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Continuous position measurements and the quantum Zeno efFect
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We present a model of continuous (in time) position measurements on a quantum system using
a single pseudoclassical meter. The nonselective evolution of the system is described by a master
equation which is identical to that obtained from previous models. The selective evolution is de-
scribed by a stochastic nonlinear Schrodinger equation. The significance of this equation is that the
stochastic term has a physical interpretation. By carefully choosing the parameters which define the
meter and the system-meter coupling, we obtain a meter pointer with well-defined position which
undergoes fluctuations. This "jitter" in the pointer position gives rise to the stochastic dynamical
collapse of the system wave function. By the inclusion of feedback on the meter, the pointer is made
to relax towards an appropriate readout. We apply this model to the selective measurement of the
position of a particle in a double-well potential. In contrast to a recent claim [H. Fearn and W. E.
Lamb, Jr. , Phys. Rev. A 46, 1199 (1992)] we show that truly continuous position measurements
lead to a quantum Zeno e8'ect in certain parameter regimes. This is manifested by the changing of
the particle dynamics from coherent tunneling between the well minima to incoherent flipping, as in
a random telegraph. As the measurement strength increases, the average length of time the particle
remains stuck in one well increases proportionally.

PACS number(s): 03.65.Bz,02.50.-r

I. INTRODUCTION

The simplest model for position measurement is of
course the projection postulate [1]. This is defined as
follows (in one dimension for simplicity). A measure-
ment of position X of a particle at time t has the result
X = x with probability ]@(z)]2,where @(X) is the wave
function of the particle in the position representation.
Immediately after the measurement, the particle is in a
position eigenstate with wave function /6(X —2:). This
model of measurement is unrealistic for a number of rea-
sons, the most important of which is that the projected
system state has infinite energy. Also, it would be desir-
able to have a model which would allow measurements
continuous in time, as this allows the investigation of the
so-called quantum Zeno effect [2—4]. This is the purely
quantum phenomenon by which continuous measurement
may arrest the evolution of the system.

A fruitful approach to develop more realistic measure-
ment models is to expand the Hilbert space used to in-

clude a meter which is coupled to the particle. The meter
is thus treated formally as a quantum-mechanical system,
but is expected to have some properties which makes it
behave in a pseudoclassical manner. Of course, this does
not solve the quantum measurement problem. It is still
necessary to use the projection postulate on the meter.
However, by moving this cut one step away from the
system, we can hope for a more refined model. In the
construction of our model, we were guided by three con-
ditions which we believe apply to real laboratory meters:
(a) the system interacts with a single meter over time, (b)
the meter pointer is described by a continuous readout

parameter, and (c) the system evolution is well defined
for any trajectory of the meter pointer.

The measurement model which we construct in Sec. II
shares much in common with an earlier model of Caves
and Milburn [5]. The most significant difference is that
we have a single, well-defined pointer variable [as defined
in conditions (a) and (b) above], rather than a succes-
sion of meters which are thrown away after each mea-
surement. In the meter Hamiltonian we include a term,
linear in the meter momentum, which shifts the pointer
position. When the amount of the shift is made to depend
on the results of measurement, this becomes a feedback
stabilization of the pointer. The net effect is to cause the
pointer to relax to a stable position determined by the
measured system variable. Also, we derive an explicit
stochastic Schrodinger equation for the wave function of
the system conditioned on the meter readout. Similar dif-
ferential equations have been proposed previously in the
context of measurement theory [6—10]. However, these
have not been derived from a physical model for mea-
surement involving a meter pointer, and hence the sys-
tem wave function obeying these stochastic Schrodinger
equations does not have a clear interpretation as a state
conditioned on the meter readout.

In Sec. III, we apply the position measurement model
to a simple and interesting case: a particle in a quartic
double-well potential. Of particular interest is how the
measurement process disturbs the tunneling of the low-

energy particle from one well to the other. We show that,
in some experimental regimes, the quantum Zeno effect
can be observed. This is manifest in the behavior of the
particle, which ceases to tunnel coherently between the
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wells, and instead flips incoherently between them in the
manner of a random telegraph. The length of time the
particle remains stuck in one well is proportional to the
measurement strength. This result is in contrast to a
recent claim by Fearn and Lamb [11] to the effect that
there was no appearance of the quantum Zeno effect in
the tunneling behavior of a particle in a double-well sys-
tem. As well as the full ponderomotive model, we con-
sider the two-state approximation which is valid for par-
ticles with energy much lower than the barrier potential.
The two states correspond to the particle localized in the
leFt or right well. This approximation is useful because
the nonselective evolution is completely solvable, and the
relation to the quantum Zeno effect has been studied in
depth [12]. In addition, we take the opportunity to com-
pare our measurement model with the two-level example
considered recently by Bonilla and Guinea [13].

The act of measuring the position of the particle causes
its energy on average to increase linearly with time. The
particle energy will eventually become greater than the
potential barrier, and then the two-level approximation
will cease to give insight into the behavior of the sys-
tem. The more accurate the measurement, the shorter
the time over which the approximation will be valid. For
weak measurements, this time may be much longer than
the tunneling time. For very strong measurements, there
is no Zeno effect. Such measurements still cause the po-
sition variance of the wave packet to be small, but the
energetic wave packet moves violently rather than being
pinned to its starting point.

(QiX(t), P(t)) = (2vrcr ) 4 exp [Q —X(t)]

+—QP(t) (2.1)

Here, the spread in the position a will later be assumed
to be arbitrarily small so that the meter wave function
is well represented by its mean position X(t) and m'ean

momentum P(t). For most of this paper, we will need
only the states iX(t))—:iX(t), 0). In this state, the me-
ter has an average momentum of zero. The meter moves
only due to its interaction with the system, the Hamil-
tonian of which commutes with P. This assumption is
not essential, but does make the analysis simpler. The
completeness relation for the states of the meter is

I = iX, P)(X, Pi, (2.2)

II. MODEL FOR CONTINUOUS SELECTIVE
POSITION MEASUREMENTS

Consider a pseudoclassical meter with position and
momentum operators Q and P, respectively. We use the
description pseudoclassical as we take the mass of the

meter to infinity and the commutator [Q, Q] ~ 0. Thus
the position of the meter X(t) = (Q)(t) is always well
defined, as is its velocity. YVe describe the state of the
meter by the ket iX(t), P(t)), which has the following

form in the Q representation (QiQ) = QiQ)):

where I is the identity operator. We will later require
the inner product between two states of zero momentum.
This can readily be shown to be

C(X, Y) = (X[Y) = exp
(X —Y') z

Sa~ (2.3)

We now turn our attention to the system, a particle
with position operator z. The system Hamiltonian Ho is
left arbitrary for the time being. The interaction between
the system and the meter is of the form

HgM = pP[x —F], (2.4)

where E is an arbitrary real number. In the case where
F = 0 then this system-meter interaction is that con-
sidered by von Neumann [14] and later by Refs. [4,5,12].
This interaction translates the position of the meter by
an amount proportional to the average position of the
system. In the case where F g 0 then this term in the
interaction causes a displacement of the meter coordi-
nate. It has no effect on the dynamics of the system.

The state of the system and meter at time t is taken
to be

IC'(t)) = IX(t)) x l@(t)) (2 5)

I@0(t+r)) =
I

I ——&0
I l@(t)).

ir
(2.7)

This evolution of the combined system and meter is
purely unitary. The meter has undergone the desired
translation due to the interaction with the system. The
system has undergone its usual free evolution and has a
measurement backaction operating on it due to the in-
teraction with the meter.

Now since the meter is pseudoclassical it should always
be describable by X(t) with uncertainty a. Its large mass
ensures that it will be negligibly perturbed by a classical
measurement process. Thus the effect of observing the
meter state should be well modeled by a projection onto
a new Gaussian state iX(t+r), P(t+r)). This step (us-
ing the projection postulate) is necessary at some stage
in the measurement chain in order to describe the result
of the measurement. The positioning of this formal pro-
cedure (the Heisenberg cut [15]) is essentially arbitrary,
but the higher up the chain from the system to the ob-
server the cut is placed the more accurate the model of
the measurement will be. Placing the cut after the me-
ter will yield a good description of the behavior of the
system and the meter.

The reasons we choose to project the meter onto a

where i4'(t)) is a system ket. Then under the coupling
of Eq. (2.4), and the free-system Hamiltonian Ho, the
combined state at time t + r (for r infinitesimal) is

le(&+~)) =ex)&(— &I* —&I) l&(~))

xiCc(t+r))s, (2.6)

where the state of the system at time t + w is approxi-
mately
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Gaussian state rather than an eigenstate of position as
in previous models [5] are twofold. Firstly, it is more
realistic —creating a position eigenstate requires an infi-
nite amount of energy. Secondly, we wish to use the meter
again and so have it prepared in a Gaussian state as in the
previous measurement period. Following the projection
of the meter at time t + 7.

, the meter will have, in gen-
eral, a nonzero mean momentum equal to the observed
value P(t + w). This is an undesirable effect and can be
eliminated by the action of a unitary displacement oper-
ator D[—P(t + ~)] = exp[—iP(t + r) Q]. Physically, this
models the damping of the meter momentum, so that

D[—P(t + &)]iX(t + ~), P(& + &)) = iX(t + 7 ))

It does not affect the system, nor the system-meter entan-
glement which involves only X(t +w). Thus, the state of
the system and meter, given the readout result X(t+ r),
1S

ic.(&+.)) = [P(X)] '"lX(t+~))(X(t+~)i
A

x exp — P fx —E]jh

x lX(t)) leo(t + ~))
= [P(X)] '/ iX(t+ ~)) S i@,(t+ v.)), (2.8)

where we have defined an unnormalized system ket

i%.(t + ~)) = C(X(t + ~), X(t) + ~~ [+ —F])
xiiIr, (t+ ~)), (2.9)

where C(X, Y) is as defined in Eq. (2.3). Here we use
the subscript c to indicate that the state of the system is
conditioned on the entire history of the readout variable
X(t). That is, we are considering selective evolution of
the system, hence the possibility of using a wave function
rather than density-operator description. The normaliza-
tion term P(X) is equal to the probability of obtaining
the result X(t + w). It is given by

P(X) = (4.(t+ ~)i4.(t+ ~)). (2.10)

The mean and variance for the distribution of X(t + w)

are

(X( + )) =X()+ [(*).—F] ( )

V(X(t+w)) = 2cr +p r V(i) . (2.12)

In order to obtain smooth evolution of the system, we
will show shortly that the following measurement param-
eter must be finite in the limit 7 —+ 0:

27-
r (2.13)

The implication of this for the meter evolution is that in
Eq. (2.12) the 2cr2 term will dominate in the limit 7. ~ 0.
In this case X(t+ 7) is well approximated by a Gaussian
random variable, and can be replaced by

where ((t) indicates Gaussian noise of standard deviation
I/v w. Since this term is independent from one ~ incre-
ment to the next, in the limit ~ ~ 0 it can be modeled
by white noise ((t) with (((t)((t')) = 6(t —t'). Note that
F, which we have so far left arbitrary, can be chosen to
be a function of X(t), the previous measurement result.
This allows feedback on the meter position to prevent the
meter pointer from becoming unbounded, which was an
undesirable feature of previous models [5].

It is evident that Eq. (2.14) describes a driven me-
ter with position diffusion, providing that p is finite as
r ~ 0. This is a natural choice as we wish to follow the
dynamics of the meter pointer. However, it is not a nec-
essary assumption. The choice of scaling of p fixes the
scaling of o if I' is to remain finite. The various possi-
bilities can be labeled by a real number n, as shown in
Table I.

Our choice corresponds to n = 1/2, in which the posi-
tion uncertainty of the meter goes to zero with 7.. This
is consistent with our earlier statement that the position
of the meter is defined arbitrarily accurately.

Taking the limit ~ ~ 0 in Eq. (2.14), we see that
the meter position X(t) obeys the following stochastic
difFerential equation:

X(t) =& (&).(t) —F+ ((t) . (2.»)
j.

2 I'

Here the effect of the feedback term F is evident. In
this paper we take I" = X(t) and this corresponds to
the meter pointer relaxing at rate p to the conditioned
system mean (x),(t). This is the motivation for the orig-
inal Hamiltonian coupling between the meter and the
system: it allows the position of the system to be read
(however inaccurately) from the position of the meter
pointer. Previous models [5] have treated the case where
F = 0, whereby the information about the system op-
erator of interest is encoded in the velocity of the meter
pointer, and an experimenter would have to extract this
information explicitly. The choice of the function F has
no effect on the system dynamics.

In addition to relaxing towards its appropriate value,
the meter pointer undergoes a "jitter" due to the noise
term ((t) in Eq. (2.15). The size of this jitter can be
made small by taking the limit p « I'. However, as we
will show [Eq. (2.20)], this would mean that the system
would collapse towards a position eigenstate on a time
scale I' i much faster than the time scale p

i on which
the meter could respond. There is thus an obvious trade
off between the jitter and the response of the meter.

TABLE I. A finite parameter I' = p~7/8cr2 in the limit
v. ~ 0 gives smooth system evolution. Whether this also
gives smooth evolution of the meter pointer X(t) depends on
how p and o. are scaled. The scaling can be defined by a
real parameter n. Two scalings of interest are given, the first
being that used in this paper and the second corresponding
to the model of Caves and Milburn [5]

X(t + ~) = X(t) + p7-
l (i),(t) —F + ((t) l,

2 I'
(2.14)

n —1/2 X(t) - ~"-'~'
well defined
not defined
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We return now to the evolution of the system, condi-
tioned on the meter readout A'(t). From Eq. (2.8), the
combined state of the system and meter at time t + 7. is
a decoupled one, as it was at time t. We can thus write
the new conditioned system state at time t + ~ as

density operator:

r.
P.(t) = „[Hp P.] —

2
[x [*,P.]1

+~~((t)(xP + P x 2(x) P ) (2.19)

I@.(t+ ~)) = [p(&)] '"I@.(t+ ~)) (2.16)

where the unnormalized ket ~4', (t + ~)) is defined in Eq.
(2.9).

This result can be simplified by substituting for the
meter evolution [Eq. (2.14)] and using Eq. (2.3) to eval-
uate the inner product in Eq. (2.10). This gives

~@ (t+ ~)) —[p(~)]-i&2,— ~~*-&@.-2'«'~j'
x ~Op(t+ r)). (2.17)

I.—)4,(t)) = ——H, ——[x —(x),]'
dg

As we have obtained an exponential that is first order in
w we can obtain a stochastic differential equation for the
evolution of the system. When we expand the exponen-
tial (carefully because of the noise term) we obtain

I' „
PNs(t) = [Hp& PNs] 2

[x~ [» PNS]] (2.20)

This is the expected double-commutator form of the
nonselective master equation which usually arises from
system-meter couplings which do not disturb the mea-
sured quantity such as that employed in Eq. (2.4).

If Ho can be written as

This stochastic master equation is conditioned on the en-
tire history of the meter readout X(t). If we were only in-
terested in the nonselective evolution of the system, then
we would have to discard all knowledge of the evolution
of the system. This is achieved in the usual manner of
averaging over all possible meter readouts at all times t.
In our case this simply amounts to averaging over the
stochastic term in Eq. (2.19), which gives zero since ((t)
is independent of the system state at time t. The nonse-
lective master equation for the system is thus

+v I'&(t) [x —(x)~]
~
I@.(t)) (2 18)

Hp —— + U(x),
2m

(2.21)

It is interesting to note that this stoch~tic Schrodinger
equation is identical to that resulting from homodyne de-
tection [16] with the replacement a —+ x. Similar equa-
tions have also been considered in Refs. [6—10,17,18]. The
significance of the approach considered here is that we
have an unravelling of the master equation as an en-
semble of stochastic, continuous trajectories for the state
vector of the system. Each of these trajectories has an
explicit interpretation in terms of the readout of a con-
tinuous pseudoclassical meter. This we believe to be a
feature that may have important applications.

Later in this paper, we will be comparing our model
with that proposed by Bonilla and Guinea [13]. The ad-
vantage of our model is that the collapse of the system
wave function is a natural outcome of the measurement
process, as might be expected. This is in contrast to
their approach where a system-environment interaction
is introduced in order to achieve a collapse to an eigen-
state of the measured quantity. Also, their model does
not guarantee correct measurement statistics. That our
model does guarantee this is evident from the nonselec-
tive master equation (2.20) which we derive below. If the
free evolution from Hp can be ignored, then the statistics
of the measured quantity x remains unchanged. Since an
eigenestate of x is also an eigenstate of the stochastic
evolution generator [Eq. (2.18)], again ignoring Hp, this
shows that the system will end up in an eigenstate with
the appropriate probability. It is when Hp cannot be
ignored that the superiority of our model over the pro-
jection postulate emerges.

The stochastic Schrodinger equation (2.18) is easily
shown to be equivalent to the following stochastic mas-
ter equation for the selective evolution of the conditioned

then the nonselective master equation (2.20) yields

1—(x) = —(P)dt m

—(p) = —(U'(x)).
dt

(2.22)

(2.23)

(x) —24cI'(x), (2.24)

where c is the coefficient of x4 in U(x).

III. TUNNELING IN A DOUBLE-WELL
POTENTIAL

In this section we apply our model to the measurement
of the position of a particle in a double-well potential.
We demonstrate the measurement regimes in which the
quantum Zeno effect will be apparent.

The Hamiltonian for a particle in a quartic double-well
potential is

That is to say, the measurement term does not affect the
Ehrenfest relations. If U is a polynomial up to second
order in x, then these equations are closed. Thus the
measurement has no effect on the mean value of x if the
particle moves in a linear or quadratic potential. This
means, for example, that no Zeno effect could be manifest
in such systems. In the following section we examine
motion in a quartic potential. It can be shown that the
effect of the measurement first appears with the fifth-
order derivative
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With the initial condition ENs(0) = E = (Ei + 2)/
we then have

ENs(t) = E + t— (3.6)

In this paper we wish to observe tunneling behavior on
a time scale of about one tunneling time Tt, . For the
double-well system we are using (see Table II) tunneling
will occur as long as we do not excite level ~3). We require
that ENs(Tg) « Es. This constraint gives

2I'« —(Es —E ) - d.
Tt

(3.7)

)
8D

(a)

(3 S)

We see that the measurement strength must scale in-
versely with the time over which we wish to see tunneling
behavior. Of course, any measurement interaction wit
I' ) 0 will eventually excite the particle enough to leave
th tunneling regime. Once the particle is suKciently en-e u
ergetic, the quantum Zeno effect will not be observab e.l.

From the two-level approximation in the next section,
it can be shown that the Zeno effect will exist only for

The two-level approximation is strictly only va i for
D )) 1. There is thus a parameter region where the Zeno
e ec mayaff t may appear: 6/SD & I' « A. For the well consid-
ered in this paper (D = 1), we require 0.003 I' « 0.0 .
This window is rather narrow but is nevertheless present
as our numerical results show. As D —+ oo, the Zeno ef-
fect would be manifest over a large range of measurement
parameter I'. The reason that we use D = 1 rather than
D )) 1 as would be desirable is that the tunne ing time
increases like exp(16D/3) for large D [21], which would
make numerical simulations prohibitively time consum-
ing.

The selective evolution of the particle wave function
under position measurements is given y q. . wi. ,2.18 with
Ho given by Eq. (3.2). We gradually increase the effec-
tiveness of our measurement, and plot typical trajecto-
ries. In each of these figures we show (a) a plot of the
probability density for the position of the particle, an
(b) the average position of the particle (heavy line), the
readout meter variable (dotted line), and the standard
deviation in the position of the particle (dashed line).
The readout meter parameters have been set fixed with

p = 0.05 and F = A (t). (See the Appendix for details of
the numerical method used. )
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out is shown by a dotted line. Since p = 0.05, the "jitter" in
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FIG. 3. Random-telegraph regime with I = 0.003. (a)
As above with I' = 0.003. The particle undergoes a ran-
dom-telegraph-type evolution &om one minima to the other.
(b) As above.
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First we consider the selective evolution of our two-
level tunneling system. We define the components of the
Bloch vector as

x(t) = (~*(t))
&(t) = (,(t)),
z(~) = ( .(&))

(3.14)

The evolution of the Bloch vector is readily shown to be

(x)
dt

I z)
( —16DI

0
0 0 ) ('x'I

-16Dr S
oi (z)

( —xz )—YZ
-'-z')+842Dr((t) (3.15)

This equation has no stable points for the case where
E, I' ) 0. However, we gain an understanding of the
dynamics by considering each term separately. As for

(o)

the nonselective case, the deterministic term has sta-
ble point X = Y = Z = 0, representing a fully mixed
state. In contrast, the noise term has stable point
X = Y = 0, Z = +I/2. These points correspond to the
two eigenstates ~k) so it is evident that the measurement
term encourages collapse to one of the two eigenstates of
the measurement operator.

Herein lies the clearest statement of the difference be-
tween our model and that considered in Ref. [13]. [The
above equation for the dynamics of the Bloch vector com-
pares directly to their Eq. (3.9).] Our model incorporates
the collapse of the wave function in a natural way as a
direct outcome of the interaction between a pseudoclas-
sical meter and the system of interest. Also, the fact that
our nonselective master equation preserves the probabil-
ity distribution for IT, ensures that the system tends to-
wards each eigenvalue with the correct probability, unlike
the model of Bonilla and Guinea [13].

In Fig. 6 we show typical trajectories of the system
with various measurement strengths I . Specifically, we
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FIG. 6. The two-level approximation. Plot of typical selective evolution of the mean and standard deviation of the position
of a continuously monitored particle under the two-level approximation. (a) For I' = 0 the particle tunnels unitarily from

one minima to the other. (b) For I' = 0.0003, some "random walking" is seen but the particle's motion is still largely
dominated by the unitary terms. As I' increases [(c) I' = 0.003 and (d) I' = 0.01] the behavior of the particle changes to a
"random-telegraph"-type evolution. The quantum Zeno eR'ect is evident in the enhanced trapping of the particle in the left
well for large I'.
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show the mean and variance of the position of the particle
(which is given by the Z component of the Bloch vector).
These trajectories show a strong similarity to those found
from the full ponderomotive model. For I" = 0 we see
the unitary evolution of the particle as it tunnels from
one minima to the other. For I' = 0.0003 we still see
tunneling due to the unitary evolution, but there is some
noise superimposed, especially around the time when the
particle is not localized in either well. As 1" increases we
discern a gradual elimination of the unitary evolution.
For large I' the particle undergoes a "random-telegraph"-
type evolution. The quantum Zeno effect is evident in the
enhanced time of trapping of the particle in the left well
for large I'.

We now turn our attention to the deterministic terms
in this stochastic equation. These terms are those result-
ing from the nonselective evolution in Eq. (3.13). The
evolution of this two-level system in the nonselective case
has been extensively studied [12]. With an initial state
~

—) [A'(0) = Y(0) = 0, Z(0) = —I/2], the general solu-
tion is

X(t) =0,

well is enhanced due to the nonselective measurement.
This is the nonselective quantum Zeno effect. Of course
this result applies to the real particle only as long as we
are able to successfully model the system with a discrete
measurement basis.

In all nonselective measurement regimes I' & 0 the par-
ticle will evolve to the long-time mixed state pNs(oo) =
2I. Such a state can be considered as made up of an en-
semble of selectively measured systems. For weak mea-
surements each individual system is undergoing tunneling
with added noise due to the measurement backaction, as
seen in Fig. 6(b). The effect of this noise is to cause
different elements of the ensemble to become dephased.
This is the origin of the damped oscillation seen in the
nonselective (ensemble) evolution. In the strong mea-
surement limit the measurement backaction dominates
the evolution, causing the particle to act as a two-state
"random telegraph. " This can be shown by considering
the nonselective evolution of the system as above. In
this case, we expect that the evolution is well described
by rate equations with equal transition probabilities be-
tween the wells. That is, we should get an equation of
the form

Y(t) =— e-' "'S(A~),20'

Z(t) = — e ' [8DI'S(At) + AC(At)],
—8DI't (3.16)

pi& = —p22 = —&p»+ &p22. (3.17)

Now, in the limit of large I', Eq. (3.16) gives the follow-
ing:

where we have A = g~(8DI') —6
~

and for 8DI' ( 6
we set S(At) = sin At, C(At) = cos At and for 8DI' ) E
we set S(At) = sinh At, C(At) = cosh At.

This nonselective evolution is shown in Fig. 7. We
plot the nonselective evolution of the average value of
(x) for a particle initially well localized in the left well.
We vary the measurement parameter I'. Under free evo-
lution, for I' = 0 we see coherent tunneling from one well
to the other. As the measurement parameter is increased
this unitary evolution is gradually damped. Indeed, for
8DI' )6 oscillations cease, and the particle probability
density gradually diffuses from the left well. For very
large I' the survival time of the particle in the left-hand

Z(t) ———exp ~—16DI' (3.18)

Since Z = z(p22 —pii), we see that this equation is
compatible to the rate equation [Eq. (3.17)] if we set the
random-telegraph transition rate to be

32DI' (3.19)

This demonstrates the clearest possible manifestation of
the quantum Zeno effect in that the transition probability
is inversely proportional to the measurement parameter.

2 IV. CONCLUSION

FIG. 7. Plot of the nonselective evolution of the average
value of position (x) for a particle for various values of the
measurement parameter I'. As the measurement parameter
increases the free oscillations of unitary evolution become in-
creasingly damped. For very large I' the survival time of the
particle in the left-hand well is significantly enhanced, which
is how the quantum Zeno effect is manifest in the nonselective
case.

We have constructed a general model for the measure-
ment interaction between a quantum system and single
pseudoclassical meter. The meter is pseudoclassical in
the sense that its mass is so large that it always has a well-

defined position and velocity. The system-meter interac-
tion Hamiltonian is the usual von Neumann one. The
meter state is measured innaccurately at regular inter-
vals. By carefully choosing the parameters, it is possible
to take the limit of continuous measurements. Our cen-
tral equation is a stochastic Schrodinger equation which
describes the selective evolution of the system state un-
der measurement. This equation conditions the system
state on the measurement result, and tends to cause the
system to collapse towards an eigenstate of the measured
quantity. Feedback on the meter constrains it to behave
as an ideal laboratory pointer, tracking the position of
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the system. It is the interpretation in terms of a realistic
coupling to a single finite meter which we believe has not
previously been published.

The model is applied to monitoring the position of a
particle in a double-well potential. This system exhibits
different behavior depending on the relative strength of
the measurement. The free particle tunnels coherently
from one well to the other. With weak measurement, the
tunneling persists, but with diffusive noise added. This
noise causes dephasing of the tunneling within the ensem-
ble of pure state trajectories, which leads to damped os-
cillations in the ensemble average (represented by a den-
sity operator). As the measurement becomes stronger,
coherent tunneling is replaced by incoherent flipping.
This is a manifestation of the quantum Zeno effect, as
the average time the particle remains stuck in its initial
well increases approximately linearly with the measure-
ment strength. This finding contradicts a recent claim

by Fearn and Lamb [11] that there is no Zeno effect in

a continuously monitored particle in a double-well po-
tential. The nonselective evolution in this case exhibits
overdamping. For very strong measurements, the energy
of the particle increases so quickly that it does not remain
localized in either well for any significant length of time,
and so the Zeno effect cannot be observed. We believe
that it is this last type of behavior which was produced

by the measurement model of Lamb and Fearn, leading
them to the wrong conclusion.

APPENDIX: NUMERICAL METHOD OF
SIMULATION

In this appendix we describe the numerical method
used for solution of the stochastic Schrodinger Eq. (2.18)

in the double well. As long as the particle is not too ener-
getic, we can use a truncated basis to model the system.
Rather than use the eigenstates of the Hamiltonian, we
choose to work in the well-known number-state basis for a
harmonic-oscillator potential centered at the origin. Such
states are complete and have the position representation
of

(A1)

where H„(z) is a Hermite polonomial. We transform to
the operators

p ~ Y= — (a —at),

(A2)

with the appropriate transformations of the free Hamil-
tonian. The irutial state of the particle is

[

—), which is
localized in the left minimum of the double-well potential.
This state is readily calculated in the number state basis.
For computational purposes we must eventually truncate
our number-state basis. The validity of this truncation
can be immediately assessed by noting that the initial
state is well approximated by a coherent state [n) located
at o; = 2~D. As —usual, this state has a number-state
expansion peaked about the mean n = 4D = 4. This
suggests that a truncation of the number basis at about
40 would be adequate. In this case the problem is quite
manageable on a computer.
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