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Abstract

Continuous paths in Brownian motion and related problems

by

Wenpin Tang

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor James Pitman, Chair

This thesis is composed of six chapters, which mainly deals with embedding continuous
paths in Brownian motion. It is adapted from two publications [123, 124], joint with Jim
Pitman.

We ask if it is possible to find some particular continuous paths of unit length in linear
Brownian motion. Beginning with a discrete version of the problem, we derive the asymp-
totics of the expected waiting time for several interesting patterns. These suggest corre-
sponding results on the existence/non-existence of continuous paths embedded in Brownian
motion.

By various stochastic analysis arguments (path decomposition, Itô excursion theory, po-
tential theory...), we are able to prove some of these existence and non-existence results:

Z e V (bλ) m R
Embedding into B No No Yes Yes

where e is a normalized Brownian excursion, V (b) is the Vervaat transform of Brownian
bridge ending at λ, m is a Brownian meander, and R is the three dimensional Bessel process
of unit length.

The question of embedding a Brownian bridge into Brownian motion is more chanllenging.
After explaining why some simple or traditional approaches do not work, we make use of
recent work of Last and Thorisson on shift couplings of stationary random measures to
prove the result. These can be applied after a thorough analysis of the Slepian zero set
{t ≥ 0;Bt = Bt+1}.

We also discuss the potential theoretical aspect of embedding continuous paths in a
random process. A list of open problems is presented.
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Chapter 1

Introduction and main results

In this thesis, we are interested in continuous paths embedded in a linear Brownian
motion. It is mainly adapted from two publications [123, 124], written jointly with Jim
Pitman. Before explaining further, let us mention briefly how this problem was brought into
our eyes.

For a continuous function f ∈ C([0, 1]), Vervaat [149] defined the following path transform

V (f)(t) := f(τ(f) + t mod 1) + f(1)1(t+ τ(f) ≥ 1)− f(τ(f)),

where τ(f) corresponds to the first time at which the minimum of f is attained. For λ ∈ R,
let bλ := (bλu; 0 ≤ u ≤ 1) be a Brownian bridge ending at λ, and e := (eu; 0 ≤ u ≤ 1) be a
normalized Brownian excursion. Vervaat [149] showed the following striking identity in law:

V (b0)
(d)
= e. (1.1)

Extending the Vervaat result, Lupu et al. [102] proved the following path decomposition.

Theorem 1.0.1 [102] Let λ < 0. Given Zλ the time of the first return to 0 by V (bλ), whose
density is given by

fZλ(t) :=
|λ|√

2πt(1− t)3
exp

(
− λ2t

2(1− t)

)
,

the path is decomposed into two (conditionally) independent pieces:

• (V (bλ)u; 0 ≤ u ≤ Zλ) is a Brownian excursion of length Zλ;

• (V (bλ)u;Z
λ ≤ u ≤ 1) is a first passage bridge through level λ of length 1− Zλ.

Soon after we finished [102], Jim Pitman sent out the paper to Patrick Fitzsimmons for
comment. In response, Fitzsimmons raised the following question:
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Fig 1. Vervaat bridge = Excursion + First passage bridge.

I wonder if a path fragment as pictured in Fig 1 is a piece of Brownian path
occurring naturally in the wild. By occurring naturally in the wild, I mean that
a piece of Brownian path (Bt −BT ;T ≤ t ≤ T + 1) for certain random time T .

In other words, Fitzsimmons asked whether we are able to find the Vervaat bridge
V (Bλ,br) in Brownian motion by a spacetime shift. This motivated our study of embedding
some continuous-time stochastic processes (Zu; 0 ≤ u ≤ 1) into a Brownian path (Bt; t ≥ 0),
without time-change or scaling, just by a random translation of origin in spacetime.

Question 1.0.2 Given some distribution of a process Z with continuous paths, does there
exist a random time T such that (BT+u − BT ; 0 ≤ u ≤ 1) has the same distribution as
(Zu, 0 ≤ u ≤ 1)?.

The question of whether external randomization is allowed to construct such a random
time T , is of no importance here. In fact, we can simply ignore Brownian motion on [0, 1],
and consider only random times T ≥ 1. Then (Bt; 0 ≤ t ≤ 1) provides an independent
random element which is adequate for any randomization, see e.g. Kallenberg [75, Theorem
6.10].

Note that a continuous-time process whose sample paths have different regularity, e.g.
fractional Brownian motion with Hurst parameter H 6= 1

2
, cannot be embedded into Brown-

ian motion. Given (Bt; t ≥ 0) a linear Brownian motion, we define g1 := sup{t < 1;Bt = 0}
to be the time of last exit from 0 before t = 1, and d1 := inf{t > 1;Bt = 0} to be the first
hitting time of 0 after t = 1. The following processes, derived from Brownian motion, are of
special interest.

• Brownian bridge, which can be defined by(
b0
u :=

1
√
g1

Bug1 ; 0 ≤ u ≤ 1

)
,
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and its reflected counterpart (|b0
u|; 0 ≤ u ≤ 1).

• Normalized Brownian excursion defined by(
eu :=

1√
d1 − g1

|Bg1+u(d1−g1)|; 0 ≤ u ≤ 1

)
.

• Brownian meander defined as(
mu :=

1√
1− g1

|Bg1+u(1−g1)|; 0 ≤ u ≤ 1

)
.

• Brownian co-meander defined as(
m̃u :=

1√
d1 − 1

|Bd1−u(d1−1)|; 0 ≤ u ≤ 1

)
.

• The three-dimensional Bessel process(
Ru :=

√
(Bu)2 + (B′u)

2 + (B′′u)2; 0 ≤ u ≤ 1
)
,

where (B′t; t ≥ 0) and (B
′′
u ;u ≥ 0) are two independent copies of (Bt; t ≥ 0).

• The first passage bridge through level λ 6= 0, defined by

(F λ,br
u ; 0 ≤ u ≤ 1)

(d)
= (Bu; 0 ≤ u ≤ 1) conditioned on τλ = 1,

where τλ := inf{t ≥ 0;Bt = λ} is the first time at which Brownian motion hits

λ 6= 0. Note that for λ < 0, (F
|λ|,br
u ; 0 ≤ u ≤ 1)

(d)
= (−F λ,br

u ; 0 ≤ u ≤ 1), and
(F λ,br

1−u + |λ|; 0 ≤ u ≤ 1) is distributed as a three dimensional Bessel bridge ending at
|λ| > 0, see e.g. Biane and Yor [16].

• The Vervaat transform of Brownian motion, defined as(
Vu :=

{
Bτ+u −Bτ for 0 ≤ u ≤ 1− τ

Bτ−1+u +B1 −Bτ for 1− τ ≤ u ≤ 1
; 0 ≤ u ≤ 1

)
,

where τ := argmin0≤t≤1Bt, and the Vervaat transform of Brownian bridge with end-
point λ ∈ R(

V λ
u :=

{
bλτ+u − bλτ for 0 ≤ u ≤ 1− τ

bλτ−1+u + λ− bλτ for 1− τ ≤ u ≤ 1
; 0 ≤ u ≤ 1

)
,

where (bλu; 0 ≤ u ≤ 1) is a Brownian bridge ending at λ ∈ R and τ := argmin0≤t≤1 b
λ
t .

Recall from (1.1) that (V 0
u ; 0 ≤ u ≤ 1)

(d)
= (eu; 0 ≤ u ≤ 1). For λ < 0, (V

|λ|
u ; 0 ≤ u ≤ 1)

has the same distribution as (V λ
1−u + |λ|; 0 ≤ u ≤ 1).
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The Brownian bridge, meander, excursion and the three-dimensional Bessel process are
well-known. The definition of the co-meander is found in Yen and Yor [157, Chapter 7]. The
first passage bridge is studied by Bertoin et al. [14]. The Vervaat transform of Brownian
bridges and of Brownian motion are extensively discussed in Lupu et al. [102]. According to
the above definitions, the distributions of the Brownian bridge, excursion and (co-)meander
can all be achieved in Brownian motion provided some Brownian scaling operation is allowed.

Note that the distributions of all these processes are singular with respect to Wiener
measure. So it is a non-trivial question whether copies of them can be found in Brownian
motion just by a shift of origin in spacetime. Otherwise, for a process (Zt, 0 ≤ t ≤ 1) whose
distribution is absolutely continuous with respect to that of (Bt, 0 ≤ t ≤ 1), for instance the
Brownian motion with drift Zt := ϑt + Bt for a fixed ϑ, the distribution of Z can be easily
obtained as that of (BT+t−BT , 0 ≤ t ≤ 1) for a suitable stopping time T +1 by Rost’s filling
scheme. We refer readers to Chapter 3 for further development.

The question raised here has some affinity to the question of embedding a given one-
dimensional distribution as the distribution of BT for a random time T . This Skorokhod
embedding problem traces back to Skorokhod [137] and Dubins [38] – who found integrable
stopping times T such that the distribution of BT coincides with any prescribed one with zero
mean and finite second moment. Monroe [112, 113] considered embedding of a continuous-
time process into Brownian motion, and showed that every semi-martingale is a time-changed
Brownian motion. Rost [132] studied the problem of embedding a one-dimensional distribu-
tion in a Markov process with randomized stopping times. We refer readers to the excellent
survey of Obloj [117] and references therein.

Let Xt := (Bt+u − Bt; 0 ≤ u ≤ 1) for t ≥ 0 be the moving-window process associated
to Brownian motion. In Question 1.0.2, we are concerned with the possibility of embedding
a given distribution on C[0, 1] as that of XT for some random time T . We start with a list
of continuous-time processes that cannot be embedded into Brownian motion by a shift of
origin in spacetime.

Theorem 1.0.3 (Impossibility of embedding of normalized excursion, reflected bridge, Ver-
vaat transform of Brownian motion, first passage bridge and Vervaat bridge) For each of the
following five processes Z := (Zu; 0 ≤ u ≤ 1), there is no random time T such that
(BT+u −BT ; 0 ≤ u ≤ 1) has the same distribution as Z:

1. the normalized Brownian excursion Z = (eu; 0 ≤ u ≤ 1);

2. the reflected Brownian bridge Z = (|b0
u|; 0 ≤ u ≤ 1);

3. the Vervaat transform of Brownian motion Z = (Vu; 0 ≤ u ≤ 1);

4. the first passage bridge through level λ 6= 0, Z = (F λ,br
u ; 0 ≤ u ≤ 1);

5. the Vervaat transform of Brownian bridge with endpoint λ ∈ R, Z=(V λ
u ; 0 ≤ u ≤ 1).
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Note that in Theorem 1.0.3 (4) (5), it suffices to consider the case of λ < 0 by time-reversal.
As we will see later in Theorem 1.0.6, Theorem 1.0.3 is an immediate consequence of the
fact that typical paths of these processes cannot be found in Brownian motion. The next
theorem shows the possibility of embedding into Brownian motion some continuous-time
processes whose distributions are singular with respect to Wiener measure.

Theorem 1.0.4 (Embeddings of bridge, meander, co-meander and 3-d Bessel process) For
each of the following four processes Z := (Zu, 0 ≤ u ≤ 1) there is some random time T such
that (BT+u −BT ; 0 ≤ u ≤ 1) has the same distribution as Z:

1. the bridge Z = (b0; 0 ≤ u ≤ 1).

2. the meander Z = (mu; 0 ≤ u ≤ 1).

3. the co-meander Z = (m̃u; 0 ≤ u ≤ 1).

4. the three-dimensional Bessel process Z = (Ru; 0 ≤ u ≤ 1).

We emphasize that the problem of embedding Brownian bridge b0 into Brownian motion
is more difficult than it appears to be. As a natural candidate, the bridge-like process as
below was considered:

(BF+u −BF ; 0 ≤ u ≤ 1), (1.2)

where
F := inf{t ≥ 0;Bt+1 −Bt = 0}. (1.3)

This bridge-like process bears some resemblance to Brownian bridge. At least, it starts and
ends at 0, and is some part of a Brownian path in between. However, the study of the
bridge-like process seems to be challenging as we will explain in Chapter 5. Alternatively,
we make use of Palm theory of stationary random measures to prove Theorem 1.0.4 (1).

In Question 1.0.2, we seek to embed a particular continuous-time process Z of unit
length into a Brownian path. The distribution of X resides in the infinite-dimensional space
C0[0, 1] of continuous paths (w(t); 0 ≤ t ≤ 1) starting from w(0) = 0. So a closely related
problem is whether a given subset of C0[0, 1] is hit by the path-valued moving-window process
Xt := (Bt+u −Bt; 0 ≤ u ≤ 1) indexed by t ≥ 0. We formulate this problem as follows.

Question 1.0.5 Given a Borel measurable subset S ⊂ C0[0, 1], can we find a random time
T such that XT := (BT+u −BT ; 0 ≤ u ≤ 1) ∈ S with probability one?

Question 1.0.5 involves scanning for patterns in a continuous-time process. By the general
theory of stochastic processes, assuming that the underlying Brownian motion B is defined
on a complete probability space, {∃T ≥ 0 such that (BT+u − BT ; 0 ≤ u ≤ 1) ∈ S} is
measurable. See e.g. Dellacherie [33, T32, Chapter I], Meyer and Dellacherie [34, Section
44, Chapter III], and Bass [7, 6]. Assume that

P(∃T ≥ 0 such that (BT+u −BT ; 0 ≤ u ≤ 1) ∈ S) > 0.
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Then there exists some fixed M > 0 and p > 0 such that

P(∃T : 0 ≤ T ≤M and (BT+u −BT ; 0 ≤ u ≤ 1) ∈ S) = p > 0.

We start the process afresh at M + 1, and then also

P(∃T : M + 1 ≤ T ≤ 2M + 1 and (BT+u −BT ; 0 ≤ u ≤ 1) ∈ S) = p > 0.

By repeating the above procedure, we obtain a sequence of i.i.d. Bernoulli(p) random vari-
ables. Therefore, the probability that a given measurable set S ⊂ C0[0, 1] is hit by the
path-valued process generated by Brownian motion is either 0 or 1:

P[∃T ≥ 0 such that (BT+u −BT ; 0 ≤ u ≤ 1) ∈ S] = 0 or 1. (1.4)

Using various stochastic analysis tools, we are able to show that

Theorem 1.0.6 (Impossibility of embedding of excursion, reflected bridge, Vervaat trans-
form of Brownian motion, first passage bridge and Vervaat bridge paths) For each of the
following five sets of paths S, almost surely, there is no random time T ≥ 0 such that
(BT+u −BT ; 0 ≤ u ≤ 1) ∈ S:

1. the set of excursion paths, which first return to 0 at time 1,

S = E := {w ∈ C0[0, 1];w(t) > w(1) = 0 for 0 < t < 1};

2. the set of reflected bridge paths,

S = RBR0 := {w ∈ C0[0, 1];w(t) ≥ w(1) = 0 for 0 ≤ t ≤ 1};

3. the set of paths of Vervaat transform of Brownian motion with a floating negative
endpoint,

S = VB− := {w ∈ C0[0, 1];w(t) > w(1) for 0 ≤ t < 1 and inf{t > 0;w(t) < 0} > 0};

4. the set of first passage bridge paths at fixed level λ < 0,

S = FPλ := {w ∈ C0[0, 1];w(t) > w(1) = λ for 0 ≤ t < 1};

5. the set of Vervaat bridge paths ending at fixed level λ < 0,

S = VBλ := {w ∈ FPλ; inf{t > 0;w(t) < 0} > 0} = {w ∈ VB−;w(1) = λ}.

Observe that for each λ < 0, VBλ is a subset of VB− and FPλ. Then Theorem 1.0.6 (5)
follows immediately from Theorem 1.0.6 (3) or (4). As we will see in Chapter 3, Theorem
1.0.6 (5) is also reminiscent of Theorem 1.0.6 (1) in the proof.

It is obvious that for the following two sets of paths S, there is a random time T ≥ 0
such that (BT+u −BT ; 0 ≤ u ≤ 1) ∈ S almost surely:
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• the set of positive paths,

S =M := {w ∈ C0[0, 1];w(t) > 0 for 0 < t ≤ 1};

• the set of bridge paths, which ends at λ ∈ R,

S = BRλ := {w ∈ C0[0, 1];w(1) = λ}.

The case of positive paths is easily treated by excursion theory, as discussed in Chapter 4.
The bridge paths are obtained by simply taking T := inf{t > 0;Bt+1 = Bt + λ}, see also
Chapter 5 for related discussion. In both cases, T + 1 is a stopping time relative to the
Brownian filtration. For a general measurable S ⊂ C0[0, 1], it is easily shown that if there is
a random time T such that (BT+u − BT ; 0 ≤ u ≤ 1) ∈ S almost surely, then for each ε > 0
this can be achieved by a random time T such that T + 1 + ε is a stopping time relative to
the Brownian filtration.

Here we restrict ourselves to continuous paths in linear Brownian motion. However,
the problem is also worth considering in the multi-dimensional case, as discussed briefly in
Chapter 6.

At first glance, neither Question 1.0.2 nor Question 1.0.5 seems to be tractable. To gain
more intuition, we study the analogous problem in the random walk setting. We deal with
simple symmetric random walks SW (n) of length n with increments ±1 starting at 0. A
typical question is how long it would take, in a random walk, to observe a pattern in a
collection of patterns of length n satisfying some common properties. More precisely,

Question 1.0.7 Given for each n ∈ N a collection An of patterns of length L(An), what is
the asymptotics of the expected waiting time ET (An) until some element of An is observed
in a random walk?

We are not aware of any previous study on pattern problems in which some natural definition
of the collection of patterns is made for each n ∈ N.

Nevertheless, this question fits into the general theory of runs and patterns in a sequence
of discrete trials. This theory dates back to work in 1940s by Wald and Wolfowitz [151]
and Mood [114]. Since then, the subject has become important in various areas of science,
including industrial engineering, biology, economics and statistics. In the 1960s, Feller [45]
treated the problem probabilistically by identifying the occurrence of a single pattern as a
renewal event. By the generating function method, the law of the occurrence times of a
single pattern is entirely characterized. More advanced study, of the occurrence of patterns
in a collection, developed in 1980s by two different methods. Guibas and Odlyzko [64], and
Breen et al. [23] followed the steps of Feller [45] by studying the generating functions in
pattern-overlapping regimes. An alternative approach was adopted by Li [100], and Gerber
and Li [55] using martingale arguments. We also refer readers to the book of Fu and Lou
[50] for the Markov chain embedding approach for multi-state trials.
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Techniques from the theory of patterns in an i.i.d. sequence provide general strategies to
Question 1.0.7. Here we focus on some special cases where the asymptotics of the expected
waiting time is computable. As we will see later, these asymptotics help us predict the
existence or non-existence of some particular paths in Brownian motion. The following
result answers Question 1.0.7 in some particular cases.

Theorem 1.0.8 Let T (An) be the waiting time until some pattern in An appears in the
simple random walk. Then

1. for the set of discrete positive excursions of length 2n, whose first return to 0 occurs at
time 2n,

E2n := {w ∈ SW (2n);w(i) > 0 for 1 ≤ i ≤ 2n− 1 and w(2n) = 0},

we have
ET (E2n) ∼ 4

√
πn

3
2 ; (1.5)

2. for the set of positive walks of length 2n+ 1,

M2n+1 := {w ∈ SW (2n+ 1);w(i) > 0 for 1 ≤ i ≤ 2n+ 1},

we have
ET (M2n+1) ∼ 4n; (1.6)

3. for the set of discrete bridges of length n, which end at λn for some λ ∈ R, where
λn := [λ

√
n] if [λ

√
n] and n have the same parity, and λn := [λ

√
n] + 1 otherwise,

BRλ,n := {w ∈ SW (n);w(n) = λn},

we have
cλBRn ≤ ET (BRλ,n) ≤ Cλ

BRn for some cλBR and Cλ
BR > 0; (1.7)

4. for the set of negative first passage walks of length n, ending at λn with λ < 0,

FPλ,n := {w ∈ SW (n);w(i) > w(n) = λn for 0 ≤ i ≤ n− 1},

we have √
π

2λ2
exp

(
λ2

2

)
n ≤ ET (FPλ,n) ≤

√
4

λ
exp

(
λ2

2

)
n

5
4 . (1.8)

Now we explain how the asymptotics in Theorem 1.0.8 suggest answers to Question 1.0.2
and Question 1.0.5 in some cases. Formula (1.5) tells that it would take on average n

3
2 � n

steps to observe an excursion in a simple random walk. In view of the usual scaling of
random walks to converge to Brownian motion, the time scale appears to be too large. Thus
we should not expect to find the excursion paths E in Brownian motion. However, in (1.6)
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and (1.7), the typical waiting time to observe a positive walk or a bridge has the same order
n involved in the time scaling for convergence in distribution to Brownian motion. So we can
anticipate to observe the positive paths M and the bridge paths BRλ in Brownian motion.
Finally in (1.8), there is an exponent gap in evaluating the expected waiting time for first
passage walks ending at λn ∼ [λ

√
n] with λ < 0. In this case, we do not know whether

it would take asymptotically n steps or much longer to first observe such patterns. This
prevents us from predicting the existence of the first passage bridge paths FPλ in Brownian
motion.

The scaling arguments used in the last paragraph are quite intuitive but not rigorous
since we are not aware of any theory which would justify the existence or non-existence of
continuous paths in Brownian motion by taking limits from the discrete setting. We hope
that this problem will be taken care of in future work.

Organization of the thesis: The rest of the work is organized as follows.

• Chapter 2 treats the asymptotic behavior of the expected waiting time for discrete
patterns. There Theorem 1.0.8 is proved.

• Chapter 3 is devoted to the analysis of continuous paths/processes in Brownian motion.
Proofs of Theorem 1.0.4 and Theorem 1.0.6 (2)− (4) are provided.

• Chapter 4 explores the local structure of the Slepian zero set {t ∈ [0, 1];St = 0}, or
{t ∈ [0, 1];Xt ∈ BR0}. There a path decomposition is given.

• Chapter 5 deals with the proof of Theorem 1.0.4 (1): embedding a Brownian bridge
into Brownian motion.

• Chapter 6 discusses the potential theory of continuous paths in Brownian motion.
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Chapter 2

Expected waiting time for discrete
patterns

Consider the expected waiting time for some collection of patterns

An ∈ {E2n,M2n+1,BRλ,n,FPλ,n},

as defined in Chapter 1, except that we now encode a simple walk with m steps by its
sequence of increments, with each increment a ±1. We call such an increment sequence a
pattern of length m. For each of these collections An, all patterns in the collection have
a common length, say L(An). We are interested in the asymptotic behavior of ET (An) as
L(An)→∞.

We start by recalling the general strategy to compute the expected waiting time for
discrete patterns in a simple random walk. From now on, let An := {An1 , · · · , An#An}, where
Ani is a sequence of signs ±1 for 1 ≤ i ≤ #An. That is,

Ani := Ani1 · · ·AniL(An), where Anik = ±1 for 1 ≤ k ≤ L(An).

Let T (Ani ) be the waiting time until the end of the first occurrence of Ani , and let T (An) be
the waiting time until the first of the patterns in An is observed. So T (An) is the minimum
of the T (Ani ) over 1 ≤ i ≤ #An.

Define the matching matrix M(An), which accounts for the overlapping phenomenon
among patterns within the collection An. The coefficients are given by

M(An)ij :=

L(An)−1∑
l=0

εl(A
n
i , A

n
j )

2l
for 1 ≤ i, j ≤ #An, (2.1)

where εl(A
n
i , A

n
j ) is defined for Ani = Ani1 · · ·AniL(An) and Anj = Anj1 · · ·AnjL(An) as

εl(A
n
i , A

n
j ) :=

{
1 if Ani1 = Anj1+l, · · · , AniL(An)−l = AnjL(An)

0 otherwise,
(2.2)
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for 0 ≤ l ≤ L(An) − 1. Note that in general for i 6= j, M(An)ij 6= M(An)ji and hence
the matching matrix M(An) is not necessarily symmetric. The following result, which can
be read from Breen et al. [23] is the main tool to study the expected waiting time for the
collection of patterns.

Theorem 2.0.9 [23]

1. The matching matrix M(An) is invertible and the expected waiting times for patterns
in An := {An1 , · · · , An#An} are given by(

1

ET (An1 )
, · · · , 1

ET (An#An)

)T

=
1

2n
M(An)−1 (1, · · · , 1)T ; (2.3)

2. The expected waiting time till one of the patterns in An is observed is given by

1

ET (An)
=

#An∑
l=1

1

ET (Anl )
=

1

2n
(1, · · · , 1)M(An)−1(1, · · · , 1)T . (2.4)

In Section 2.1, we apply the previous theorem to obtain the expected waiting time for
discrete excursions E2n, i.e. Theorem 1.0.8 (1). The same problem for positive walksM2n+1,
bridge paths BR0,2n and first passage walks FPλ,n through λn ∼ λ

√
n, i.e. Theorem 1.0.8

(2)−(4), is studied in Sections 2.2−2.4. Finally, we discuss the problem of the exponent gap
for some discrete patterns in Section 2.5.

2.1 Expected waiting time for discrete excursions

For n ∈ N, the number of discrete excursions of length 2n is equal to the n− 1th Catalan
number, see e.g. Stanley [139, Exercise 6.19 (i)]. That is,

#E2n =
1

n

(
2n− 2

n− 1

)
∼ 1

4
√
π

22nn−
3
2 . (2.5)

Note that discrete excursions never overlap since the starting point and the endpoint are
the only two minima. We have then ε(En

i , E
n
j ) = δij for 1 ≤ i, j ≤ #E2n by (2.2). Thus, the

matching matrix defined as in (2.1) for discrete excursions E2n has the simple form

M(E2n) = I#E2n (#E2n ×#E2n identity matrix).

According to Theorem 2.0.9,

∀1 ≤ i ≤ #E2n, ET (En
i ) = 22n and ET (En) =

22n

#E2n
∼ 4
√
πn

3
2 , (2.6)

where #E2n is given as in (2.5). This is (1.5). �



CHAPTER 2. EXPECTED WAITING TIME FOR DISCRETE PATTERNS 12

2.2 Expected waiting time for positive walks

Let n ∈ N. It is well-known that the number of non-negative walks of length 2n + 1 is(
2n
n

)
, see e.g. Larbarbe and Marckert [91] and van Leeuwen [148] for modern proofs. Thus

the number of positive walks of length 2n+ 1 is given by

#M2n+1 =

(
2n

n

)
∼ 1√

π
22nn−

1
2 . (2.7)

Note that a positive walk of length 2n+ 1 is uniquely determined by

• its first 2n steps, which is a positive walk of length 2n;

• its last step, which can be either +1 or −1.

As a consequence,

#M2n =
1

2
#M2n+1 ∼ 1√

π
22n−1n−

1
2 . (2.8)

Now consider the matching matrix M(M2n+1) defined as in (2.1) for positive walksM2n+1.
M(M2n+1) is no longer diagonal since there are overlaps among positive walks. The following
lemma presents the particular structure of this matrix.

Lemma 2.2.1 M(M2n+1) is a multiple of some right stochastic matrix (whose row sums
are equal to 1). The multiplicity is

1 +
2n∑
l=1

k(Ml)

2l
∼ 2√

π

√
n. (2.9)

Proof: Let 1 ≤ i ≤ #M2n+1 and consider the sum of the ith row

#M2n+1∑
j=1

M(M2n+1)ij : =

#M2n+1∑
j=1

2n∑
l=0

εl(M
2n+1
i ,M2n+1

j )

2l

=
2n∑
l=0

1

2l

#M2n+1∑
j=1

εl(M
2n+1
i ,M2n+1

j ), (2.10)

where for 0 ≤ l ≤ 2n and M2n+1
i ,M2n+1

j ∈ M2n+1, εl(M
2n+1
i ,M2n+1

j ) is defined as in (2.2).

Note that ε0(M2n+1
i ,M2n+1

j ) = 1 if and only if i = j. Thus,

#M2n+1∑
j=1

ε0(M2n+1
i ,M2n+1

j ) = 1. (2.11)
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In addition, for 1 ≤ l ≤ 2n,

#M2n+1∑
j=1

εl(M
2n+1
i ,M2n+1

j ) =

#{M2n+1
j ∈M2n+1;M2n+1

i1 = M2n+1
j1+l , · · · ,M

2n+1
i2n+1−l = M2n+1

j2n+1}.

Note that givenM2n+1
i1 = M2n+1

j1+l , · · · ,M
2n+1
i2n+1−l = M2n+1

j2n+1, which implies thatM2n+1
j1+l · · ·M

2n+1
j2n+1

is a positive walk of length 2n− l + 1, we have

M2n+1
j ∈M2n+1 ⇐⇒M2n+1

j1 · · ·M2n+1
jl is a positive walk of length l.

Therefore, for 1 ≤ l ≤ 2n,

#M2n+1∑
j=1

εl(M
2n+1
i ,M2n+1

j ) = k(Ml). (2.12)

In view of (2.10), (2.11) and (2.12), we obtain for all 1 ≤ i ≤ #M2n+1, the sum of
ith row of M(M2n+1) is given by (2.9). Furthermore, by (2.7) and (2.8), we know that

k(Ml) ∼ 1√
2π

2ll−
1
2 as l→∞, which yields the asymptotics 2√

π

√
n. �

Now by Theorem 2.0.9 (1), M(M2n+1) is invertible and the inverse M(M2n+1)−1 is as
well the multiple of some right stochastic matrix. The multiplicity is(

1 +
n−1∑
l=1

k(Ml)

2l

)−1

∼
√
π

2
√
n
.

Then using (2.4), we obtain

ET (M2n+1) =
22n+1(

1 +
∑n−1

l=1
k(Ml)

2l

)−1

#M2n+1

∼ 4n. (2.13)

This is (1.6). �

2.3 Expected waiting time for bridge paths

In this part, we deal with the expected waiting time for the set of discrete bridges. In
order to simplify the notations, we focus on the set of bridges of length 2n which end at
λ = 0, that is BR0,2n. Note that the result in the general case for BRλ,n, where λ ∈ R, can
be derived in a similar way.
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Using Theorem 2.0.9, we prove a weaker version of (1.7): there exist c̃0
BR and C0

BR > 0
such that

c̃0
BRn

1
2 ≤ ET (BR0,n) ≤ C0

BRn. (2.14)

Compared to (1.7), there is an exponent gap in (2.14) and the lower bound is not optimal.
Nevertheless, the lower bound of (1.7) follows a soft argument by scaling limit, Proposition
2.5.3. We defer the discussion to Section 2.5. It is standard that the number of discrete
bridges of length 2n is

#BR0,2n =

(
2n

n

)
∼ 1√

π
22nn−

1
2 . (2.15)

Denote BR0,2n := {BR2n
1 , · · · , BR2n

#BR0,2n} andM(BR0,2n) the matching matrix of BR0,2n.

We first establish the LHS estimate of (2.14). According to (2.3), we have

(1, · · · , 1)M(BR0,2n)

(
1

ET (BR2n
1 )

, · · · , 1

ET (BR2n
#BR0,2n)

)T

=
#BR0,2n

22n
. (2.16)

Note that the matching matrix M(BR0,2n) is non-negative with diagonal elements

M(BR0,2n)ii ≥ ε0(BR2n
i , BR

2n
i ) = 1,

for 1 ≤ i ≤ #BR0,2n. As a direct consequence, the column sums of M(BR0,2n) is larger or
equal to 1. Then by (2.4) and (2.16),

ET (BR0,2n) ≥ 22n

#BR0,2n ∼
√
πn,

where #BR0,2n is defined as in (2.15). Take then c̃0
BR =

√
π.

Now we establish the RHS estimate of (2.14). In view of (2.16), it suffices to work out an
upper bound for the column sums of M(BR0,2n). Similarly as in (2.10), for 1 ≤ j ≤ #BR0,2n,

#BR0,2n∑
i=1

M(BR0,2n)ij = 1 +
2n−1∑
l=1

1

2l

#BR0,2n∑
i=1

εl(BR
2n
i , BR

2n
j ), (2.17)

and

#BR0,2n∑
i=1

εl(BR
2n
i , BR

2n
j ) = #{BR2n

i ∈ BR0,2n;BR2n
i1 = BR2n

j1+l, · · · , BR2n
in−l = BR2n

jn}.

= #{discrete bridges of length l which end at
n−l∑
k=1

BR2n
jk}

=

(
l

l+
∑n−l
k=1BR

2n
jk

2

)
≤
(
l

[ l
2
]

)
, (2.18)
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where the last inequality is due to the fact that
(
l
k

)
≤
(

l
[l]/2

)
for 0 ≤ k ≤ l. By (2.17) and

(2.18), the column sums of M(BR0,2n) are bounded from above by

1 +
2n−1∑
l=0

1

2l

(
l

[ l
2
]

)
∼ 4√

π
n

1
2 .

Again by (2.4) and (2.16),

ET (BR0,2n) ≤ 22n 4n
1
2/
√
π

#BR0,2n ∼ 4n.

Hence we take C0
BR = 4. �

2.4 Expected waiting time for first passage walks

We consider the expected waiting time for first passage walks through λn ∼ λ
√
n for

λ < 0. Following Feller [45, Theorem 2, Chapter III.7], the number of patterns in FPλ,n is

#FPλ,n =
λn
n

(
n

n+λn
2

)
∼ λ exp

(
−λ

2

2

)√
2

π
2nn−1. (2.19)

For FPλ,n := {FP n
1 , · · · , FP n

#FPλ,n} and M(FPλ,n) the matching matrix for FPλ,n, we

have, by (2.3), that

(1, · · · , 1)M(FPλ,n)

(
1

ET (FP n
1 )
, · · · , 1

ET (FP n
#FPλ,n)

)T

=
#FPλ,n

2n
. (2.20)

The LHS bound of (1.8) can be derived in a similar way as in Section 2.3.

ET (FPλ,n) ≥ 2n

#FPλ,n
∼
√

π

2λ2
exp

(
λ2

2

)
n,

where #FPλ,n is defined as in (2.19). We get the lower bound of (1.8).
For the upper bound of (1.8), we aim to obtain an upper bound for the column sums of

M(FPλ,n). Note that for 1 ≤ j ≤ kλFPn ,

#FPλ,n∑
i=1

M(FPλ,n)ij = 1 +
n−1∑
l=1

1

2l

#FPλ,n∑
i=1

εl(FPi, FPj) (2.21)

and

#FPλ,n∑
i=1

εl(FP
n
i , FP

n
j ) = #{FP n

i ∈ FPλ,n;FP n
i1 = FP n

j1+l, · · · , FP n
in−l = FP n

jn}.
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Observe that {FP n
i ∈ FPλ,n;FP n

i1 = FP n
j1+l, · · · , FP n

in−l = FP n
jn} 6= ∅ if and only

if
∑l

k=1 FP
n
jk < 0 (otherwise

∑n−l
k=1 FP

n
ik =

∑n
k=1+l FP

n
jk = λn −

∑l
k=1 FP

n
jk < λn, which

implies FP n
i /∈ FPλ,n). Then given FP n

i1 = FP n
j1+l, · · · , FP n

in−l = FP n
jn and

∑l
k=1 FP

n
jk < 0,

FP n
i ∈ FPλ,n ⇐⇒

FP n
in−l+1 · · ·FP n

in is a first passage walk of length l through
l∑

k=1

FP n
jk < 0.

Therefore, for 1 ≤ l ≤ n− 1 and 1 ≤ j ≤ kλFPn ,

#FPλ,n∑
i=1

εl(FP
n
i , FP

n
j ) = 1∑l

k=1 FP
n
jk<0

|
∑l

k=1 FP
n
jk|

l

(
l

l+
∑l
k=1 FP

n
jk

2

)
. (2.22)

From the above discussion, it is easy to see for 1 ≤ j ≤ #FPλ,n,

#FPλ,n∑
i=1

M(FPλ,n)ij ≤
#FPλ,n∑
i=1

M(FPλ,n)ij∗ ,

where FP n
j∗ is defined as follows: FP n

j∗k = −1 if 1 ≤ k ≤ λn − 1; λn − 1 < k ≤ n − 1 and
k − λn is odd; k = n. Otherwise FP n

j∗k = 1.

Fig 2. Extreme patterns FP n
j∗ .
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The rest of this part is devoted to estimating
∑#FPλ,n

i=1 M(FPλ,n)ij∗ . By (2.21) and
(2.22),

#FPλ,n∑
i=1

M(FPλ,n)ij∗ =

|λn|−1∑
l=0

1

2l
+

n−1∑
l=λn

l−|λn| odd

|λn| − 1

l · 2l

(
l

l−|λn|+1
2

)
+

n−1∑
l=λn

l−|λn| even

|λn| − 2

l · 2l

(
l

l−|λn|+2
2

)

≤ 2 + |λn|
n−1∑
l=|λn|

1

2ll

(
l

[ l
2
]

)
∼
√

8λ

π
n

1
4 .

Thus, the column sums of M(FPλ,n) are bounded from above by
√

8λ
π
n

1
4 . By (2.4) and

(2.20),

ET (FPλ,n) ≤
2n
√

8λ/πn
1
4

#FPλ,n
∼
√

4

λ
exp

(
λ2

2

)
n

5
4 .

This is the upper bound of (1.8). �

2.5 Exponent gaps for BRλ,n and FPλ,n

It can be inferred from (2.14) (resp. (1.8)) that the expected waiting time for BRλ,n

where λ ∈ R (resp. FPλ,n where λ < 0) is bounded from below by order n
1
2 (resp. n) and

from above by order n (resp. n
5
4 ). The exponent gap in the estimates of first passage walks

FPλ,n is frustrating, since we do not know whether the waiting time is exactly of order n, or
is of order� n. This prevents the prediction of the existence of first passage bridge patterns
FPλ in Brownian motion.

From (2.4), we see that the most precise way to compute ET (BRλ,n) and ET (FPλ,n)
consists in evaluating the sum of all entries in the inverse matching matrices M(BRλ,n)−1

and M(FPλ,n)−1. But the task is difficult since the structures of M(BRλ,n) and M(FPλ,n)
are more complex than the structures of M(E2n) and M(M2n+1). We do not understand
well the exact form of the inverse matrices M(BRλ,n)−1 and M(FPλ,n)−1.

The technique used in Section 2.3 and Section 2.4 is to bound the column sums of the
matching matrix M(BRλ,n) (resp. M(FPλ,n)). More precisely, we have proved that

O(1) ≤ column sums of M(BRλ,n) ≤ O(n
1
2 ) for each fixed λ ∈ R; (2.23)

O(1) ≤ column sums of M(FPλ,n) ≤ O(n
1
4 ) for each fixed λ < 0. (2.24)

For the bridge pattern BR0,2n, the LHS bound of (2.23) is obtained by any excursion
path of length 2n, while the RHS bound of (2.23) is achieved by the sawtooth path with
consecutive ±1 increments. In the first passage pattern FPλ,n where λ < 0, the LHS bound
of (2.24) is achieved by some excursion-like path, which starts with an excursion and goes
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linearly to λ
√
n < 0 at the end. The RHS bound of (2.24) is given by the extreme pattern

defined in Section 2.4, see Fig 2.
However, the above estimations are not accurate, since there are only few columns in

BRλ,n which sum up either to O(1) or to O(n
1
2 ), and few columns of FPλ,n which sum up

either to O(1) or to O(n
1
4 ).

Open problem 2.5.1

1. Determine the exact asymptotics for ET (BRλ,n) where λ ∈ R, as n→∞.

2. Determine the exact asymptotics for ET (FPλ,n) where λ < 0, as n→∞.

As we prove below, for λ ∈ R, ET (BRλ,n) � n by a scaling limit argument. Nevertheless,
to obtain this result only by discrete analysis would be of independent interest. The following
table provides the simulations of the expected waiting time ET (FP−1,n) for some large n.

n 100 200 500 1000 2000 5000 10000
ET (FPn−1) 179.805 358.249 893.041 1800.002 3682.022 8549.390 12231.412
Estimated ζ 0.9945 0.9968 1.0112 1.0375 1.0205 1.0335

TABLE 1. Estimation of ζ by log
ET (FPn2−1)

ET (FPn1−1)
/ log(n2

n1
), where n2 is the next to n1 in the table.

The result suggests that ET (FP−1,n) be linear, but possibly with some log-correction.
Yuval Peres made the following conjecture:

Conjecture 2.5.2 [118] For λ < 0, there exist cλFP and Cλ
FP > 0 such that

cλFPn lnn ≤ ET (FPλ,n) ≤ Cλ
FPn lnn. (2.25)

This is consistent with Theorem 1.0.6 (4), that we cannot find a first passage bridge with
fixed negative endpoint in Brownian motion.

Now let us focus on the lower bound (1.7) of expected waiting time for bridge pattern
BR0. For n ∈ 2N, we run a simple random walk (RWk)k∈N until the first level bridge of
length n appears. That is, we consider

(RWFn+k −RWFn)0≤k≤n, where Fn := inf{k ≥ 0;RWk+n = RWk}. (2.26)

For simplicity, let RWk for non-integer k be defined by the usual linear interpolation of
a simple random walk. For background on the weak convergence in C[0, 1], we refer to
Billingsley [17, Chapter 2].

Proposition 2.5.3(
RWFn+nu −RWFn√

n
; 0 ≤ u ≤ 1

)
converges weakly in C[0, 1] to the bridge-like process

(BF+u −BF ; 0 ≤ u ≤ 1), where F := inf{t > 0;Bt+1 −Bt = 0}.
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The process (St := Bt+1 − Bt; t ≥ 0) is a stationary Gaussian process, first studied by
Slepian [138] and Shepp [135]. The following result, which we will prove in Chapter 4, is
needed for the proof of Proposition 2.5.3.

Lemma 2.5.4 For each fixed t ≥ 0, the distribution of (Su; t ≤ u ≤ t + 1) is mutually
absolutely continuous with respect to the distribution of

(B̃u :=
√

2(ξ +Bu); t ≤ u ≤ t+ 1), (2.27)

where ξ ∼ N (0, 1). In particular, the distribution of the Slepian zero set restricted to [t, t+1],
i.e. {u ∈ [t, t + 1];Su = 0} is mutually absolutely continuous with respect to that of {u ∈
[t, t+ 1]; ξ +Bu = 0}, the zero set of Brownian motion starting at ξ ∼ N (0, 1).

Proof of Proposition 2.5.3: Let PW be Wiener measure on C[0,∞). Let PS (resp. PW̃)

be the distribution of the Slepian process S (resp. the distribution of B̃ defined as in (2.27)).
We claim that

F := inf{t ≥ 0;wt+1 = wt},
is a functional of the coordinate process w := {wt; t ≥ 0} ∈ C[0,∞) that is continuous PW

a.s. Note that the distribution of (xt := wt+1 − wt; t ≥ 0) under PW is the same as that
of (wt; t ≥ 0) under PS. In addition, x ∈ C[0,∞) is a functional of w ∈ C[0,∞) that is
continuous PW a.s. By composition, it is equivalent to show that

F ′ := inf{t ≥ 0;wt = 0},

is a functional of w ∈ C[0,∞) that is continuous PS a.s. Consider the set

Z := {w ∈ C[0,∞);F ′ is not continuous at w} = ∪p∈QZp,

where Zp := {w ∈ C[0,∞);F ′ ∈ [p, p+ 1] and F ′ is not continuous at w}. It is obvious that

PW̃(Z) = 0 and thus PW̃(Zp) = 0 for all p ≥ 0. By Lemma 2.5.4, PS is locally absolutely

continuous relative to PW̃, which implies that PS(Zp) = 0 for all p ≥ 0. As a countable
union of null events, PS(Z) = 0, and the claim is proved. Thus, the mapping

ΞF : C[0,∞) 3 (wt; t ≥ 0) −→ (wF+u − wF ; 0 ≤ u ≤ 1) ∈ C[0, 1]

is continuous PW a.s. According to Donsker’s theorem [36], see e.g. Billingsley [17, Section
10] or Kallenberg [75, Chapter 16], the linearly interpolated simple random walks(

RW[nt]√
n

; t ≥ 0

)
converges weakly in C[0, 1] to (Bt; t ≥ 0),

So by the continuous mapping theorem, see e.g. Billingsley [17, Theorem 5.1],

ΞF ◦
(
RW[nt]√

n
; t ≥ 0

)
converges weakly to ΞF ◦ (Bt; t ≥ 0). �
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Note that T (BR0,n) = Fn + n. Following the above analysis, we know that T (BR0,n)/n
converges weakly to F + 1, where T (BR0,n) is the waiting time until an element of BR0,n

occurs in a simple random walk and F is the random time defined as in (1.2). As a conse-
quence,

lim inf
n→∞

E
T (BR0,n)

n
≥ EF + 1, since EF <∞.

In particular, EF ≤ C0
BR− 1 = 3 as in Section 2.3. See also Chapter 4 for further discussion

on first level bridges and the structure of the Slepian zero set.
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Chapter 3

Continuous paths in Brownian motion

This chapter is devoted to the proof of Theorem 1.0.4 (2) − (4) and Theorem 1.0.6
regarding continuous paths and the distribution of continuous-time processes embedded in
Brownian motion.

In Section 3.1, we show that there is no normalized excursion in a Brownian path, i.e.
Theorem 1.0.6 (1). A slight modification of the proof allows us to exclude the existence
of the Vervaat bridges with negative endpoint, i.e. Theorem 1.0.6 (5). Furthermore, we
prove in Section 3.2 that there is even no reflected bridge in Brownian motion, i.e. Theorem
1.0.6 (2). In Section 3.3 and 3.4, we show that neither the Vervaat transform of Brownian
motion nor first passage bridges with negative endpoint can be found in Brownian motion,
i.e. Theorem 1.0.6 (3) (4). We make use of the potential theory of additive Lévy processes,
which is recalled in Section 3.3. Finally in Section 3.5, we provide a proof for the existence of
Brownian meander, co-meander and three-dimensional Bessel process in Brownian motion,
i.e. Theorem 1.0.4, using the filling scheme.

3.1 No normalized excursion in a Brownian path

In this section, we provide two proofs for Theorem 1.0.6 (1), though similar, from different
viewpoints. The first proof is based on a fluctuation version of Williams’ path decomposition
of Brownian motion, originally due to Williams [154], and later extended in various ways
by Millar [109, 108], and Greenwood and Pitman [63]. We also refer readers to Pitman and
Winkel [125] for a combinatorial explanation and various applications.

Theorem 3.1.1 [154, 63] Let (Bt; t ≥ 0) be standard Brownian motion and ξ be exponen-
tially distributed with rate 1

2
ϑ2, independent of (Bt; t ≥ 0). Define M := argmin[0,ξ] Bt,

H := −BM and R := Bξ + H. Then H and R are independent exponential variables, each
with the same rate ϑ. Furthermore, conditionally given H and R, the path (Bt; 0 ≤ t ≤ ξ) is
decomposed into two independent pieces:
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• (Bt; 0 ≤ t ≤ M) is Brownian motion with drift −ϑ < 0 running until it first hits the
level −H < 0;

• (Bξ−t−Bξ; 0 ≤ t ≤ ξ−M) is Brownian motion with drift −ϑ < 0 running until it first
hits the level −R < 0.

Now we introduce the notion of first passage process, which will be used in the proof
of Theorem 1.0.6 (1). Given a càdlàg process (Zt; t ≥ 0) starting at 0, we define the first
passage process (τ−x;x ≥ 0) associated to X to be the first time that the level −x < 0 is hit:

τ−x := inf{t ≥ 0;Zt < −x} for x > 0.

When Z is Brownian motion, the distribution of the first passage process is well-known:

Lemma 3.1.2

1. Let W be Wiener measure on C[0,∞). Then the first passage process (τ−x;x ≥ 0)
under W is a stable(1

2
) subordinator, with

EW[exp(−ατ−x)] = exp(−x
√

2α) for α > 0.

2. For ϑ ∈ R, let Wϑ be the distribution on C[0,∞) of Brownian motion with drift ϑ.

Then for each fixed L > 0, on the event τ−L <∞, the distribution of the first passage
process (τ−x; 0 ≤ x ≤ L) under Wϑ is absolutely continuous with respect to that under
W, with density Dϑ

L := exp(−ϑL− ϑ2

2
τ−L).

Proof: The part (1) of the lemma is a well known result of Lévy, see e.g. Bertoin et al. [14,
Lemma 4]. The part (2) is a direct consequence of Girsanov’s theorem, see e.g. Revuz and
Yor [130, Chapter VIII] for background. �

Proof of Theorem 1.0.6 (1): Suppose by contradiction that P(T < ∞) > 0, where T
is a random time at which some excursion appears. Take ξ exponentially distributed with
rate 1

2
, independent of (Bt; t ≥ 0). We have then

P(T < ξ < T + 1) > 0. (3.1)

Now (T, T + 1) is inside the excursion of Brownian motion above its past-minimum process,
which straddles ξ. See Figure 2. Define

• (τ−x;x ≥ 0) to be the first passage process of (Bξ+t −Bξ; t ≥ 0).

By the strong Markov property of Brownian motion, (Bξ+t − Bξ; t ≥ 0) is still Brownian
motion. Thus, (τ−x;x ≥ 0) is a stable(1

2
) subordinator by Lemma 3.1.2 (1). Also, define

• (σ−x;x ≥ 0) to be the first passage process derived from the process (Bξ−t − Bξ; 0 ≤
t ≤ ξ−M) followed by an independent Brownian motion with drift −1 running forever.
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According to Theorem 3.1.1, (Bξ−t − Bξ; 0 ≤ t ≤ ξ −M) is Brownian motion with drift −1
running until it first hits the level −R < 0. Then (σ−x;x ≥ 0) is the first passage process of
Brownian motion with drift −1, whose distribution is absolutely continuous on any compact
interval [0, L], with respect to that of (τ−x; 0 ≤ x ≤ L) by Lemma 3.1.2 (2).

Fig 3. No excursion of length 1 in a Brownian path.

Thus, the distribution of (σ−x + τ−x; 0 ≤ x ≤ L) is absolutely continuous relative to that of
(τ−2x; 0 ≤ x ≤ L). It is well known that a real stable(1

2
) process does not hit points, see e.g.

Bertoin [11, Theorem 16, Chapter II.5]. As a consequence,

P(σ−x + τ−x = 1 for some x ≥ 0) = 0,

which contradicts (3.1). �

Proof of Theorem 1.0.6 (5): Impossibility of embedding the Vervaat bridge paths VBλ
with endpoint λ < 0. We borrow the notations from the preceding proof. Observe that, for
fixed λ < 0,

P(σ−x + τ−x+λ = 1 for some x ≥ 0) = 0.

The rest of the proof is just a duplication of the preceding one. �
In the rest of this section, we give yet another proof of Theorem 1.0.6 (1), which relies on

Itô’s excursion theory, combined with Bertoin’s self-similar fragmentation theory. For general
background on fragmentation processes, we refer to the monograph of Bertoin [12]. The next
result, regarding a normalized Brownian excursion, follows from Bertoin [13, Corollary 2].

Theorem 3.1.3 [13] Let e := (eu; 0 ≤ u ≤ 1) be normalized Brownian excursion and F e :=
(F e

t ; t ≥ 0) be the associated interval fragmentation defined as F e
t := {u ∈ (0, 1); eu > t}.

Introduce
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• λ := (λt; t ≥ 0) the length of the interval component of F e that contains U , independent
of the excursion and uniformly distributed;

• ξ := {ξt; t ≥ 0} a subordinator, the Laplace exponent of which is given by

Φex(q) := q

√
8

π

∫ 1

0

tq−
1
2 (1− t)−

1
2 = q

√
8

π
B(q +

1

2
,
1

2
); (3.2)

Then (λt; t ≥ 0) has the same law as (exp(−ξρt); t ≥ 0), where

ρt := inf

{
u ≥ 0;

∫ u

0

exp

(
−1

2
ξr

)
dr > t

}
. (3.3)

Alternative proof of Theorem 1.0.6 (1): Consider the reflected process (Bt−Bt; t ≥ 0),
where Bt := inf0≤u≤tBu is the past-minimum process of the Brownian motion. For e the first
excursion of B −B that contains some excursion pattern E of length 1, let Λe be the length
of such excursion, and e∗ be the normalized Brownian excursion. Following Itô’s excursion
theory, see e.g. Revuz and Yor [130, Chapter XII], Λe is independent of the distribution of
the normalized excursion e∗. As a consequence, the fragmentation associated to e∗ produces
an interval of length 1

Λe
.

Now choose U uniformly distributed on [0, 1] and independent of the Brownian motion.
According to Theorem 3.1.3, there exists a subordinator ξ characterized as in (3.2) and a
time-change ρ defined as in (3.3) such that (λt; t ≥ 0), the process of the length of the interval
fragmentation which contains U , has the same distribution as (exp(−ξρt); t ≥ 0). Note that
(λt; t ≥ 0) depends only on the normalized excursion e∗ and U , so (λt; t ≥ 0) is independent
of Λe. It is a well known result of Kesten [76] that a subordinator without drift does not hit
points. Therefore,

P
(
λt =

1

Λe

for some t ≥ 0

)
= 0,

which yields the desired result. �

3.2 No reflected bridge in a Brownian path

This section is devoted to proving Theorem 1.0.6 (2). The main difference between
Theorem 1.0.6 (1) and (2) is that the strict inequality BT+u > BT for all u ∈ (0, 1) is relaxed
by the permission of equalities BT+u = BT for some u ∈ (0, 1). Thus, there are paths in
C[0, 1] which may contain reflected bridge paths but not excursion paths. Nevertheless, such
paths form a null set for Wiener measure. Below is a slightly stronger version of this result.

Lemma 3.2.1 Almost surely, there are no random times S < T such that BT = BS, Bu ≥
BS for u ∈ (S, T ) and Bv = Bw = BS for some S < v < w < T .
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Proof: Consider the following two sets

T := {there exist S and T which satisfy the conditions in the lemma}

and
U :=

⋃
s,t∈Q

{B attains its minimum for more than once on [s, t]}.

It is straightforward that T ⊂ U . In addition, it is well-known that almost surely Brownian
motion has a unique minimum on any fixed interval [s, t] for all s, t ∈ R. As a countable
union of null events, P(U) = 0 and thus P(T ) = 0. �

Remark 3.2.2 The previous lemma has an interesting geometric interpretation in terms of
Brownian trees, see e.g. Pitman [119, Section 7.4] for background. Along the lines of the
second proof of Theorem 1.0.6 (1) in Section 3.1, we only need to show that the situation in
Lemma 3.2.1 cannot happen in a Brownian excursion either of an independent and diffuse
length or of normalized unit length. But this is just another way to state that Brownian
trees have only binary branch points, which follows readily from Aldous’ stick-breaking
construction of the continuum random trees, see e.g. Aldous [2, Section 4.3] and Le Gall
[99].

According to Theorem 1.0.6 (1) and Lemma 3.2.1, we see that almost surely, there are
neither excursion paths of length 1 nor reflected bridge paths of any length with at least two
intermediate returns in Brownian motion. To prove the desired result, it suffices to exclude
the possibility of reflected bridge paths with exactly one reflection. This is done by the
following lemma.

Lemma 3.2.3 Assume that 0 ≤ S < T < U are random times such that BS = BT = BU

and Bu > BS for u ∈ (S, T )∪ (T, U). Then the distribution of U−S is absolutely continuous
with respect to the Lebesgue measure.

Proof: Suppose by contradiction that the distribution of U −S is not absolutely continuous
with respect to the Lebesgue measure. Then there exists p, q ∈ Q such that U − S fails to
have a density on the event {S < p < T < q < U}. In fact, if U − S has a density on
{S < p < T < q < U} for all p, q ∈ Q, Radon-Nikodym theorem guarantees that U − S has
a density on {S < T < U} = ∪p,q∈Q{S < p < T < q < U}.

Note that on the event {S < p < T < q < U}, U is the first time after q such that
the Brownian motion B attains infu∈[p,q] Bu and obviously has a density. Again by Radon-
Nikodym theorem, the distribution of U − S has a density on {S < p < T < q < U}, which
leads to a contradiction. �

Remark 3.2.4 The previous lemma can also be inferred from a fine study on local minima
of Brownian motion. Neveu and Pitman [116] studied the renewal structure of local extrema
in a Brownian path, in terms of Palm measure, see e.g. Kallenberg [75, Chapter 11].

More precisely, denote
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• C to be the space of continuous paths on R, equipped with Wiener measure W;

• E to be the space of excursions with lifetime ζ, equipped with Itô measure n.

Then the Palm measure of all local minima is the image of 1
2
(n × n ×W) by the mapping

E × E × C 3 (e, e′, w)→ w̃ ∈ C given by

w̃t =


wt+ζ(e′) if t ≤ −ζ(e′),
e′−t if −ζ(e′) ≤ t ≤ 0,
et if 0 ≤ t ≤ ζ(e),

wt−ζ(e) if t ≥ ζ(e).

Fig 4. Structure of local minima in Brownian motion.

See Fig 4. Using the notations of Lemma 3.2.3, an in-between reflected position T
corresponds to a Brownian local minimum. Then the above discussion implies that U −S is
the sum of two independent random variables with densities and hence is diffuse. See also
Tsirelson [147] for the i.i.d. uniform sampling construction of Brownian local minima, which
reveals the diffuse nature of U − S.

3.3 No Vervaat tranform of Brownian motion in a

Brownian path

In the current section, we aim to prove Theorem 1.0.6 (3). That is, there is no random
time T such that

(BT+u −BT ; 0 ≤ u ≤ 1) ∈ VB−.
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A similar argument shows that there is no random time T such that

(BT+u −BT ; 0 ≤ u ≤ 1) ∈ VB+,

where

VB+ := {w ∈ C[0, 1];w(t) > 0 for 0 < t ≤ 1 and sup{t < 1;w(t) < w(1)} < 1}.

Observe that (Vu; 0 ≤ u ≤ 1) is supported on VB+ ∪ VB−. Thus, the Vervaat transform of
Brownian motion cannot be embedded into Brownian motion.

In Section 3.1, we showed that for each fixed λ < 0, there is no random time T such
that (BT+u − BT ; 0 ≤ u ≤ 1) ∈ VBλ. However, there is no obvious way to pass from the
non-existence of the Vervaat bridges to that of the Vervaat transform of Brownian motion,
due to an uncountable number of possible final levels.

To get around the problem, we make use of an additional tool – potential theory of
additive Lévy processes, developed by Khoshnevisan et al. [81, 83, 84, 85, 80]. We now
recall some results of this theory that we need in the proof of Theorem 1.0.6 (3). For a more
extensive overview of the theory, we refer to the survey of Khoshnevisan and Xiao [79].

Definition 3.3.1 An N-parameter, Rd-valued additive Lévy process (Zt; t ∈ RN
+ ) with Lévy

exponent (Ψ1, . . . ,ΨN) is defined as

Zt :=
N∑
i=1

Zi
ti

for t = (t1, . . . , tN) ∈ RN
+ , (3.4)

where (Z1
t1

; t1 ≥ 0), . . . , (ZN
tN

; tN ≥ 0) are N independent Rd-valued Lévy processes with Lévy
exponent Ψ1, . . . ,ΨN .

The following result regarding the range of additive Lévy processes is due to Khoshnevisan
et al. [85, Theorem 1.5], [80, Theorem 1.1], and Yang [156, 155, Theorem 1.1].

Theorem 3.3.2 [85, 156, 80] Let (Zt; t ∈ RN
+ ) be an additive Lévy process defined as in

(3.4). Then

E[Leb(Z(RN
+ ))] > 0⇐⇒

∫
Rd

N∏
i=1

Re

(
1

1 + Ψi(ζ)

)
dζ <∞,

where Leb(·) is the Lebesgue measure on Rd, and Re(·) is the real part of a complex number.

The next result, which is read from Khoshnevisan and Xiao [82, Lemma 4.1], makes a
connection between the range of an additive Lévy process and the polarity of single points.
See also Khoshnevisan and Xiao [79, Lemma 3.1].

Theorem 3.3.3 [81, 82] Let (Zt; t ∈ RN
+ ) be an additive Lévy process defined as in (3.4).

Assume that for each t ∈ RN
+ , the distribution of Zt is mutually absolutely continuous with

respect to Lebesgue measure on Rd. Let z ∈ Rd \ {0}, then

P(Zt = z for some t ∈ RN
+ ) > 0⇐⇒ P(Leb(Z(RN

+ ) > 0) > 0.



CHAPTER 3. CONTINUOUS PATHS IN BROWNIAN MOTION 28

Note that P(Leb(Z(RN
+ ) > 0) > 0 is equivalent to E[Leb(Z(RN

+ ))] > 0. Combining
Theorem 3.3.2 and Theorem 3.3.3, we have:

Corollary 3.3.4 Let (Zt; t ∈ RN
+ ) be an additive Lévy process defined as in (3.4). Assume

that for each t ∈ RN
+ , the distribution of Zt is mutually absolutely continuous with respect to

Lebesgue measure on Rd. Let z ∈ Rd \ {0}, then

P(Zt = z for some t ∈ RN
+ ) > 0⇐⇒

∫
Rd

N∏
i=1

Re

(
1

1 + Ψi(ζ)

)
dζ <∞.

Proof of Theorem 1.0.6 (3): We borrow the notations from the proof of Theorem 1.0.6
(1) in Section 3.1. It suffices to show that

P(σ−t1 + τ−t2 = 1 for some t1, t2 ≥ 0) = 0, (3.5)

where (σ−t1 ; t1 ≥ 0) is the first passage process of Brownian motion with drift −1, and
(τ−t2 ; t2 ≥ 0) is a stable(1

2
) subordinator independent of (σ−t1 ; t1 ≥ 0).

Let Zt = Z1
t1

+ Z2
t2

:= σ−t1 + τ−t2 for t = (t1, t2) ∈ R2
+. By Definition 3.3.1, Z is a

2-parameter, real-valued additive Lévy process with Lévy exponent (Ψ1,Ψ2) given by

Ψ1(ζ) = 4
√

1 + 4ζ2 exp

[
−iarctan(2ζ)

2

]
− 1,

and
Ψ2(ζ) =

√
|ζ|(1− i sgn ζ),

for ζ ∈ R, which is derived from the formula in Cinlar [28, Chapter 7, Page 330] and Lemma
3.1.2 (2). Hence,

Re

(
1

1 + Ψ1(ζ)

)
=

1
4
√

1 + 4ζ2

√√√√1

2

(
1 +

1√
1 + 4ζ2

)
,

and

Re

(
1

1 + Ψ2(ζ)

)
=

1 +
√
|ζ|

1 + 2
√
|ζ|+ 2|ζ|

.

Clearly, Ξ : ζ → Re
(

1
1+Ψ1(ζ)

)
Re
(

1
1+Ψ2(ζ)

)
is not integrable on R since Ξ(ζ) ∼ 1

4|ζ| as

|ζ| → ∞. In addition, for each t ∈ R2
+, Zt is mutually absolutely continuous with respect to

Lebesgue measure on R. Applying Corollary 3.3.4, we obtain (3.5). �
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3.4 No first passage bridge in a Brownian path

We prove Theorem 1.0.6 (4), i.e. there is no first passage bridge in Brownian motion by
a spacetime shift. The main difference between Vervaat bridges with fixed endpoint λ < 0
and first passage bridges ending at λ < 0 is that the former start with an excursion piece,
while the latter return to the origin infinitely often on any small interval [0, ε], ε > 0. Thus,
the argument used in Section 3.1 to prove the non-existence of Vervaat bridges is not imme-
diately applied in case of first passage bridges. Nevertheless, the potential theory of additive
Lévy processes helps to circumvent the difficulty.

Proof of Theorem 1.0.6 (4): Suppose by contradiction that P(T < ∞) > 0, where T
is a random time that some first passage bridge through a fixed level appears. Take ξ
exponentially distributed with rate 1

2
, independent of (Bt; t ≥ 0). We have then

P(T < ξ < T + 1) > 0. (3.6)

Now (T, T + 1) is inside the excursion of Brownian motion below its past-maximum process,
which straddles ξ. See Figure 5. Define

• (τ−x;x ≥ 0) to be the first passage process of (Bξ+t −Bξ; t ≥ 0).

By strong Markov property of Brownian motion, (Bξ+t−Bξ; t ≥ 0) is still Brownian motion.
Thus, (τ−x;x ≥ 0) is a stable(1

2
) subordinator. Let M := argmax[0,ξ] Bt. By a variant of

Theorem 3.1.1, (Bξ−t −Bξ; 0 ≤ t ≤ ξ −M) is Brownian motion with drift 1 running until it
first hits the level BM −Bξ > 0, independent of (τ−x;x ≥ 0).

Fig 5. No first passage bridge of length 1 in a Brownian path.
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As a consequence, (3.6) implies that

P(τ−x = l and B↑1−l = |λ| − x for some (x, l) ∈ R+ × [0, 1]) > 0, (3.7)

where (B↑t ; t ≥ 0) is Brownian motion with drift 1, independent of 1
2
-stable subordinator

(τ−x;x ≥ 0). By setting t1 := x and t2 := 1− l, we have:

P(τ−x = l and B↑1−l = |λ| − x for some (x, l) ∈ R+ × [0, 1])

= P(τ−t1 + t2 = 1 and B↑t2 + t1 = |λ| for some (t1, t2) ∈ R+ × [0, 1])

≤ P[(τ−t1 , t1) + (t2, B
↑
t2) = (1, |λ|) for some (t1, t2) ∈ R2

+] (3.8)

Let Zt = Z1
t1

+ Z2
t2

:= (τ−t1 , t1) + (t2, B
↑
t2) for t = (t1, t2) ∈ R2

+. By Definition 3.3.1, Z is
a 2-parameter, R2-valued additive Lévy process with Lévy exponent (Ψ1,Ψ2) given by

Ψ1(ζ1, ζ2) :=
√
|ζ1| − i(

√
|ζ1| sgn ζ1 + ζ2),

and

Ψ2(ζ1, ζ2) :=
ζ2

2

2
− i(ζ1 + ζ2),

for (ζ1, ζ2) ∈ R2. Hence,

Re

(
1

1 + Ψ1(ζ1, ζ2)

)
Re

(
1

1 + Ψ2(ζ1, ζ2)

)

=
(1 +

√
|ζ1|)

(
1 +

ζ22
2

)
[
(1 +

√
|ζ1|)2 + (

√
|ζ1| sgn ζ1 + ζ2)2

] [(
1 +

ζ22
2

)2

+ (ζ1 + ζ2)2

] := Ξ(ζ1, ζ2).

Observe that ζ → Ξ(ζ1, ζ2) is not integrable on R2, which is clear by passage to polar
coordinates (ζ1, ζ2) = (ρ cos θ,

√
ρ sin θ) for ρ ≥ 0, θ ∈ [0, 2π). In addition, for each t ∈ R2

+,
Zt is mutually absolutely continuous with respect to Lebesgue measure on R2. Applying
Corollary 3.3.4, we know that

P(Zt = (1, |λ|) for some t ∈ R2
+) = 0.

Combining with (3.8), we obtain:

P(τ−x = l and B↑1−l = |λ| − x for some (x, l) ∈ R+ × [0, 1]) = 0,

which contradicts (3.7). �
It is not hard to see that the above argument, together with those in Section 3.2 works

for Bessel bridge of any dimension.

Corollary 3.4.1 (Impossibility of embedding of reflected bridge paths/Bessel bridge) For
each fixed λ > 0, almost surely, there is no random time T such that

(BT+u −BT ; 0 ≤ u ≤ 1) ∈ RBRλ := {w ∈ C[0, 1];w(t) ≥ 0 for 0 ≤ t ≤ 1 and w(1) = λ}.
In particular, there is no random time T ≥ 0 such that (BT+u−BT ; 0 ≤ u ≤ 1) has the same
distribution as Bessel bridge ending at λ.
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3.5 Meander, co-meander and 3-d Bessel process in a

Brownian path

We prove Theorem 1.0.4 in this section using Itô’s excursion theory, combined with Rost’s
filling scheme [24, 131] solution to the Skorokhod embedding problem.

The existence of Brownian meander in a Brownian path is assured by the following well-
known result, which can be read from Maisoneuve [104, Section 8], with explicit formulas
due to Chung [27]. An alternative approach was provided by Greenwood and Pitman [62],
and Pitman [121, Section 4 and 5]. See also Biane and Yor [16, Theorem 6.1], or Revuz and
Yor [130, Exercise 4.18, Chapter XII].

Theorem 3.5.1 [104, 62, 16] Let (ei)i∈N be the sequence of excursions, whose length exceeds
1, in the reflected process (Bt − Bt; t ≥ 0), where Bt := inf0≤u≤tBu is the past-minimum
process of the Brownian motion. Then (eiu; 0 ≤ u ≤ 1)i∈N is a sequence of independent and
identically distributed paths, each distributed as Brownian meander (mu; 0 ≤ u ≤ 1).

Let us recall another basic result due to Imhof [69], which establishes the absolute conti-
nuity relation between Brownian meander and the three-dimensional Bessel process. Their
relation with Brownian co-meander is studied in Yen and Yor [157, Chapter 7].

Theorem 3.5.2 [69, 157] The distributions of Brownian meander (mu; 0 ≤ u ≤ 1), Brown-
ian co-meander (m̃u; 0 ≤ u ≤ 1) and the three-dimensional Bessel process (Ru; 0 ≤ u ≤ 1) are
mutually absolutely continuous with respect to each other. For F : C[0, 1]→ R+ a measurable
function,

1. E[F (mu; 0 ≤ u ≤ 1)] = E
[√

π
2

1
R1
F (Ru; 0 ≤ u ≤ 1)

]
;

2. E[F (m̃u; 0 ≤ u ≤ 1)] = E
[

1
R2

1
F (Ru; 0 ≤ u ≤ 1)

]
.

According to Theorem 3.5.1, there exist T1, T2, · · · such that

mi := (BTi+u −BTi ; 0 ≤ u ≤ 1) (3.9)

form a sequence of i.i.d. Brownian meanders. Since Brownian co-meander and the three-
dimensional Bessel process are absolutely continuous relative to Brownian meander, it is
natural to think of von Neumann’s acceptance-rejection algorithm [150], see e.g. Rubinstein
and Kroese [133, Section 2.3.4] for background and various applications.

However, von Neumann’s selection method requires that the Radon-Nikodym density
between the underlying probability measures is essentially bounded, which is not satisfied
in the cases suggested by Theorem 3.5.2. Nevertheless, we can apply the filling scheme of
Chacon and Ornstein [24] and Rost [131].

We observe that sampling Brownian co-meander or the three-dimensional Bessel process
from i.i.d. Brownian meanders (mi)i∈N fits into the general theory of Rost’s filling scheme
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applied to the Skorokhod embedding problem. In the sequel, we follow the approach of
Dellacherie and Meyer [35, Section 63−74, Chapter IX], which is based on the seminal work
of Rost [131], to construct a stopping time N such that mN achieves the distribution of m̃
or R. We need some notions from potential theory for the proof.

Definition 3.5.3

1. Given a Markov chain X := (Xn)n∈N, a function f is said to be excessive relative to
X if

(f(Xn))n∈N is Fn − supermartingale,

where (Fn)n∈N is the natural filtration of X.

2. Given two positive measures µ and λ, µ is said to be a balayage/sweeping of λ if

µ(f) ≤ λ(f) for all bounded excessive functions f.

Proof of Theorem 1.0.4: Let µm (resp. µR) be the distribution of Brownian meander
(resp. the three-dimensional Bessel process) on the space (C[0, 1],F). By the filling scheme,
the sequence of measures (µmi , µ

R
i )i∈N is defined recursively as

µm0 := (µm − µR)+ and µR0 := (µm − µR)−, (3.10)

and for each i ∈ N,

µmi+1 := (µmi (1) · µm − µRi )+ and µRi+1 := (µmi (1) · µm − µRi )−, (3.11)

where µmi (1) is the total mass of the measure µmi . It is not hard to see that the bounded
excessive functions of the i.i.d. meander sequence are constant µm a.s. Since µR is absolutely
continuous with respect to µm, for each µm a.s. constant function c, µR(c) = µm(c) = c.
Consequently, µR is a balayage/sweeping of µm by Definition 3.5.3. According to Dellacherie
and Meyer [35, Theorem 69],

µR∞ = 0, where µR∞ :=↓ lim
i→∞

µRi .

Now let d0 be the Radon-Nikodym density of µm0 relative to µm, and for i > 0, di be the
Radon-Nikodym density of µmi relative to µmi−1(1) · µm. We have

µR = (µR − µR0 ) + (µR0 − µR1 ) + · · ·
= (µm − µm0 ) + (µm0 (1) · µm − µm1 ) + · · ·
= (1− d0)µm + d0µ

m(1) · (1− d1)µm + · · · . (3.12)

Consider the stopping time N defined by

N := inf

{
n ≥ 0;−

n∑
i=0

log di(m
i) > ξ

}
, (3.13)
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where (di)i∈N is the sequence of Radon-Nikodym densities defined as in the preceding para-
graph, (mi)i∈N is the sequence of i.i.d. Brownian meanders defined as in (3.9), and ξ is
exponentially distributed with rate 1, independent of (mi)i∈N.

From the computation of (3.12), for all bounded measurable function f and all k ∈ N,

E[f(mN);N = k] = E[f(mk);−
k−1∑
i=0

log di(m
i) ≤ ξ < −

k∑
i=0

log di(m
i)]

= E[d0(m0) · · · dk−1(mk−1)f(mk)(1− dk(mk))]

= (µmk−1(1) · µm − µmk )f

= (µRk−1 − µRk )f,

where (µmi , µ
R
i )i∈N are the filling measures defined as in (3.10) and (3.11). By summing over

all k, we have
E[f(mN);N <∞] = µRf.

That is, mN has the same distribution as R. As a summary,

(BTN+u −BTN ; 0 ≤ u ≤ 1) has the same distribution as (Ru; 0 ≤ u ≤ 1),

where (Ti)i∈N are defined by (3.9) and N is the stopping time as in (3.13). Thus we achieve
the distribution of the three-dimensional Bessel process in Brownian motion. The embedding
of Brownian co-meander into Brownian motion is obtained in the same vein. �

Remark 3.5.4 Note that the stopping time N defined as in (3.13) has infinite mean, since

EN =
∑
i∈N

µmi (1) =∞.

The problem whether Brownian co-meander or the three-dimensional Bessel process can be
embedded in finite expected time, remains open. More generally, Rost [132] was able to
characterize all stopping distributions of a continuous-time Markov process, given its initial
distribution.

In our setting, let (Pt)t≥0 be the semi-group of the moving window process Xt := (Bt+u−
Bt; 0 ≤ u ≤ 1) for t ≥ 0, and µW be its initial distribution, corresponding to Wiener
measure on C[0, 1]. Following Rost [132], for any distribution µ on C[0, 1], one can construct
the continuous-time filling measures (µt, µ

W
t )t≥0 and a suitable stopping time T such that

µ− µt + µWt = µWPt∧T .

Thus, the distribution µ is achieved if and only if µ∞ = 0, where µ∞ :=↓ limt→∞ µt. In
particular, Brownian motion with drift (ϑt + Bt; 0 ≤ t ≤ 1) for a fixed ϑ, can be obtained
for a suitable stopping time T + 1.
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Chapter 4

The bridge-like process and the
Slepian zero set

Recall from (1.2) the definition of the bridge-like process, which serves as a candidate for
Brownian bridge embedded in a Brownian path. It is natural to ask the following question:

Question 4.0.5

1. Is the bridge-like process defined as in (1.2) a standard Brownian bridge?

2. If not, is the distribution of standard Brownian bridge absolutely continuous with respect
to that of the bridge-like process?

Let C0[0, 1] be the set of continuous paths (wt; 0 ≤ t ≤ 1) starting at w0 = 0, and B be
the Borel σ−field of C0[0, 1]. To provide a context for the above questions, we observe that

F := inf{t ≥ 0;Xt ∈ BR0}, (4.1)

where
Xt := (Bt+u −Bt; 0 ≤ u ≤ 1) for t ≥ 0, (4.2)

is the moving-window process associated to Brownian motion (Bt; t ≥ 0), and

BR0 := {w ∈ C0[0, 1];w(1) = 0}

is the set of bridges with endpoint 0.
Note that the moving-window process X is a stationary Markov process, with transition

kernel Pt : (C0[0, 1],B)→ (C0[0, 1],B) for t ≥ 0 given by

Pt(w, dw̃) =

{
PW(dw̃) if t ≥ 1,

1(w̃ = (wt+u − wt;u ≤ 1− t)⊗ w̃′)PWt(dw̃′) if t < 1,

where PW (resp. PWt) is Wiener measure on C0[0, 1] (resp. C0[0, t]), and ⊗ is the usual path
concatenation. Note that PW is invariant with respect to (Pt; t ≥ 0). Moreover, Xt+l and
Xt are independent for all t ≥ 0 and l ≥ 1.
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For a suitably nice continuous-time Markov process (Zt; t ≥ 0), there have been extensive
studies on the post-T process (ZT+t; t ≥ 0) with some random time T which is

• a stopping time, see e.g. Hunt [68] for Brownian motion, Blumenthal [21], and Dynkin
and Jushkevich [42] for general Markov processes;

• an honest time, that is the time of last exit from a predictable set, see e.g. Meyer et
al. [107], Pittenger and Shih [127, 128], Getoor and Sharpe [60, 59, 61], Maisonneuve
[104] and Getoor [57];

• the time at which X reaches its ultimate minimum, see e.g. Williams [153] and Jacob-
sen [71] for diffusions, Pitman [120] for conditioned Brownian motion and Millar [109,
108] for general Markov processes.

Question 4.0.5 is related to decomposition/splitting theorems of Markov processes. We
refer to the survey of Millar [110], which contains a unified approach to most if not all of
the above cases. See also Pitman [121] for a presentation in terms of point processes and
further references. Moreover, if Z is a semi-martingale and T is an honest time, the semi-
martingale decomposition of the post-T process was investigated in the context of progressive
enlargement of filtrations, by Barlow [5], Yor [158], Jeulin and Yor [72] and in the monograph
of Jeulin [73]. The monograph of Mansuy and Yor [105] offers a survey of this theory.

The study of the bridge-like process is challenging, because the random time F as in
(1.3) does not fit into any of the above classes. We even do not know whether this bridge-
like process is Markov, or whether it enjoys the semi-martingale property. Note that if the
answer to Question 4.0.5 (2) is positive, then we can apply Rost’s filling scheme [24, 131] as
in Section 3.5 to sample Brownian bridge from a sequence of i.i.d. bridge-like processes in
Brownian motion by iteration of the construction (1.2).

While we are unable to answer either of the above questions about the bridge-like process,
we are able to prove Theorem 1.0.4 (1). That is, there is a random time T > 0 such that

(BT+u − BT ; 0 ≤ u ≤ 1)
(d)
= (b0

u; 0 ≤ u ≤ 1). In terms of the moving-window process, it is

equivalent to find a random time T ≥ 0 such that XT
(d)
= b0.

Our proof relies on Last and Thorisson’s result [94, 95] on the Palm measure of local
times of the moving-window process. The idea of embedding Palm/Revuz measures arose
earlier in the work of Bertoin and Le Jan [10], and the connection between Palm measures
and Markovian bridges was made by Fitzsimmons et al. [48]. The existence of local times
follows from the Brownian structure of the zero set of the Slepian process St := Bt+1 − Bt

for t ≥ 0.
This triggers the study of the Slepian zero set on [0, 1], that is {u ∈ [0, 1];Su = 0}.

The problem here involves level crossings of a stationary Gaussian process. We refer to the
surveys of Blake and Lindsey [20], Abrahams [1], Kratz [90], as well as the books of Cramér
and Leadbetter [32, Chapter 10], Azäıs and Wschebor [4, Chapter 3] for further development.

Berman [9] studied general criteria for stationary Gaussian processes to have local times.
In particular, he proved that if (Zt; t ≥ 0) is a stationary Gaussian process with covariance
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RZ(t) and 1 − RZ(t) ∼
t→0
|t|α for some 0 < α < 2, then Z has local times (Lxt ;x ∈ R, t ≥ 0)

such that for any Borel measurable set C ⊂ R and t ≥ 0,∫ t

0

1(Zs ∈ C)ds =

∫
C

Lxt dx.

It is not hard to see that the Slepian process has covariance RS(t) := max(1− |t|, 0), which
obviously fits into the above category. See also the survey of Geman and Horowitz [53] for
further development on Gaussian occupation measures.

Below is the plan for this chapter. In Section 4.1, we present some analysis of random
walks related to Question 4.0.5. In Section 4.2, after recalling some results for the Slepian
process due to Slepian [138] and Shepp [135], we provide a path decomposition for the
Slepian process on [0, 1], Theorem 4.2.1. The proof of Theorem 4.2.1 is given in Section
4.4. In Section 4.3, we deal with the local absolute continuity between the distribution of
the Slepian process and that of Brownian motion with random starting point. Finally in
Section 4.5, we study a Palm-Itô measure associated to the gaps between Slepian zeros, with
comparison to the well-known Itô’s excursion law [70].

4.1 Random walk approximation

In this section, we consider the discrete analog of the bridge-like process. Namely, for an
even positive integer n, we run a simple symmetric random walk (RWk)k∈N until the first
level bridge of length n appears. That is, we consider the process

(RWFn+k −RWFn)0≤k≤n, where Fn := inf{k ≥ 0;RWk+n = RWk}. (4.3)

Recall the invariance principle from Proposition 2.5.3. Further, we may consider Knight’s
[86, 87] embedding of random walks in Brownian motion. Endow the space C[0,∞) with

the topology of uniform convergence on compact sets. Fix n ∈ N. Let τ
(n)
0 := 0 and

τ
(n)
k+1 := inf{t > τ

(n)
k ; |Bt − Bτ

(n)
k
| = 2−n} for k ∈ N. Note that

(
RW

(n)
k := 2nB

τ
(n)
k

)
k∈N

is a

simple random walk. In addition, the sequence of linearly interpolated random walks(
RW

(n)

22nt

2n
; t ≥ 0

)
converges almost surely in C[0,∞) to (Bt; t ≥ 0).

It is not hard to see that F (w) := inf{t ≥ 0;wt+1 = wt} is not continuous at all paths
w ∈ C0[0,∞). But from the proof of Proposition 2.5.3, F is PW-a.s. continuous, where PW

is Wiener measure on C[0,∞). Thus, the convergence of Proposition 2.5.3 is almost sure in
the context of Knight’s construction of simple random walks.

Now we focus on the discrete bridge defined as in (4.3). Note that the support of the
first level bridge is all bridge paths since the first n steps starting from 0 can be any path.
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For n = 2, the bridge (RWF2+k−RWF2)0≤k≤2 obviously has uniform distribution on the two
possible paths, one positive and one negative. However, the first level bridge of length n is
not uniform for n > 2. Using the Markov chain matrix method, we can compute the exact
distribution of this first level bridge for n = 4 and 6. By up-down symmetry, we only need
to be concerned with those paths whose first step is +1.

TABLE 1. The distribution of the first level bridge as in (4.3) for n = 4.

TABLE 2. The distribution of the first level bridge as in (4.3) for n = 6.

The numerical results in Table 1 and 2 give us that the first level bridge fails to be
uniform, at least, for n = 4 and 6. By elementary algebraic computation, it is not hard to
check that this is true for all n > 2. Now it is natural to ask whether the first level bridge
could be asymptotically uniform. To this end, we compute the ratio of extremal probabilities
of the first level bridge for some small n’s.

TABLE 3. The ratio max/min probability of the first level bridge of length n.

In Table 3, the ratios max/min of hitting probabilities suggest that the first level bridge
might not be asymptotically uniform. Thus, the answer to Question 4.0.5 (1) may be nega-
tive, i.e. the bridge-like process defined as in (1.2) is not standard Brownian bridge.

This is further confirmed by the following simulations, which show that as n grows, the
empirical distribution of the maximum of the first level bridge does not appear to converge to
the Kolmogorov-Smirnov distribution, that is the distribution of the supremum of Brownian
bridge, see e.g. Billingsley [17, Section 13].
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Fig 6. Solid curve: the Kolmogorov-Smirnov CDF; Dashed curve over the solid curve: the
empirical CDF of the maximum of scaled uniform bridge of length n = 104; dashed curve

below the solid curve: the empirical CDF of the maximum of the first level bridge of length
n = 104.

n 100 500 1000 2000 5000 10000
CDF(1.3) 0.9361 0.9193 0.9129 0.9117 0.9088 0.9080
Difference −0.0042 0.0126 0.0190 0.0202 0.0231 0.0239

TABLE 4. 2nd row: the CDFs at 1.3 of the scaled maximum of the first level bridge of
length n. 3rd row: the differences between the Kolmogorov-Smirnov CDF evaluated at 1.3
(≈ 0.9319) and those of the 2nd row.

4.2 The Slepian process: Old and New

Let us turn back to the random time F defined as in (1.3). We rewrite it as

F := inf{t ≥ 0;St = 0}, (4.4)

where St := Bt+1−Bt for t ≥ 0 is a stationary Gaussian process with mean 0 and covariance
E[St1St2 ] = max(1− |t1 − t2|, 0).

Note that (St; t ≥ 0) is not Markov, since the only nontrivial stationary, Gaussian and
Markov process is the Ornstein-Uhlenbeck process, see e.g. Doob [37, Theorem 1.1]. The
process (St; t ≥ 0) was first studied by Slepian [138]. Later, Shepp [135] gave an explicit
formula for

I(t|x) := P(F > t|S0 = x),
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as a t−fold integral when t is an integer and as a 2[t] + 2−fold integral when t is not an
integer. Shepp’s results are as follows. Let

φ(x) :=
1√
2π

exp

(
−x

2

2

)
and φθ(x) :=

1√
θ
φ

(
x√
θ

)
.

When t = n is an integer,

I(t|x)φ(x) =

∫
D′

det

[
φ(yi − yj+1)

]
0≤i,j≤n

dy2 · · · dyn+1, (4.5)

where y0 = 0, y1 = |x| and D′ := {|x| < y2 < · · · < yn+1}. When t = n+ θ where 0 < θ < 1,

I(t|x)φ(x) =

∫
D′′

det

[
φθ(xi − yi)

]
0≤i,j≤n+1

× det

[
φθ(yi − xj+1)

]
0≤i,j≤n

dx2 · · · dxn+1dy0 · · · dyn+1, (4.6)

where x0 = 0, x1 = |x| and D′′ := {|x| < x2 < · · · < xn+1 and y0 < · · · < yn+1}. The
distribution of the first passage time F is characterized by

P(F > t) =

∫
R
I(t|x)φ(x)dx, (4.7)

where I(t|x)φ(x) is given as (4.5) when t is integer and given as (4.6) when it is not. In
particular,

P(F > 1) =

∫
R
[Φ(0)φ(x)− φ(0)Φ(x)]dx

=
1

2
− 1

π
, (4.8)

where Φ(x) :=
∫ x
−∞ φ(z)dz is the cumulative distribution function of the standard normal

distribution.
Here we study the local structure of the Slepian zero set, i.e. {t ∈ [0, 1];St = 0}, by

showing that it is mutually absolutely continuous relative to that of Brownian motion with
normally distributed starting point. The main result, which provides a path decomposition
of the Slepian process on [0, 1], is stated as below.

Theorem 4.2.1 Let F := inf{t ≥ 0;St = 0} and G := sup{t ≤ 1;St = 0}. Given the
quadruple (S0, S1, F,G) with 0 < F < G < 1, the Slepian process (St; 0 ≤ t ≤ 1) is decom-
posed into three conditionally independent pieces:
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• (St/
√

2; 0 ≤ t ≤ F ) is Brownian first passage bridge from (0, S0/
√

2) to (F, 0);

• (St/
√

2;F ≤ t ≤ G) is Brownian bridge of length G− F ;

• (|St|/
√

2;G ≤ t ≤ 1) is a three-dimensional Bessel bridge from (G, 0) to (1, |S1|/
√

2).

In addition, the distribution of (S0, S1, F,G) with 0 < F < G < 1 is given by

P(S0 ∈ dx, S1 ∈ dy, F ∈ da,G ∈ db) =

|xy|
8π2
√

(b− a)a3(1− b)3
exp

(
−x

2

4a
− y2

4(1− b)
− (x+ y)2

4

)
. (4.9)

Fig 7. Path decomposition of (St/
√

2; 0 ≤ t ≤ 1) with 0 < F < G < 1.

On the event {0 < F < G < 1}, the Slepian process is achieved by first creating the
quadruple (S0, S1, F,G) and then filling in with usual Brownian components. Similarly, on
the event {F > 1}, (St/

√
2; 0 ≤ t ≤ 1) is Brownian bridge from (0, S0/

√
2) to (1, S1/

√
2)

conditioned not to hit 0.
The proof of Theorem 4.2.1 is deferred to Section 4.4. One method relies on Shepp [136]’s

result of the absolute continuity between Gaussian measures, where the Slepian process was
proved to be mutually absolutely continuous with respect to some modified Brownian motion
on [0, 1]. As pointed out by Shepp [135], the absolute continuity fails beyond the unit interval.
This is why we restrict the study of the Slepian zero set to intervals of length 1. Nevertheless,
we have the following conjecture:

Conjecture 4.2.2 For t ≥ 0, the Slepian zero set on [0, t], i.e. {u ∈ [0, t];Su = 0}, is
mutually absolutely continuous with respect to that of {u ∈ [0, t]; ξ + Bu = 0}, the zero
set of Brownian motion started at ξ with standard normal distribution, ξ ∼ N (0, 1), and ξ
independent of B.
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4.3 Local absolute continuity between Slepian zeros

and Brownian zeros

As proved by Shepp [136], for each fixed t ≤ 1, the distribution of the Slepian process
(Su; 0 ≤ u ≤ t) is mutually absolutely continuous with respect to that of

(B̃u :=
√

2(ξ +Bu); 0 ≤ u ≤ t), (4.10)

where ξ ∼ N (0, 1) is independent of (Bu;u ≥ 0). The Radon-Nikodym derivative is given
by

dPS

dPW̃
(w) :=

2√
2− t

exp

(
w2

0

4
− (w0 + wt)

2

4(2− t)

)
, (4.11)

where PS (resp. PW̃) is the distribution of the Slepian process S (resp. the modified Brownian

motion B̃ defined as in (4.10)) on C[0, 1]. As a first application, we compute the density of
the first passage time F , defined as in (4.4), on the unit interval.

Proposition 4.3.1 For w ∈ C[0, 1], let F := inf{t ≥ 0;wt = 0}. Then

PS(F ∈ da) =
1

π

√
2− a
a

da for 0 ≤ a ≤ 1, (4.12)

Proof: Fix a ≤ 1. By the change of measure formula (4.11),

PS(F ∈ da) = EW̃

[
1(F ∈ da) · 2√

2− a
exp

(
w2

0

4
− (w0 + wa)

2

4(2− a)

)]
=

2√
2− a

EW̃

[
1(F ∈ da) exp

(
w2

0

4
− w2

0

4(2− a)

)]
=

2√
2− a

∫
R

1√
4π

exp

(
−x

2

4

)
· PW̃x(F ∈ da) exp

(
x2

4
− x2

4(2− a)

)
dx, (4.13)

where PW̃x is the distribution of B̃ conditioned on B̃0 = x. It is well-known that

PW̃x(F ∈ da) =
|x|√
4πa3

exp

(
−x

2

4a

)
da. (4.14)

Injecting (4.14) into (4.13), we obtain

PS(F ∈ da) =
1

2π
√

(2− a)a3

∫
R
|x| exp

(
− x2

2a(2− a)

)
dxda

=
1

π

√
2− a
a

da. �
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Remark 4.3.2 As a check, from (4.12),

PS(F ≤ 1) =
1

2
+

1

π
≈ 0.82,

which agrees with the formula (4.8) derived from the determinantal expressions (4.5), (4.6)
and (4.7). Since the absolute continuity relation does not hold when t > 1, we are not able
to derive a simple formula for the density of F on (1,∞).

Next we deal with the local absolute continuity between the distribution of Slepian zeros
and that of Brownian motion with normally distributed starting point. The result enables
us to prove Proposition 2.5.3, that is the weak convergence of the discrete first level bridges
to the bridge-like process as in (1.2). The following is a stronger version of Lemma 2.5.4.

Lemma 4.3.3 For each fixed t ≥ 0, the distribution of (Su; t ≤ u ≤ t + 1) is mutually

absolutely continuous with respect to that of (B̃u; t ≤ u ≤ t + 1) defined as in (4.10). The
Radon-Nikodym derivative is given by

dPS

dPW̃
t (w) = 2

√
1 + t

2− t
exp

(
w2

0

4(1 + t)
− (w0 + w1)2

4(2− t)

)
, (4.15)

where PW̃
t

is the distribution of B̃ on [t, t+ 1]. In particular, the distribution of the Slepian
zero set restricted to [t, t + 1], i.e. {u ∈ [t, t + 1];Su = 0} is mutually absolutely continuous
with respect to that of {u ∈ [t, t + 1]; ξ + Bu = 0}, the zero set of Brownian motion starting
at ξ ∼ N (0, 1).

Proof: It suffices to prove the first part of this lemma. By stationarity of the Slepian
process, the distribution of (Su; t ≤ u ≤ t + 1) is the same as that of (Su; 0 ≤ u ≤ 1),

which is mutually absolutely continuous relative to (B̃u; 0 ≤ u ≤ 1) with density given by

(4.11). Now we conclude by noting that the distribution of (B̃u; t ≤ u ≤ t + 1) and that of

(B̃u; 0 ≤ u ≤ 1) are mutually absolutely continuous, with Radon-Nikodym derivative

dPW̃

dPW̃
t (w) :=

√
1 + t exp

(
− tw2

0

4(1 + t)

)
. �

As a consequence, all local properties of the Slepian zero set mimic closely those of
Brownian motion with normally distributed starting point. In particular, with positive
probability, the Slepian process visits the origin on the unit interval. And immediately
thereafter, it returns to the origin infinitely often, as does Brownian motion. In addition, it
is easy to see that the Radon-Nikodym derivative between the distribution of {u ∈ [0, 1];Su =
0} and that of {u ∈ [0, 1]; ξ +Bu = 0} is given by

E

[
dPS

dPW̃
(w)

∣∣∣∣∣Proj(w)

]
, (4.16)
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where Proj(w) := {u ∈ [0, 1];wu = 0} is the zero set of w ∈ C[0, 1]. In the next subsection,
we will see how this conditional expectation, as the Radon-Nikodym derivative, can be made
explicit by some sufficient statistics.

4.4 Path decomposition of the Slepian process on [0, 1]

In this section, we investigate further the local structure of the Slepian zero set by pro-
viding two proofs of Theorem 4.2.1.

From the work of Slepian [138], we know that given the i.i.d. normally distributed
sequence (Sn := Bn+1 − Bn)n∈N, for each n ∈ N, the process (Sn+u/

√
2; 0 ≤ u ≤ 1) has the

same distribution as Brownian bridge from Sn/
√

2 to Sn+1/
√

2. For n ∈ N and k ≥ 2, the
processes (Sn+u/

√
2; 0 ≤ u ≤ 1) and (Sn+k+u/

√
2; 0 ≤ u ≤ 1) are independent. However,

the consecutive bridges (Sn+u/
√

2; 0 ≤ u ≤ 1) and (Sn+1+u/
√

2; 0 ≤ u ≤ 1) for n ∈ N, are
correlated. The correlation is inferred from the following construction of the Slepian process.

Proposition 4.4.1 Let (Zn)n∈N be a sequence of i.i.d. N (0, 1)-distributed random variables,
and (bnt ; 0 ≤ t ≤ 1)n∈N be a sequence of i.i.d. standard Brownian bridges independent of
(Zn)n∈N. Define a continuous-time process (Zt; t ≥ 0) as

Zt := bn+1
t−n − bnt−n + (n+ 1− t)Zn + (t− n)Zn+1 for n ≤ t < n+ 1, n ∈ N. (4.17)

Then (Zt; t ≥ 0) has the same distribution as the Slepian process (St; t ≥ 0).

Proof: Note that (Zt; t ≥ 0) and (St; t ≥ 0) are centered Gaussian processes. It suffices to
show that (Zt; t ≥ 0) and (St; t ≥ 0) have the same covariance function. Let t2 ≥ t1 ≥ 0.
Recall that E[St1St2 ] = max(1 − t2 + t1, 0). From the construction (4.17) of (Zt; t ≥ 0), we
know that Zt1 and Zt2 are independent if t1 ∈ [n, n + 1) and t2 ≥ n + 2 for some n ∈ N. In
this case, E[Zt1Zt2 ] = 0. The other cases are:

• t1, t2 ∈ [n, n+ 1) for some n ∈ N. Then

E[Zt1Zt2 ] = E[bn+1
t1−nb

n+1
t2−n] + E[bnt1−nb

n
t2−n]

+ (n+ 1− t1)(n+ 1− t2)EZ2
n + (t1 − n)(t2 − n)EZ2

n+1

= 2(t1 − n)(n+ 1− t2) + (n+ 1− t1)(n+ 1− t2) + (t1 − n)(t2 − n)

= 1− t2 + t1.

• t1 ∈ [n, n+ 1) and t2 ∈ [n+ 1, n+ 2) for some n ∈ N. Then

E[Zt1Zt2 ] = −E[bn+1
t1−nb

n+1
t2−n−1] + (t1 − n)(n+ 2− t2)EZ2

n+1.

When t2 − t1 ≥ 1, we obtain:

E[Zt1Zt2 ] = −(t1 − n)(n+ 2− t2) + (t1 − n)(n+ 2− t2) = 0.
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When t2 − t1 < 1, we obtain:

E[Zt1Zt2 ] = −(n+ 1− t1)(t2 − n− 1) + (t1 − n)(n+ 2− t2) = 1− t2 + t1.

Putting all pieces together, we have E[Zt1Zt2 ] = max(1− t2 + t1, 0) = E[St1St2 ]. �

Remark 4.4.2 In particular, the proposition shows that given the triple of i.i.d. standard
normal variables (Sn, Sn+1, Sn+2), the two standard Brownian bridges derived from (Sn+u; 0 ≤
u ≤ 1) and (Sn+1+u; 0 ≤ u ≤ 1) by subtracting off the lines between endpoints:(
Sn+u − (1− u)Sn − uSn+1√

2
; 0 ≤ u ≤ 1

)
and

(
Sn+1+u − (1− u)Sn+1 − uSn+2√

2
; 0 ≤ u ≤ 1

)
are not conditionally independent.

For w ∈ C[0, 1], let F := inf{t ≥ 0;wt = 0} be the time of first hit to 0, and G := sup{t ≤
1;wt = 0} be the time of last exit from 0 on the unit interval. From Proposition 4.4.1, the
Slepian process on [0, 1] can be constructed by first picking independently S0, S1 ∼ N (0, 1),
and then filling in a

√
2-Brownian bridge from S0 to S1. This bridge construction provides

a proof of Theorem 4.2.1.

Proof of Theorem 4.2.1: The first part of the statement is quite straightforward from
Proposition 4.4.1 and the discussion above. To finish the proof, we compute the PS-joint
distribution of the quadruple (w0, w1, F,G) on the event {0 < F < G < 1}.

PS(w0 ∈ dx, w1 ∈ dy, F ∈ da,G ∈ db) =
dxdy

2π
exp

(
−x

2 + y2

2

)
PW̃x→y(F ∈ da,G ∈ db),

(4.18)

where PW̃x→y is the distribution of B̃ defined as in (4.10), conditioned to start at x and end
at y. In addition,

PW̃x→y(F ∈ da,G ∈ db)

=
|x|√

4π(1− a)a3
exp

(
− y2

4(1− a)
− x2

4a
+

(x− y)2

4

)
· PW̃x→y(G ∈ db|F ∈ da)

=
|x|√

4π(1− a)a3
exp

(
− y2

4(1− a)
− x2

4a
+

(x− y)2

4

)
· |y|

√
1− a√

4π(b− a)(1− b)3
exp

(
y2

4(1− a)
− y2

4(1− b)

)
=

|xy|
4π
√

(b− a)a3(1− b)3
exp

(
−x

2

4a
− y2

4(1− b)
+

(x− y)2

4

)
. (4.19)

Injecting (4.19) into (4.18), we obtain the formula (4.9). �
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By integrating over S0 ∈ dx and S1 ∈ dy in the formula (4.9), we get:

P(F ∈ da,G ∈ db)

=
2

π
√
b− a

[
1

(2 + a− b)
√
a(1− b)

+
1√

(2 + a− b)3
arctan

√
a(1− b)
2 + a− b

]
, (4.20)

and integrating further (4.20) over G ∈ db, we obtain:

P(F ∈ da) =
1

π

√
2− a
a

da for 0 < a < 1,

which agrees with the formula (4.12) found in Proposition 2.1.
In the rest of the subsection, we give yet another proof of Theorem 4.2.1. We start by

deriving the formula (4.9) from the absolute continuity relation (4.11).

Proof of (4.9) by (4.11): We first compute the PW̃-joint distribution of (w0, w1, F,G),

where PW̃ is the distribution of B̃ on [0, 1] defined as in (4.10).

PW̃(w0 ∈ dx, w1 ∈ dy, F ∈ da,G ∈ db)

=
dx√
4π

exp

(
−x

2

4

)
· PW̃(w1 ∈ dy, F ∈ da,G ∈ db|w0 ∈ dx)

=
dx√
4π

exp

(
−x

2

4

)
· |x|da√

4πa3
exp

(
−x

2

4a

)
· PW̃(w1 ∈ dy,G ∈ db|w0 ∈ dx, F ∈ da)

=
dx√
4π

exp

(
−x

2

4

)
· |x|da√

4πa3
exp

(
−x

2

4a

)
· |y|dydb

4π
√

(b− a)(1− b)3
exp

(
− y2

4(1− b)

)
(4.21)

=
|xy|

16π2
√

(b− a)a3(1− b)3
exp

(
−x

2

4
− x2

4a
− y2

4(1− b)

)
dx dy da db, (4.22)

where (4.21) can be read from Revuz and Yor [130, Exercise 3.23, Chapter III]. Now (4.22)
combined with (4.11) yields the desired result. �

We need the following elementary result regarding the change of measures.

Lemma 4.4.3 Assume that P and Q are two probability measures on (Ω,F) such that

dQ
dP

(w) := f(Z),

where Z := Z(w) is a random element and f(Z) is the Radon-Nikodym derivative of Q with
respect to P. Futhermore,

(1). Let A ∈ σ(Z) be an event determined by Z, with P(A) > 0 and Q(A) > 0;
(2). Let Y be another random element such that under P, Y is independent of Z given A

(such random element Y need only be defined conditional on A).
Then the Q-distribution of Y given A is the same as the P-distribution of Y given A.

And under Q, Y is independent of Z given A.
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Proof: Take g, h : (Ω,F)→ (R,B(R)) two bounded measurable functions. First note that

EQ[g(Y )|A] =
P(A)

Q(A)
EP[g(Y )f(Z)|A]

=
P(A)

Q(A)
EP[f(Z)|A] · EP[g(Y )|A] (4.23)

= EP[g(Y )|A], (4.24)

where (4.23) is due to the P-conditional independence of Y and Z given A. In addition,

EQ[g(Y )h(Z)|A] =
P(A)

Q(A)
EP[g(Y )h(Z)f(Z)|A]

=
P(A)

Q(A)
EP[h(Z)f(Z)|A] · EP[g(Y )|A] (4.25)

= EQ[h(Z)|A] · EQ[g(Y )|A], (4.26)

where (4.25) is again due to the P-conditional independence of Y and Z given A, and (4.26)
follows readily from (4.24). �

Proof of Theorem 4.2.1: We borrow the notations from Lemma 4.4.3 in our setting:

P := PW̃, Q := PS, Z := (w0, w1, F,G) and A := {0 < F < G < 1}. Conditional on A,
define Y (2) to be the scaled bridge on [F,G], that is

Y (2)
u :=

wF+u(G−F )√
G− F

for 0 ≤ u ≤ 1.

It is well-known that under PW̃ and on the event {0 < F < G < 1}, (Y
(2)
u /
√

2; 0 ≤ u ≤ 1)
is standard Brownian bridge, independent of (w0, w1, F,G), see e.g. Revuz and Yor [130,
Exercise 3.8, Chapter XII]. Then by Lemma 4.4.3, under PS and on the event {0 < F < G <

1}, (Y
(2)
u /
√

2; 0 ≤ u ≤ 1) is also standard Brownian bridge, independent of (w0, w1, F,G).
In addition, define Y (1) := (wu; 0 ≤ u ≤ F ) and Y (3) := (wu;G ≤ u ≤ 1). Similarly, under

PW̃ and on the event {0 < F < G < 1},

• Y (1)/
√

2 is Brownian first passage bridge from (0, w0/
√

2) to (F, 0), see e.g. Bertoin et
al. [14];

• |Y (3)|/
√

2 is reversed Brownian first passage bridge from (1, |w1|/
√

2) to (G, 0), that
is the three-dimensional Bessel bridge from (G, 0) to (1, |w1|/

√
2), see e.g. Biane and

Yor [16].

Moreover, these two processes are conditionally independent given (w0, w1, F,G). It suffices
to apply again Lemma 4.4.3 to conclude. �

In view of the Brownian characteristics,it would be interesting to find a construction of
the conditioned Slepian process (St/

√
2; 0 ≤ t ≤ 1) with {0 < F < G < 1} by some path

transformation of standard Brownian motion/bridge. We leave the interpretation open for
future investigation.
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4.5 A Palm-Itô measure related to Slepian zeros

To capture the structure of the Slepian zero set, an alternative way is to study the Slepian
excursions between consecutive zeros. Let E be the space of excursions defined by

E := {ε ∈ C[0,∞); ε0 = 0 and εt = 0 for all t ≥ ζ(ε) ∈]0,∞[},

where ζ(ε) := inf{t > 0; εt = 0} is the lifetime of the excursion ε ∈ E. Following Pitman
[122], the gaps between zeros of a process (Zt; t ≥ 0) with σ-finite invariant measure can be
described by a Palm-Itô measure nZ , defined on the space of excursions E as

nZ(dε) := E#{0 < t < 1;Zt = 0 and e(t) ∈ dε},

where e(t) is the excursion starting at time t > 0 in the process Z. The following result of
last exit decomposition for stationary processes is read from Pitman [122, Theorem 1(iii)].

Theorem 4.5.1 [122] Let PZ govern a stationary process (Zt; t ≥ 0) with σ-finite invariant
measure. For w ∈ C[0, 1], let

Gt := sup{u ≤ t;wu = 0}, (4.27)

be the last exit time from 0 before time t, and e(Gt) be the excursion straddling time t > 0
in the path. Then

PZ(t−Gt ∈ da, e(Gt) ∈ dε) = da1(ζ(ε) > a)nZ(dε), (4.28)

Remark 4.5.2

1. Theorem 4.5.1 extends a result of Bismut [18], where Z is Brownian motion with in-
variant Lebesgue measure. In this case, the Palm-Itô measure nZ is just Itô’s excursion
law n.

2. There is an analog of last exit decomposition (4.28) for standard Brownian motion.
Let PW be Wiener measure on C[0,∞), then

PW(t−Gt ∈ da, e(Gt) ∈ dε) = da
1√

2π(t− a)
1(ζ(ε) > a)n(dε),

where n is Itô’s excursion law. The result is deduced from Getoor and Sharpe [58],
who gave a last exit decomposition for general Markov processes.

Now we apply Theorem 4.5.1 to the Slepian process (St; t ≥ 0). Let PS be the distribution
of the Slepian process, we have:

PS(t−Gt ∈ da, e(Gt) ∈ dε) = da1(ζ(ε) > a)nS(dε), (4.29)

where
nS(dε) := E#{0 < t < 1;St = 0 and e(t) ∈ dε}. (4.30)

As shown in the following lemma, the last exit time Gt is closely related to the first
passage time F defined as in (4.4). Here we adopt the convention that sup ∅ := 0.
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Lemma 4.5.3 Let t > 0. Under PS, t−Gt has the same distribution as F ·1(F ≤ t)+t·1(F >
t), where Gt is defined by (4.27) and F by (4.4).

Proof: It suffices to observe that (Su; 0 ≤ u ≤ t) has the same distribution as (St−u; 0 ≤
u ≤ t). This is clear from the covariance function of the Slepian process. �

Proposition 4.5.4 For a > 0,

nS(ζ > a) = P(F ∈ da)/da, (4.31)

where nS is defined as in (4.30) and F is defined as in (4.4). In particular,

nS(ζ > a) =
1

π

√
2− a
a

for 0 < a < 1. (4.32)

Proof: It follows from (4.28) that

nS(ζ > a)da = P(t−Gt ∈ da).

According to Lemma 4.5.3,

P(t−Gt ∈ da) = P(F ∈ da) for t > a.

Then (4.31) is a direct consequence of the above two observations. Combining with the
formula (4.12), we derive further (4.32). �

From the Palm-Lévy measure (4.32), we can see how the Slepian zero set restricted to
[0, 1] differs from a plain Brownian zero set, where Itô’s excursion law is given by

n(ζ > a) =

√
2

πa
for a > 0.

As expected, nS(ζ > a) and n(ζ > a) have asymptotically equivalent tails a−
1
2 when a→ 0+.

Observe a constant factor
√
π between them. This is because the invariant Lebesgue measure

of reflected Brownian motion is σ-finite and there is no canonical normalization. We also
refer readers to Pitman and Yor [126, Section 2] for the Palm-Lévy measure of the gaps
between zeros of squared Ornstein-Uhlenbeck processes.
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Chapter 5

Brownian bridge embedded in
Brownian motion

In this chapter, we prove Theorem 1.0.4 (1); that is embedding Brownian bridge (b0
u; 0 ≤

u ≤ 1) into Brownian motion (Bt; t ≥ 0) by a random translation of origin in spacetime.
The problem is closely related to the notion of shift-coupling, initiated by Aldous and

Thorisson [3], and Thorisson [145]. General results of shift-coupling were further developed
by Thorisson [143, 146, 144], see also the book of Thorisson [142]. In the special cases of
a family of i.i.d. Bernoulli random variables indexed by Zd or a spatial Poisson process
on Rd, Liggett [101], and Holroyd and Liggett [66] provided an explicit construction of the
random shift and computed the tail of its probability distribution. Two continuous processes
(Zu;u ≥ 0) and (Z ′u;u ≥ 0) are said to be shift-coupled if there are random times T, T ′ ≥ 0
such that (ZT+u;u ≥ 0) has the same distribution as (Z ′T ′+u;u ≥ 0). From Theorem 1.0.4
(1), we know that Z := X, the moving-window process can be shift-coupled with some
C0[0, 1]-valued process Z ′ starting at Z ′0 := b0 for random times T ≥ 0 and T ′ = 0.

Recently, Hammond et al. [65] constructed local times on the exceptional times of two
dimensional dynamical percolation. Further, they showed that at a typical time with respect
to local times, the percolation configuration has the same distribution as Kesten’s Incipient
Infinite Cluster [77]. They also made use of Palm theory and the idea was similar in spirit
to ours, though the framework is completely different.

Recall that (Xt; t ≥ 0) is the moving-window process associated to Brownian motion
defined as in (4.2). We aim to find a random time T ≥ 0 such that XT has the same
distribution as b0. A general result of Rost [132] implies that such a randomized stopping
time T ≥ 0 exists (relative to the filtration of the moving window process, so T + 1 would
be a randomized stopping time in the Brownian filtration) if and only if

lim
α→0

sup
1≥g∈Sα

(∫
gdPW0 −

∫
gdPW

)
= 0, (5.1)

where PW is Wiener measure on C0[0, 1] and PW0
is Wiener measure pinned to 0 at time

1, that is the distribution of Brownian bridge b0. For α > 0, Sα is the set of α−excessive
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functions, see e.g. the book of Sharpe [134] for background. However, the criterion (5.1) is
difficult to check since PW0

is singular with respect to PW.
We work around the problem in another way, which relies heavily on Palm theory of

stationary random measures. Such theory has been successfully developed by the Scandina-
vian probability school in the last few decades. The book of Thorisson [142] records much
of this important work. For technical purposes, we introduce a two-sided Brownian motion
(B̂t; t ∈ R), and let

X̂t := (B̂t+u − B̂t; 0 ≤ u ≤ 1) for t ∈ R, (5.2)

be the moving-window process associated to the two-sided Brownian motion B̂. Note that
(X̂t; t ∈ R) is a stationary Markov process with state space (C0[0, 1],B). Alternatively, X̂
can be viewed as a random element in the space C0[0, 1]R, to which we assign the metric ρ
by

ρ(x, y) :=
∞∑
n=0

1

2n
min

(
sup
−n≤t≤n

||xt − yt||∞, 1
)

for x, y ∈ C0[0, 1]R (5.3)

where C0[0, 1] is equipped with the sup-norm || · ||∞.
Below is the plan for this section:
In Section 5.1, we provide background on Palm theory of stationary random measures.

We define a notion of local times of the C0[0, 1]−valued process X̂ by weak approximation.
Furthermore, we show that the 0-marginal of the Palm measure of local times is Brownian
bridge.

In Section 5.2, we derive from a result of Last and Thorisson [95] that the Palm probability

measure of a jointly stationary random measure associated to X̂ can be obtained by a random
time-shift of X̂ itself. In particular, there exists a random time T̂ ∈ R such that X̂T̂ has the
same distribution as (b0

u; 0 ≤ u ≤ 1).
In Section 5.3, we prove that if some distribution on C0[0, 1] can be achieved in the

moving-window process X̂ associated to two-sided Brownian motion, then we are able to
construct a random time T ≥ 0 such that X̂T has that desired distribution. Theorem 1.0.4
(1) follows immediately from the above observations.

In Section 5.4, after presenting some results of Last et al. [94], we construct a random

time T ≥ 0 such that X̂T has the same distribution as (b0
u; 0 ≤ u ≤ 1). The construction

also makes use of the local times defined in Section 5.1. The argument is due to Hermann
Thorisson.

5.1 Local times of X̂ and its Palm measure

In this section, we present background on Palm theory of stationary random measures.
To begin with, (Ω,F ,P) is a generic probability space on which random elements are defined.

Let (Zt; t ∈ R) ∈ ER be a continuous-time process with a measurable state space (E, E).
We further assume that the process Z is path-measurable, that is ER×R 3 (Z, t)→ Zt ∈ E
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is measurable for all t ∈ R. See e.g. Appendix of Thorisson [141] for more on path-
measurability. Let ξ be a random σ−finite measure on R.

Assume that the pair (Z, ξ) is jointly stationary, that is

θs(Z, ξ)
(d)
= (Z, ξ) for all s ∈ R, (5.4)

where θsZ := (Zs+t; t ∈ R) and θsξ(·) := ξ(· + s) are usual time-shift operations. Then
the Palm measure PZ,ξ of the jointly stationary pair (Z, ξ) is defined as follows: for f :
ER ×M(R)→ R bounded measurable,

PZ,ξf := E
∫ 1

0

f(θt(Z, ξ))ξ(dt).

In the rest of the work, we only need to care about the ER-marginal of PZ,ξ. That is, for
f : ER → R bounded measurable,

Pξf := E
∫ 1

0

f(θtZ)ξ(dt). (5.5)

By abuse of language, we call Pξ defined by (5.5) the Palm measure of the stationary random
measure ξ. Thus, Pξ is a σ−finite measure on ER. If Pξ1 = Eξ[0, 1) < ∞, then the
normalized measure Pξ/Pξ1 is called the Palm probability measure of ξ. So far most of the
results have been established for PZ,ξ, but they still hold for the marginal Pξ. We refer readers
to Kallenberg [75, Chapter 11], Thorisson [142, Chapter 8], Last [92, 93] and the thesis of
Gentner [54] for further development on Palm versions of stationary random measures.

In the sequel, we adapt our problem setting to the above abstract framework. We take
the state space E := C0[0, 1] equipped with its Borel σ−field B. Recall that (X̂t; t ∈ R),
the moving-window process defined as in (5.2), is a random element in the metric space
(C0[0, 1]R, ρ) with the distance ρ defined by (5.3).

For a Borel measurable set C ⊂ R, let

BRC := {w ∈ C0[0, 1];w(1) ∈ C}

be the set of bridge paths with endpoint in C. By stationarity of (X̂t; t ∈ R), for each fixed

t ∈ R, {u ∈ [t, t+ 1]; X̂u ∈ BR0} − {t} has the same distribution as {u ∈ [0, 1]; X̂u ∈ BR0},
which is mutually absolutely continuous relative to that of {u ∈ [0, 1]; B̃u = 0} by Lemma

4.3.3. Here B̃ is the modified Brownian motion as in (2.27). Inspired from the notion of
Brownian local times, we define a random σ−finite measure Γ on R as follows: for n ∈ N
and C ⊂ R,

Γ([−n, n] ∩ C) := lim
ε→0

√
π

2

1

ε

∫
[−n,n]∩C

1(X̂u ∈ BR[−ε,ε])du. (5.6)

Let us justify that the random measure Γ as in (5.6) is well-defined. Write C = ∪k∈ZCk
where Ck := C ∩ [k, k + 1]. We want to show that for each k ∈ Z,

lim
ε→0

1

ε

∫
Ck

1(X̂u ∈ BR[−ε,ε])du is well-defined almost surely.
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The following lemma is quite straightforward, the proof of which is omitted.

Lemma 5.1.1 Assume that two random sequences (Yε)ε>0 and (Y ′ε )ε>0 with a measurable
state space (G,G) have the same distribution. If f : G → R is a measurable function
satisfying that f(Yε) converges almost surely as ε → 0, then f(Y ′ε ) converges almost surely
as ε→ 0

Observe that for each fixed k ∈ Z, {u ∈ [k, k+1]; X̂u ∈ BR[−ε,ε]} has the same distribution
as {u ∈ [0, 1];Su ∈ [−ε, ε]}+ {k} where (Su;u ≥ 0) is the Slepian process. By Lemma 5.1.1,
it suffices to prove that for each Borel measurable set C ′ ⊂ [0, 1],

lim
ε→0

1

ε

∫
C′

1(Su ∈ [−ε, ε])du is well-defined almost surely.

And this is quite clear from the path decomposition of the Slepian process on [0, 1], Theorem
4.2.1. We refer readers to Revuz and Yor [130, Chapter VI] for the existence of Brownian
local times by approximation. Now for n ∈ N,

1

ε

∫
[−n,n]∩C

1(X̂s ∈ BR[−ε,ε])ds =
n−1∑
k=−n

1

ε

∫
Ck

1(X̂s ∈ BR[−ε,ε])ds

converges almost surely as ε→ 0.
The random measure Γ defined by (5.6) can be interpreted as the local times of the

moving-window process X̂ at the level BR0. Note that the pair (X̂,Γ) is jointly stationary
in the sense of (5.4). Next, we compute explicitly the 0-marginal of the Palm measure of
the local times Γ:

Proposition 5.1.2 Let Π0 : C0[0, 1]R 3 w → w0 ∈ C0[0, 1] be the 0−marginal projection.
Then the image by Π0 of the Palm probability measure of Γ as in (5.6) is

PΓ ◦ Π−1
0 = PW0

,

where PW0
is Wiener measure pinned to 0 at time 1, that is the distribution of a standard

Brownian bridge.

Proof: Take f : C0[0, 1]→ R bounded continuous. By injecting (5.6) into (5.5), we obtain:

PΓ ◦ Π−1
0 f = lim

ε→0

√
π

2

1

ε

∫ 1

0

E[f(X̂t)1(X̂t ∈ BR[−ε,ε])]dt

= lim
ε→0

√
π

2

1

ε
E[f(X̂0)1(X̂0 ∈ BR[−ε,ε])] (5.7)

= lim
ε→0

√
π

2

1

ε
EW[f(w)1(w1 ∈ [−ε, ε])]

= lim
ε→0

EW[f(w)|w1 ∈ [−ε, ε]]

= PW0

f, (5.8)
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where PW is Wiener measure on C0[0, 1]. The equality (5.7) is due to stationarity of the

moving-window process X̂, and the equality (5.8) follows from the weak convergence to
Brownian bridge of Brownian motion, see e.g. Billingsley [17, Section 11]. �

Remark 5.1.3 The measure PΓ ◦ Π−1
0 defined in Proposition 5.1.2 is closely related to the

notion of Revuz measure of Markov additive functionals. Note that for s ∈ R and t ≥ 0,
Γ[s, s+ t] = Γ[0, t]◦ θs, i.e. Γ induces a continuous additive functional of the moving-window

process X̂.1 Since (X̂t; t ∈ R) is stationary with respect to PW,

PΓ ◦ Π−1
0 f := E

∫ 1

0

f(X̂t)Γ(dt) for f : C[0, 1]→ R bounded measurable,

can be viewed as Revuz measure of Γ in the two-sided setting. For further discussions on
Revuz measure of additive functionals, we refer readers to Revuz [129], Fukushima [52], and
Fitzsimmons and Getoor [47] among others.

5.2 Brownian bridge in two-sided Brownian motion

In this paragraph, we show that there exists a random time T̂ ∈ R such that (B̂T̂+u −
B̂T̂ ; 0 ≤ u ≤ 1) has the same distribution as Brownian bridge b0. In terms of the moving-

window process X̂, we show that

Proposition 5.2.1 There exists a random time T̂ ∈ R such that X̂T̂ has the same distribu-
tion as (b0

u; 0 ≤ u ≤ 1)

As mentioned in the introduction, our proof relies on a recent result of Last and Thoris-
son [95], which establishes a dual relation between stationary random measures and mass-
stationary ones in the Euclidian space. We refer readers to Last and Thorisson [96, 97] for
the notion of mass-stationarity, which is an analog to point-stationarity of random point
processes.

Before proceeding further, we need the following notations. Recall that (Zt; t ∈ R) is a
path-measurable process with a state space (E, E) such that (ER, ER) is time-invariant, and
ξ is a random σ−finite measure on R. Let Nξ be a simple point process on Z such that

i ∈ Nξ ⇐⇒ ξ(i+ [0, 1)) > 0.

Next we associate each j ∈ Z to the point of Nξ that is closest to j, choosing the smaller one
when there are two such points. Then we obtain a countable number of sets, each of which
contains exactly one point of Nξ. Let D be the set that contains 0, and S be the vector from
Nξ−point in the set D to 0.

1This generalizes the definition of continuous additive functionals of one-sided Markov processes, see e.g.
the book of Sharpe [134, Chapter IV] and the survey paper of Getoor [56] for background.
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Fig 7. Decomposition of Z induced by the simple point process Nξ.

The next result is read from Last and Thorisson [95, Theorem 2]:

Theorem 5.2.2 [95] Assume that (1). the pair (Z, ξ) is stationary, (2). Eξ[0, 1) < ∞ and
(3). conv supp ξ = R a.s. where conv supp ξ is the convex hull of the support of ξ. Define

Z0 := θT−SZ,

where the conditional distribution of T ∈ [0, 1) given (Z, ξ) is

θ−Sξ(·|[0, 1)) :=
θ−Sξ(· ∩ [0, 1))

θ−Sξ([0, 1))
.

Define

dP0 :=
θ−Sξ[0, 1)

#D · Eξ[0, 1)
dP,

where #D is the cardinality of the set D. Then Z0 under P0 is the Palm probability measure
of ξ.

Thorisson [143, 144] presented a duality between stationary point processes and point-
stationary ones in the Euclidian space. In particular, the stationary point process and its
(modified) Palm version are the same with some random time-shift. Thus Theorem 5.2.2 is
regarded as a generalization of those results in the random diffuse measure setting.

Now we apply Theorem 5.2.2 to Z := X̂ the moving-window process as in (5.2), and
ξ := Γ the local times as in (5.6). It is straightforward that all assumptions in Theorem
5.2.2 are satisfied. This leads to:

Corollary 5.2.3 There exists a random time T ∈ R such that the Palm probability measure
of Γ, i.e. PΓ/PΓ1 is absolutely continuous with respect to the distribution of θT X̂.

By Proposition 5.1.2, the 0-marginal of the Palm probability measure of Γ is Brownian
bridge. If we can show that the Palm probability measure PΓ/PΓ1 is achieved by θT̂ X̂ for a

random time T̂ ∈ R, then Proposition 5.2.1 follows as a consequence. To this end, we state
a general result, the proof of which is deferred.

Theorem 5.2.4 Let (Zt; t ∈ R) be a path-measurable process with a state space (E, E).
Assume that

1. Z is ergodic under the time-shift group (θt; t ∈ R), that is

P(Z ∈ H) = 0 or 1 for all H ∈ I := {H ′ ∈ ER; θtH
′ = H ′ for all t ∈ R};
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2. µ is a probability measure on (ER, ER) absolutely continuous with respect to the distri-
bution of θTZ for a random time T ∈ R.

Then there exists a random time T̂ ∈ R such that θT̂Z is distributed as µ.

Proof of Proposition 5.2.1: We apply Theorem 5.2.4 to Z := X̂ the moving-window
process and µ := PΓ/PΓ1 the Palm probability measure of Γ. Observe that the invariant

σ-field I ⊂ ∩n∈Nθ−1
n ER, the tail σ-field of (X̂n;n ∈ N) which are i.i.d. copies of Brownian

motion on [0, 1]. By Kolmogorov’s zero-one law, I is trivial under the distribution of X̂ and
the assumption (1) is satisfied. The assumption (2) follows from Corollary 5.2.3. Combining
Theorem 5.2.4 and Proposition 5.1.2, we obtain the desired result. �

Remark 5.2.5 In ergodic theory, the process Z is said to be θ-mixing if

sup{P(Z ∈ A ∩B)− P(Z ∈ A)P(Z ∈ B); t ∈ R, A ∈ Ft, B ∈ F t+s} → 0 as s→∞,

where Ft := σ(Zu;u ≤ t) and F t+s := σ(Zu;u ≥ t + s). See e.g. Bradley [22] for a survey
on strong mixing conditions. It is quite straightforward that the moving-window process
X̂ is θ-mixing, since X̂t+l and X̂t are independent for all t ≥ 0 and l ≥ 1. Consequently,
X̂ is ergodic under time-shift (θt; t ∈ R). In Section 3.5, this notion of θ-mixing plays an
important role in one-sided embedding out of two-sided processes.

In the rest of this part, we aim to prove Theorem 5.2.4. We need the following result of
Thorisson [146], which provides a necessary and sufficient condition for two continuous-time
processes being transformed from one to the other by a random time-shift.

Theorem 5.2.6 [146] Let (Zt; t ∈ R) and (Z ′t; t ∈ R) be two path-measurable processes with

a state space (E, E). Then there exists a random time T̂ ∈ R such that θT̂Z has the same
distribution as Z ′ if and only if the distributions of Z and Z ′ agree on the invariant σ−field
I.

Proof of Theorem 5.2.4: We apply Theorem 5.2.6 to Z ′ distributed as µ. Since (θt; t ∈ R)
is ergodic under the distribution of Z,

P(Z ∈ H) = 0 or 1 for all H ∈ I.

If P(Z ∈ H) = 0 for H ∈ I, then P(θTZ ∈ H) = P(Z ∈ θ−TH) = P(Z ∈ H) = 0. By
the absolute continuity between the distribution µ and that of θTZ, we have µ(H) = 0. By
applying the same argument to the complement of H, P(Z ∈ H) = 1 for H ∈ I implies
µ(H) = 1. Thus, the probability distribution µ and that of Z agree on the invariant σ−field
I. Theorem 5.2.6 permits to conclude. �
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5.3 From two-sided embedding to one-sided

embedding

We explain here how to achieve a certain distribution on C0[0, 1] in Brownian motion by
a random spacetime shift, once this has been done in two-sided Brownian motion. We aim
to prove that:

Proposition 5.3.1 Assume that µ is a probability measure on (C0[0, 1],B). If X̂T̂ is dis-

tributed as µ for some random time T̂ ∈ R, then there exists a random time T ≥ 0 such that
X̂T is distributed as µ.

It is not hard to see that Theorem 1.0.4 (1) follows readily from Corollary 5.2.1 and
Proposition 5.3.1. In the sequel, we assume path-measurability for any continuous-time
processes that are involved. Let L(X ) be the distribution of any random element X . To
prove Proposition 5.3.1, we begin with a general statement.

Proposition 5.3.2 Let (Zt; t ∈ R) be a stationary process and θ-mixing as in Remark 5.2.5.

Assume that ZT̂ is distributed as µ for some random time T̂ ∈ R. Given ε > 0 and N ∈ N,
there exist random times 0 ≤ T1 < · · · < TN on some event EN of probability larger than
1− ε such that

||L(ZT1 , · · · , ZTN |EN)− µ⊗N ||TV ≤ ε,

where || · ||TV is the total variation norm of a measure.

Before proceeding the proof, we need the following lemma known as Blackwell-Dubins’
merging of opinions [19]. In that paper, they only proved the result for discrete chains. But
the argument can be easily adapted to the continuous setting. We rewrite Blackwell-Dubins’
theorem for our own purpose, and leave full details to careful readers.

Lemma 5.3.3 [19] Let (Zt; t ∈ R) and (Z ′t; t ∈ R) be two path-measurable processes with a
state space (E, E). If the distribution of Z ′ is absolutely continuous with respect to Z, then

||L(Z ′t+s; s ≥ 0|F ′t)− L(Zt+s; s ≥ 0|Ft)||TV → 0 as t→∞,

where Ft := σ(Zu;u ≤ t) and F ′t := σ(Z ′u;u ≤ t).

Proof of Proposition 5.3.2: We proceed by induction over N ∈ N. By stationarity of Z,
for each s ∈ R, θsZ has the same distribution as Z. Let T̂θs be the random time constructed
from θsZ just as T̂ is constructed from Z. Therefore, (θsZ)T̂θs

= ZT̂θs+s is distributed as µ.

Let t ∈ R be the ε
2
-quantile of T̂ , that is P(T̂ ≥ t) ≥ 1− ε

2
. Define T1 := T̂θ−t − t. Observe

that for A ∈ E ,

P(ZT1 ∈ A)− ε

2
≤ P(ZT1 ∈ A and T1 ≥ 0) ≤ P(ZT1 ∈ A).
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As a consequence, on the event E1 := {T1 ≥ 0} of probability larger than 1− ε
2
> 1− ε,

||L(ZT1|E1)− µ||TV ≤
ε/2

1− ε/2
< ε.

Suppose that there exist 0 ≤ T1 < · · · < TN on some event EN of probability larger than
1− ε

4
such that

||L(ZT1 , · · · , ZTN |EN)− µ⊗N ||TV ≤
ε

4
. (5.9)

Note that the distribution of the conditioned moving-window process (Zs; s ∈ R|EN) is
absolutely continuous with respect to that of the original one (Zs; s ∈ R). By Lemma 5.3.3,

||L(Zt+s; s ≥ 0|EN ,Ft)− L(Zt+s; s ≥ 0|Ft)||TV → 0 as t→∞. (5.10)

By triangle inequality, we have for t′, t′′ ≥ 0,

||L(Zt′+t′′+s; s ≥ 0|EN)− L(Zs; s ≥ 0)||TV
≤ ||L(Zt′+t′′+s; s ≥ 0|EN)− L(Zt′+t′′+s; s ≥ 0|EN ,Ft′)||TV

+ ||L(Zt′+t′′+s; s ≥ 0|EN ,Ft′)− L(Zt′+t′′+s; s ≥ 0|Ft′)||TV
+ ||L(Zt′+t′′+s; s ≥ 0|Ft′)− L(Zs; s ≥ 0)||TV . (5.11)

By θ-mixing property, the first and the third term of (5.11) goes to 0 as t′′ →∞. By (5.10),
the second term of (5.11) goes to 0 as t′ →∞. Therefore,

lim
t→∞
||L(Zt+s; s ≥ 0|EN)− L(Zs; s ≥ 0)||TV = 0 as t→∞. (5.12)

Pick tN ≥ 0 such that P(TN ≥ tN) ≤ ε
8

and

||L(ZtN+s; s ≥ 0|EN)− L(Zs; s ≥ 0)||TV ≤
ε

8
.

By a similar argument as in the case of N = 1, there exists a random time TN+1 ∈ R such
that P(TN+1 ≥ tN) ≥ 1− ε

8
and

||L(ZTN+1
|EN ∩ {TN+1 ≥ tN})− µ||TV ≤

ε

8
+
ε

8
=
ε

4
. (5.13)

Let EN+1 := EN ∩ {TN+1 > TN}. Since

P(TN+1 > TN) ≥ P(TN+1 ≥ tN)− P(TN > tN) ≥ 1− ε

4
,

we get P(EN+1) ≥ 1− ε
2
> 1− ε. By (5.9) and (5.13),

||L(ZT1 , · · · , ZTN |EN+1)− µ⊗N ||TV ≤
ε

2
and ||L(ZTN+1

|EN+1)− µ||TV ≤
ε

2
.

We obtain immediately that ||L(ZT1 , · · · , ZTN+1
|EN+1)− µ⊗N+1||TV ≤ ε

2
+ ε

2
= ε. �

By applying Lemma 5.3.3 in the first step, we deduce from Proposition 5.3.2 that:
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Corollary 5.3.4 Let (Zt; t ∈ R) be a stationary process and θ-mixing as in Remark 5.2.5.

Assume that ZT̂ is distributed as µ for some random time T̂ ∈ R. Given ε > 0, N ∈ N and
E0 an event of positive probability, there exist random times 0 ≤ T1 < · · · < TN on some
event EN of probability larger than 1− ε such that

||L(ZT1 , · · · , ZTN |E0, EN)− µ⊗N ||TV ≤ ε.

Now let us recall some elements of von Neumann’s acceptance-rejection algorithm [150].
Assume that µ and ν are two probability measures such that the Radon-Nikodym derivative
f := dν

dµ
is essentially bounded under µ. Let (Zn)n∈N ∼ µ⊗N be a sequence of i.i.d. random

variables distributed as µ. Then

ZT ∼ ν with T := inf

{
i ∈ N;Ui ≤

f(Zi)

ess sup f

}
,

where (Un)n∈N is a sequence of i.i.d. uniform-[0, 1] random variables independent of (Zn)n∈N.
It is well-known that the total variation between the N th updated distribution and the target
one is of geometric decay, i.e.

||L(ZT∧N)− ν||TV ≤ 2

(
1− 1

ess sup f

)N
.

If the sample size N is large enough, a good portion of the target distribution ν can be
sampled from (Z1, · · · , ZN) ∼ µ⊗N à la von Neumann. The following lemma is a slight
extension of the above result to the quasi-i.i.d. case. The proof is quite standard, and thus
is omitted.

Lemma 5.3.5 Assume that ||L(Z1 · · ·ZN)− µ⊗N ||TV ≤ ε for some ε > 0 and N ∈ N.Then

||L(ZTN )− ν||TV ≤ ε+ 2

(
1− 1

ess sup f

)N
,

where TN := inf{i ≤ N ;Ui ≤ f(Zi)/ ess sup f} ∧N .

Proof of Proposition 5.3.1: We use the same notation as in the proof of Proposition
5.3.2. Let t ∈ R be the 1

2
−quantile of T̂ , and define T1 := T̂θ−t . By taking T1 ≥ 0 as the

stopping rule, we obtain a 1
2

portion of µ. The idea now is to get the remaining 1
2

portion

of µ by filling-type argument. Note that the target distribution L(X̂T1|T1 < 0) is absolutely
continuous with respect to µ with the Radon-Nikodym density

f1 :=
dL(X̂T1|T1 < 0)

dµ
,

which is bounded by 2. As indicated in Remark 5.2.5, the moving-window process X̂ is
stationary and θ-mixing. We apply Corollary 5.3.4 to (X̂t; t ∈ R|T1 < 0): for any fixed
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N ∈ N, there exist random times 0 ≤ T1 < · · · < TN on some event EN of probability larger
than 3

4
such that

||L(X̂T1 , · · · , X̂TN |T1 < 0, EN)− µ⊗N ||TV ≤
1

4
.

By Lemma 5.3.5, there is a random integer M ≤ N such that

||L(X̂TM |T1 < 0, EN)− L(X̂T1|T1 < 0)||TV ≤
1

4
+ 2

(
1− 1

ess sup f1

)N
.

By taking N ∈ N such that (1− 1/ ess sup f1)N ≤ 1
8
, we retrieve a 1

2
portion of the targeted

L(X̂T1|T1 < 0). Restricted to the sub-probability space {T1 < 0}, we obtain a remaining
1
4

portion of µ. Repeat the algorithm, and we finally achieve the desired (1
2

+ 1
4

+ 1
8

+ · · · )
distribution µ. �

5.4 An explicit embedding of Brownian bridge into

Brownian motion

In this section, we present a constructive proof of Theorem 1.0.4 (1) due to Hermann

Thorisson. Recall that X̂ is the moving-window process associated to a two-sided Brownian
motion.

Theorem 5.4.1 [140] Let Γ be the random σ-finite measure defined as in (5.6). Define

T := inf{t > 0; Γ[0, t] = t}. (5.14)

Then T <∞ almost surely, and X̂T has the same distribution as a standard Brownian bridge
(b0
u; 0 ≤ u ≤ 1).

To proceed further, we need the following notions regarding transports of random mea-
sures, initiated by Holroyd and Peres [67], and Last and Thorisson [96].

Definition 5.4.2 [67, 96] Let (Ω,F ,P) be a generic probability space, equipped with a flow
(θt; t ∈ R).

1. A measurable mapping τ : Ω× R→ R is called an allocation rule if

τ(θtw, s− t) = τ(w, s)− t for s, t ∈ R P a.s.

2. An allocation rule τ is said to balance two random measures ξ and η if∫
R

1(τ(s) ∈ ·)ξ(ds) = η P a.s.
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Triggered by the work of Liggett [101], and Holroyd and Liggett [66] on transporting
counting measures on Zd to the Bernoulli random measure, allocation rules of counting
measures on Zd to an ergodic point process have received much attention, see e.g. Holroyd
and Peres [67], Chatterjee et al. [26], and Last and Thorisson [96] among others. The
following result of Last et al. [94, Theorem 5.1] gives a balancing allocation rule for diffuse
random measures on the line.

Theorem 5.4.3 [94] Let ξ and η be invariant orthogonal diffuse random measures on R
with finite intensities. Assume that

E[ξ[0, 1]|I] = E[η[0, 1]|I] a.s., (5.15)

where I is the invariant σ-field. Then the mapping

τ(s) := inf{t > s; ξ[s, t] = η[s, t]} for all s ∈ R

is an allocation rule balancing ξ and η.

Corollary 5.4.4 Let Γ be the random σ-finite measure defined as in (5.6). Define

T (s) := inf{t > s; Γ[s, t] = t− s} for all s ∈ R. (5.16)

Then (T (s); s ∈ R) is an allocation rule balancing the Lebesgue measure L1 on R and Γ.

Proof: We want to apply Theorem 5.4.3 to ξ := L1 and η := Γ. We need to check the
conditions. First it is obvious that L1 and Γ are invariant diffuse measures on the real line.
Note that the measure Γ is supported on the set {t ∈ R; X̂t ∈ BR0} almost surely. The

distribution of {t ∈ R; X̂t ∈ BR0} is the same as that of {t ∈ R;St = 0}, which has null
Lebesgue measure almost surely. Therefore, the measures L1 and Γ are orthogonal. In the
proof of Proposition 5.2.1, we know that I is trivial under the distribution of X̂. In addition,
EΓ[0, 1] = 1 by the computation as in Proposition 5.1.2. Thus, we have the condition (5.15)
in the case of ξ := L1 and η := Γ. �

In terms of Palm measures, Last and Thorisson [96, Theorem 4.1] gave a necessary and
sufficient condition for an allocation rule to balance two random measures. See also Last et
al. [94, Theorem 2.1].

Theorem 5.4.5 [96] Consider two random measures ξ and η on R and an allocation rule
τ . Then τ balances ξ and η if and only if

Pξ(θτ(0)w ∈ ·) = Pη,

where Pξ (resp. Pη) is the Palm measure of ξ (resp. η).
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Proof of Theorem 5.4.1: Applying Theorem 5.4.5 to ξ := L1, η := Γ and τ := T , we get:

PL1(θT X̂ ∈ ·) = PΓ.

where T is defined by (5.14). Note that for a stationary process, the Palm version of the
Lebesgue measure is the stationary process itself. In particular, PL1 is the distribution of the
moving-window process X̂. By Proposition 5.1.2, the 0-marginal of PΓ is standard Brownian
bridge. Theorem 5.4.1 follows readily from these facts.. �

Finally, let us derive a simple consequence of Theorem 5.4.1. Let (bpsu ; 0 ≤ u ≤ 1) be the
pseudo Brownian bridge defined by

bpsu :=
Buτ1√
τ1

for all 0 ≤ u ≤ 1,

where τ1 := inf{t ≥ 0;Lt > 1} is the inverse local times of Brownian motion. Biane et
al. [15] proved that the distribution of the pseudo Brownian bridge is mutually absolutely
continuous relative to that of standard Brownian bridge. That is, for f : C0[0, 1] → R a
bounded measurable function,

E[f(bpsu ; 0 ≤ u ≤ 1)] = E

[√
2

π
Lbr1 f(b0

u; 0 ≤ u ≤ 1)

]
,

where Lbr1 is the local time of Brownian bridge at level 0 up to time 1.
From Theorem 5.4.1, we are able to find a sequence of i.i.d. Brownian bridges by

iteration of the construction (5.14). According to Section 3.5, we can apply Rost’s filling
scheme [24, 131] to sample distributions which are absolutely continuous relative to that of
Brownian bridge. In particular,

Corollary 5.4.6 There exists a random time T ≥ 0 such that (BT+u − BT ; 0 ≤ u ≤ 1) has
the same distribution as (bpsu ; 0 ≤ u ≤ 1).
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Chapter 6

Potential theory for continuous-time
paths

In Question 1.0.5, we ask for any Borel measurable subset S of C0[0, 1] whether S is hit
by the moving-window process Xt := (Bt+u−Bt; 0 ≤ u ≤ 1) for t ≥ 0, at some random time
T . Related studies of the moving window process appear in several contexts. Knight [88,
89] introduced the prediction processes, where the whole past of the underlying process is
tracked to anticipate its future behavior. The relation between Knight’s prediction processes
and our problems is discussed briefly at the end of the section. Similar ideas are found
in stochastic control theory, where certain path-dependent stochastic differential equations
were investigated, see e.g. the monograph of Mohammed [111] and Chang et al. [25]. More
recently, Dupire [39] worked out a functional version of Itô’s calculus, in which the underlying
process is path-valued and notions as time-derivative and space-derivative with respect to a
path, are proposed. We refer readers to the thesis of Fournié [49] as well as Cont and Fournié
[29, 30, 31] for further development.

Indeed, Question 1.0.5 is some issue of potential theory. In Benjamini et al. [8] a potential
theory was developed for transient Markov chains on any countable state space E. They
showed that the probability for a transient chain to ever visit a given subset S ⊂ E, is
estimated by CapM(S) – the Martin capacity of the set S. See also Mörters and Peres [115,
Section 8.3] for a detailed exposition.

As pointed out by Steven Evans [43], such a framework still works well for our discrete
patterns. For 0 < α < 1, define the α−potential of the discrete patterns/strings of length n
as

Gα(ε′, ε′′) : =
∞∑
k=0

αkP k(ε′, ε′′)

=
n−1∑
k=0

(α
2

)k
1{σk(ε′) = τk(ε

′′)}+
1

1− α

(α
2

)k
,

where ε′, ε′′ ∈ {−1, 1}n, and P (·, ·) is the transition kernel of discrete patterns/strings of
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length n in a simple random walk, and σk (resp. τk): {−1, 1}n → {−1, 1}n−k the restriction
operator to the last n− k strings (resp. to the first n− k strings). The following result is a
direct consequence of the first/second moment method, and we leave the detail to readers.

Proposition 6.0.7 [43] Let T be an N−valued random variable with P(T > n) = αn,
independent of the simple random walk. For An a collection of discrete patterns of length n,
we have

1

2

2−n

1− α
Capα(An) ≤ P(T (An) < T ) ≤ 2−n

1− α
Capα(An),

where for A ⊂ {−1, 1}n,

Capα(A) :=

inf

 ∑
ε′,ε′′∈{−1,1}n

Gα(ε′, ε′′)g(ε′)g(ε′′); g ≥ 0, g(Ac) = {0} and
∑

ε∈{0,1}n
g(ε) = 1


−1

.

Now let us mention some previous work regarding the potential theory for path-valued
Markov processes. There has been much interest in developing a potential theory for the
Ornstein-Uhlenbeck process in the Wiener space C0[0,∞), defined as

Zt := U(t, ·) for t ≥ 0,

where U(t, ·) := e−t/2W (et, ·) is the Ornstein-Uhlenbeck Brownian sheet. Note that the
continuous-time process (Zt; t ≥ 0) takes values in the Wiener space C0[0,∞) and starts
at Z0 := W (1, ·) as standard Brownian motion. Following from Williams [152], a Borel
measurable set S ⊂ C0[0,∞) is said to be quasi-sure if P(∀t ≥ 0, Zt ∈ S) = 1, which is
known to be equivalent to

CapOU(Sc) = 0, (6.1)

where

CapOU(Sc) :=

∫ ∞
0

e−tP(∃T ∈ [0, t] such that ZT ∈ Sc)dt (6.2)

is the Fukushima-Malliavin capacity of Sc, that is the probability that Z hits Sc before an in-
dependent exponential random time with parameter 1. Taking advantage of the well-known
Wiener-Itô decomposition of the Ornstein-Uhlenbeck semigroup, Fukushima [51] provided an
alternative construction of (6.1) via the Dirichlet form. The approach allows the strength-
ening of many Brownian almost sure properties to quasi-sure properties. See also the survey
of Khoshnevisan [78] for recent development.

Note that the definition (6.2) can be extended to any (path-valued) Markov process.
Within this framework, a related problem to Question 1.0.5 is

Question 1.0.5′: Given a Borel measurable set S∞ ⊂ C0[0,∞), is

CapMW (S∞) : =

∫ ∞
0

e−tP[∃T ∈ [0, t] such that ΘT ◦B ∈ S∞]dt

= 0 or > 0?
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where (Θt)t≥0 is the family of spacetime shift operators defined as

Θt ◦B := (Bt+u −Bt;u ≥ 0) for all t ≥ 0. (6.3)

It is not difficult to see that the set function CapMW is a Choquet capacity associated
to the shifted process (Bt+u − Bt;u ≥ 0) for t ≥ 0, or the moving-window process Xt :=
(Bt+u−Bt; 0 ≤ u ≤ 1) for t ≥ 0. For a Borel measurable subset S of C0[0, 1], if CapMW (S⊗1

C0[0,∞)) = 0, where

S ⊗1 C0[0,∞) := {(wt1t<1 + (w1 + w′t)1t≥1)t≥0;w ∈ S and w′ ∈ C0[0,∞)} (6.4)

is the usual path-concatenation, then

P(∃T > 0 such that XT ∈ S] = 0,

i.e. almost surely the set S is not hit by the moving-window process X. Otherwise,

P[∃T ∈ [0, t] such that XT ∈ S] > 0 for some t ≥ 0,

and an elementary argument leads to P[∃T ≥ 0 such that XT ∈ S] = 1.
As context for this question, we note that path-valued Markov processes have also been

extensively investigated in the superprocess literature. In particular, Le Gall [98] charac-
terized the polar sets for the Brownian snake, which relies on earlier work on the potential
theory of symmetric Markov processes by Fitzsimmons and Getoor [46] among others.

There has been much progress in the development of potential theory for symmetric path-
valued Markov processes. However, the shifted process, or the moving-window process, is
not time-reversible and the transition kernel is more complicated than that of the Ornstein-
Uhlenbeck process in Wiener space. So working with a non-symmetric Dirichlet form, see
e.g. the monograph of Ma and Röckner [103], seems to be far from obvious.

Open problem 6.0.8

1. Is there any relation between the two capacities CapX and CapMW on Wiener space?

2. Propose a non-symmetric Dirichlet form for the shifted process (Θt ◦ B)t≥0, which
permits to compute the capacities of the sets of paths E, M, BRλ . . .etc.

This problem seems substantial already for one-dimensional Brownian motion. But it
could of course be posed also for higher dimensional Brownian motion, or a still more general
Markov process. Following are some well-known examples of non-existing patterns in d-
dimensional Brownian motion for d ≥ 2.

• d = 2 (Evans [44]): There is no random time T such that (BT+u −BT ; 0 ≤ u ≤ 1) has
a two-sided cone point with angle α < π;
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• d = 3 (Dvoretzky et al. [41]): There is no random time T such that (BT+u − BT ; 0 ≤
u ≤ 1) contains a triple point;

• d ≥ 4 (Kakutani [74], Dvoretzky et al. [40]): There is no random time T such that
(BT+u −BT ; 0 ≤ u ≤ 1) contains a double point.

We refer readers to the book of Mörters and Peres [115, Chapter 9 and 10] for historical notes
and further discussions on sample path properties of Brownian motion in all dimensions.

Finally, we make some connections between Knight’s prediction processes and our prob-
lems. For background, readers are invited to Knight [88, 89] as well as the commentary
of Meyer [106] on Knight’s work. To avoid heavy measure theoretic discussion, we restrict
ourselves to the classical Wiener space (C0[0,∞),F , (Ft)t≥0,PW), where (Ft)t≥0 is the aug-
mented Brownian filtrations satisfying the usual hypothesis of right-continuity.

The prediction process is defined as, for all t ≥ 0 and S∞ a Borel measurable set of
C0[0,∞),

ZW
t (S∞) := PW[Θt ◦B ∈ S∞|Ft],

where Θt ◦ B is the shifted path defined as in (6.3). Note that (ZW
t )t≥0 is a strong

Markov process, which takes values in the space of probability measure on the Wiener space
(C0[0,∞),F). In terms of the prediction process, Question 1.0.5 can be reformulated as

Question 1.0.5′′: Given a Borel measurable set S ⊂ C0[0, 1], can we find a random time
T such that

EZW
T (S ⊗1 C0[0,∞)) = 1?

where S ⊗1 C0[0,∞) is defined as in (6.4).
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mension”. In: Ann. Probab. 33.3 (2005), pp. 841–878. issn: 0091-1798. doi: 10.1214/
009117904000001026. url: http://dx.doi.org/10.1214/009117904000001026.

[83] Davar Khoshnevisan and Yimin Xiao. “Weak unimodality of finite measures, and an
application to potential theory of additive Lévy processes”. In: Proc. Amer. Math.
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additive Lévy process”. In: Ann. Probab. 31.2 (2003), pp. 1097–1141. issn: 0091-
1798. doi: 10.1214/aop/1048516547. url: http://dx.doi.org/10.1214/aop/
1048516547.

[86] F. B. Knight. “On the random walk and Brownian motion”. In: Trans. Amer. Math.
Soc. 103 (1962), pp. 218–228. issn: 0002-9947.

[87] F. B. Knight. “Random walks and a sojourn density process of Brownian motion”.
In: Trans. Amer. Math. Soc. 109 (1963), pp. 56–86. issn: 0002-9947.

[88] Frank B. Knight. “A predictive view of continuous time processes”. In: Ann. Proba-
bility 3.4 (1975), pp. 573–596.

[89] Frank B. Knight. Foundations of the prediction process. Vol. 1. Oxford Studies in
Probability. Oxford Science Publications. The Clarendon Press, Oxford University
Press, New York, 1992, pp. xii+248. isbn: 0-19-853593-7.

[90] Marie F. Kratz. “Level crossings and other level functionals of stationary Gaussian
processes”. In: Probab. Surv. 3 (2006), pp. 230–288. issn: 1549-5787. doi: 10.1214/
154957806000000087. url: http://dx.doi.org/10.1214/154957806000000087.

[91] Jean-Maxime Labarbe and Jean-François Marckert. “Asymptotics of Bernoulli ran-
dom walks, bridges, excursions and meanders with a given number of peaks”. In: Elec-
tron. J. Probab. 12 (2007), no. 9, 229–261. issn: 1083-6489. doi: 10.1214/EJP.v12-
397. url: http://dx.doi.org/10.1214/EJP.v12-397.

[92] Günter Last. “Modern random measures: Palm theory and related models”. In: New
perspectives in stochastic geometry. Oxford Univ. Press, Oxford, 2010, pp. 77–110.

[93] Günter Last. “Stationary random measures on homogeneous spaces”. In: J. Theoret.
Probab. 23.2 (2010), pp. 478–497. issn: 0894-9840. doi: 10.1007/s10959-009-0231-
9. url: http://dx.doi.org/10.1007/s10959-009-0231-9.

[94] Günter Last, Peter Mörters, and Hermann Thorisson. “Unbiased shifts of Brownian
motion”. In: Ann. Probab. 42.2 (2014), pp. 431–463. issn: 0091-1798. doi: 10.1214/
13-AOP832. url: http://dx.doi.org/10.1214/13-AOP832.

[95] Günter Last and Hermann Thorisson. “Construction and characterization of station-
ary and mass-stationary random measures on Rd”. In: Stochastic Process. Appl. 125.12
(2015), pp. 4473–4488. issn: 0304-4149. doi: 10.1016/j.spa.2015.07.006. url:
http://dx.doi.org/10.1016/j.spa.2015.07.006.

[96] Günter Last and Hermann Thorisson. “Invariant transports of stationary random
measures and mass-stationarity”. In: Ann. Probab. 37.2 (2009), pp. 790–813. issn:
0091-1798. doi: 10.1214/08-AOP420. url: http://dx.doi.org/10.1214/08-
AOP420.

http://dx.doi.org/10.1214/aop/1048516547
http://dx.doi.org/10.1214/aop/1048516547
http://dx.doi.org/10.1214/aop/1048516547
http://dx.doi.org/10.1214/154957806000000087
http://dx.doi.org/10.1214/154957806000000087
http://dx.doi.org/10.1214/154957806000000087
http://dx.doi.org/10.1214/EJP.v12-397
http://dx.doi.org/10.1214/EJP.v12-397
http://dx.doi.org/10.1214/EJP.v12-397
http://dx.doi.org/10.1007/s10959-009-0231-9
http://dx.doi.org/10.1007/s10959-009-0231-9
http://dx.doi.org/10.1007/s10959-009-0231-9
http://dx.doi.org/10.1214/13-AOP832
http://dx.doi.org/10.1214/13-AOP832
http://dx.doi.org/10.1214/13-AOP832
http://dx.doi.org/10.1016/j.spa.2015.07.006
http://dx.doi.org/10.1016/j.spa.2015.07.006
http://dx.doi.org/10.1214/08-AOP420
http://dx.doi.org/10.1214/08-AOP420
http://dx.doi.org/10.1214/08-AOP420


BIBLIOGRAPHY 74

[97] Günter Last and Hermann Thorisson. “What is typical?” In: J. Appl. Probab. 48A.New
frontiers in applied probability: a Festschrift for Soren Asmussen (2011), pp. 379–389.
issn: 0021-9002. doi: 10.1239/jap/1318940478. url: http://dx.doi.org/10.
1239/jap/1318940478.

[98] Jean-François Le Gall. “Hitting probabilities and potential theory for the Brownian
path-valued process”. In: Ann. Inst. Fourier (Grenoble) 44.1 (1994), pp. 277–306.
issn: 0373-0956. url: http://www.numdam.org/item?id=AIF_1994__44_1_277_0.

[99] Jean-François Le Gall. “The uniform random tree in a Brownian excursion”. In:
Probab. Theory Related Fields 96.3 (1993), pp. 369–383. issn: 0178-8051. doi: 10.
1007/BF01292678. url: http://dx.doi.org/10.1007/BF01292678.

[100] Shuo-Yen Robert Li. “A martingale approach to the study of occurrence of sequence
patterns in repeated experiments”. In: Ann. Probab. 8.6 (1980), pp. 1171–1176. issn:
0091-1798. url: http://links.jstor.org/sici?sici=0091-1798(198012)8:
6%3C1171:AMATTS%3E2.0.CO;2-F&origin=MSN.

[101] Thomas M. Liggett. “Tagged particle distributions or how to choose a head at ran-
dom”. In: In and out of equilibrium (Mambucaba, 2000). Vol. 51. Progr. Probab.
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Springer, 2013, pp. x+135. isbn: 978-3-319-01269-8; 978-3-319-01270-4. doi: 10 .

1007/978-3-319-01270-4. url: http://dx.doi.org/10.1007/978-3-319-
01270-4.

[158] Marc Yor. “Grossissement d’une filtration et semi-martingales: théorèmes généraux”.
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