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Abstract—Past research in analysis of human affect has focused on recognition of prototypic expressions of six basic emotions based

on posed data acquired in laboratory settings. Recently, there has been a shift toward subtle, continuous, and context-specific

interpretations of affective displays recorded in naturalistic and real-world settings, and toward multimodal analysis and recognition of

human affect. Converging with this shift, this paper presents, to the best of our knowledge, the first approach in the literature that:

1) fuses facial expression, shoulder gesture, and audio cues for dimensional and continuous prediction of emotions in valence and

arousal space, 2) compares the performance of two state-of-the-art machine learning techniques applied to the target problem, the

bidirectional Long Short-Term Memory neural networks (BLSTM-NNs), and Support Vector Machines for Regression (SVR), and

3) proposes an output-associative fusion framework that incorporates correlations and covariances between the emotion dimensions.

Evaluation of the proposed approach has been done using the spontaneous SAL data from four subjects and subject-dependent leave-

one-sequence-out cross validation. The experimental results obtained show that: 1) on average, BLSTM-NNs outperform SVR due to

their ability to learn past and future context, 2) the proposed output-associative fusion framework outperforms feature-level and model-

level fusion by modeling and learning correlations and patterns between the valence and arousal dimensions, and 3) the proposed

system is well able to reproduce the valence and arousal ground truth obtained from human coders.

Index Terms—Dimensional affect recognition, continuous affect prediction, valence and arousal dimensions, facial expressions,

shoulder gestures, emotional acoustic signals, multicue and multimodal fusion, output-associative fusion.

Ç

1 INTRODUCTION

MOST of the past research on automatic affect sensing
and recognition has focused on recognition of facial

and vocal affect in terms of basic emotions, and then based
on data that have been posed on demand or acquired in
laboratory settings [29], [67], [49]. Additionally, each
modality has been considered in isolation. However, a
number of researchers have shown that in everyday
interactions, people exhibit nonbasic, subtle, and rather
complex mental/affective states like thinking, embarrass-
ment, or depression [4]. Such subtle and complex affective
states can be expressed via dozens (or hundreds) of
anatomically possible facial expressions or bodily gestures.
Accordingly, a single label (or any small number of discrete
classes) may not reflect the complexity of the affective state
conveyed by such a rich source of information [54]. Hence, a
number of researchers advocate the use of dimensional
description of human affect, where an affective state is
characterized in terms of a number of latent dimensions
(e.g., [54], [56], [55]).

It is not surprising, therefore, that researchers in

automatic affect sensing and recognition have recently

started exploring how to model, analyze, and interpret the

subtlety, complexity, and continuity of affective behavior in

terms of latent dimensions, rather than in terms of a small

number of discrete emotion categories [27].
The work introduced here converges with this recent

shift in affect recognition, from recognizing posed expres-

sions in terms of discrete and basic emotion categories to

the recognition of spontaneous expressions in terms of

dimensional and continuous descriptions. It contributes to

the affect sensing and recognition research field as follows:

. It presents the first approach in the literature toward
automatic, dimensional, and continuous affect predic-
tion in terms of arousal (A) and valence (V) based on
facial expression, shoulder gesture, and audio cues.

. It proposes an output-associative prediction framework
that incorporates correlations between the emotion
dimensions and demonstrates significantly im-
proved prediction performance.

. It presents a comparison of two state-of-the-art
machine learning techniques, namely, the bidirec-
tional Long Short-Term Memory neural networks
(BLSTM-NNs) and Support Vector Machines for
Regression (SVR), for continuous affect prediction.

. It proposes a set of evaluation metrics and demon-
strates their usefulness to dimensional and contin-
uous affect prediction.
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The paper is organized as follows: Section 2 describes
theories of emotion and perception of emotions from visual
and audio modalities. Section 3 summarizes the related

work in the field of automatic dimensional affect analysis.
Section 4 describes the overall methodology employed.
Section 5 presents the naturalistic database used in the
experimental studies and describes the preprocessing of the

data. Section 6 explains the audio and visual feature
extraction and tracking. Section 7 describes the learning
techniques and the evaluation measures employed for

continuous emotion prediction, and introduces the out-
put-associative fusion framework. Section 8 discusses the
experimental results. Section 9 concludes the paper.

2 BACKGROUND

2.1 Theories of Emotion

The description of affect has been a long standing problem in
the area of psychology. Three major approaches can be
distinguished [24]: 1) the categorical approach, 2) the
dimensional approach, and 3) the appraisal-based approach.

According to the categorical approach, there exist a small
number of emotions that are basic, hard-wired in our brain,
and recognized universally. Ekman conducted various
experiments and concluded that six basic emotions can be

recognized universally, namely, happiness, sadness, sur-
prise, fear, anger, and disgust [19].

According to the dimensional approach, affective states
are not independent from one another; rather, they are

related to one another in a systematic manner. In this
approach, the majority of affect variability is covered by two
dimensions: valence and arousal [44], [54]. The valence

dimension (V) refers to how positive or negative the
emotion is, and ranges from unpleasant feelings to pleasant
feelings of happiness. The arousal dimension (A) refers to
how excited or apathetic the emotion is, and it ranges from

sleepiness or boredom to frantic excitement. Psychological
evidence suggests that these two dimensions are inter-
correlated [48], [1], [39], [41]. More specifically, there exist

repeating configurations and interdependencies within the
values that describe each dimension.

In the categorical approach, where each affective display
is classified into a single category, complex mental/
affective state or blended emotions may be too difficult to

handle [66]. Instead, in the dimensional approach, emotion
transitions can be easily captured, and observers can
indicate their impression of moderate (less intense) and

authentic emotional expressions on several continuous
scales. Hence, dimensional modeling of emotions has
proven to be useful in several domains (e.g., affective
content analysis [65]).

It should be possible to describe affect in a continuous
manner in terms of any relevant dimension (or axes).
However, for practical reasons, we opted for the dimen-
sions of arousal and valence in a continuous scale due to

their widespread use in psychology and behavioral science.
For further details on different approaches to modeling

human emotions and their relative advantages and dis-
advantages, the reader is referred to [56] and [24].

2.2 Perception of Emotions from Audio and Visual
Cues

The prosodic features which seem to be reliable indicators
of the basic emotions are the continuous acoustic measures,
particularly pitch-related measures (range, mean, median,
and variability), intensity, and duration. For a comprehen-
sive summary of acoustic cues related to vocal expressions
of basic emotions, readers are referred to [14]. There have
also been a number of works focusing on how to map audio
expression to dimensional models. Cowie et al. used
valence-activation space, which is similar to the V-A space,
to model and assess emotions from speech [14], [13].
Scherer and colleagues have also proposed how to judge
emotion effects on vocal expression, using the appraisal-
based theory [56], [24].

The most widely known and used visual signals for
automatic affect sensing and recognition are facial action
units (e.g., pulling eyebrows up) and facial expressions
(e.g., producing a smile). More recently, researchers have
also started exploring how bodily postures (e.g., backward
head bend and arms raised forward and upward) and
bodily gestures (e.g., head nod) communicate affective
information. Dimensional models are considered important
in these tasks as a single label may not reflect the
complexity of the affective state conveyed by a facial
expression, body posture, or gesture. Ekman and Friesen
[20] considered expressing discrete emotion categories via
face, and communicating dimensions of affect via body as
more plausible. A number of researchers have investigated
how to map various visual signals onto emotion dimen-
sions. For instance, Russell [54] mapped the facial expres-
sions to various positions on the 2D plane of arousal
valence (e.g., joy is mapped on the high arousal—positive
valence quadrant), while Cowie et al. [15] investigated the
emotional and communicative significance of head nods
and shakes in terms of arousal and valence dimensions,
together with dimensional representation of solidarity,
antagonism, and agreement.

Ambady and Rosenthal reported that human judgments
of behaviors that were based jointly on face and body cues
were 35 percent more accurate than those based on the face
cues alone [2]. In general, however, body and hand gestures
are much more varied than face gestures. There is an
unlimited vocabulary of body postures and gestures with
combinations of movements of various body parts. Unlike
facial expressions, communication of emotions by bodily
movement and expressions is still a relatively unexplored
and unresolved area in psychology, and further research is
needed in order to obtain a better insight on how they
contribute to the perception and recognition of affect
dimensions or various affective states.

In this work, we chose to focus on acoustic cues, facial
expressions, and shoulder gestures (and their fusion) since
they have been reported as informative cues for a number
of spontaneous human nonverbal behavior analysis tasks
(e.g., automatic recognition of posed versus spontaneous
smiles [52]).

3 RELATED WORK

Affect sensing is now awell-established field, and there is an
enormous amount of literature available on different aspects
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of affect sensing. As it is virtually impossible to include all of
theseworks,weonly introduce themost relevant literatureon
dimensional affect sensing and recognition. Affect recogni-
tion usingmultiple cues andmodalities, and its shift from the
lab to the real-world settings, are reviewed and discussed in
detail in [29]. An exhaustive survey of past efforts in
audiovisual affect sensing and recognition (e.g., facial action
unit recognition, posed versus spontaneous expression
recognition, etc.), together with various visual, audio, and
audiovisual databases, is presented in [67]. For a recent
survey of affect detection models, methods, and their
applications, reviewed in an interdisciplinary perspective,
the reader is referred to [8].

When it comes to automatic dimensional affect recogni-
tion, the most commonly employed strategy is to simplify
the problem of classifying the six basic emotions to a three-
class valence-related classification problem: positive, neu-
tral, and negative emotion classification (e.g., [66]). A
similar simplification is to reduce the dimensional emotion
classification problem to a two-class problem (positive
versus negative or active versus passive classification) or a
four-class problem (classification into the quadrants of 2D
V-A space, e.g., [10], [22], [23], [32], [64]). For instance,
Wagner et al. [62] analyzes four emotions, each belonging to
one quadrant of the V-A emotion space: high arousal
positive valence (joy), high arousal negative valence
(anger), low arousal positive valence (relief), and low
arousal negative valence (sadness).

Systems that target automatic dimensional affect recog-
nition, considering that the emotions are represented along
a continuum, generally tend to quantize the continuous
range into certain levels. Kleinsmith and Bianchi-Berthouze
[37] discriminate between high-low, high-neutral, and low-
neutral affective dimensions, while Wöllmer et al. [42] use
the Sensitive Artificial Listener database (SAL-DB) and
quantize the V-A into four or seven levels and use
Conditional Random Fields (CRFs) to predict the quan-
tized labels.

Methods for discriminating between more coarse cate-
gories, such as low, medium, and high [38], excited
negative, excited positive, and calm neutral [11], positive
versus negative [45], and active versus passive [10] have
also been proposed. Of these, Caridakis et al. [10] use the
SAL database, similar to our work presented in this paper,
and combine information from audio (acoustic cues) and
visual (Facial Animation Parameters used in animating
MPEG-4 models) modalities. Nicolaou et al. focus on
audiovisual classification of spontaneous affect into nega-
tive or positive emotion categories, and utilize 2 and 3-chain
coupled Hidden Markov Models and likelihood space
classification to fuse multiple cues and modalities [45].
Kanluan et al. [34] combine facial expression and audio cues
exploiting SVR and late fusion, using weighted linear
combinations and discretized annotations (on a 5-point
scale, for each dimension).

As far as actual continuous dimensional affect prediction
(without quantization) is concerned, four attempts have
been proposed so far, three of which deal exclusively with
speech (i.e., [64], [42], [26]). The work presented in [64]
utilizes a hierarchical dynamic Bayesian network combined

with BLSTM-NN performing regression and quantizing the
results into four quadrants (after training). The work by
Wöllmer et al. uses Long Short-Term Memory neural
networks and Support Vector Machines for Regression
[42]. Grimm and Kroschel use SVRs and compare their
performance to that of the distance-based fuzzy k-Nearest
Neighbor and rule-based fuzzy-logic estimators [26]. The
work of Gunes and Pantic [28] focuses on dimensional
prediction of emotions from spontaneous conversational
head gestures by mapping the amount and direction of
head motion, and occurrences of head nods and shakes into
arousal, expectation, intensity, power, and valence level of
the observed subject using SVRs.

For comparison purposes, in Table 1, we briefly
summarize the automated systems that attempt to model
and recognize affect in continuous dimensional space using
multiple cues and modalities, together with the work
presented in this paper. We also include the works
proposed in [45], [34], and [9] as they are relevant for the
current study (although classification has been reported for
a discretized rather than a continuous dimensional affect
space). Works using dimensions other than valence and
arousal have been also included. Subsequently, Table 2
presents utilized classification methodology and the per-
formance attained by the methods listed in Table 1. This
overview is intended to be illustrative rather than exhaus-
tive, and for systems most relevant to our work. For systems
that deal with dimensional affect recognition from a single
modality or cue, the reader is referred to [27] and [67].

As can be seen from Tables 1 and 2, the surveyed
systems use different training and testing sets (which differ
in the way emotions are elicited and annotated), they differ
in the underlying model of emotions (i.e., target emotional
categories) as well as in the employed modality or
combination of modalities and the applied evaluation
method. All of these make it difficult to quantitatively and
objectively evaluate the accuracy of the V-A modeling and
the effectiveness of the developed systems.

Compared to the works introduced in Tables 1 and 2,
and surveyed in [27], the methodology introduced in this
paper 1) presents the first approach toward automatic,
dimensional, and continuous affect prediction based on
facial expression, shoulder gesture, and audio cues, and
2) proposes a framework that integrates temporal correla-
tions between continuous dimensional outputs (valence and
arousal) to improve regression predictions. Our motivation
for the latter is twofold. First, there is strong (theoretical and
experimental) psychological evidence reporting that the
valence and arousal dimensions are intercorrelated (i.e.,
repeated configurations do manifest between the dimen-
sions) [48], [1], [39], [41]. Despite this fact, automatic
modeling of these correlations has not been attempted yet.
Second, there is a growing interest in the pattern recogni-
tion field in modeling not only the input but also the output
covariances (e.g., [7], [63], [6]).

Additionally, as pointed out in [35], (dis)agreement
between human annotators affects the performance of the
automated systems. The system should ideally take into
account the interobserver (dis)agreement level and correlate
this to the level of (dis)agreement attained between the
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ground truth and the results provided by the system. To

address the aforementioned issue, this work introduces

novel evaluation measures and demonstrates their useful-

ness to dimensional and continuous affect prediction.

4 OUTLINE OF THE PROPOSED METHODOLOGY

The methodology proposed in this paper consists of

preprocessing, segmentation, feature extraction, and pre-

diction components, and is illustrated in Fig. 1.
The first two stages, that of preprocessing and segmenta-

tion, depend mostly on the set of annotations provided with

the SAL database (in terms of valence and arousal
dimensions). We introduce various procedures to 1) obtain
the ground truth corresponding to each frame by maximiz-
ing intercoder agreement, and 2) to determine the audio-
visual segments that capture the transition from one
emotional state to another (and back). Essentially, these
procedures automatically segment spontaneous multimo-
dal data in terms of negative and positive audiovisual
segments that contain an offset before and after (i.e., the
baseline) the displayed expression (Section 5.3).

During the feature extraction stage, the presegmented
audiovisual segments from the SAL database are used. For
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the audio modality, the Mel-frequency Cepstrum Coeffi-
cients (MFCC) [33], as well as prosody features, such as
pitch and energy features are extracted. To capture the
facial and shoulder motion displayed during a spontaneous
expression, we use the Patras-Pantic particle filtering
tracking scheme [50] and the standard Auxiliary Particle
Filtering (APF) technique [53], respectively.

The final stage, that is based on all of the aforementioned
steps, consists of affect prediction, multicue and multi-
modal fusion, and evaluation. SVRs and BLSTM-NNs are
used for single-cue affect prediction. Due to their superior
performance, BLSTM-NNs are further used for feature and
model-level fusion of multiple cues and modalities. An
output-associative fusion framework that employs a first
layer of BLSTM-NNs for predicting V-A values from the
original input features and a second layer of BLSTM-NN
using these predictions jointly as intermediate features to
learn the V-A interdependencies (correlations) are intro-
duced next. Performance comparison shows that the
proposed output-associative fusion framework provides a
significantly improved prediction accuracy compared to
feature-level and model-level fusion via BLSTM-NNs.

5 DATA SET AND PREPROCESSING

5.1 Data Set

We use the Sensitive Artificial Listener Database [17] that
contains spontaneous data capturing the audiovisual inter-
action between a human and an operator undertaking the
role of an avatar with four personalities: Poppy (happy),
Obadiah (gloomy), Spike (angry), and Prudence (pragmatic).

The audiovisual sequences have been recorded at a video
rate of 25 fps (352 � 288 pixels) and at an audio rate of
16 kHz. The recordings were made in a lab setting, using
one camera, a uniform background, and constant lighting
conditions. The SAL data have been annotated by a set of
coders who provided continuous annotations with respect
to valence and arousal dimensions using the FeelTrace
annotation tool [13]. Feeltrace allows coders to watch the
audiovisual recordings and move their cursor, within the
2D emotion space (valence and arousal) confined to ½�1; 1�,
to rate their impression about the emotional state of the

subject. Although there are approximately 10 hours of
footage available in the SAL database, V-A annotations
have only been obtained for two female and two male
subjects. We used this portion for our experiments.

5.2 Challenges

Using spontaneous and naturalistic data that have been
manually annotated along a continuum presents us with a
set of challenges which essentially motivate the adopted
methodology.

The first issue is known as reliability of ground truth. In
other words, achieving agreement among the coders (or
observers) that provide annotations in a dimensional space is
very challenging [27]. In order to make use of the manual
annotations for automatic recognition, most researchers take
the mean of the observers ratings, or assess the annotations
manually. In Section 5.3, we describe the process of
producing the ground truth with respect to the coders’
annotations in order to maximize the intercoder agreement.

The second issue is known as the baseline problem. This is
also known as the concept of having “a condition to
compare against” in order for the automatic recognizer to
successfully learn the recognition problem at hand [27]. For
instance, in the context of acted (posed) facial expression
recognition, the subjects are instructed to express a certain
emotional state starting (and ending) with an expressionless
face. Thus, posed affect data contain all the temporal
transitions (neutral-onset-apex-offset-neutral) that provide
a classifier with a sequence that begins and ends with an
expressionless display: the baseline. Since such expression-
less states are not guaranteed to be present in spontaneous
data [27], [40], we use the transition to and from an
emotional state (i.e., the frames where the emotional state
changes) as the baseline to compare against.

The third issue refers to unbalanced data. In naturalistic
settings, it is very difficult to elicit balanced amount of data
for each emotion dimension. For instance, Caridakis et al.
[9] reported that a bias toward quadrant 1 (positive arousal,
positive valence) exists in the SAL database. Other
researchers (e.g., [12]) handle the issue of unbalanced
classes by imposing equal a priori probability. As classifica-
tion results strongly depend on the a priori probabilities of
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class appearance, we attempt to tackle this issue by
automatically presegmenting the data at hand. More
specifically, the segmentation stage consists of producing
(approximately equal number of) negative and positive
audiovisual segments with a temporal window that con-
tains an offset before and after the displayed expression
(i.e., the baseline).

5.3 Data Preprocessing and Segmentation

The data preprocessing and segmentation stage consists of
1) producing ground truth by maximizing intercoder
agreement, 2) eliciting frames that capture the transition to
and from an emotional state, and 3) automatic segmentation
of spontaneous audiovisual data. A detailed description of
these procedures is presented in [46].

In general, the V-A annotations of each coder are not in
total agreement, mostly due to the variance in human
observers’ perception and interpretation of emotional
expressions. Thus, in order to deem the annotations
comparable, we normalized the data and provided some
compensation for the synchronization issues. We experi-
mented with various normalization techniques and opted
for the one that minimized the intercoder mean squared
error (MSE). To tackle the synchronization issues, we allow
the time shifting of the annotations for each specific
segment up to a threshold of 0.5 seconds given that this
increases the agreement between coders.

In summary, achieving agreement from all participating
coders is difficult and not always possible for each extracted
segment. Thus, we use the intercoder correlation to obtain a
measure of how similar one coder’s annotations are to the
rest. This is then used as a weight to determine the
contribution of each coder to the ground truth.

More specifically, the averaged correlation cor0S;cj
assigned to coder cj is defined as follows:

cor0S;cj ¼
1

jSj � 1

X

i2S;ci 6¼cj

corðci; cjÞ; ð1Þ

where S is the relevant session annotated by jSj number of
coders and each coder annotating S is defined as ci 2 S.

Typically, an automatically produced segment consists
of a single interaction of the subject with the avatar
(operator), starting with the final seconds of the avatar
speaking, continuing with the subject responding (and thus
reacting and expressing an emotional state), and concluding
where the avatar starts responding. Given that in natur-
alistic data, emotional expressions are not generally pre-
ceded by neutral emotional states [27], [40], we considered
this window to provide the best baseline possible. For more
details, we refer the reader to [46]. It should be noted that
this method is purely based on the annotations, unlike other
methods which are based on features, e.g., turn-based
segmentation based on voice activity detection [42].

6 FEATURE EXTRACTION

In this section, we describe the audio and visual features
that have been extracted using the automatically segmented
audiovisual SAL data.

6.1 Audio Features

Our audio features include Mel-frequency Cepstrum Coeffi-
cients [33] and prosody features (the energy of the signal, the
Root Mean Squared Energy, and the pitch obtained by using
a Praat pitch estimator [51]). Mel-frequency Cepstrum
(MFC) is a representation of the spectrum of an audio
sample which is mapped onto the nonlinear mel scale of
frequency to better approximate the human auditory
system’s response. The MFCC collectively make up the
MFC for the specific audio segment.

We used six cepstrum coefficients, thus obtaining six
MFCC and six MFCC-Delta features for each audio frame.
We have essentially used the typical set of features used for
automatic affect recognition [67], [52]. Along with pitch,
energy, and RMS energy, we obtained a set of features with
dimensionality d ¼ 15 (per audio frame). Note that we used
a 0.04 second window with a 50 percent overlap (i.e., first
frame 0-0.04, second from 0.02-0.06, etc.) in order to obtain a
double frame rate for audio (50 Hz) compared to that of
video (25 fps). This is an effective and straightforward way
to synchronize the audio and video streams.

6.2 Facial Expression Features

To capture the facial motion displayed during a sponta-
neous expression, we track 20 facial feature points (FFP), as
illustrated in Fig. 2. These points are the corners of the
eyebrows (four points), eyes (eight points), nose (three
points), the mouth (four points), and the chin (one point).
To track these facial points, we used the Patras-Pantic
particle filtering tracking scheme [50]. Prior to tracking,
initialization of the facial feature points has been done using
the method introduced in [61]. For each video segment
containing n frames, we obtain a set of n vectors containing
2D coordinates of the 20 points tracked in n frames
(Tf ¼ fTf1 . . .Tf20g with dimensions n � 20 � 2).

6.3 Shoulder Features

The motion of the shoulders is captured by tracking two
points on each shoulder and one stable point on the torso,
usually just below the neck (see Fig. 2). The points to be
tracked are initialized manually in the first frame. We then
use the standard Auxiliary Particle Filtering [53] to track the
shoulder points. This scheme is less complex and faster
compared to the Patras-Pantic particle filtering tracking
scheme; it does not require learning the model of prior
probabilities of the relative positions of the shoulder points,
while resulting in sufficiently high accuracy. The shoulder
tracker results in a set of points Ts ¼ fTs1 . . .Ts5g with
dimensions of n � 5 � 2.
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The SAL database consists of challenging data with
sudden body movements and out-of-plane head rotations.
As the focus of this paper is on dimensional and continuous
affect prediction, we would like to minimize the effect of
imperfect and noisy point tracking on the automatic
prediction. Therefore, both facial point tracking and
shoulder point tracking have been done in a semi-automatic
manner (withmanual correctionwhen tracking is imperfect).

7 DIMENSIONAL AFFECT PREDICTION

7.1 Bidirectional Long Short-Term Memory Neural
Networks

The traditional Recurrent Neural Networks (RNN) are
unable to learn temporal dependencies longer than a few
time steps due to the vanishing gradient problem [31]. LSTM
Neural Networks (LSTM-NNs) were introduced by Graves
and Schmidhuber [25] to overcome this issue. Analysis of the
error flow [30] has shown that the backpropagated error in
RNNs either grows or decays exponentially. LSTMs intro-
duce recurrently connected memory blocks instead of
traditional neural network nodes, which contain memory
cells and a set of multiplicative gates. The gates essentially
allow the network to learn when to maintain, replace, or
reset the state of each cell. As a result, the network can learn
when to store or relate to context information over long
periods of time, while the application of nonlinear functions
(similar to transfer functions in traditional NN) enables
learning nonlinear dependencies.

Traditional RNNs process input in a temporal order,
thus learning characteristics of the input by relating only to
past context. Bidirectional RNNs (BRNNs) [58], [3] instead
modify the learning procedure to overcome the latter issue
of the past and future context: They present each of the
training sequences in a forward and a backward order (to
two different recurrent networks, respectively, which are
connected to a common output layer). In this way, the
BRNN is aware of both future and past events in relation to
the current time step. The concept is directly expanded for
LSTMs, referred to as Bidirectional Long Short-Term
Memory neural networks.

BLSTM-NNs have been shown to outperform unidirec-
tional LSTM-NN for speech processing (e.g., [25]) and have
been used for many learning tasks. They have been
successfully applied to continuous emotion recognition from
speech (e.g., [42], [64]), proving that modeling the sequential
inputs and long range temporal dependencies appears to be
beneficial for the task of automatic emotion prediction.

To the best of our knowledge, to date, BLSTM-NNs have
only been used for affect prediction from the audio
modality (e.g., [42]). No effort has been reported so far on
using BLSTM-NNs for prediction of affect from visual
modality or multiple cues and modalities.

7.2 Support Vector Regression

SVM for regression [18] is one of the most dominant kernel
methods in machine learning. A nonlinear function is
learned by the model in a mapped feature space, induced
by the kernel used. An important advantage of SVMs is the
convex optimization function employed which guarantees
that the optimal solution is found. The goal is to optimize

the generalization bounds for regression by a loss function
which is used to weight the actual error of the point with
respect to the distance from the correct prediction.

Various loss functions could be used to this aim (e.g.,
quadratic loss function, Laplacian loss function, and
�-insensitive loss function). The �-insensitive loss function,
introduced by Vapnik, is an approximation of the Huber
loss function and enables a more reliable generalization
bound [16]. This is due to the fact that unlike the Huber and
quadratic loss functions (where all the data will be support
vectors), the support vectors can be sparse with the
�-insensitive loss function. Sparse data representations have
been shown to reduce the generalization error [60] (see [57,
chapter 3.3] for details).

In this work, we employ �-insensitive regression that is
based on the idea that all points that fall within the �-band
have a zero cost. The ones outside the band have a cost
assigned which is relative to their distance measured by
the variables.

We choose to use SVRs in our experiments due to the fact
that they are commonly employed in works reporting on
continuous affect prediction (e.g., [42], [26], [34]).

7.3 Evaluation Metrics

Finding optimal evaluation metrics for dimensional and
continuous emotion prediction and recognition remains an
open research issue [27]. The mean squared error is the
most commonly used evaluation measure by related work
in the literature (e.g., [42], [26], [34]), while correlation
coefficient (COR) is also employed by several studies (e.g.,
[26], [34]).

MSE evaluates the prediction by taking into account the
squared error of the prediction from the ground truth. Let �̂
be the prediction and � be the ground truth. MSE is then
defined as

MSE ¼ 1

n

X

n

f¼1

ð�̂ðfÞ � �ðfÞÞ2 ¼ �2

�̂
þEð½�̂� ��Þ2: ð2Þ

As can be seen from the equation, MSE is the sum of the
variance and the squared bias of the predictor, where E is
the expected value operator. Therefore, the MSE provides
an evaluation of the predictor based on its variance and
bias. This also applies for other MSE-based metrics, such as
the root mean squared error (RMSE), defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffi

MSE
p

:

In this work, we use the RMSE since it is measured in the
same units as our actual data (as opposed to the squared
units measuring MSE). MSE-based evaluation has been
criticized for heavily weighting outliers [5]. Most impor-
tantly, it is unable to provide any structural information
regarding how � and �̂ change together, i.e., the covariance
of these values. The correlation coefficient that we employ
for evaluating the prediction and ground truth compensates
for the latter and is defined as follows:

CORð�̂; �Þ ¼ COV f�̂; �g
��̂��

¼ E½ð�̂� ��̂Þð�� ��Þ�
��̂��

; ð3Þ
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where� stands for the standarddeviation,COV stands for the
covariance, while � symbolizes the mean (expected value).

COR provides an evaluation of the linear relationship
between the prediction and the ground truth, and subse-
quently, an evaluation of whether the model has managed
to capture linear structural patterns inhibited in the data at
hand. As for the covariance calculation, since the means are
subtracted from the values in question, it is independent of
the bias (and differs from the MSE-based evaluation).

In addition to the two aforementioned metrics, we
propose the use of another metric which can be seen as
emotion-prediction-specific. Our aim is to obtain an agreement
level of the prediction with the ground truth by assessing
the valence dimension, as being positive ðþÞ or negative
ð�Þ, and the arousal dimension, as being active ðþÞ or
passive ð�Þ. Based on this heuristic, we define a sign
agreement metric (SAGR) as follows:

SAGR ¼ 1

n

X

n

f¼1

�ðsignð�̂ðfÞÞ;signð�ðfÞÞÞ; ð4Þ

where � is the Kronecker delta function, defined as

�ða;bÞ ¼
1; a ¼ b;

0; a 6¼ b:

�

ð5Þ

As a proof of concept, we provide two cases from our
experiments that demonstrate how each evaluation metric
contributes to the evaluation of the prediction with respect
to the ground truth. In Fig. 3, we present two suboptimal

predictions from audio cues, for the valence dimension,
using two BLSTM-NNs with different topologies. Notice
how each metric informs us of a specific aspect of the
prediction. The MSE of Fig. 3a is smaller than Fig. 3b,
demonstrating that the first case is numerically closer to the
ground truth than the second case. Despite this fact, the first
prediction does not seem to follow the ground truth
structurally; it rather fluctuates around the mean of the
prediction (generating a low bias). This is confirmed by
observing COR, which is significantly higher for the second
prediction case (0.566 versus 0.075). Finally, SAGR demon-
strates that the first prediction case is in high agreement
with the ground truth in terms of classifying the emotional
states as negative or positive. In summary, we conclude that
a high COR accompanied by a large MSE is undesirable, as
well as a high SAGR accompanied by a large MSE (such
observations also apply to the RMSE metric).

Our empirical evaluations show that there is an inherent
trade-off involved in the optimization of these metrics. By
using all three metrics simultaneously, we attain a more
detailed and complete evaluation of predictor versus
ground truth, i.e., 1) a variance-and-bias-based evaluation
with MSE (how much prediction and ground-truth values
vary), 2) a structure-based evaluation with COR (how
closely the prediction follows the structure of the ground
truth), and 3) emotion-prediction-specific evaluation with
SAGR (how much prediction and ground truth agree on the
positive versus negative, and active versus passive aspect of
the exhibited expression).

7.4 Single-Cue Prediction

The first step in our experiments consists of prediction
based on single cues. Let D ¼ fV ;Ag represent the set of
dimensions, C the set of cues consisting of the facial
expressions, shoulder movement, and audio cues. Given a
set of input features xc ¼ ½x1c ; . . . ;xnc

�, where n is the
training sequence length and c 2 C, we train a machine
learning technique fd in order to predict the relevant
dimension output, yd ¼ ½y1; . . . ; yn�, d 2 D:

fd : x 7! yd: ð6Þ

This step provides us with a set of predictions for each
machine learning technique and each relevant dimension
employed.

7.5 Feature-Level Fusion

Feature-level fusion is obtained by concatenating all of the
features from multiple cues into one feature vector which is
then fed into a machine learning technique.

In our case, the audio stream has a double frame rate
with respect to the video stream (50 Hz versus 25 fps).
When fusing audio and visual features (shoulder or facial
expression cues) at the feature level, each video feature
vector is repeated twice, and the ground truth for the
audio cues is then used for training and evaluation. This
practice is in accordance with similar works in the field
that focus on human behavior understanding from audio-
visual data (e.g., [52]).

7.6 Model-Level Fusion

In the decision-level data fusion, the input coming from
each modality and cue is modeled independently, and these
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Fig. 3. Illustration of how MSE-based (both MSE and RMSE), COR, and
SAGR evaluation metrics provide different results for two different
predictions on the same sequence (gt: ground truth, pd: prediction).



single-cue and single-modal recognition results are com-
bined in the end. Since humans display multicue and
multimodal expressions in a complementary and redun-
dant manner, the assumption of conditional independence
between modalities and cues in decision-level fusion can
result in loss of information (i.e., mutual correlation
between the modalities). Therefore, we opt for model-level
fusion of the continuous predictions as this has the potential
of capturing correlations and structures embedded in the
continuous output of the regressors (from different sets of
cues). This is illustrated in Fig. 4a.

More specifically, during model-level fusion, a function
learns to map predictions to a dimension d from the set of
cues as follows:

fmlf : fdðx1Þ � � � � � fdðxmÞ 7! yd; ð7Þ

where m is the total number of fused cues.

7.7 Output-Associative Fusion

In the previous sections, we have treated the prediction of
valence or arousal as a 1D regression problem. However, as
mentioned in Section 2, psychological evidence shows that
valence and arousal dimensions are correlated [48], [1], [65].

In order to exploit these correlations and patterns, we
propose a framework capable of learning the dependencies
that exist among the predicted dimensional values. We use
BLSTM-NN as the basis for this framework as they appear
to outperform SVR in the prediction task at hand (see
Section 8). Given the setting described in Section 7.4, this
framework learns to map the outputs of the intermediate
predictors (each BLSTM-NN as formulated in (6)) onto a
higher (and final) level of prediction by incorporating cross-
dimensional (output) dependencies (see Fig. 4b). This
method, which we call output-associative fusion, can be
represented by a function foaf :

foaf : fArðx1Þ � fV alðx1Þ � � � � � fArðxmÞ
� fV alðxmÞ 7! yd;

ð8Þ

where m is again the total number of fused cues.
As a result, the final output, taking advantage of the

temporal and bidirectional characteristics of the regressors
(BLSTM-NNs), depends not only on the entire sequence of
input features xi but also on the entire sequence of
intermediate output predictions fd of both dimensions (see
Fig. 4b).

7.8 Experimental Setup

Prior to experimentation, all features used for training the
machine learning techniques have been normalized to the
range of ½�1; 1�, except for the audio ones, which have been
found to perform better with z-normalization (i.e., normal-
izing to mean ¼ 0 and standard deviation ¼ 1).

For validation purposes, we use a subset of the SAL-DB
that consists of 134 audiovisual segments (a total of 30,042
video frames) obtained by the automatic segmentation
procedure (see [46]). We employ subject-dependent leave-
one-out-validation evaluation as most of the works in the
field report only on subject-dependent dimensional emotion
recognition when the number of subjects and data are
limited (e.g., [42]).

For automatic dimensional affect prediction, we employ
two state-of-the-art machine learning techniques: Support
Vector Machines for Regression and bidirectional Long
Short-Term Memory Neural Networks. Experimenting
with SVR and BLSTM-NN requires that various para-
meters within these learning methods are configured and
the interaction effect between various parameters is
investigated. For SVR, we experiment with Radial Basis
Function (RBF) kernels (eð��kx�x0k2Þ) as the results out-
performed our initial polynomial kernel experiments. To
this aim, kernel specific parameters, such as the � RBF
kernel parameter (which determines how closely the
distribution of the data is followed) and the polynomial
kernel degree, as well as generic parameters, including the
outlier cost C, the tolerance of termination, and the � of the
loss function, need to be optimized. We perform a grid
search (using the training set) and select the best perform-
ing set of parameters to be used.

The respective parameter optimization for BLSTM-NNs
refers to mainly determining the topology of the network
along with the number of epochs, momentum, and learning
rate. Our networks typically have one hidden layer and a
learning rate of 10�4. The momentum is varied in the range
of ½0:5; 0:9�. All of these parameters can be determined by
optimizing on the given training set (e.g., by keeping a
validation set aside) while avoiding overfitting.

8 EXPERIMENTAL RESULTS

8.1 Single-Cue Prediction

To evaluate the performance of the employed learning
techniques for continuous affect prediction, we first experi-
mentwith single cues. Table 3presents the results of applying
BLSTM-NN and SVR (with radial basis function kernels) for
the prediction of valence and arousal dimensions.

We initiate our analysis with the valence dimension.
From both BLSTM-NNs and SVR, it is obvious that the
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Fig. 4. Illustration of (a) model-level fusion and (b) output-associative
fusion using facial expression and audio cues. Model-level fusion
combines valence predictions from facial expression and audio cues by
using a third network for the final valence prediction. Output-associative
fusion combines both valence and arousal values predicted from facial
expression and audio cues, again by using a third network which outputs
the final prediction.



visual cues appear more informative than audio cues. Facial
expression cues provide the highest correlation with the
ground truth ðCOR ¼ 0:71Þ compared to shoulder cues
ðCOR ¼ 0:59Þ and audio cues ðCOR ¼ 0:44Þ. This fact is also
confirmed by the RMSE and SAGR values. Facial expres-
sion cues provide the highest SAGR (0.84) indicating that
the predictor was accurate in predicting an emotional state
as positive or negative for 84 percent of the frames.

Works on automatic affect recognition from audio have
reported that arousal can be much better predicted than
valence using audio cues [26], [59]. Our results are in
agreement with such findings for prediction of the arousal
dimension audio cues appear to be superior to visual cues.
More specifically, audio cues (using BLSTM-NNs) provide
COR ¼ 0:59, RMSE ¼ 0:24, and AGR ¼ 0:76. The facial
expression cues provide the second best results with
COR ¼ 0:49, while the shoulder cues are deemed less
informative for arousal prediction. These findings are also
confirmed by the SVR results.

From Table 3, we also obtain a comparison of the
performance of the employed learning techniques. We
clearly observe that BLSTM-NNs outperform SVRs. In
particular, COR and SAGR metrics provide better results
for BLSTM-NNs (for all cues and all dimensions). The RMSE
metric also confirms these findings except for the prediction
of arousal from shoulder cues. Overall, we conclude that
capturing temporal correlations and remembering the tempo-
rally distant events (or storing them in memory) is of utmost
importance for continuous affect prediction.

8.2 Multicue and Multimodal Fusion

The experiments in the previous section have demonstrated
thatusingBLSTM-NNsprovidebetter results (for all cuesand

all dimensions) than using SVRs. Therefore, BLSTM-NNs are
employed for feature-level andmodel-level fusion, as well as
output-associative fusion (described in Section 7.7). Experi-
mental results are presented in Table 4, along with the
statistical significance test results. We performed statistical
significance tests (t-test) using alpha ¼ 0:05 (95 percent
confidence interval). We performed t-tests to compare the
RMSE results of the proposed output-associative fusion to
that of the best of model-level or feature-level fusion result
(for each cue combination). Table 4 shows the significant
results marked with a y. Overall, the output-associative
fusion appears to be significantly better than the other fusion
methods, except for prediction of valence from face-shoulder
and shoulder-audio cue combinations.

Looking at Table 4, feature-level fusion appears to be the
worst performing fusion method for the task and data at
hand. Although, in theory, the cross-cue temporal correla-
tions can be exploited by feature-level fusion, this does not
seem to be the case for the problem at hand. This is possibly
due to the increased dimensionality of the feature vector
along with synchronicity issues between the fused cues.

In general, model-level fusion provides better results
than feature-level fusion. This can be justified by the fact
that the BLSTM-NNs are able to learn temporal dependen-
cies and structural characteristics manifesting in the
continuous output of each cue. Model-level fusion appears
to be much better for predicting the valence dimension
rather than the arousal dimension. This is mainly due to the
fact that the single-cue predictors for valence dimension
perform better, thus containing more correct temporal
dependencies and structural characteristics (while the
weaker arousal predictors contain less of these dependen-
cies). Both fusion techniques reconfirm that visual cues are
more informative for valence dimension than audio cues.
Finally, the fusion of all cues and modalities provides us
with the best (most accurate) results.

Regarding the arousal dimension, we observe that the
performance gap between model-level and feature-level
fusion is smaller compared to that of valence dimension.
For instance, for the fusion of face and shoulder cues, the
feature-level fusion provided better COR and SAGR results
(but a worse RMSE) than model-level fusion.

Facial expression and audio cues have been the best
performing single cues for continuous emotion prediction
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TABLE 3
Single-Cue Prediction Results

for Valence and Arousal Dimensions
(F: Facial Expressions, S: Shoulder Cues, A: Audio)

TABLE 4
Fusion Results for the Three Methods Employed

The best results are obtained by employing output-associative fusion. Significant results are marked with a y. For comparison purposes, the average
agreement level between human coders is also shown in terms of RMSE, COR, and SAGR metrics.



(see Section 8.1). Therefore, it is not surprising that fusion of
these two cues provides the best feature-level fusion results.
For model-level fusion instead, the best results are obtained
by combining the predictions from all cues and modalities.

Finally, the proposed output-associative fusion provides
the best results, outperforming both feature-level and
model-level fusion. Similarly to the model-level fusion case,
the best results (for both dimensions) are obtained when
predictions from all cues and modalities are fused.

We denote that the performance increase of output-
associative fusion is higher for the arousal dimension
(compared to the valence dimension). This could be
justified by the fact that the single-cue predictors for
valence perform better than for arousal (Table 3) and thus
more correct valence patterns are passed onto the output-
associative fusion.

Table 4 also shows the average agreement level between
human coders in terms of RMSE, COR, and SAGR metrics
(calculated for each dimension separately). It is interesting
to note that when predicting the valence dimension, the
proposed output-associative fusion 1) appears to outper-
form the average human coder in terms of SAGR criterion,
and 2) provides prediction results that are relatively close to
human coders (in terms of RMSE and COR).

In Fig. 5, we illustrate a set of predictions obtained via
output-associative fusion. As can be observed from the
figure, the prediction results closely follow the structure
and the values of the ground truth.

Overall, the temporal dynamics of spontaneous multi-
modal behavior (e.g., when a facial or a bodily expression
starts, reaches an apex, and ends) have not received much
attention in the affective and behavioral science research
fields. More specifically, it is virtually unknown whether
and how the temporal dynamics of various communicative
cues are interrelated (e.g., whether a smile reaches its apex
while the person is shrugging his shoulders). The facial,

shoulder, and audio cues explored in this paper possibly
have different temporal dynamics. Accordingly, the
BLSTM-NNs are able to incorporate and model the
temporal dynamics of each modality independently (and
appropriately) in the output-associative and model-level
fusion schemes. This may be one reason why output-
associative and model-level fusion appear to perform better
than feature-level fusion.

9 CONCLUSIONS

The affect sensing and recognition field has recently shifted
its focus toward subtle, continuous, and context-specific
interpretations of affective displays recorded in naturalistic
and real-world settings and toward combining multiple
modalities for automatic analysis and recognition. The work
presented in this paper converges with this recent shift by

1. extracting audiovisual segments from databases
annotated in dimensional affect space and automa-
tically generating the ground truth,

2. fusing facial expressions, shoulder, and audio cues
for dimensional and continuous prediction of
emotions,

3. experimenting with state-of-the-art learning techni-
ques such as BLSTM-NNs and SVRs, and

4. incorporating correlations between valence and
arousal values via output-associative fusion to
improve continuous prediction of emotions.

Based on the experimental results provided in Section 8,
we are able to conclude the following:

. Arousal can be much better predicted than valence
using audio cues. For valence dimension instead,
visual cues (facial expressions and shoulder move-
ments) appear to perform better. This has also been
confirmed by other related work on dimensional
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Fig. 5. Example valence (a), (b) and arousal (c), (d) predictions obtained by output-associative fusion (gt: ground truth, pd: prediction).



emotion recognition [42], [26], [59]. Whether such
conclusions hold for different context and different
data remain to be evaluated.

. Emotional expressions change over the course of
time, and usually have start, peak, and end points
(temporal dynamics). It appears that such temporal
aspects (dynamics) are crucial in predicting both
valence and arousal dimensions. A learning techni-
que, such as the BLSTM-NNs, that can exploit these
aspects, appears to outperform SVR (the static
learning technique at hand).

. When working with temporal and structured emo-
tion data, choosing predictors that are able to
optimize not only the variance (of the predictor)
and the bias (to the ground truth), but also the
covariance of the prediction (with respect to the
ground truth) is crucial for the prediction task at
hand. Emotion-specific metrics (such as SAGR) that
carry valuable information regarding the emotion-
specific aspects of the prediction are also desirable.

. As confirmed by the psychological theory, valence
and arousal are correlated. Such correlations appear
to exist in our data where fusing predictions from
both valence and arousal dimensions (via output-
associative fusion) improves the results compared to
using predictions from either valence or arousal
dimension alone (both for feature-level and model-
level fusion).

. In general, multimodal data appear to be more
useful for predicting valence than for predicting
arousal. While arousal is better predicted by using
audio features alone, valence is better predicted by
using multicue and multimodal data.

Overall, we conclude that compared to an average
human coder, the proposed system is well able to
approximate the valence and arousal dimensions. More
specifically, for valence dimension, our output-associative
fusion framework approximates the intercoder RMSE
(� 0:141) and intercoder correlation (0.84) by obtaining an
RMSE ¼ 0:15 and COR � 0:8 (see Table 4). It also achieves
a higher SAGR (� 0:91) than the intercoder SAGR (0.86).

As future work, the proposed methodology remains to
be evaluated on extensive data sets (with a larger number of
subjects) annotated using a richer emotional expression
space with other continuous dimensions such as power,
expectation, and intensity (e.g., the newly released Semaine
Database [43]). Moreover, it is possible to exploit the
correlations between valence and arousal dimensions
inherent in naturalistic affective data utilizing other
machine learning techniques. For instance, Nicolaou et al.
[47] introduce an output-associative Relevance Vector
Machine regression framework that augments the tradi-
tional Relevance Vector Machine regression by learning
nonlinear input and output dependencies inherent in the
affective data. We will focus on exploring such output-
associative regression frameworks using unsegmented
audiovisual sequences.
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