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Abstract. Continuous pole placement method is adapted to time-periodic states of systems with time delay.
The method is applied for finding an optimal control matrix in the problem of stabilization of unstable
periodic orbits of dynamical systems via time-delayed feedback control algorithm. The optimal control
matrix ensures the fastest approach of a perturbed system to the stabilized orbit. An application of the
pole placement method to systems with time delay meets a fundamental problem, since the number of the
Floquet exponents is infinity, while the number of control parameters is finite. Nevertheless, we show that
several leading Floquet exponents can be efficiently controlled. The method is numerically demonstrated
for the Lorenz system, which until recently has been considered as a system inaccessible for the standard
time-delayed feedback control due to the odd-number limitation. The proposed optimization method is
also adapted for an extended time-delayed feedback control algorithm and numerically demonstrated for
the Rössler system.

1 Introduction

The research devoted to chaos control, i.e. the stabilization
of unstable periodic orbits (UPOs) embedded in chaotic
attractors, is one of the most active fields in applied non-
linear science [1]. Among the chaos control methodologies,
time-delayed feedback control (TDFC) method has been
receiving considerable attention since it was proposed in
reference [2]. The TDFC does not require a reference sig-
nal corresponding to the desired orbit; here the control
signal is formed from a difference between the current
state of the system and a time delayed version of itself.
The method is noninvasive in the sense that the control
force vanishes when the target orbit is reached. The TDFC
algorithm has been successfully implemented in quite di-
verse experimental systems and the number of modifica-
tions of the algorithm have been proposed (see Ref. [3]
for the review up to 2006). The most important modi-
fication essentially improving the performance of the al-
gorithm is the extended TDFC (ETDFC) [4,5]. Recent
modifications include the TDFC with variable and dis-
tributed delays [6,7], the TDFC with improved basins of
attraction of the stabilized states [8–10] as well as the
TDFC with an adaptive tuning of the delay time [11]
and control gain [12]. Significant practical applications
of the TDFC algorithm have been recently reported for
an atomic force microscope [13] and for an experimen-
tal analysis of bifurcations [14,15]. In addition, we refer
to a few very recent proposals for the application of the
TDFC in nonlinear optical systems [16], in electrodynamic
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tethers [17], in a direct-current bus system [18], in the mi-
croelectromechanical systems [19], in traffic flows [20], in
neural networks [21], in liquid crystals [22], and in spa-
tially extended nonequilibrium systems [23].

The theory of TDFC is difficult because one has to
deal with delay-differential equations, the state space of
which is infinite-dimensional. One of the most discussed
theoretical problems is so-called odd number limitation
of TDFC first pointed out by Nakajima [24]. Nakajima’s
theorem states that UPOs with an odd number of real
Floquet multipliers (FMs) larger than unity cannot be sta-
bilized by time-delayed feedback control. The limitation
seemed to be supported by experimental and numerical
evidence and a number of various modifications have been
proposed in order to bypass the limitation [8,9,25–28].
However, Fiedler et al. [29] have refuted the limitation
for autonomous systems by presenting a simple counterex-
ample – the delayed feedback controlled system close to a
subcritical Hopf bifurcation. Recently the corrected ver-
sion of Nakajima’s theorem has been presented [30,31] and
an algorithm of control design for UPOs far away from the
Hopf bifurcation has been proposed [32].

However, no attention was paid to the problem of op-
timization of the control matrix. The aim of this paper
is to fill this gap. Here by optimization we mean the de-
sign of the control law that ensures the fastest approach of
the controlled system to the stabilized orbit. In real-world
application, speed of convergence may be of crucial impor-
tance. For example, if a robot is controlled by stabilizing
periodic orbits in a chaotic attractor [33], the time it needs
to react to a changing environment is bounded by the time
the system needs to converge to a periodic orbit of a given
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period. Hence, in practice, one desires to tune the control
parameters such that the convergence time to the desired
periodic state is minimized. Note that the optimization
problem formulated here differs from that considered in
reference [12], where we looked for the optimal feedback
gain to minimize the mean square of the control signal in
the presence of noise.

Generally, the convergence time in nonlinear systems
depends on the initial conditions and thus the problem
is highly nontrivial. Hinz et al. [34] demonstrated such a
dependence for a simple model of time-delayed feedback
control of a fixed point. Here we restrict ourselves by con-
sideration of the convergence time in the framework of lin-
ear theory, which is valid for the states in the vicinity of
the periodic orbit and is independent of initial conditions.
To achieve our goal we exploit the pole-placement method.
Initially this algorithm was elaborated for time-invariant
systems described by ordinary differential equations [35]
and later on extended for steady states of linear time-
invariant systems with time-delay [36]. Here we adapt
the pole placement method for the periodic states of sys-
tems controlled by TDFC and ETDFC algorithms. Note
that the proposed algorithm is model-dependent since we
need to know the system equations in order to apply the
subsequent techniques.

Several optimization algorithms were developed for the
stabilization of fixed points in time-delay systems. The
method based on the gradient sampling algorithm [37]
that minimizes directly the non-smooth spectral abscissa
function has been proposed in reference [38]. An eigen-
value optimization approach using continuation tools [39]
has been applied to analyze the stabilizability of fixed
point via TDFC in two-dimensional systems [40]. Both
algorithms use an analytical transcendental characteristic
equation for computation of eigenvalues of time-delay sys-
tem. Unfortunately, such an analytical equation for com-
putation of Floquet exponents of periodic orbits under
TDFC is not available and thus these algorithms are not
applicable to our problem. Predictive feedback chaos con-
trol for optimal convergence speed has been developed in
reference [41], however, the consideration was restricted
to time-discrete systems.

The rest of the paper is organized as follows. In Sec-
tion 2 we formulate the problem and describe the pole
placement algorithm for the TDFC systems. Then we
present a numerical demonstration of our algorithm for
the Lorenz system [42]. In Section 3 we extend the al-
gorithm for the ETDFC systems and demonstrate it nu-
merically for the Rössler system [43]. Lastly, we finish the
paper with conclusions presented in Section 4.

2 Pole placement for the TDFC systems

2.1 Problem formulation

We start from a general problem of stabilization of
unstable periodic orbits in dynamical system

ẋ(t) = f [x(t)] + buin(t), (1)

where x ∈ R
d is the state vector of the system, f [x] de-

scribes the vector field of the free system, b is the d ×m
input matrix and uin ∈ R

m is the input variable. We sup-
pose that the free system ẋ(t) = f [x(t)] has an unstable
τ -periodic orbit x(t) = ξ(t) = ξ(t + τ). To stabilize this
orbit we use the time-delayed feedback controller of the
form

uin(t) = −κkT [x(t) − x(t− τ)], (2)

where k is a constant d × m control matrix and κ is a
scalar feedback gain that defines the strength of the con-
trol force. In what follows we use this parameter to scan
the dependence of the Floquet exponents (FEs) of the con-
trolled orbit on the feedback strength for fixed entries of
the control matrix.

Linearizing the controlled system (1) around the target
orbit ξ(t), we obtain

δẋ(t) = Df [ξ(t)]δx(t) − κbkT [δx(t) − δx(t − τ)], (3)

where δx(t) = x(t) − ξ(t) is a small deviation from the
UPO. Following the Floquet theory, we express the vector
of deviation as δx(t) = u(t)eλt, where u(t) = u(t + τ) is
the Floquet function having the same period as the Ja-
cobi matrix, and λ is the corresponding Floquet exponent
(FE). Inserting this ansatz in (3), we get a boundary value
problem (BVP)

u̇(t) = [A(t) − λI]u(t) − κKu(t)
[
1 − e−λτ

]
(4)

with the boundary condition u(0) = u(τ). Here we have
used the notation A(t) ≡ Df [ξ(t)] for the Jacobian, I for
the d-dimensional identity matrix and

K = bkT (5)

for the product of the input and control matrices. The
matrix K represents a square matrix of d× d dimensions.

Since we deal with time-delay system, the solution
of equation (4) results in infinite number of FEs λi,
i = 1, . . . ,∞. Among these FEs there always exists the
trivial FE λ = 0 associated with the perturbations along
the periodic orbit. The TDFC is successful if the real parts
of all nontrivial FEs become negative. Suppose, that for
the given input matrix b we seek to optimize the compo-
nents of the control matrix k in such a way as to achieve
the fastest approach to the stabilized orbit, i.e., to make
the minimum of the leading FE as deep as possible.

The problem is nontrivial, since the number of FEs
is infinite while the number of the control parameters in
the matrix k is finite. For this aim we adapt the pole
placement method developed for the linear time-invariant
systems with time-delay [36] to the case of periodic time-
delay systems. For the computation of FEs of the TDFC
systems we use a MATLAB package DDE-BIFTOOL [44].

2.2 Description of the algorithm

The idea behind our algorithm is to reduce the real part of
the leading FE (the spectral abscissa function) in a quasi-
continuous way by applying small changes to the control

http://www.epj.org


Eur. Phys. J. B (2014) 87: 274 Page 3 of 10

matrix, while monitoring the other FEs with the smaller
real part. The method is based on the continuity of the
FEs with respect to the components of the control matrix.
As shown in reference [38], the spectral abscissa function
is not everywhere differentiable. Moreover, discontinuities
of its derivatives typically occur in the minima, which
prohibits the use of standard optimization methods. In
order to avoid the problem of non-smoothness, we use
the pole-placement method in the vicinity of non-smooth
minimum.

For simplicity, here we restrict ourselves to the case
of the scalar input variable, m = 1 (the extension of the
algorithm to the case of arbitrary m is straightforward).
Then b and k represent the vectors of the dimension d,
the same as the dimension of the state vector x. First we
formulate the main steps of our algorithm.

2.2.1 Main steps of the algorithm

Step 1. For a given input vector b choose some initial
control vector k. This choice can be rather arbi-
trary, however, for the examples presented below
we consider the systems, which have been already
stabilized by TDFC and take the value of k used
in the literature (e.g. [32]) as an initial value.

Step 2. Scan the dependence of several FEs with the
largest real parts on the feedback gain κ. To this
end the DDE-BIFTOOL package [44] can be used.
Find the minimal value of the real part Λmin of
the leading FE and the corresponding feedback
gain κmin.

Step 3. By trial and error, select for some κ1 (close to
κmin) a set of FEs whose real parts should be
shifted/held towards more negative values and
compute the matrix of sensitivity.

Step 4. Shift/hold the real parts of the chosen FEs and
perform simultaneously the Newton-Broyden iter-
ations in order to minimize the error of the shifts.
The control parameters are changed iteratively.
When the Newton-Broyden method does not yield
satisfactory corrections, stop shifting and go to
Step 2. Repeat Steps 2−4 until the iterations of
Λmin do not reach the minimum. The control vec-
tor obtained at the last iteration is as an optimal
vector.

The first two steps do not require additional explanation,
while we describe the two last steps in more details below.

2.2.2 Computing the matrix of sensitivity

Our aim is to induce some small desired changes into real
parts of several leading FEs by applying small carefully
estimated perturbations to the components of the con-
trol vector. Such a manipulation with FEs can be accom-
plished by using the matrix of sensitivity. Suppose that
at a fixed coupling strength κ1 we selected NFl nontrivial
FEs λi, i = 1, . . . , NFl with the largest real parts, which

we intend to control. If there are complex conjugate pairs
of exponents we include in this set only one exponent for
each pair, since their real parts coincide.

We define the matrix of sensitivity s as a matrix of
derivatives of the selected set of FEs with respect to the
components of the control vector, sij = ∂λi/∂kj with i =
1, . . . , NFl and j = 1, . . . , d. To estimate this matrix let
us rewrite the Floquet equation (4) for the set of selected
FEs as:

L̂iui(t) = 0, (6)

where we introduced a linear operator

L̂i ≡ d

dt
− A(t) + λiI + κK

[
1 − e−λiτ

]
. (7)

In what follows we will need an equation adjoint to equa-
tion (6). First let us define an inner product of two
τ -periodic vector functions v(t) and u(t) as:

〈v|u〉 ≡
∫ τ

0

dtv†(t)u(t), (8)

where v† is the conjugate transpose of the column vec-
tor v. Then we introduce a standard definition for an
adjoint operator L̂†:

〈L̂†v|u〉 = 〈v|L̂u〉. (9)

From equations (7)–(9) it follows an expression for the
adjoint operator

L̂†
i ≡ − d

dt
− AT (t) + λ∗i I + κKT [1 − e−λ∗

i τ ] (10)

and the equation adjoint to equation (6) reads:

L̂†
ivi(t) = 0, (11)

where vi(t) as well as ui(t) is the τ -periodic function.
Now we differentiate equation (6) with respect to all

components of the control vector:

∂L̂i

∂kj
ui(t) + L̂i

∂ui(t)
∂kj

= 0. (12)

Then we multiply this equation from the left by v†
i (t) and

integrate with respect to time over the period τ :
〈

vi

∣
∣
∣
∣
∂L̂i

∂kj
ui

〉

+
〈
vi

∣
∣
∣
∣L̂i

∂ui

∂kj

〉
= 0. (13)

Due to the property (9) and equation (11) the last term
in the left hand side of this equation vanishes:

〈
vi

∣∣
∣
∣L̂i

∂ui

∂kj

〉
=

〈
L̂†

ivi

∣∣
∣
∣
∂ui

∂kj

〉
= 0. (14)

We are thus left with the equation
〈

vi

∣
∣∣
∣
∂L̂i

∂kj
ui

〉

= 0 (15)
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from which using (7) and (5) the values for the matrix of
sensitivity can be extracted

sij =
(
μ−1

i − 1
) 〈vi|κ

(
beT

j

) |ui〉
〈vi|I + τμ−1

i κ(bkT )|ui〉
. (16)

Here ej is a d-dimensional column vector in which all
the elements are zeros, except of the jth element, which
is equal to unity. μi ≡ eλiτ is the notation for the
Floquet multiplier. We see that the computation of the
matrix of sensitivity requires a knowledge of the FEs λi

and the Floquet functions of the direct ui(t) and adjoint
vi(t) Floquet problems. Thus we need to solve two BVP
problems defined by equations (6) and (11).

Alternatively, one may also estimate the matrix of sen-
sitivity using the finite differences. Such an approach is
less accurate but much simpler, since it does not require
the knowledge of the Floquet functions ui(t) and vi(t).
Suppose that (for a given κ) we know the dependence of
the FEs λi on the control vector k, λi = λi(k). Then re-
placing the derivative by a finite difference the matrix of
sensitivity can be estimated as:

sij = [λi (k + ejε) − λi (k− ejε)] /2ε, (17)

where ε is a sufficiently small positive parameter.

2.2.3 Shifting the real parts of Floquet exponents

Assume that we are going to control the real parts
Λi ≡ Reλi, i = 1, . . . , NFl of NFl ≤ d selected non-
trivial FEs. Let us denote the desired (small) displace-
ment of the real parts of controlled FEs by a vector
ΔΛ = [ΔΛ1 . . .ΔΛNF l

]T . Then one can compute a change
of Δk for the given k such that

SΔk = ΔΛ, (18)

where S ≡ Re(s) is the real part of the matrix of sen-
sitivity (16). For NFl < d the number of equations in
system (18) is less than the number of unknowns and this
leads to infinitely many solutions. One possibility to de-
termine a unique solution consists of controlling the NFl

FEs using only NFl selected components of k and taking
d −NFl components of Δk equal to zero. Another possi-
bility, consists of taking the solution with ||Δk|| minimal
(see Ref. [36] for motivation). Then Δk is obtained via
pseudoinverse

Δk = S+ΔΛ, (19)

where S+ is a pseudoinverse of the matrix S. Techni-
cally, the pseudoinversion may be performed by using the
singular value decomposition.

With the new feedback gain k+Δk, the displacement
of the controlled FEs will generically not be equal to ΔΛ,
since equation (18) is based on linearization, and some
correction is needed. The exact Δk satisfies the nonlinear
system

F(Δk) ≡ Λ(k +Δk) − Λ(k) −ΔΛ = 0. (20)

This system could be solved by the standard Newton-
iterative method. In this case we would need to estimate
the Jacobian of the function F (which coincides with the
matrix of sensitivity S) at each step of the iteration. A
more convenient approach is to use the Newton-Broyden
algorithm [45] that incorporates an iterative equation for
the Jacobian. For our system (20) this algorithm reads:

Δkn+1 = Δkn + δkn, (21)

Sn+1 = Sn +
(Fn+1 − Fn − Snδkn)δkT

n

δkT
n δkn

, (22)

where δkn = −S+
n Fn and Fn = F(Δkn). The itera-

tions start with the initial value of the Jacobian S0 ob-
tained from equation (16) and the initialΔk0 defined from
equation (19). Only a few Newton-Broyden iterations on
equation (20) are needed when Δk is sufficiently small.

Here we should make some remarks about the third
step. Although this step relies on intuition, it is not hard
to apply it practically. The main criteria for selection (by
trial and error) of the set of the FEs and the feedback
gain are as follows. The Newton-Broyden iterations should
converge fast and the number of deepened FEs should be
as large as possible. If the shifting of all selected roots
into negative direction does not yield fast convergence of
Newton-Broyden iterations, one may try to shift one of
them, and to keep fixed others.

2.3 Numerical demonstration

Now we demonstrate our algorithm for the Lorenz sys-
tem [42] described by equation (1) with the state vector
x = [x1, x2, x3]T and the vector field

f(x) = [σ(x2 − x1), rx1 − x2 − x1x3, x1x2 − bx3]T (23)

at the standard values of the parameters σ = 10, r = 28,
and b = 8/3. For a long time, this system has been con-
sidered as a classical example of a system inaccessible by
the standard TDFC method due to the odd number limi-
tation. The form of the control matrix that stabilizes the
period-one UPO of this system has been found only re-
cently [32]. However, the problem of optimization of the
control matrix has not been considered in reference [32].
Here we solve this problem.

The symmetric period-one UPO with the period τ ≈
1.55865 and the single unstable FM μ ≈ 4.713 has been
stabilized in reference [32] with the feedback law defined
by equation (1) using the input vector b = [0, 1, 0]T
and the control vector k = [−1, 0, 0.5]T . The real parts
Λ = Re(λ) of several leading FEs as functions of the cou-
pling strength κ for these specific values of b and k are
shown in Figure 1a. We see that the best choice for the
coupling strength is κmin ≈ 0.865, where the nontrivial
leading FE (with the maximal real part) Λsup(κ) reaches
the minimum Λmin ≡ Λsup(κmin) ≈ −0.4009. In Figure 1b,
we show a local enlargement of Figure 1a around the point
(κmin, Λmin). Our aim is to modify the components of the
control vector k in such a way as to minimize the value
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Fig. 1. Real parts of FEs vs. feedback gain for the period-
one UPO of the Lorenz system. (a) The control vector k =
[−1, 0, 0.5]T is taken from reference [32]. (c) The value of
the control vector k = kopt = [−0.92972, 0.14974, 0.39354]T

is optimized by our algorithm. (b) and (d) The enlarged
parts of diagrams (a) and (c), respectively, around the point
(κmin, Λmin). At the start, the minimum of the leading FE is
Λmin ≈ −0.4009 for κmin ≈ 0.865, and after the optimization,
it is Λmin ≈ −0.5426 for κmin ≈ 0.986.

Table 1. Shifting the FEs in the Lorenz system.

No. kT κ1 FEs ΔΛT /10−3 Nit

1 [−1, 0, 0.5] 0.95 [II, IV] [−1, 0] 10

2 [−0.99773, 0.00459, 0.49680] 0.95 [II, IV] [0,−1] 10

3 [−0.99709, 0.00651, 0.49456] 0.95 [II, IV] [−1,−1] 39

4 [−0.98537, 0.03225, 0.47374] 0.95 [II, IV] [0,−1] 25

5 [−0.98319, 0.03774, 0.46836] 0.95 [II, IV] [−1, 0] 30

6 [−0.97639, 0.05141, 0.45899] 0.95 [II, IV] [−1, 0] 30

7 [−0.96965, 0.06509, 0.44943] 0.95 [II, IV] [−1, 0] 30

8 [−0.96288, 0.07896, 0.43955] 0.97 [II, IV] [−1, 0] 40

9 [−0.95418, 0.09791, 0.42708] 0.97 [II, IV] [−1, 0] 20

10 [−0.94973, 0.10772, 0.42049] 1.0 [II, IV] [−1, 0] 40

11 [−0.94060, 0.12674, 0.40851] 1.0 [II, IV] [−1, 0] 45

Λmin. We have achieved this goal by applying the above
algorithm.

All the performed shifts of the FEs are recorded in
Table 1. The first column gives the number of the stride
inside of which Nit iterations are performed (the last col-
umn). The second column shows the control vector at
which the current stride is started. The third column
shows the value of the feedback gain where we apply the
shifts. The numbers of FEs selected for control are pre-
sented in the fourth column. The FEs are enumerated by
Roman numerals in descending order of their real parts.
The fifth column shows the desired shifts of the selected
FEs at each iteration. The evaluations of the matrix of
sensitivity using equation (16) were performed only at the
start of strides No. 1, No. 8 and No. 10, at which the value
of feedback gain κ1 was changed. Otherwise, the matrix of
sensitivity from the previous stride was taken as an initial
guess for the Newton-Broyden iterations.

For graphical illustration of intermediate results, in
Figures 2 and 3 we show the changes of the control vector

0 5 10 15 20 25 30
−0.99

−0.97

k 1

0 5 10 15 20 25 30
0.02

0.06

k 2

0 5 10 15 20 25 30
0.44

0.48

number of iteration

k 3

(b)

(a)

(c)

Fig. 2. Iterations of the control vector k at the stride No. 5
in Table 1.

0 5 10 15 20 25 30
−0.32

−0.3

−0.28

Λ
II

0 5 10 15 20 25 30
−0.669

−0.668

number of iteration

Λ
IV

(a)

(b)

Fig. 3. Iterations of the selected FEs at the stride No. 5 in
Table 1. The crosses show the actual shifts of FEs, while the
solid lines connect the start point with the desired end point.

and the selected FEs, respectively, resulting from the ap-
plication of our algorithm at the stride No. 5 in Table 1.
We see that the algorithm performs perfectly the desired
linear decrease of the FE ΛII and conservation of the FE
ΛIV. Note that although the FE λIII is not selected for con-
trol, its real part ΛIII moves during the iterations identi-
cally as ΛII, since these two exponents represent a complex
conjugate pair.

The final results obtained with our algorithm after ap-
plication of 11 strides listed in Table 1 are presented in
Figures 1c and 1d. Figure 1c shows the global view of de-
pendence Λ vs. κ, while Figure 1d represents an enlarge-
ment of this dependence around the point (κmin, Λmin).
Comparing Figures 1b and 1d we see that our algorithm
allowed us to notably reduce the minimum of the leading
FE. The final Λmin ≈ −0.5426 is attained with the control
vector

kopt = [−0.92972, 0.14974, 0.39354]T (24)

that can be interpreted as an optimal control vector.

3 Extension to the ETDFC systems

Now we extend our algorithm for systems controlled by
extended time-delayed feedback. As well as previously,
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we consider the stabilization of an UPO in system de-
scribed by equation (1) and restrict ourselves to the
case of the scalar input variable uin. Then the extended
time-delayed feedback controller can be presented in the
form [4]:

uin(t) = −κkT [x(t) − (1 −R)z(t− τ)] , (25)
z(t) = x(t) +Rz(t− τ), (26)

where R is a so-called memory parameter. The ETDFC
law (25) and (26) is noninvasive as well as the original
TDFC (2), since for any periodic function x(t) = x(t− τ)
the input variable vanishes uin(t) = 0. For R = 0, the
ETDFC reduces to the original TDFC, since in this case
z(t) = x(t) and equation (25) transforms to equation (2).

When optimizing the ETDFC, we can vary not only
the control vector k, but also the memory parameter R.
Thus besides the matrix of sensitivity sk

ij = ∂λi/∂kj with
respect to k we need also to estimate the vector of sen-
sitivity sR

i = ∂λi/∂R with respect to R. Straightforward
application of the ideas presented in Section 2 leads to the
following expressions for these derivatives:

sk
ij = −H0

〈
vi|κ(beT

j )|ui

〉

〈vi|D|ui〉 , (27)

sR
i = − H0μ

−1
i

(1 −Rμ−1
i )

〈vi|κ(bkT )|ui〉
〈vi|D|ui〉 . (28)

Here we have introduced the following notations:

D = I +H1τκ
(
bkT

)
, (29)

H0 =
(
1 − μ−1

i

)
/

(
1 −Rμ−1

i

)
, (30)

H1 = μ−1
i (1 −R)/

(
1 −Rμ−1

i

)2
. (31)

Note that the Floquet functions ui and vi are computed
from the same BVP equations (6), (7) and (10), (11), with
formal substitutions

K
(
1 − e−λiτ

) → K
(
1 − e−λiτ

)
/

(
1 − e−λiτR

)

and

KT
(
1 − e−λ∗

i τ
)
→ KT

(
1 − e−λ∗

i τ
)
/

(
1 − e−λ∗

i τR
)
,

respectively (see e.g. [46]). As is expected, for R = 0,
equation (27) reduces to equation (16).

Defining a joined vector p = [kT , R]T and a joined ma-
trix of sensitivity S = [Sk,SR], we can write for the shift
of Δp the equation SΔp = ΔΛ, similar to equation (18)
and determine this shift via pseudoinverse Δp = S+ΔΛ,
similar to equation (19). We thus apply the methodic de-
scribed in Section 2.2.3 after formal substitution k → p.
The same is valid for equation (17) with a correction
that ej is now a (d+ 1)-dimensional vector.

Finally, we emphasize the problem of computation of
FEs for the ETDC systems. Unfortunately, the standard
DDE-BIFTOOL package does not apply for such systems
due to the presence of the difference equation (26). To
compute FEs for the ETDFC systems, we have devel-
oped a spectral element method, which is described in
Appendix.
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Fig. 4. Real parts of FEs vs. feedback gain for the period-four
UPO of the Rössler system. (a) The initial control vector is
k = [0, 1, 0]T and the value of the memory parameter R = 0.39
is optimal for the given SISO scheme. (b)–(d) correspond to
the end of iterations at the strides No. 1, No. 2 and No. 3
in Table 2. The rectangles in (a)–(c) show the selected FEs
for the control at the beginning of strides No. 1, No. 2 and
No. 3, respectively. In (a) the minimum of the leading FE is
Λmin ≈ −0.03142 (the start value) for κmin ≈ 0.15, while in
(d) it is Λmin ≈ −0.03766 (the final value) for κmin ≈ 0.15.

Numerical demonstration

As an illustrative example, we take the Rössler system [43]
described by equation (1) with the state vector x =
[x1, x2, x3]T and the vector field

f [x] = [−x2 − x3, x1 + ax2, b+ x3(x1 − c)]T (32)

at the standard values of the parameters a = 0.2, b = 0.2,
and c = 5.7. Here we consider a relatively complicated
problem, the stabilization of the period-four UPO with the
period τ ≈ 23.50362 and initial state vector [x1, x2, x3]T ≈
[−4.14784, 0.00781, 0.02042]T . This orbit (as many other
high-periodic orbits) cannot be stabilized by the standard
TDFC algorithm with any control matrix, but the sta-
bilization can be achieved by the ETDFC. First we con-
sider the ETDFC in a single-input-single-output (SISO)
scheme with the input vector b = [0, 1, 0]T and control
vector k = [0, 1, 0]T . Using the ETDFC law (25) and (26),
we scanned the feedback gain κ with various values of
the memory parameter R, and found that for R = 0.39
the minimum of the leading FE Λmin ≈ −0.03142 is the
deepest (Fig. 4a).

Now we formulate our optimization problem. We as-
sume that the input vector b = [0, 1, 0]T is fixed, but
the control vector and the memory parameter can be
adjusted. Thus instead of SISO we consider a single-
input-multiple-output (SIMO) scheme. Our aim is to shift
the given minimum Λmin as deep as possible by small it-
erative steps, applying necessary adjustments to the con-
trol parameters (k, R). In Figure 4a we see that for the
initial values of the control parameters, below the mini-
mum Λmin ≈ −0.03142 attained at κmin ≈ 0.15, there is
a branch on the level of ≈−0.03833. This branch repre-
sents a “bottom” that we are going to reach. Under this
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Table 2. Shifting the FEs in the Rössler system.

No. R kT κ1 κ2 FEs (κ1) FEs (κ2) ΔΛ1/10
−3 ΔΛ2/10

−3 Nit

1 0.39 [0, 1, 0] 0.145 − [II, III, V] − [−1,−1, 0] − 3
2 0.38616 [0.22479, 0.82894, −0.07047] 0.145 0.16 [II] [II, IV, VI] [0] [0,−1, 0] 1
3 0.39527 [0.18714, 0.75439, −0.28662] 0.145 0.16 [II] [II, IV, VI] [0] [0,−0.5, 0] 4

0 1 2 3

0

0.5

1

k 1, k
2, k

3

0 1 2 3
0.386

0.388

0.39

number of iteration

R

(b)

(a)

Fig. 5. Iterations of (a) the components k1 (dash-dotted line),
k2 (dotted line) and k3 (solid line) of the control vector k and
(b) the memory parameter R for the stride No. 1 in Table 2.

branch there are lots of other closely lying delay-induced
branches. We will not touch them since their number is
too large compared with the number of available control
parameters. Next, in the global picture we see the two
other important branches, one of them on the left hand
side and another on the right hand side from κmin. If we
intend to sink one of these branches, the other tends to
rise, and vice versa. This happens because of the structure
of the matrix of sensitivity. Hence, summing up, we have
in general to move (or keep) four FEs, whereas there are
available four adjustable control parameters (k, R).

Table 2 contains the information about the performed
manipulations with the system parameters and its leading
FEs. This table is composed in a similar way as Table 1.
At the stride No. 1 we control the real parts of three ex-
ponents ΛII, ΛIII and ΛV for the value of the coupling
strength κ1 = 0.145. In Figure 4a they are marked by
rectangles. The exponent λIV represents a complex con-
jugate pair of λIII and it is not selected for control. We
perform three iterations at which we move down the expo-
nents ΛII and ΛIII by value ΔΛ = 10−3 at each iteration
and keep the exponent ΛV unchanged. The variation of the
control parameters (k, R) and the corresponding changes
of the FEs at the stride No. 1 are shown in Figures 5
and 6, respectively. The final dependence of the FEs on
the coupling strength at the end of stride No. 1 is shown
in Figure 4b.

At the next two strides No. 2 and No. 3 we proceed
in a slightly different manner. Here we control the FEs at
two different values κ1 and κ2 of the feedback gain simul-
taneously. The values κ1 = 0.145 and κ2 = 0.16 are taken
from different sides of κmin, so that κ1 < κmin < κ2. The
selected FEs at κ1 and κ2 are presented in 6th and 7th

0 1 2 3
−10

−8

−6
x 10

−3

Λ
II

0 1 2 3
−0.036

−0.031

Λ
III

0 0.5 1 1.5 2 2.5 3
−0.039

−0.038

number of iteration
Λ

V

(a)

(b)

(c)

Fig. 6. Iterations of the selected FEs on the stride No. 1 in
Table 2. The crosses show the actual shifts of FEs, while the
solid lines connect the start point with the desired end point.

columns of Table 2 and displayed by rectangles in Fig-
ure 4b, while the corresponding shifts ΔΛ1 and ΔΛ2 are
given in columns 8 and 9, respectively. The generaliza-
tion of our algorithm for simultaneous control of the FEs
at two different values of the feedback gain is straightfor-
ward. Here we define the vector Λ as a vector composed
of two sub-vectors Λ1 and Λ2 evaluated at different feed-
back gains κ1 and κ2, respectively. Accordingly, the ma-
trix S is also composed of two sub-matrices defining the
sensitivity of selected FEs at different values of the feed-
back gain. Then the whole mathematics remains the same
as described above. The dependencies of the FEs on the
feedback gain at the end of strides No. 2 and No. 3 are
shown in Figures 4c and 4d, respectively. To the end of
the stride No. 3 we managed to decrease the minimum of
the leading FE to the value Λmin ≈ −0.03766. This value
has been attained at κmin ≈ 0.15 with the following values
of the control vector and memory parameter:

kopt = [0.05674, 0.75475,−0.45264]T, Ropt = 0.39298.

These parameters can be considered as the optimal
parameters for the given ETDFC SIMO scheme.

4 Conclusions

In this paper, we have elaborated an algorithm for the
optimization of the control matrix in time-delayed feed-
back controlled system in order to minimize the time at
which the controlled system approaches the stabilized pe-
riodic orbit. To this end the pole placement method for lin-
ear time-invariant systems with time-delay [36] has been
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adapted to time-delay systems with the periodic time-
depended coefficients. The algorithm exploits the property
of the continuous dependence of the Floquet exponents
on the control parameters. The pole placement problem
in time-delayed systems is nontrivial, since the number
of Floquet exponents is infinite, while the number of the
control parameters is finite. Nevertheless, several leading
Floquet exponents can be controlled in desired fashion
by applying carefully evaluated variations to the avail-
able control parameters. In order to evaluate these vari-
ations we use the matrix of sensitivity, which represents
the derivatives of the Floquet exponents with respect to
the control parameters. Appealing to the Floquet theory,
we have derived an analytical expression for this matrix.

The proposed algorithm is demonstrated numerically
for the Lorenz system, which until recently has been
considered as a system inaccessible for the time-delayed
feedback control due to the odd number limitation. We
have also presented an extension of our algorithm to the
case of the extended time-delayed feedback control and
demonstrated this approach for the Rössler system.

Here we have considered only one specific optimization
problem in which we required the fastest decay of devia-
tions from the stabilized orbit, however, our algorithm can
be easily extended to other optimization problems. For
example, the algorithm can be straightforwardly adapted
to the problem of finding optimal control parameters that
maximize the interval of stability of the coupling strength.

This research was funded by the European Social Fund un-
der the Global Grant measure (Grant No. VP1-3.1-ŠMM-
07-K-01-025).

Appendix: Spectral element method
for extended time-delayed feedback
controlled systems

Here we describe the spectral element method for com-
putation of FEs in the ETDFC systems. The DDE-
BIFTOOL package [44] does not apply to this case, since
it cannot operate with the difference equations. In the
ETDFC law (25) and (26), such an equation is equa-
tion (26). Formally, the solution of this equation can be
found by iterations and presented in the form of the
infinite sum:

z(t) =
∞∑

n=0

Rnx(t− nτ). (A.1)

In reference [47] (see also the references therein), the spec-
tral element method for the ETDFC systems has been
proposed, in which an infinite sum (A.1) was truncated,
i.e., the solution of the difference equation (26) was ap-
proximated by a finite sum. Such an approximation may
be costly for computation, since it may require a large
number of terms in the sum to guarantee a desired accu-
racy. Especially for |R| close to 1 the convergence of the
sum is slow and such an approximation may lead to large

errors. Here we modify the spectral element method [47]
in such a way that we do not use any truncated solutions
for equation (26), instead we incorporate this difference
equation into the algorithm explicitly.

In the general form, the linearized ETDFC system
reads:

˙̃x(t) = Ã(t)x̃(t) + (1 −R)K̃z̃(t− τ) (A.2)
z̃(t) = x̃(t) +Rz̃(t− τ). (A.3)

Here x̃(t) = x(t)−ξ(t) is the deviation of the solution from
the UPO, and the original Jacobian is shifted: Ã(t) =
A(t) − κK. The feedback gain is here absorbed in the
control matrix: K̃ = κK, and z̃(t) = z(t) − ξ(t)/(1 − R)
is the deviation of the auxiliary variable from its periodic
state.

First we expand the vectors x̃(t) and z̃(t) by the
Lagrange polynomials φi:

x̃j(t) =
n+1∑

i=1

x̃jiφi(η), (A.4)

z̃j(t) =
n+1∑

i=1

z̃jiφi(η). (A.5)

The corresponding delayed expressions read:

x̃j(t− τ) =
n+1∑

i=1

x̃ji−nφi(η), (A.6)

z̃j(t− τ) =
n+1∑

i=1

z̃ji−nφi(η). (A.7)

Here η is the local time normalized from 0 to 1 for the
element j. A total of n+1 interpolation nodes are used for
each element. First, we consider the case with one element.
For the interpolation nodes we have chosen the Legendre-
Gauss-Lobatto (LGL) points. They are the roots of the
polynomial (1 − u2)L′

n(u) where Ln(u) is the nth order
Legendre function, L′

n(u) is its derivative with respect to
u, and u is defined in the range [−1, 1]. Therefore, the
LGL nodes must be shifted to the range [0, 1] in order to
be compatible with equations (A.4) and (A.5). The trial
functions φi can be found from the barycentric Lagrange
formula (see, e.g., Eqs. (11) and (12) in [47]). The trial
functions have the useful property

φi(tk) = δi,k (A.8)

for i, k = 1, . . . , n+1. The derivatives of the trial functions
can also be calculated using the barycentric formula. For
a matrix D with elements Dki = φ′i(tk), the derivative of
a vector states w on a mesh of LGL nodes is given by
w′ = Dw.

In view of the relations (A.4)–(A.7), the recurrent
expression (A.3) now can be written as:

z̃ji = x̃ji +Rz̃ji−n. (A.9)

http://www.epj.org


Eur. Phys. J. B (2014) 87: 274 Page 9 of 10

After inserting expansions (A.4)–(A.7) into original equa-
tion (A.2), and projecting this equation onto the finite
basis of the Legendre polynomials ψp(η), we arrive at:

∫ 1

0

dηψp(η)
[
x̃jiφ

′
i(η)

1
tj

− Ã(tη)x̃ji

− (1 −R)K̃z̃ji−n(tη)φi(η)
]

= 0. (A.10)

Here p is the order of the polynomials, η is the normalized
time at each element, and tη = (η + j − 1)tj. tj = τ/E
is the duration of the jth element (now E = 1 is the
number of elements). The speed of integration is increased
by using the quadrature weights instead of the symbolic
integration:

∫ 1

0

dηf(η) ≈
n+1∑

k=1

wkf(ηk). (A.11)

Here wk is the quadrature weight and ηk is the local-
ized time at the node k. For a grid of LGL points, the
quadrature weights are given by:

wk =

{
2

n(n+1) , k = 1, n+ 1
2

n(n+1)(Ln(ηk))2 , otherwise.
(A.12)

We thus have to compute the following discrete
expressions:

n+1∑

k=1

wkψp(ηk)x̃jiφ
′
i(ηk)

1
tj

= Ã(tη)x̃jiψp(ηi)wi

+ (1 −R)K̃z̃ji−nwiψp(ηi). (A.13)

Denoting

Np
ji =

n+1∑

k=1

wkψp(ηk)φ′i(ηk) I
1
tj

− Ã(tη)ψp(ηi)wi (A.14)

and

Pp
ji−n = (1 −R)K̃wiψp(ηi), (A.15)

we get the matrix equations

n+1∑

i=1

Np
jix̃ji =

n+1∑

i=1

Pp
ji−nz̃ji−n (A.16)

z̃ji = x̃ji +Rz̃ji−n. (A.17)

In the matrix notations we have

Hx̃m = Gz̃m−1 (A.18)
z̃m = x̃m +Rz̃m−1. (A.19)

Here x̃m is the column vector of [x̃T
ji, x̃

T
ji+1, . . . , x̃

T
ji+n]T ,

and x̃m−1 is the column vector of [x̃T
ji−n, x̃

T
ji−n+1,

. . . , x̃T
ji]

T (the same happens with indices of column
vectors z̃m and z̃m−1, respectively).

The matrices H and G are given by:

H =

⎡

⎢
⎣

I 0 . . . 0
N1

ji N1
ji+1 . . . N

1
ji+n

. . . . . . . . . . . .
Nn

ji Nn
ji+1 . . . N

n
ji+n

⎤

⎥
⎦

G =

⎡

⎢
⎣

−RI 0 . . . I
P1

ji−n P1
ji−n+1 . . . P

1
ji

. . . . . . . . . . . .
Pn

ji−n Pn
ji−n+1 . . . P

n
ji

⎤

⎥
⎦ . (A.20)

The upper rows in H and G insure the validity of recurrent
relation (A.17). In these rows, the identity matrices I are
of d× d dimensions.

In order to find the FMs of the periodic solution of
system (A.2), (A.3), we need to compute the matrices H
and G, and to solve the eigenvalues problem for the matrix
of monodromy:

U = H−1G +RI, (A.21)

resulting from equation

Hz̃m = (G +RH)z̃m−1. (A.22)

This equation is deduced by multiplying equation (A.19)
from left by matrix H, and using expression (A.18). In
equation (A.21) the unity matrix I has the same order as
the matrix H−1G.

However, such a situation takes the place only when
there is a single spectral element, i.e. the whole period
of integration is divided into n + 1 nodes, and the dy-
namic system (with recurrent relation) is projected onto
the Legendre polynomials. But the key idea of the spectral
element method is to separate the period into E intervals
(spectral elements), and each of them is in turn divided
into n + 1 nodes. In the following, we discuss the case of
several spectral elements.

We thus have to deal with hyper-matrices containing
several Gj and Hj matrices (their number is equal to E,
i.e. j = 1, . . . , E) located almost diagonally, and the rest
elements are zeros. These matrices differ from the single-
element matrices as follows:

Hj =

⎡

⎣
N1

ji N1
ji+1 . . . N

1
ji+n

. . . . . . . . . . . .
Nn

ji Nn
ji+1 . . . N

n
ji+n

⎤

⎦

Gj =

⎡

⎣
P1

ji−n P1
ji−n+1 . . . P

1
ji

. . . . . . . . . . . .
Pn

ji−n Pn
ji−n+1 . . . P

n
ji

⎤

⎦ . (A.23)

They thus have lost their “hats” compared with original
matrices (A.20). As an example, the hyper-matrices H
and G for the case of E = 4 are shown in Figure 7.

Note that the characteristic top is retained and became
longer (I matrix in the left upper corner of the hyper-H
matrix, and −RI on the left and I on the right in the upper
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Fig. 7. Hyper-matrices H (a) and G (b) for E = 4. In the
boxes the sizes of matrices are also given. The matrices I and
−RI in the upper corners are of d × d dimensions.

rows of the hyper-G matrix). These upper rows insure that
the recurrent relation, analogous to (A.17), is satisfied.

We thus need again to solve the eigenvalue problem for
the matrix of monodromy (A.21), which results from new
equation:

HZ̃m = (G +RH)Z̃m−1. (A.24)

The column-vector X̃m (corresponding to the new
column-vector Z̃m) is composed as a concatenation of the
column vectors corresponding to the each element:

X̃m =
[
x̃T

1 , x̃
T
2 , . . . , x̃

T
E

]T
. (A.25)

The vectors x̃T
j are composed in the same way as for the

single element with exception that the (n + 1)st node of
the jth element coincides with the 1st node of the (j+1)st
element. This does not hold only for the (n + 1)st node
of the Eth element. One of the coinciding nodes in the
vectors x̃T

j has always to be omitted. In the column-vector
X̃m−1, all the indices for nodes are shifted (i → i − n)
compared wit those of X̃m. The column-vectors Z̃m and
Z̃m−1 are composed by the same way as the vectors X̃m

and X̃m−1, respectively.
Summing up, we need to compute the hyper-matrices

H and G, find the matrix of monodromy U from equa-
tion (A.21), and compute its eigenvalues which are the
Floquet multipliers of the linearized ETDFC system (A.2)
and (A.3).
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