Given a topological space (X, τ), the topology τ is said to be separably

connected if for every two points a, b ∈ X there exists a connected and separable
subset Ca,b ⊆ X that includes a and b, and it is said to be preorderable if it is
the order topology τ≾ of some total preorder ≾ defined on X.
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Remark 2.1. At this point, it is important to explain why this theory of order-
representability of topological spaces deals with total preorders instead of (just)
total orders. The main reason is that on many classical topological spaces (X, τ)
there is no continuous total order (A well known example of this situation is
the real plane R

2 endowed with its usual Euclidean metric and topology, see
Theorem 4 in Candeal and Induráin [10] for details).

3. Properties of order topologies

Before studying order-representability properties on a (general) topological
space, it seems necessary to begin with a totally preordered set (X,≾) endowed
with its corresponding order topology τ≾, in order to understand better what
else must happen for the order topology τ≾ to have some classical topological
property.

Having this idea in mind, we include this preparatory Section 3, in which we
quote several helpful results on ordered sets, to be used in the sequel. Some
proofs have been omitted because they are either straightforward or well-known
(see e.g. Bridges and Mehta [3], Th. 1.6.11 and Th. 3.2.9; Campión et al. [5],
Lemma 3.9 and Corollary 3.10; Steen and Seebach [35], pp. 67–68).

Lemma 3.1. Let X be a nonempty set endowed with a total preorder ≾. Let

τ≾ be the order topology on X. Then the following conditions are equivalent:

(i) The total preorder ≾ is continuously representable through an order-

monomorphism.

(ii) The order topology τ≾ is second countable.

(iii) The totally preordered set (X,≾) is order-separable.

Lemma 3.2. Let X be a nonempty set endowed with a total order ⪯.

(i) The order topology τ⪯ is connected if and only if (X,⪯) is densely

ordered and Dedekind complete.

(ii) The order topology τ⪯ on X is second countable if and only if it is

metrizable and separable.

(iii) If the order topology τ⪯ on X is connected and separable, then it is

second countable.

Remark 3.3. Separability cannot be dropped in part (ii) of Lemma 3.2. A
counterexample is X = (0, 1) × (0, 1) ⊂ R

2 endowed with the lexicographic
order ≤L defined by (x, y) ≤L (z, t) ⇐⇒ [(x < z) ∨ (x = z , y ≤ t)] for every
0 < x, y, z, t < 1 (see also Theorem 2 in Candeal and Induráin [12]).

Lemma 3.4. Let X be a nonempty set endowed with a total order ⪯. Then the

order topology τ⪯ on X is path-connected if and only if it is separably connected.

Proof. See part (iv) of Remark 2 in Candeal et al. [9]. □

Remark 3.5. On a general topological space (X, τ) it is clear that connected
plus separable implies separably connected. The converse may fail to be true
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(consider, e.g., a non-separable Banach space endowed with the norm topol-
ogy). It is also true that separably connected implies connected, but, even
on metric spaces, the converse is not true in general (see, e.g., Simon [34]).
There are also examples of separably connected topological spaces that are
not path-connected: Consider, for instance, the subset of R2 given by ({0} ×
[−1, 1])

∪
{(x, sin( 1

x
)) : x > 0}.

Lemma 3.6. Let X be a nonempty set endowed with a total order ⪯ that

is countably bounded. Suppose that the order topology τ⪯ on X is separably

connected. Then τ⪯ is second countable.

Proof. 1 Since X is countably bounded, it can be written as the union of a
countable number of nested intervals [an, bn] ⊆ X. Since ⪯ is continuous and
τ⪯ is separably connected each of these intervals is contained in a separable
and connected subset of X. That means that X is the union of a countable
number of connected separable subsets, all of which intersect, so it follows that
the order topology τ⪯ on X is separable and connected. Therefore τ⪯ is second
countable by Lemma 3.2(iii). □

Corollary 3.7. Let X be a nonempty set endowed with a topology τ such that

(X, τ) is separably connected. Let ≾ be a countably bounded and τ -continuous
total preorder defined on X. Then ≾ is continuously representable through an

order-monomorphism.

Proof. Since the topological space (X, τ) is separably connected, the order
topology τ≾, that satisfies τ≾ ⊆ τ by hypothesis, is also separably connected.
It is obvious that the total order ⪯ on the quotient space through indifference
X/ ∼ is also countably bounded, and its corresponding order topology is sepa-
rably connected. Thus, as a direct consequence of Lemma 3.6 and Lemma 3.1,
it follows that ⪯ is continuously representable (considering the order topology
τ⪯ onX/ ∼ and the usual topology on R) by means of an order-monomorphism.
Consequently, ≾ is continuously representable (now considering the topology
τ≾ on X and the usual topology on R) through an order-monomorphism ϕ.
Indeed, since τ≾ ⊆ τ , the map ϕ is also continuous if we consider on X the
given topology τ and on R the usual topology. □

Theorem 3.8. Let X be a nonempty set endowed with a total order ⪯. Suppose

that the order topology τ⪯ on X is separably connected. Then the following

conditions are equivalent:

(i) ⪯ is countably bounded.

(ii) ⪯ is continuously representable.

(iii) τ⪯ is second countable.

(iv) τ⪯ is metrizable and second countable.

(v) τ⪯ is metrizable and separable.

(vi) τ⪯ is separable.

1We owe this proof of Lemma 3.6 to an anonymous referee.
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(vii) τ⪯ is Lindelöf.

(viii) τ⪯ satisfies the countable chain condition (CCC).
(ix) τ⪯ is σ-compact.

Proof. We follow the scheme (i) ⇒ (iii); (ii) ⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v);
(v) ⇒ (vi) ⇒ (ii); (iii) ⇒ (vii) ⇒ (i); (iii) ⇒ (viii) ⇒ (i) ⇒ (ix) ⇒ (vii).

The fact (i) ⇒ (iii) has been proved in Lemma 3.6.
The equivalence (ii) ⇐⇒ (iii) was stated in Lemma 3.1. The order topology

τ⪯ is connected because, by hypothesis, it is separably connected.
The equivalences (iii) ⇐⇒ (iv) ⇐⇒ (v) as well as the implication (v) ⇒

(vi) follow now immediately from Lemma 3.2(ii)-(iii) and Th. 5.6 in Dugundji
[18].

Assume now that (vi) holds. Let D ⊆ X be a countable subset that meets
every nonempty τ⪯-open subset. Let a, b ∈ X be such that a ≺ b. Since the
topology τ⪯ is connected by hypothesis, it follows by Lemma 3.2(i) that (X,⪯)
is densely ordered. Hence there exists c ∈ X such that a ≺ c ≺ b, so that in
particular the τ⪯-open subset (a, b) = {x ∈ X : a ≺ x ≺ b} is nonempty. Since
D meets every nonempty τ⪯-open subset, there also exists d ∈ D such that
a ≺ d ≺ b. In particular, we have a ⪯ d ⪯ b. Hence D is order-dense in X.
Condition (ii) follows now from Lemma 3.1.

The fact (iii) ⇒ (vii) is immediate.
Assume now that (vii) holds. If X has both a first element a and a last

element b, then it is plain that ⪯ is countably bounded. If X is unbounded,
assuming that X has no last element with respect to ⪯, it happens that the
family L of all sets of the form L(x) = {a ∈ X : a ≺ x} is a τ⪯-open covering
of X. By hypothesis, there exists a countable subcovering {L(xn) n ∈ N} of L.
Similarly, if X has no first element with respect to ⪯, then the family G of all
sets of the form G(y) = {b ∈ X : y ≺ b} is a τ⪯-open covering of X, and there
exists a countable subcovering {G(yk) k ∈ N} of G. Now it is straightforward
to see that the countable subset D = {xn n ∈ N}

∪
{yk k ∈ N}

∪
{a, b} ⊆ X,

where a (respectively, b) denotes the first element if any (respectively, the last
element if any) of X, is coinitial and cofinal in X with respect to ⪯. Therefore,
⪯ is countably bounded, so that we get (i).

The fact (iii) ⇒ (viii) is clear because every second countable space is sep-
arable, and every separable space satisfies the countable chain condition (see
e.g. Corollary 2.3.18 in Engelking [20]).

Assume now that (viii) holds. Suppose that there is no countable subset
D ⊂ X that is cofinal in X. Then (X,⪯) contains a subset Y such that
(Y,⪯) can be identified to the first uncountable ordinal ω1 endowed with the
ordinal inclusion ≤. Thus, there exists a bijective map F : ω1 → Y such that
z ⪯ t ⇐⇒ F−1(z) ≤ F−1(t) (z, t ∈ Y ). For every α < ω1, let α + 1
be the ordinal that follows α. Since the order topology τ⪯ on X is separably
connected, hence connected, the collection {(F (α) , F (α+1)) : α < ω1} would
then violate CCC, which is a contradiction. Therefore, there exist countable
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subsets C,E ⊆ X such that C is coinitial in X and E is cofinal in X with
respect to ⪯. The union D = C ∪ E is countable, coinitial and cofinal in X.
Thus, ⪯ is countably bounded, so that we get (i) again.

Assume now that (i) holds. Let D = {xn : n ∈ N} be a coinitial and
cofinal subset of X. For every k ̸= l ∈ N such that xk ≺ xl, we observe
that the subset [xk, xl] = {y ∈ X : xk ⪯ y ⪯ xl} is compact in the order
topology τ⪯ of X, by Lemma 3.2(i) and Theorem 27.1 in [30]. Therefore X =∪

{k,l∈N, k ̸=l} [xk, xl] is obviously σ-compact. Thus we get (ix). Moreover, since

a σ-compact topological space is in particular Lindelöf we also get (vii). □

Remarks 3.9. (i) New conditions could be added to the statement of Theorem
3.8, as a consequence of some results in Sections 2 and 3 of Lutzer and Bennet
[29]. These results state that:

Let X be a nonempty set endowed with a total order ⪯. Consider on X the
order topology τ⪯. Then it holds that

a) the order topology τ⪯ satisfies CCC if and only if it is hereditarily Lindelöf,
b) the order topology τ⪯ is separable if and only if it is hereditarily separable.
Notice in addition that in this result it is not necessary to ask the order

topology τ⪯ to be separably connected .
(ii) The hypothesis of being separably connected that appears in the state-

ment of Theorem 3.8 cannot be replaced by the weaker one of connectedness.
An example is the lexicographically ordered set L = {[0, ω1) × J} ∪ {(ω1, 0)}
where J = {x ∈ R : 0 ≤ x < 1} and {[0, ω1) denotes the long line (see, e.g.,
Steen and Seebach [35]).

4. The continuous representability property on topological spaces

In the present section we search for topological conditions on a topological
space (X, τ), in order for τ to satisfy the continuous representability property
(CRP). We pay an special attention to conditions related to covering properties.

The results of Section 3 are decisive in this process, due to the following key

fact stated in the next Theorem 4.1, whose proof appears in Campión et al. [6].

Theorem 4.1. Let (X, τ) be a topological space. Then the topology τ satisfies

CRP if and only if all its preorderable subtopologies are second countable.

A straightforward strengthening of Lemma 3.2(ii) shows that, given a topo-
logical space (X, τ), any preorderable subtopology is second countable if and
only if it is separable and pseudometrizable. This fact immediately leads to
the following corollary.

Corollary 4.2. Let (X, τ) be a topological space. Then the topology τ sat-

isfies CRP if and only if all its preorderable subtopologies are separable and

pseudometrizable.

Preorderable topologies were characterized in Campión et al. [6] completing
the panorama on orderability of topologies (see Van Dalen and Wattel [36],
Purisch [31] or Gutev [24]).
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Suppose now that we are looking for conditions on a topological space (X, τ)
that imply that the topology τ satisfies CRP. Which kind of conditions should

we analyze first?

A glance to Theorem 4.1 gives us an idea to begin with: Any topological
condition that implies second countability and is inherited by subtopologies fits
well our purposes. We can say even more, observing that any topological prop-

erty that implies that every preorderable subtopology is second countable also
implies CRP.

Now we obtain important results about the property CRP on topological
spaces.

Theorem 4.3. Let (X, τ) be a topological space. Each of the following condi-

tions implies that (X, τ) satisfies CRP:

(i) τ is connected and separable (see Eilenberg [19]),
(ii) τ is separably connected and satisfies CCC (see Campión et al. [4]),
(iii) τ is separably connected and compact,

(iv) τ is separably connected and σ-compact,

(v) τ is separably connected and satisfies the Lindelöf property,

(vi) τ is second countable (see Debreu [17]),
(vii) τ is locally connected and separable (see Candeal et al. [15]).

Proof. Some of these results are already known in the literature. However, we
offer here an alternative proof for some of them (parts (i) to (v)) that follows
from the previous results of Section 3 and the observation above. Thus, no-
tice that if τ is connected and separable, then every preorderable subtopology
is also connected and separable. Hence, by Lemma 3.2(iii), the preorderable
subtopologies of τ are indeed second countable. In the same way, if τ is sep-
arably connected, then every preorderable subtopology of τ is also separably
connected. If, in addition, τ satisfies CCC, or the Lindelöf property, or it is
compact or σ-compact, the same happens for every preorderable subtopology
of τ . In each of these situations the preorderable subtopologies are actually
second countable, as a consequence of Theorem 3.8.

By the way, part (i) is a well-known classical result in the theory of ordered
structures (see Eilenberg [19]). The same happens to part (vi), that is known
as Debreu’s theorem (see Debreu [17] or Bridges and Mehta [3], Ch. 3). Finally,
part (ii) also appears in Campión et al. [4], and a proof of part (vii) can be
seen in Candeal et al. [14]. □

Remark 4.4. Part (ii) of the above Theorem 4.3 shows that in separably con-
nected topological spaces CCC implies CRP. However, the converse is not true.
An example is the Alexandroff topology on [0, 1]× [0, 1] (see Steen and Seebach
[35], pp. 120–121 for details) that is compact and path-connected, so that
it is separably connected, and, by part (iii) of Theorem 4.3, it satisfies CRP.
Moreover, it does not satisfy CCC and fails to be first countable.
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In the category of metric spaces the next Theorem 4.5, and its subsequent
Corollary 4.6, provide not only sufficient conditions, but actually characteriza-

tions of the fulfillment of the continuous representability property CRP. As a
matter of fact, Theorem 4.5 is well-known in this literature (see e.g. Estévez
and Hervés [21] or Candeal et al. [9]).

Theorem 4.5. Let (X, d) be a metric space. Then the metric topology τd
satisfies CRP if and only if it is separable.

Corollary 4.6. (i) Let (G, τ) be a first countable topological group. Then the

topology τ satisfies CRP if and only if it is separable.

(ii) Let (G, τ) be a locally compact topological group. Let C0(G) be the space

of continuous complex functions defined on G which vanish at infinity. Sup-

pose that the weak topology on C0(G) satisfies the Lindelöf property. Then the

topology τ satisfies CRP if and only if it is separable.

(iii) Let (G, τ) be a locally compact topological group such that the weak

topology on C0(G) is normal. Then the topology τ satisfies CRP if and only if

it is separable.

(iv) In a separably connected metric space CCC and CRP are equivalent

conditions.

Proof. (i). The classical Birkhoff-Kakutani theorem (see Birkhoff [2], Kakutani
[27] or Kelley [28], p. 186) states that on a topological group (G, τ) the topology
τ is first countable if and only if it is metrizable. The result follows now by
Theorem 4.5.

(ii) and (iii). This also follows from Theorem 4.5, making use of Theorem 2
in Corson [16] where it is proved that on a locally compact topological group
(G, τ) the following conditions are equivalent:

(a) τ is a metrizable topology on G,
(b) the weak topology on C0(G) satisfies the Lindelöf property,
(c) the weak topology on C0(G) is normal.

(iv). It is a consequence of Theorem 4.3(ii) and Theorem 4.5, since separa-
bility implies CCC. □

Remarks 4.7. (i) We cannot drop “first countable” in the statement of Corol-
lary 4.6. In other words, for a topological group (G, τ) it is not true, in general,
that CRP is equivalent to separability. To cite an example, consider an infinite
dimensional nonseparable Banach space X (e.g. the Hilbert space of uncount-
able basis ℓ2(R)) endowed with the weak topology ω. Observe that (X,ω) is,
in particular, a topological group. The topology ω is not first countable since
otherwise X would be finite dimensional (see e.g. Theorem 6.30 in Aliprantis
and Border [1]). On the other hand, ω is not separable because on a Banach
space, and as an easy consequence of Hahn-Banach theorem, the separability
of the norm topology is equivalent to the separability of the weak topology ω.
Finally, notice that by Theorem 4.3(ii) ω satisfies CRP, since it satisfies CCC,
as proved in Campión et al. [4].
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(ii) It could be interesting to say that there are classical topologies on re-
markable families of topological spaces that do satisfy CRP. Sometimes this
information is easily obtained from the results just introduced in this Section
4. Observe, for instance, that in the category of topological vector spaces any
compatible topology is path-connected, hence separably connected. This al-
lows us to use Theorem 4.3 to obtain particular results about the fulfillment of
CRP in those spaces.

An important particular case is that of Banach spaces. Thus, if X is a real
Banach space, it can be proved that the norm topology τ||·|| on X satisfies
CRP if and only if it is separable, as a direct consequence of Theorem 4.5.
In addition, the weak topology ω on X always satisfies CRP (see Campión et
al. [4]). Hence any topology τ on X such that τ ⊆ ω satisfies CRP, and also
the weak star topology ω∗ on the Banach space X∗ (the topological dual of
X) satisfies CRP. Finally, in Candeal et al. [13], pp. 57–59, it has been proved
that if the norm topology τ||·|| on X is separable, then any topology τ on the
dual Banach space X∗ such that τ ⊆ m(X∗, X) satisfies CRP, where m(X∗, X)
stands here for the Mackey topology that the dual pair (X∗, X) induces on X∗.

We conclude this section with a useful result concerning the behaviour of
CRP through continuous surjections of topological spaces.

Theorem 4.8. CRP is invariant under continuous surjections.

Proof. Let (X, τX) be a topological space such that τX satisfies CRP. Let
(Y, τY ) be a topological space such that there exists a continuous surjection
π : X → Y . We observe that a total preorder ≾Y on Y induces a total pre-
order ≾X on X by declaring that x1 ≾X x2 ⇐⇒ π(x1) ≾Y π(x2). It is clear
that, if the preorder ≾Y is τY -continuous, then the corresponding preorder ≾X

on X is τX -continuous, as a consequence of the continuity of the projection π:
Given an element x ∈ X, it follows that {z ∈ X : z ≺X x} = {z ∈ X : π(z) ≺Y

π(x)} = π−1({s ∈ Y : s ≺Y π(x)}). Similarly {t ∈ X : x ≺X t} = {t ∈ X :
π(x) ≺Y π(t)} = π−1({r ∈ Y : π(x) ≺Y r}). In addition, since π is a surjection
we have that given an element y ∈ Y there exists at least one element xy ∈ X
such that π(xy) = y. Moreover π({z ∈ X : z ≺X xy}) = {s ∈ Y : s ≺Y y}
and π({t ∈ X : xy ≺X t}) = {r ∈ Y : y ≺Y r}. Therefore, if we consider on
X the order topology induced by ≾X and on Y the order topology induced by
≾Y , then with respect to these topologies the map π is not only a continuous
surjection, but also an open map. Since τX satisfies CRP, the order topology
that ≾X induces on X is second countable by Theorem 4.1. Hence the order
topology that ≾Y induces on Y is also second countable, because second count-
ability is indeed invariant under continuous open surjections (see e.g. Dugundji
[18], Th. 6.2 on p. 174). Again by Theorem 4.1, we conclude that τY satisfies
CRP. □

Corollary 4.9. (i) CRP is invariant under topological quotients.
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(ii) If the product topology τp of a product Πi∈I(Xi, τi) of topological spaces

satisfies CRP, then the topology τi (i ∈ I) of each factor also satisfies CRP.

Remark 4.10. The converse of part (ii) of Corollary 4.9 is an open question.
In this direction, we say that a property P on topological spaces is said to

be multiplicative if for any topological spaces (X, τX) and (Y, τY ) that satisfy
P, the topological space (X × Y, τX × τY ) also satisfies P. Similarly, P is said
to be a square property if for any topological space (X, τX) that satisfies P,
the square topological space (X × X, τX × τX) also satisfies P. Of course,
multiplicative properties are in particular square properties but the converse is
not true, in general. Now, the open problem is the following:

(i) Is CRP a multiplicative property?
(ii) Is CRP a square property?

Of course, there are partial answers to the aforementioned question. For
instance, as a consequence of Theorem 4.5, on metric spaces CRP is a multi-
plicative property because separability and metrizability are indeed multiplica-
tive properties. Related to the open problem just introduced we may conjecture

that CRP is a multiplicative property on separably connected topological spaces.

5. The continuous algebraic representability property

In this section, we explore the algebraic version of CRP. In the topological
setting, CRP appears whenever we look for ordinal representations of total
preorders that, in addition, preserve a nice topological property: namely, the
continuity. In the algebraic context, in addition to the continuity property for
an order-preserving function, we will ask for a new demanding requirement:
that of being an algebraic-homomorphism. Of course, this imposes some kind
of compatibility among order, topology, and algebra involved. Although we
could begin with a very simple algebraic ordered structure (e.g., think of a
totally preordered semigroup), we will focus on richer algebraic systems. In
particular, we will pay attention to totally preordered real algebras. The reason
for this choice will be clarified later on in Section 6 when all of this algebraic
machinery will be applied to characterize strongly dictatorial social welfare

functionals, an important issue within social choice theory. We now introduce
some basic definitions.

Definition 5.1. A real algebra (X,+, ·R, ∗) is a set X endowed with three
binary operations so that:

(i) (X,+, ·R) is a real vector space.
(ii) (X,+, ∗) is a ring.
(iii) λ · (x ∗ y) = (λ · x) ∗ y = x ∗ (λ · y) for all x, y ∈ X, λ ∈ R.

Notation. The null element of X with respect to “+” will be denoted by 0.
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Let (X,+, ·R, ∗), (X̄, +̄, ·̄R, ∗̄) be two real algebras. A function v : X −→ X̄
is said to be an algebra-homomorphism if the following three conditions are
met:

(a) v(x+ y) = v(x) +̄ v(y) for all x, y ∈ X (i.e., it is additive),
(b) v(λ · x) = λ ·̄ v(x) for all x ∈ X, λ ∈ R (i.e., it is homogeneous),
(c) v(x ∗ y) = v(x) ∗̄ v(y) for all x, y ∈ X (i.e., it is multiplicative).

Remark 5.2. Condition (a) in combination to condition (b) can be given in a
single formula in the following terms:
v(λ · x + β · y) = λ ·̄ v(x) +̄ β ·̄ v(y) for all x, y ∈ X, λ, β ∈ R (i.e., it is

linear).

In the next definition, some usual compatibility conditions between order
and algebra are introduced. This leads to the concept of a totally preordered

real algebra, or a totally ordered real algebra if the preorder is an order.

Definition 5.3. A totally preordered real algebra (X,≾,+, ·R, ∗) is a real alge-
bra equipped with a total preorder ≾ which is compatible with the operations
“+”, “·R and “∗”, i.e., if the following three conditions are met:

(1) x ≾ y implies x+ z ≾ y + z for all z ∈ X (translation-invariance),
(2) x ≾ y, 0 ≤ λ imply λ · x ≾ λ · y (homotheticity),
(3) x ≾ y, 0≾ z imply z ∗ x ≾ z ∗ y and x ∗ z ≾ y ∗ z (multiplicative-

invariance).

Notation. The class of all total preorders defined on a real algebra X that
satisfy the conditions (1) to (3) of Definition 5.3 above will be denoted by Pa,
i.e., Pa = {≾ : ≾ is a translation-invariant, homothetic and multiplicative-
invariant total preorder defined on X}.

Remark 5.4. An easy example of a totally preordered real algebra is the n-
dimensional Euclidean space X = R

n, n ≥ 1, endowed with the usual binary
operations, “+”, “·R” and “∗”, defined componentwise (i.e., (ai) + (bi) = (ai +
bi), λ · (ai) = (λai), (ai) ∗ (bi) = (aibi) for all (ai), (bi) ∈ R

n, λ ∈ R), and the
total preorder defined as follows: Let j ∈ {1, . . . , n} be fixed. Then, for every
(xi), (yi) ∈ R

n, define (xi) ≾ (yi) if and only if xj ≤ yj . This total preorder
only pays attention to the j-th coordinate of the corresponding vectors. This
is the reason why we call it a projective total preorder on R

n. This example
can be straightforwardly generalized to include infinite-dimensional sequence
spaces like X = c0 or X = l1, standard notations which correspond to the
Banach space of real sequences vanishing at infinity and the Banach space of
absolutely sumable real sequences, respectively.

An obvious example of a non-projective total preorder ≾ defined on X = R
n

which satisfies the conditions (1) to (3) of Definition 5.3 is the trivial one (i.e.,
(xi) ∼ (yi) for every (xi), (yi) ∈ R

n). Notice that this particular binary relation
belongs to Pa for any real algebra X. We will use the notation ≾t to refer to
this total preorder (i.e., x ∼t y for all x, y ∈ X). Now, we present a much
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more sophisticated example of a total preorder defined on a sequence space
that belongs to Pa and is non-projective. Consider the space X = l∞, which
consists of all bounded real sequences. Endowed with the usual operations
defined coordinatewise l∞ is a real algebra. Let us denote by β(N) the Stone-
Čech compactification of the set of the natural numbers N (see, e.g., Dugundji
[18]). By the Stone-Čech’s theorem every x ∈ l∞ extends in a unique manner
to a continuous real-valued function, say, x̃, defined on β(N). Let p ∈ β(N) \N
be fixed. Then, it can be easily proved that the relation defined as x ≾p y if
and only if x̃(p) ≤ ỹ(p), (x, y ∈ l∞), is a total preorder on l∞ that makes it to
be a totally preordered real algebra. Clearly, ≾p, so defined, is not projective.

Next we define the notion of a topological real algebra.

Definition 5.5. A real algebra (X,+, ·R, ∗) equipped with a topology τ is said
to be a topological real algebra if (X, τ,+, ·R) is a topological vector space and
∗ is a continuous binary operation on X ×X.

Remark 5.6. Examples of topological real algebras are R
n, n ≥ 1, with the

usual binary operations mentioned above and the Euclidean topology. Also,
they are c0, l∞ and l1 endowed with the topology given by the usual norms; i.e.,
∥(xn)∥∞ = sup{|xn| : n ∈ N} for any (xn) ∈ c0 or l∞, and ∥(xn)∥1 =

∑
|xn|,

for any (xn) ∈ l1. Actually, all of these are examples of richer mathematical
structures; namely, they are Banach algebras (see, e.g., Rickart [32] for an
excellent account on this topic).

Notation. In order to shorten the notation, we will simply write X to denote a
real algebra. If there is no ambiguity, we will keep the same notation throughout
this section even though X is a totally preordered real algebra or a totally
preordered topological real algebra.

Before introducing the concept of CARP in this algebraic environment a
new notion is needed. A total preorder ≾ on X is said to be zero if x ∗ y ∼ 0

for all x, y ∈ X. Otherwise ≾ is said to be non-zero. If ≾ is a total order, then
∼ is the equality relation =. In this case, since the previous condition reduces
to x∗y = 0 for all x, y ∈ X, we will say that X is zero or non-zero, respectively.

Definition 5.7. Let X be a real algebra and let τ be a topology on X.
Then τ satisfies the continuous algebraic representability property (shortly,
CARP) if every continuous, translation-invariant, homothetic, multiplicative-
invariant and non-zero total preorder ≾ defined on X admits a continuous
order-preserving function which is an algebra-homomorphism (shortly, a con-
tinuous algebraic order-preserving function).

Remarks 5.8. (i) It should be observed that the only zero total preorder defined
on a real algebra X that admits an algebraic order-preserving function is the
trivial one ≾t (i.e., x ∼t y for every x, y ∈ X) for which the algebraic order-
preserving function turns out to be the null function.
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(ii) The condition of being non-zero plays an important role in Definition
5.7. Indeed, by Remark 5.8(i) and from the point of view of the existence
of an algebraic order-preserving function, zero and non-trivial total preorders
on a real algebra X are pathological. It is remarkable that this kind of total
preorders can exist even though X is endowed with a nice topology. This is
the reason why they are not included in Definition 5.7. Let us see an example
of a topological totally preordered real algebra (X, τ,≾,+, ·R, ∗) such that ≾
is zero, continuous and non-trivial. Consider X = R

2, endowed with the usual
Euclidean topology and the usual binary operations, “+” and “·R” defined
componentwise. Then, define both the binary operation “∗” and the binary
relation≾ as follows: (x1, x2)∗(y1, y2) = (x1y1, 0); (x1, x2) ≾ (y1, y2) if and only
if x2 ≤ y2. It is simple to see that X, with “∗” so defined, is a topological real
algebra. In addition, it can be easily shown that ≾, so defined, is a continuous,
zero and non-trivial total preorder on X which belongs to Pa. Notice that,
although it admits a linear order-preserving function (e.g., ψ(x1, x2) = x2 for
every (x1, x2) ∈ R

2, is such a function), there is no such a function which is
multiplicative.

(iii) Projective preorders on R
n, or on some sequence spaces like c0 or l1,

have the interesting property that they are the only non-trivial total preorders
that admit a continuous algebraic order-preserving function (see, Remark 5.15
below). However, this is not the case for any arbitrary totally preordered
topological real algebra. Indeed, consider again the Banach algebra X = l∞
and let p ∈ β(N) \N be fixed (see the second paragraph of Remark 5.4 above).
Then, ≾p is a non-trivial total preorder on l∞ that is not projective. Observe
that the evaluation map at p, x ∈ l∞ ⇝ ep(x) = x̃(p) ∈ R, is a continuous
algebraic order-preserving function for ≾p.

Notation. Similarly to the notation used above, we now introduce two impor-
tant sub-classes of binary relations defined on X. These are, respectively, P=
{≾ : ≾ is a continuous, translation-invariant, homothetic and multiplicative-

invariant total preorder defined on X} and P̃ = {≾ : ≾ is a non-zero, contin-
uous, translation-invariant, homothetic and multiplicative-invariant total pre-
order defined on X}. Obviously, P̃ ⊆ P .

Next lemma will be useful to prove the main result of this section.

Lemma 5.9. Let X be a non-zero2 topological real algebra and let ⪯∈ P a

total order defined on X. Then there is a continuous algebraic order-preserving

function for ⪯. Moreover, this function is unique, onto and open.

Proof. First of all, we are going to show that the order topology τ⪯ coincides
with τ on X. Notice that, with respect to τ , X is a Hausdorff space since,
by continuity of ⪯, τ⪯ ⊆ τ and clearly X is a Hausdorff space with respect

2We are indebted to an anonymous referee for drawing our attention to include this
possibility.
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to τ⪯. Thus, (X, τ,+, ·R) is a Hausdorff topological vector space. Since ⪯ is
a continuous, translation-invariant and homothetic total (pre-)order on X, by
a result of Candeal and Induráin [11], there is a linear and continuous order-
preserving function, say ψ for ⪯. Notice also that, since ⪯ is a total order
on X, in addition to be both an algebraic and an order isomorphism, ψ is a
homeomorphism from X onto the reals. As a direct consequence (X,+, ·R) can
be identified with (R,+, ·R), τ with the usual Euclidean topology on R and ⪯
with the usual order ≤ on R or its dual ≤d (i.e., a ≤d b ⇔ b ≤ a for every
a, b ∈ R). In particular, the order topology on X, τ⪯, coincides with τ .

Now, observe that (X,⪯,+, ∗) is a non-zero totally ordered ring3 too. In
addition, by the argument of the previous paragraph, ⪯ is Archimedean (i.e.,
for any x, y ∈ X, such that 0≺ x ≺ y, there is n ∈ N such that y ≺ nx). So, by
a result of Pickert and Hion (see Fuchs [23], p. 126), there is an order-preserving
function, say ϕ, for ⪯ which is additive (i.e., ϕ(x+ y) = ϕ(x) + ϕ(y) for every
x, y ∈ X) and multiplicative. Let us see that ϕ meets all of the properties
given in the statement of Lemma 5.9. In particular, it remains to prove that,
in addition to satisfy the functional equation ϕ(λ · x) = λϕ(x) (λ ∈ R, x ∈ X),
ϕ is continuous, onto, open and unique.

(1) ϕ is continuous: Indeed, by the argument of the first paragraph above,
(X,⪯) can be identified with (R,≤) or (R,≤d) and τ = τ⪯ with the Euclidean
topology on R. Suppose that the first occurs, the other situation being entirely
similar. Then ϕ turns out to be an increasing function from R into R (with
the usual meaning of an increasing real-valued function of one real variable).
Now, it is well-known that an increasing function from R into R is almost
everywhere continuous and, in addition, if it is additive, then it is continuous
at every point. Therefore, ϕ is continuous.

(2) ϕ satisfies the functional equation ϕ(λ · x) = λϕ(x) (λ ∈ R, x ∈ X):
Indeed, a standard reasoning proves that, since ϕ is additive and continuous,
it satisfies this homogeneity equation.

(3) ϕ is onto: It follows from linearity.
(4) ϕ is open: To show openess let us observe that, since ϕ is order-preserving,

the image of every open ⪯-interval of X is an open ≤-interval of R. Now, since
τ = τ⪯ and τ≤ is the Euclidean topology on R, it directly follows that ϕ is
open.

(5) ϕ is unique: To prove this, we use the fact that ϕ is multiplicative. First,
it should be noted that X has an identity, say 1X (i.e., there is an element, say
1X ∈ X, such that 1X ∗x = x ∗ 1X = x for every x ∈ X). Indeed, 1X = ϕ−1(1)
is the identity. In addition, since (X,+, ·R) is a one-dimensional vector space,
for every x ∈ X there is λx ∈ R ; x = λx · 1X . Suppose that there is another
function ϕ̃ that meets the conditions of Lemma 5.9. Let us see that ϕ̃ ≡ ϕ.
Indeed, note that, since ϕ̃ is multiplicative too, ϕ̃(1X) = ϕ(1X) = 1. Then,

3A totally (pre-)ordered ring is a ring endowed with a (left and right) translation-invariant
and multiplicative-invariant total (pre-)order.
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by linearity, we have that ϕ̃(x) = ϕ̃(λx · 1X) = λxϕ̃(1X) = λx = λxϕ(1X) =

ϕ(λx · 1X) = ϕ(x) for every x ∈ X. So, ϕ̃ ≡ ϕ. □

Remark 5.10. Consider R with the usual binary operations, the usual order ≤
and the Euclidean topology. As direct consequences of Lemma 5.9 the following
results are obtained:

(i) The only (up to a unique order-preserving, homeomorphism and alge-
braic isomorphism) non-zero totally ordered topological real algebra is R. In
particular, a non-zero totally ordered topological real algebra is a commutative
field.

(ii) Let (X,⪯,+, ·R, ∗) be a non-zero totally ordered real algebra. Then,
τ⪯ is the only topology on X that makes it to be a non-zero totally ordered
topological real algebra.

The main result of this section will be a characterization of the continuous
algebraic representability property (CARP); but, this result must be prefaced
by a remark.

Remark 5.11. The following well-known facts will be used in the sequel. They
take part of the folklore of the theory of topological vector spaces and topolog-
ical algebras (see, e.g., Schaefer [33] and Rickart [32]).

Let X be a real vector space and let S ⊆ X be a linear subspace of X.
Consider the equivalence relation RS on X defined as follows: xRSy if and only
if x− y ∈ S. Then, the binary operations “+” and “·R” on X are stable under
RS and so the quotient space X/S is a real vector space too (the corresponding
binary operations on this quotient space are denoted also by “+” and “·R”).
If, in addition, X is a topological vector space, with topology τ , then the
quotient spaceX/S is also a topological vector space endowed with the quotient
topology, denoted by τq. Notice that X/S is Hausdorff if and only if S is closed.
Consider the projection map, denoted by p, defined as follows: x ∈ X ⇝ p(x) =
[x] ∈ X/S. It is well-known that p is linear, continuous and open (with respect
to the topology τ in X and τq in X/S).

Moreover, if X is a real algebra and S ⊆ X is, in addition to being a linear
subspace, an ideal4 of X, then the operation “∗” is also stable under RS which
means that the quotient space X/S is a real algebra (the binary operation of
the quotient will also be denoted by “∗”). If X is a topological real algebra,
with topology τ , and S ⊆ X is a linear subspace and an ideal of X, then X/S is
also a topological real algebra with respect to the quotient topology τq. Notice
that, in this algebraic context, the projection map p is also multiplicative.

Theorem 5.12. Let X be a real algebra and let τ be a topology on X. Then

the following assertions are equivalent:

(i) τ satisfies CARP.

4An additive subgroup I of a ring (A,+, ∗) is said to be an ideal if x ∗ a ∈ I, a ∗ x ∈ I for
every x ∈ I, a ∈ X.
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(ii) Endowed with the order topology τ≾, X is a topological real algebra for

every ≾∈ P̃.

Proof. For the proof of this result, given a total preorder ≾ on X, it will be
useful to consider the following set I(0) = {x ∈ X : x ∼ 0}.

(i)=⇒(ii). Let ≾∈ P̃. Let us see that, endowed with the order topology τ≾,
X is a topological real algebra. Since, by hypothesis, τ satisfies CARP there is
a continuous algebraic order-preserving function, say ϕ : X −→ R for ≾. Notice
that ϕ ̸= 0 since ≾ is non-zero. Then, it is routine to check that I(0) = ϕ−1(0)
is a real vector subspace of X which, in addition, is an ideal of X. Consider now
the quotient space X/I(0). It is simple to see that, actually, X/I(0) is a totally
ordered real algebra with the usual binary operations induced by “+”, “·R” and
“∗” in the quotient X/I(0), and the total order ⪯ defined as [x] ⪯ [y] ⇔ x ≾ y.
It should be noted that X/I(0) is non-zero since ≾ is non-zero (hence there
are x, y ∈ X such that x ∗ y ≁0 and, therefore, [x] ∗ [y] = [x ∗ y] ̸= [0]). Notice
that, by Remark 5.11 above, equipped with the quotient topology τq, X/I(0)
is a Hausdorff topological real algebra. Clearly, ⪯ is a continuous total order
on X/I(0). Thus, by Remark 5.10(i) and (ii), X/I(0) can be identified with
the reals and τ⪯ ≡ τq. Therefore, endowed with the order topology τ⪯, X/I(0)
is a non-zero topological real algebra. Let us show that X is a topological real
algebra too with respect to τ≾.

To that end, consider the projection map p : X −→ X/I(0). By Remark
5.11 p is linear, multiplicative, continuous and open. Also, it is very simple
to see that p is order-preserving (i.e., x ≾ y ⇔ [x] ⪯ [y] for every x, y ∈ X).
Furthermore, p is also continuous and open whenever X is endowed with the
order topology τ≾ and X/I(0) is equipped with the order topology τ⪯.

Let us show that, whenever X is equipped with the order topology, the
binary operation + : X × X −→ X is a continuous map. The proofs for the
remaining operations, namely “·R” and “∗”, are similar. Let then C ⊆ X
be a τ≾-open subset of X. We have to find τ≾-open subsets, say A,B ⊆ X,

such that A + B = {a + b : a ∈ A, b ∈ B} ⊆ C. Since, as mentioned above,
p : X −→ X/I(0) is a τ≾ to τ⪯ continuous and open map, it follows that p(C)

is a τ⪯-open subset of X/I(0). Now, since, by above, X/I(0) is a non-zero
topological real algebra with respect to τ⪯, there are τ⪯-open subsets, say E,F
of X/I(0) such that E + F ⊆ p(C). Consider A = p−1(E) and B = p−1(F )
and let us prove that A,B ⊆ X are the required subsets. Indeed, A,B are
τ≾-open subsets of X since p is continuous and E,F are τ⪯ of X/I(0). It
remains to see that A + B ⊆ C. To that end, let a ∈ A, b ∈ B arbitrarily
chosen. Then, there are e ∈ E, f ∈ F such that p(a) = e and p(b) = f . By
linearity, p(a + b) = p(a) + p(b) = e + f ∈ p(C). This is, there is c ∈ C such
that p(a + b) = p(c) and therefore a + b ∼ c. This straightforwardly implies
that a + b ∈ C since C is a τ≾-open subset of X which, in particular means

that if c ∈ C, then c′ ∈ C for every c′ ∼ c.
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For the converse, (ii)=⇒(i), we argue as follows. Let≾∈ P̃. Let us prove that
there is a continuous algebraic order-preserving function for ≾. Consider the
order topology τ≾ on X, so that (X, τ≾,+, ·R, ∗) is a topological real algebra,
by hypothesis.

Let us see first that I(0) is both a linear subspace and an ideal of X, for
which we need to prove the following two properties:

(a) I(0) is a real vector subspace of X.
(b) For every x ∈ I(0), y ∈ X, it holds that x ∗ y ∈ I(0) and y ∗ x ∈ I(0).

Let x, y ∈ I(0). Since ≾ is translation-invariant, it follows that x + y ∼
x + 0 = x ∼ 0. So, in order to prove (a), it is sufficient to see that, given
x ∈ I(0) and λ ∈ R, then λ · x ∼ 0. If λ ≥ 0, then, by homotheticity, λ · x ∼ 0.
If λ < 0, then (−λ) ·x ∼ 0. But (−λ) ·x = −λ ·x and, by translation invariance
of ≾, λ · x ∼ 0.

To prove (b), let y ∈ X and x ∈ I(0). If 0 ≾ y, then, because ≾ is
multiplicative-invariant, x ∗ y ≾ 0 ∗ y = 0 and 0 = 0 ∗ y ≾ x ∗ y. Therefore,
x∗y ∼ 0. If y ≾ 0, then 0≾ −y and so −x∗y ∼ 0. Since x∗y = −(−x)∗y, and
I(0) is a vector subspace of X, it holds that x ∗ y ∼ 0. The case y ∗ x ∈ I(0)
is proved in a similar way. Thus (b) holds and therefore I(0) is an ideal of X.

Consider again the quotient space X/I(0). It is now routine to see that
X/I(0) is a totally ordered real algebra with the usual binary operations in-
duced by “+”, “·R” and “∗” in the quotient X/I(0), and the total order ⪯ de-
fined as [x] ⪯ [y] ⇔ x ≾ y. As above, X/I(0) is non-zero since, by hypothesis,
≾ is non-zero. So, by Lemma 5.9, there is a τ≾-continuous algebraic order-

preserving function u : X/I(0) −→ R for ⪯. Consider again the projection
map p : X −→ X/I(0). Recall that p is linear, multiplicative, continuous and
order-preserving. Then, by considering the composition ψ = u ◦ p : X −→ R

we obtain a τ≾-continuous (hence τ -continuous since ≾ is continuous), linear
and multiplicative order-preserving function for ≾. Thus τ satisfies CARP. □

Remark 5.13. If X has an identity, say 1 ∈ X, then the only zero total preorder
on X is the trivial one ≾t. So, if X has an identity, then P = P̃

∪
{≾t}. Note

that the null function is a continuous algebraic order-preserving function for
≾t. Moreover, for this preorder ≾t, the quotient space X/I(0) is the zero vector
(i.e., X/I(0) = {[0]}) and therefore the quotient topology amounts to the order
topology (which coincides with the discrete topology, τd = {∅, X}, on X/I(0)).
Then, Theorem 5.12 can be re-formulated in the following terms.

Let X be a real algebra with an identity and let τ be a topology on X. Then

the following assertions are equivalent:

(i) Every ≾∈ P admits a continuous algebraic order-preserving function.

(ii) Endowed with the order topology τ≾, X is a topological real algebra for

every ≾∈ P.

If τ is a topology on X that makes it to be a topological real algebra, then
we have the following interesting consequence.
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Corollary 5.14. Let X be a real algebra equipped with a topology τ . If X is a

topological real algebra, then τ satisfies CARP.

Proof. According to the statement of Theorem 5.12, we only have to prove
that, equipped with the order topology τ≾, X is a topological real algebra for

every ≾∈ P̃. Let then be ≾ such a total preorder on X and consider again
the quotient space X/I(0). As seen in the proof of Theorem 5.12, X/I(0) is
a non-zero totally ordered topological real algebra. Then, the result follows
directly from Remark 5.10(i) and (ii) above and the argument provided in the
last paragraph of the proof of the implication (i)=⇒(ii) of Theorem 5.12. □

Remark 5.15. In particular, Corollary 5.14 applies to the n-dimensional Eu-
clidean space Rn endowed with the usual binary operations, “+”, “·R” and “∗”,
defined componentwise, and the Euclidean topology. Moreover, in this case it
can be easily seen that the non-null algebra-homomorphisms are of the form
ψ(x1, . . . , xj , . . . , xn) = xj for some j ∈ {1, . . . , n}. Actually, in this case, conti-
nuity and order-preserving are redundant properties. Indeed, let ψ : Rn −→ R

such a function. Then, since ψ is linear, it is of the form ψ(x1, . . . , xi, . . . , xn) =∑
i aixi, where ai ∈ R for every i ∈ {1, . . . , n}. Now, let us denote by (ei)ni=1

the canonical basis of R
n. Then, since ψ is multiplicative too, in particu-

lar we have that ψ(ei ∗ ej) = ψ(ei)ψ(ej) = aiaj for all i, j. But, if i ̸= j,
ψ(ei ∗ ej) = ψ(0) = 0 = aiaj and a2i = ψ(ei)ψ(ei) = ψ(ei ∗ ei) = ψ(ei) = ai.
Therefore, since ψ is non-null, there is j ∈ {1, . . . , n} such that aj = 1 and
ai = 0 for i ̸= j. Thus, ψ(x1, . . . , xj , . . . , xn) = xj . By using a similar argu-
ment, it is not difficult to prove that this kind of result also holds true for the
infinite-dimensional cases X = c0 or X = l1, but not for X = l∞ (see, Remark
5.4 and Remarks 5.8(iii)).

Note that, by Corollary 5.14, we have proved that any non-zero (or, equiva-
lently in this case, non-trivial) continuous total preorder defined on R

n which
is translation-invariant, homothetic and multiplicative-invariant is projective.

6. Application to social choice theory

In this section, we develop an application of the algebraic approach presented
in the previous Section 5 to the context of utility theory in the social choice
framework. A social welfare functional is a map that assigns a preference
relation (total preorder) to any profile of individual utilities. In this literature,
a utility function refers to any map u : X −→ R, where X is the choice set.
It should be noted that a utility function u generates a total preorder on X,
denoted by ≾u, defined as follows: x ≾u y if and only if u(x) ≤ u(y) for every
x, y ∈ X. We characterize strongly dictatorial social welfare functionals in
terms of invariance and continuity properties of such rules, in the spirit of the
literature of utility measurability and (inter/intra) personal comparability (see,
e.g., Fleurbaey and Hammond [22]). Before presenting the application some
definitions and notations are needed. Other insights regarding the potential use
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of algebraic techniques in social choice theory can be seen in Candeal, Induráin
and Molina [15].

LetX be a nonempty set (usually called in this context the set of alternatives
or the choice set). Let us denote by ℜ the class of all total preorders (or
preference relations as are usually called in this setting) defined on X. Let
n > 1 be a natural number (number of agents or individuals in the society).
The set of all functions from X into R will be denoted by U . A utility function
for the agent i will be denoted by ui ∈ U . A profile of utility functions, one for
each agent, will be denoted by (u1, . . . , un), i.e., it is an element of the usual
product of n-copies of U , denoted by Un, which is usually referred to as the set
of all possible profiles. The set which consists of the n first natural numbers
will be denoted by N , i.e., N = {1, . . . , n}.

A social welfare functional is a rule F : Un → ℜ that assigns a preference
relation F (u1, . . . , un) ∈ ℜ, interpreted as the social preference relation, to any
profile (u1, . . . , un) in the domain Un. In order to shorten the notation, for a
profile (u1, . . . , un) we will use the notation (ui). Also, F (ui)s stands for the
strict preference (asymmetric relation) associated with F (ui).

A social welfare functional F : Un → ℜ is said to be Paretian if, for any pair
of alternatives x, y ∈ X and any profile (ui) ∈ Un, we have that ui(x) ≤ ui(y)
for all i ∈ N implies xF (ui)y and also that ui(x) < ui(y) for all i ∈ N implies
xF (ui)sy.

A social welfare functional F : Un → ℜ satisfies the binary independence of

irrelevant alternatives condition if, for any pair of alternatives x, y ∈ X and
any pair of profiles (ui), (vi) ∈ Un with the property that ui(x) = vi(x) and
ui(y) = vi(y) for all i ∈ N , we have that xF (ui)y if and only if xF (vi)y.

A social welfare functional F : Un −→ ℜ is called strongly dictatorial if
there is an agent j ∈ N (the dictator) such that F (ui) coincides with ≾uj

for
every (ui) ∈ Un, where ≾uj

denotes the preference relation on X induced by
the utility function of the j-agent, uj .

A social welfare functional F : Un −→ ℜ is called anonymous if for any pair
of profiles (ui), (vi) ∈ Un such that (vi) is derived from (ui) by permuting the
individuals’ utility functions, one has that F (ui) and F (vi) coincide.

A social welfare functional F : Un −→ ℜ is called continuous if {((ai), (bi)) ∈
R

n × R
n : there exist (ui) ∈ Un, x, y ∈ X with ui(x) = ai, ui(y) = bi and

such that xF (ui)y} is an Euclidean-closed subset of Rn × R
n.

Finally, a social welfare functional F : Un −→ ℜ satisfies information in-

variance with respect to cardinal measurability if, for any profile (ui) ∈ Un,
and any n-tuple of functions (ϕ1, . . . , ϕn) such that, for each i ∈ N , the map
ϕi : R → R is of the form ϕi(t) = ai + bit (t ∈ R) with ai ∈ R and bi > 0, it
holds that F (ui) and F (ϕi ◦ ui) coincide.

We reach the following result.
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Theorem 6.1. Suppose that X contains at least three elements and let F :
Un → ℜ be a social welfare functional. Then the following assertions are

equivalent:

(i) F is Paretian, satisfies the binary independence of irrelevant alterna-

tives condition, continuity, and information invariance with respect to

cardinal measurability.

(ii) F is strongly dictatorial.

Proof. Let us prove that (ii) implies (i). Suppose then that F is strongly
dictatorial and assume without loss of generality that the j-th agent acts as
the dictator. It is straightforward to see that F is Paretian and also that
it satisfies the binary independence of irrelevant alternatives condition. In
order to prove that it satisfies information invariance with respect to cardinal
measurability, let (ui) ∈ Un a profile of utility functions and let (ϕ1, . . . , ϕn)
be a n-tuple of functions so that, for every i ∈ N , ϕi(t) = ai+ bit (t ∈ R) with
ai ∈ R and bi > 0. Since, by hypothesis, the j-th agent is the dictator for F ,
it follows that F (ui) =≾uj

. Now, consider the profile (ϕi ◦ ui) ∈ Un. Then,
F (ϕi◦ui) =≾φj◦uj

=≾uj
, since uj(x) ≤ uj(y) if and only if ϕj◦uj(x) ≤ ϕj◦uj(y)

for every x, y ∈ X which means that uj and ϕj ◦ uj define the same total
preorder in ℜ. Therefore, F (ui) = F (ϕi ◦ ui) and so F satisfies information
invariance with respect to cardinal measurability. It remains to prove that F
is continuous. To that end, observe that {((ai), (bi)) ∈ R

n × R
n : there exist

(ui) ∈ Un, x, y ∈ X with ui(x) = ai, ui(y) = bi and xF (ui)y} = {((ai), (bi)) ∈
R

n × R
n : there exist (ui) ∈ Un, x, y ∈ X with ui(x) = ai, ui(y) = bi

and uj(x) ≤ uj(y)} = {((ai), (bi)) ∈ R
n × R

n : aj ≤ bj}, which, clearly, is a
Euclidean-closed subset of R2n = R

n × R
n.

To prove the converse, consider the binary relation ≾∗ defined on R
n as

follows: Given a = (a1, . . . , an) and b = (b1, . . . , bn) ∈ R
n, then a ≾∗ b if and

only if there exist x, y ∈ X and a profile (ui) ∈ Un such that for every i ∈ N
it holds that ui(x) = ai, ui(y) = bi and xF (ui)y. Since F satisfies the binary
independence of irrelevant alternatives condition, and X contains at least three
elements, it can be shown that ≾∗ is a total preorder that “generates” F .
Indeed, by definition, ≾∗ is obviously reflexive. It is total since the domain of
F is Un. Let us see that it is transitive too. To that end, let a = (ai), b =
(bi), c = (ci) ∈ R

n such that a ≾∗ b and b ≾∗ c. We want to show that a ≾∗ c.
Since a ≾∗ b there are x, y ∈ X and a profile of utility functions (ui) ∈ Un such
that ui(x) = ai, ui(y) = bi for all i, and xF (ui)y. Similarly, since b ≾∗ c, there
are z, t ∈ X and a profile of utility functions (vi) ∈ Un such that vi(z) = bi,
vi(t) = ci for all i and zF (vi)t. Consider a profile of utility functions (wi) ∈ Un

such that, for each i ∈ N , wi(x) = ai, wi(y) = wi(z) = bi and wi(t) = ci. Note
that such a profile (wi) ∈ Un does exit since U consists of all functions from X
into R and, by hypothesis, X has at least three elements (note that it might
be that y = z). Then, by the binary independence of irrelevant alternatives
condition and the fact that xF (ui)y it follows xF (wi)y. Similarly, we have
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that yF (wi)t. Now, F (wi) ∈ ℜ, hence it is a transitive binary relation defined
on X. Thus, xF (wi)t, for such a profile (wi) ∈ Un for which wi(x) = ai and
wi(t) = ci. Therefore, by definition of ≾∗, a ≾∗ c. So, ≾∗ is transitive. In
addition, it should be noted that, since F is Paretian, ≾∗ is non-trivial and
increasing5. Moreover, for every a, b ∈ R

n such that a≪ b it holds that a ≺∗ b.
Let us show that ≾∗∈ P̃, where the binary operations on R

n “+”, “·R” and
“∗” are the usual ones defined componentwise.

Indeed, ≾∗ is non-zero since 1n is the identity of Rn with respect to “∗”
and 0n ≺∗ 1n, hence ≾∗ is non-trivial, because F is Paretian. Continuity
of ≾∗, referred to the Euclidean topology in R

n, follows directly from the
continuity of F (see in Section 2 the equivalent formulation of continuity for a
total preorder). Let us prove now that ≾∗ is translation-invariant. To that end,
let a = (ai), b = (bi), c = (ci) ∈ R

n such that a ≾∗ b. Then there are x, y ∈ X
and a profile of utility functions (ui) ∈ Un such that ui(x) = ai, ui(y) = bi
for all i and xF (ui)y. For every i, consider the functions vi(z) = ui(z) + ci for
all z ∈ X. By information invariance with respect to cardinal measurability, it
holds that F (vi) coincides with F (ui). In particular, xF (vi)y or, equivalently,
(vi(x)) ≾

∗ (vi(y)). Thus, a+ c = (ai + ci) ≾
∗ b+ c = (bi + ci).

Similarly, let us prove that ≾∗ is homothetic. To see this, let a = (ai), b =
(bi) ∈ R

n, with 0 ≤ λ, such that a ≾∗ b. If λ = 0, obviously λ · a ≾∗ λ · b. So,
suppose that 0 < λ. Then, there are x, y ∈ X and a profile of utility functions
(ui) ∈ Un, such that ui(x) = ai, ui(y) = bi for all i and xF (ui)y. For each i,
consider the (utility) function vi = λui. By information invariance with respect
to cardinal measurability, it holds that F (vi) and F (ui) coincide. In particular,
xF (vi)y or, equivalently, (vi(x)) ≾

∗ (vi(y)). Thus, λ ·a = (λai) ≾
∗ λ ·b = (λbi).

Notice that, by translation invariance and homotheticity of ≾∗ it follows, as
in the proof of Theorem 5.12, that I(0n) = {z ∈ R

n : z ∼∗ 0n} is a vector
subspace of Rn.

The fact that ≾∗ is multiplicative-invariant, with respect to the binary oper-
ation ∗ defined componentwise (i.e., (ai)∗(bi) = (aibi) for every (ai), (bi) ∈ R

n),
is a little more tricky. Since ≾∗ is translation-invariant it should be noted that,
in order to prove that ≾∗ is multiplicative-invariant, it is sufficient to show that
for any pair a, b ∈ R

n such that 0n ≾
∗ a, b it holds that 0n ≾

∗ a ∗ b. To show
this it will be useful to observe the following facts:

(1) Given any a = (ai) ∈ R
n, such that 0n ≾

∗ a = (ai), it holds that
0n ≾

∗ a ∗ c for all 0n ≪ c = (ci) (In particular, this will imply that if
0n ∼∗ a, then 0n ∼∗ a ∗ c for all 0n ≪ c). Indeed, since 0n ≾

∗ a, there are
x, y ∈ X and a profile of utility functions (ui) ∈ Un, such that ui(x) = 0,
ui(y) = ai for all i and xF (ui)y. For each i, consider the (utility) function

5A total preorder ≾ defined on R
n is said to be increasing if x ≤ y implies x ≾ y for every

x, y ∈ R
n (Here, x = (x1, . . . , xn) ≤ y = (y1, . . . , yn) means that xi ≤ yi for all i ∈ N). “≪”

will stand for the strict partial order in R
n (i.e., x ≪ y if and only if xi < yi for all i ∈ N).

The zero vector in R
n and the vector with all its coordinates equal one will be denoted by

0n and 1n, respectively.
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vi = ciui. By information invariance with respect to cardinal measurability, it
holds that F (vi) and F (ui) coincide. In particular, xF (vi)y or, equivalently,
(vi(x)) ≾

∗ (vi(y)). Thus, 0n ≾
∗ a ∗ c = (aici).

(2) Let then a = (ai) ∈ R
n such that 0n ≾

∗ a and denote by (ei)i∈N the
canonical basis in R

n. Let us see that, for each i ∈ N , 0n ≾
∗ ai · e

i and, in
addition, if ai ≤ 0, then 0n ∼∗ ai · e

i. Indeed, let i ∈ N be fixed. If ai ≥ 0,
then the fact that 0n ≾

∗ ai · e
i follows directly since ≾∗ is increasing and so

0n ≤ ai · e
i implies that 0n ≾

∗ ai · e
i. If ai < 0 the argument requires a further

consideration. On the one hand, the fact that ai · e
i ≾∗ 0n follows by the

previous reasoning again. To prove that 0n ≾
∗ ai ·e

i consider, for every m ∈ N,
the vector cm = (cmk ) ∈ R

n defined as follows: cmk = 1
m
, if k ̸= i and cmi = 1.

Clearly, the sequence (cm)∞m=1 converges to ei, as m goes to ∞, and therefore
the sequence (a ∗ cm)∞m=1 converges to ai · e

i, as m goes to ∞. Moreover, for
every m ∈ N, 0n ≪ cm and, since 0n ≾

∗ a, it follows also, from the argument
of the previous paragraph, that 0n ≾

∗ a∗cm. Now, the continuity of ≾∗ clearly
implies that 0n ≾

∗ ai · e
i. This fact, in combination with ai · e

i ≾∗ 0n, yields
0n ∼∗ ai ·e

i. Thus, 0n ∼∗ ai ·e
i provided that ai ≤ 0 (the case ai = 0 is trivial).

Let then a = (ai), b = (bi) ∈ R
n such that 0n ≾

∗ a, b and let us prove
that 0n ≾

∗ a ∗ b. Notice that a ∗ b =
∑

(aibi) · e
i. Let us show that, for all

i ∈ N , 0n ≾
∗ (aibi) · e

i. Then, the result would follow from the fact that ≾∗

is translation-invariant. Let i ∈ N be fixed. If 0 ≤ aibi, then 0n ≾
∗ (aibi) · e

i

since ≾∗ is increasing. It remains to analyze what occurs if aibi < 0. Assume
that ai < 0 and bi > 0, the other case (i.e., ai > 0 and bi < 0) being similar.
Then, by the argument above, 0n ∼∗ ai · e

i, i.e., ai · e
i ∈ I(0n). Now, since

I(0n) is a vector subspace of Rn, it follows that (aibi) · e
i = bi · (ai · e

i) ∈ I(0n).
In particular, we have that 0n ≾

∗ (aibi) · e
i as desired.

Thus, ≾∗ is multiplicative-invariant. Hence all the conditions of Remark
5.15 are satisfied and therefore ≾∗ is a projective total preorder on R

n. This
clearly implies that F is a strongly dictatorial social welfare functional. □

Remark 6.2. In the proof of Theorem 6.1 above we have used the fact that,
with respect to the usual binary operations “+”, “·R” and “∗”, defined com-
ponentwise, I(0n) is a vector subspace of Rn. In fact, as it was proved in the
proof of Theorem 5.12, I(0n) is also an ideal of Rn. So, a fortiori, I(0n) is of
the form I(0n) =

∑
i∈N,i ̸=j λie

i for some j ∈ N . But this fact is a consequence
of Theorem 5.12 and Remark 5.15

As a direct consequence of the previous Theorem 6.1, we obtain the following
impossibility result.

Corollary 6.3. Suppose that X contains at least three elements. Then there

is no continuous social welfare functional F : Un → ℜ that is Paretian, sat-

isfies the binary independence of irrelevant alternatives condition, information

invariance with respect to cardinal measurability, and anonymity.
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