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Continuous quantum error correction via quantum feedback control
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We describe a protocol for continuously protecting unknown quantum states from decoherence that incor-

porates design principles from both quantum error correction and quantum feedback control. Our protocol uses

continuous measurements and Hamiltonian operations, which are weaker control tools than are typically

assumed for quantum error correction. We develop a cost function appropriate for unknown quantum states and

use it to optimize our state-estimate feedback. Using Monte Carlo simulations, we study our protocol for the

three-qubit bit-flip code in detail and demonstrate that it can improve the fidelity of quantum states beyond

what is achievable using quantum error correction when the time between quantum error-correction cycles is

limited.

DOI: 10.1103/PhysRevA.65.042301 PACS number~s!: 03.67.Lx, 03.65.Yz, 03.65.Ta

I. INTRODUCTION

Long-lived coherent quantum states are essential for

many quantum information science applications, including

quantum cryptography @1#, quantum computation @2,3#, and

quantum teleportation @4#. Unfortunately, coherent quantum
states have extremely short lifetimes in realistic open quan-
tum systems due to strong decohering interactions with the
environment. Overcoming this decoherence is the chief
hurdle faced by experimenters studying quantum-limited
systems.

Quantum error correction is a ‘‘software solution’’ to this
problem @5,6#. It works by redundantly encoding quantum
information across many quantum systems. The key to this
approach is the use of measurements that reveal information
about which errors have occurred and not about the encoded
data. This feature is particularly useful for protecting the
unknown quantum states that appear frequently in the course
of quantum computations. The physical tools used in this
approach are projective von Neumann measurements that
discretize errors onto a finite set and fast unitary gates that
restore corrupted data. When combined with fault-tolerant
techniques, and when all noise sources are below a critical
value known as the accuracy threshold, quantum error cor-
rection enables quantum computations of arbitrary length
with arbitrarily small output error, or so-called fault-tolerant
quantum computation @7,8#.

Quantum feedback control is also sometimes used to com-
bat decoherence @9–11#. This approach has the advantage of
working well even when control tools are limited. The infor-
mation about the quantum state fed into the controller typi-
cally comes from continuous measurements and the opera-
tions the controller applies in response are typically
bounded-strength Hamiltonians. The performance of the
feedback may also be optimized relative to the resources that
are available. For example, one can design a quantum feed-
back control scheme which minimizes the distance between
a quantum state and its target subject to the constraint that all

available controlling manipulations have bounded strengths
@12#.

The availability of quantum error correction, which can
protect unknown quantum states, and quantum feedback con-
trol, which uses weak measurements and slow controls, sug-
gests that there might be a way to merge these approaches
into a single technique with all of these features. Previous
work to account for continuous time using quantum error
correction has focused on ‘‘automatic’’ recovery and has ne-
glected the role of continuous measurement @13–16#. On the
other hand, previous work on quantum state protection using
quantum feedback control has focused on protocols for
known states and has not addressed the issue of protecting
unknown quantum states @17,18#; however, see @19# for re-
lated work.

The paper is organized as follows. In Sec. II we review
quantum feedback control and introduce the formalism of
stochastic master equations. In Sec. III we present the three-
qubit bit-flip code as a simple example of a quantum error-
correcting code which may be generalized using the stabi-
lizer formalism. In Sec. IV we present our protocol for
quantum error feedback control and derive an optimal non-
Markovian feedback strategy for it. In Sec. V we use Monte
Carlo simulations to demonstrate this strategy’s efficacy for
the bit-flip code and compare it to discrete quantum error
correction when the time between quantum error correction
cycles is finite. In Sec. VI we give our conclusions.

II. QUANTUM FEEDBACK CONTROL

Consider an open quantum system evolving via the master
equation @20#

ṙ52i@H ,r#1D@c#r , ~1!

where

D@c#r5crc†
2

1

2
c†cr2

1

2
rc†c . ~2!

These dynamics may be thought of as the ensemble aver-
age over many quantum trajectories @23# in which an exter-
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nal agent ~such as the environment! continuously performs a
weak measurement @22# with Kraus operators ~for example!
@21#

V0512S iH1

1

2
c†c D dt , ~3!

V15cAdt . ~4!

On any particular trajectory, the dynamics obey a stochastic
master equation ~SME! @20,24#, such as

drc52i@H ,rc#dt1D@c#rcdt1H@c#rcdW , ~5!

dQ5^c1c†&cdt1dW , ~6!

where

H@c#r5cr1rc†
2r tr @cr1rc†# . ~7!

The c subscript above denotes conditioning on the full
record of the measurement current Q(t), and dW above de-
notes a diffusive Wiener increment @25# having ensemble
mean E@dW#50 and variance V@dW#5dt . The unraveling
of the master equation into quantum trajectories is not
unique; the diffusive unraveling above occurs, for example,
when the agent performs weak homodyne measurements on
an optical field c @24#.

The quantum trajectories picture is particularly useful
from a control theory perspective because we can imagine an
agent who, instead of disposing of the classical measurement
record, feeds it back into the system to control it. There are
two well-studied ways of doing this: Wiseman-Milburn, or
current feedback @9,24#, and estimate feedback @12#.

In current feedback, the feedback depends only on the
instantaneous measurement current IQ(t)5dQ(t)/dt . For
example, adding the Hamiltonian IQ(t)F to the SME ~5!
using current feedback leads to the dynamics @9#

drc~ t !52i@H ,rc~ t !#dt1D@c#rc~ t !dt1H@c#rc~ t !dW~ t !

2i@F ,crc~ t !1rc~ t !c†#dt1D@F#rc~ t !dt

2i@F ,rc~ t !#dW ~8!

dQ~ t !5^c1c†&cdt1dW~ t !. ~9!

A more general way to add feedback is to modulate the
Hamiltonian by a functional of the entire measurement
record. An important class of this kind of feedback is esti-
mate feedback, in which feedback is a function of the current
conditioned state estimate rc . This kind of feedback is of
especial interest because of the quantum Bellman theorem
@26#, which proves that the optimal feedback strategy will be
a function only of conditioned state expectation values for a
large class of physically reasonable cost functions. An ex-
ample of such an estimate feedback control law analogous to
the current feedback Hamiltonian used in Eq. ~8! is to add
the Hamiltonian ^IQ(t)&cF5^c1c†&cF , which depends on
what we expect the current IQ(t) should be given the previ-

ous measurement history rather than its actual instantaneous
value. Adding this feedback to the SME ~5! leads to the
dynamics

drc~ t !52i@H ,rc~ t !#dt1D@c#rc~ t !dt1H@c#rc~ t !dW~ t !

2i^IQ&c@F ,rc~ t !#dt , ~10!

dQ~ t !5^c1c†&cdt1dW~ t !. ~11!

III. QUANTUM ERROR CORRECTION

Although quantum feedback control has many merits, it
has not been used to protect unknown quantum states from
noise. Quantum error correction, however, is specifically de-
signed to protect unknown quantum states; for this reason it
has been an essential ingredient in the design of quantum
computers @27–29#. The salient aspects of quantum error
correction can already be seen in the three-qubit bit-flip
code, even though it is not a fully quantum error correcting
code. For that reason, we shall introduce quantum error cor-
rection and the stablizer formalism with this example.

The bit-flip code protects a single two-state quantum sys-
tem, or qubit, from bit-flipping errors by mapping it onto the
state of three qubits:

u0&→u000&[u0̄&, ~12!

u1&→u111&[u1̄&. ~13!

The states u0̄& and u1̄& are called the basis states for the code
and the space spanned by them is called the codespace,
whose elements are called codewords.

After the qubits are subjected to noise, quantum error cor-
rection proceeds in two steps. First, the parities of neighbor-
ing qubits are projectively measured. These are the
observables1

M 05ZZI , ~14!

M 15IZZ . ~15!

The error syndrome is the pair of eigenvalues (m0 ,m1) re-
turned by this measurement.

Once the error syndrome is known, the second step is to
apply one of the following unitary operations conditioned on
the error syndrome:

~21,11 !→XII , ~16!

~21,21 !→IXI , ~17!

~11,21 !→IIX , ~18!

~11,11 !→III . ~19!

1We use the notation of @27# in which X , Y , and Z denote the

Pauli matrices sx , sy, and sz , respectively, and their concatena-

tion denotes a tensor product ~e.g., ZZI5sz ^ sz ^ I!.
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This procedure has two particularly appealing character-
istics: the error syndrome measurement does not distinguish
between the codewords, and the projective nature of the mea-
surement discretizes all possible quantum errors onto a finite
set. These properties hold for general stabilizer codes as well
@27#.

If the bit-flipping errors arise from reservoir-induced de-
coherence, then prior to quantum error correction the qubits
evolve via the master equation

drnoise5g~D@XII#1D@IXI#1D@IIX# !r dt , ~20!

where gdt is the probability of a bit-flip error on each qubit
per time interval @ t ,t1dt# . This master equation has the so-
lution

r~ t !5a~ t !r01b~ t !~XIIr0XII1IXIr0IXI1IIXr0IIX !

1c~ t !~XXIr0XXI1XIXr0XIX1IXXr0IIX !

1d~ t !XXXr0XXX , ~21!

where

a~ t !5~113e22gt
13e24gt

1e26gt!/8, ~22!

b~ t !5~11e22gt
2e24gt

2e26gt!/8, ~23!

c~ t !5~12e22gt
2e24gt

1e26gt!/8, ~24!

d~ t !5~123e22gt
13e24gt

2e26gt!/8. ~25!

The functions a(t) –d(t) express the probability that the
system is left in a state that can be reached by zero, one, two,
or three bit flips from the initial state, respectively. After
quantum error correction is performed, single errors are iden-
tified correctly but double and triple errors are not. As a
result, the recovered state, averaged over all possible mea-
surement syndromes, is

r5@a~ t !1b~ t !#r01@c~ t !1d~ t !#XXXr0XXX . ~26!

The overlap of this state with the initial state depends on the
initial state, but is at least as large as when the initial state is
u0̄&; namely, it is at least as large as

Fenc5~213e22gt
2e26gt!/4.123~gt !2. ~27!

Recalling that a single qubit subject to this decoherence has
error probability p5gt , we see that, when applied suffi-
ciently often, the bit-flip code reduces the error probability
on each qubit from O(p) to O(p2).

This methodology for mapping p→p2 generalizes for a
full stabilizer code in which stabilizer generators $M l% are
measured to infer an error syndrome which is subsequently
used to apply a unitary correction. For more details regarding
this formalism, see Ref. @27#.

IV. CONTINUOUS QUANTUM ERROR CORRECTION

VIA QUANTUM FEEDBACK CONTROL

In this section we present a method for continuously pro-
tecting an unknown quantum state using weak measurement,
state estimation, and Hamiltonian correction. As in the pre-
ceding section, we introduce this method via the bit-flip
code.

A. Bit-flip code: Theoretical model

Suppose r is subjected to bit-flipping decoherence as in
Eq. ~20!; to protect against such decoherence, we have seen
that we can encode r using the bit-flip code @~12! and ~13!#.
Here we shall define a similar protocol that operates continu-
ously and uses only weak measurements and slow correc-
tions.

The first part of our protocol is to weakly measure the
stabilizer generators ZZI and IZZ for the bit-flip code, even
though these measurements will not completely collapse the
errors. To localize the errors even further, we also measure
the remaining nontrivial stabilizer operator ZIZ .2 The second
part of our protocol is to apply the slow Hamiltonian correc-
tions XII , IXI , and IIX corresponding to the unitary correc-
tions XII , IXI , and IIX , with control parameters lk that are
to be determined. If we parametrize the measurement
strength by k and perform the measurements using the un-
raveling ~5!–~6!, the SME describing our protocol is

drc5g~D@XII#1D@IXI#1D@IIX# !rcdt

1k~D@ZZI#1D@IZZ#1D@ZIZ# !rcdt

1Ak~H@ZZI#dW11H@IZZ#dW21H@ZIZ#dW3!rc

2i@F ,rc#dt , ~28!

dQ152k^ZZI&cdt1AkdW1 , ~29!

dQ252k^IZZ&cdt1AkdW2 , ~30!

dQ352k^ZIZ&cdt1AkdW3 , ~31!

where

F5l1XII1l2IXI1l3IIX ~32!

is the feedback Hamiltonian having control parameters lk .
Following the logic of quantum error correction, it is

natural to choose the lk to be functions of the error syn-
drome. For example, the choice

l15
l

8
~12^ZZI&c!~11^IZZ&c!~12^ZIZ&c!,

2The modest improvement gained by this extra measurement in

general is offset by an unfavorable scaling in the number of extra

measurements required when applied to general @@n ,k ,d## codes

having 2n2k stabilizer elements and only n2k generators.
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l25

l

8
~12^ZZI&c!~12^IZZ&c!~11^ZIZ&c!, ~33!

l35

l

8
~11^ZZI&c!~12^IZZ&c!~12^ZIZ&c!,

where l is the maximum feedback strength that can be ap-
plied, is reasonable:3 it acts trivially when the state is in the
codespace and applies a maximal correction when the state is
orthogonal to the codespace. Unfortunately this feedback is
sometimes harmful when it need not be. For example, when
the controller receives no measurement inputs ~i.e., k50), it
still adds an extra coherent evolution which, on average, will
drive the state of the system away from the state we wish to
protect.

This weakness of the feedback strategy suggests that we
should choose our feedback more carefully. To do this, we
introduce a cost function describing how far away our state is
from its target and choose a control which minimizes this
cost. The difficulty is that our target is an unknown quantum
state. However, we can choose the target to be the codespace,
which we do know. We choose our cost function, therefore,
to be the norm of the component of the state outside the
codespace. Since the codespace projector is PC5

1
4 (III

1ZZI1ZIZ1IZZ), the cost function is 12 f , where f (r)
5tr(rPC). Under the SME ~28!, the time evolution of f due
to the feedback Hamiltonian F is

d f f b

dt
52l1^YZI1YIZ&c12l2^ZY I1IYZ&c

12l3^ZIY1IZY &c . ~34!

Maximizing d f f b/dt minimizes the cost, yielding the optimal
feedback coefficients

l15l sgn^YZI1YIZ&c ,

l25l sgn^ZY I1IYZ&c , ~35!

l35l sgn^ZIY1IZY &c ,

where, again, l is the maximum feedback strength that can
be applied.

This feedback scheme is a bang-bang control scheme,
meaning that the control parameters lk are always at the
maximum or minimum value possible (l or 2l , respec-
tively!, which is a typical control solution both classically
@30# and quantum mechanically @31#. In practice, the bang-
bang optimal controls ~35! can be approximated by a
bandwidth-limited sigmoid, such as a hyperbolic tangent
function.

The control solution ~35! requires the controller to inte-
grate the SME ~28! using the measurement currents Q i(t)
and the initial condition rc . However, typically the initial

state rc(0) will be unknown. Fortunately the calculation of
the feedback ~35! does not depend on where the initial con-
dition is within the codespace, so the controller may assume

the maximally mixed initial condition re5
1
2 (u0̄&^0̄u

1u1̄&^1̄u) for its calculations. This property generalizes for a
wide class of stabilizer codes, as we prove in the Appendix,
and we conjecture that this property holds for all stabilizer
codes.

B. Intuitive one-qubit picture

Before generalizing our procedure, it is helpful to gain
some intuition about how it works by considering an even
simpler ‘‘code’’: the spin-up state ~i.e., u0&) of a single qubit.
The stabilizer is M 05Z , the noise it protects against is bit
flips X, and the correction Hamiltonian is proportional to X.
The optimal feedback, by a similar analysis to that for the
bit-flip code, is F5l sgn^Y &c X , and the resulting stochastic
master equation can be rewritten as a set of Bloch sphere
equations as follows:

d^X&c522k^X&cdt22Ak^X&c^Z&cdW , ~36!

d^Y &c522g^Y &cdt22k^Y &c22Ak^Y &c^Z&cdW

22l~sgn^Y &c!^Z&cdt , ~37!

d^Z&c522g^Z&cdt12Ak~12^Z&c
2!dW

12l~sgn^Y &c!^Y &cdt . ~38!

The Bloch vector representation (^X&,^Y &,^Z&) @3# of the
qubit provides a simple geometric picture of how it evolves.
Decoherence ~the g term! shrinks the Bloch vector, measure-
ment ~the k terms! lengthens the Bloch vector and moves it
closer to the z axis, and correction ~the l term! rotates the
Bloch vector in the y-z plane. Figure 1 depicts this evolution:

3The factor of
1
8 is included to limit the maximal strength of any

parameter lk to l .

FIG. 1. Bloch sphere showing the action of our feedback

scheme on one qubit. Wherever the Bloch vector is in the y-z plane,

the feedback forces it back to the spin-up state, which is the

codespace of this system. All the vectors shown lie, without loss of

generality, in the x50 plane.
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depending on whether the Bloch vector is in the hemisphere
with ^Y &.0 or ^Y &,0, the feedback will rotate the vector as
quickly as possible in such a way that it is always moving
towards the codespace ~spin-up state!. Note that if the Bloch
vector lies exactly on the z-axis with ^Z&,0, rotating it ei-
ther way will move it towards the spin-up state—the two
directions are equivalent, and it suffices to choose one of
them arbitrarily.

C. Feedback for a general code

Our approach generalizes for a full @@n ,k ,d## quantum
error-correcting code @29#, which can protect against depo-
larizing noise @3# acting on each qubit independently. This
noise channel, unlike the bit-flip channel, generates a full
range of quantum errors—it applies either X , Y , or Z to each
qubit equiprobably at a rate g . We weakly measure the n

2k stabilizer generators $M l% with strength k . For each syn-
drome m, we apply a Hamiltonian correction Fm with control
strength lm . The SME describing this process is

drc5g (
j5x ,y ,z

(
i51

n

~D@s j
(i)# !rcdt1k(

l51

n2k

D@M l#rcdt

1Ak(
l51

n2k

H@M l#dW jrc2i(
r51

R

lr@Fr ,rc#dt . ~39!

The number of feedback terms R needed will be less than
or equal to the number of errors the code corrects against.
The reason that this equality is not strict is that quantum
error correcting codes can be degenerate, meaning that there
can exist inequivalent errors that have the same effect on the
state—a purely quantum-mechanical property @27#.

We optimize the lr relative to a cost function equal to the
state’s overlap with the codespace. For a general stabilizer
code C, the codespace projector is

PC5

1

2n2k )
l51

n2k

~I1M l!

and the rate of change of the codespace overlap due to feed-
back is

d f f b

dt
52i tr(

r50

n2k

lr@PC ,Fr#r .

Maximizing this overlap subject to a maximum feedback
strength l yields the feedback coefficients

lr5l sgn^@PC ,Fr#&c . ~40!

This control solution, as for the bit-flip code, requires a
controller to compute the feedback ~40!. A natural question
to ask is how the scaling of the classical computation be-
haves. In the Appendix we show that the evolution of
(2n2k)2 parameters must be calculated in order to compute
the feedback for an @@n ,k ,d## code, which at first does not
seem promising. However, if one encodes mk qubits using m

copies of an @@n ,k ,d## code, as might well be the case for a

quantum memory, the SME ~39! will not couple the dynam-
ics of the m logical qubits; and, as in the bit-flip case, the
initial condition for the controller’s integration can still be
the completely mixed state in the total codespace. Then the
relevant scaling for this system, the dependence on m, is
linear: the number of parameters is m(2n2k)2.

V. SIMULATION OF THE BIT-FLIP CODE

In this section we present the results of Monte Carlo
simulations of the implementation of the protocol described
in Sec. IV for the bit-flip code.

A. Simulation details

Because the bit-flip code feedback control scheme @~28!–
~31!# uses a nonlinear feedback Hamiltonian, numerical
simulation is the most tractable route for its study. To obtain
rc(t), we directly integrated these equations using a simple
Euler integrator and a Gaussian random number generator.
We found stable convergent solutions when we used a di-
mensionless time step gdt on the order of 1026 and aver-
aged over 104 quantum trajectories. As a benchmark, a typi-
cal run using these parameters took 2–8 h on a 400 MHz
Sun Ultra 2. We found that more sophisticated Milstein @32#
integrators converged more quickly but required too steep a
reduction in time step to achieve the same level of stability.

All of our simulations began in the state rc(0)5u0̄&^0̄u be-
cause it is maximally damaged by bit-flipping noise and
therefore it yielded the most conservative results.

We used two measures to assess the behavior of our bit-
flip code feedback control scheme. The first measure we used
is the codeword fidelity Fcw(t)5tr„rc(0)rc(t)…, the overlap
of the state with the target codeword. This measure is appro-
priate when one cannot perform strong measurements and
fast unitary operations, a realistic scenario for many physical
systems. We compared Fcw(t) to the fidelities of one unpro-
tected qubit F1(t)5

1
2 (11e22gt) and of three unprotected

qubits F3(t)5„F1(t)…3.
The second measure we used is the correctable overlap

Fcorr~ t !5tr„rc~ t !Pcorr…, ~41!

where

Pcorr5r01XIIr0XII1IXIr0IXI1IIXr0IIX ~42!

is the projector onto the states that can be corrected back to
the original codeword by discrete quantum error correction
applied ~once! at time t. This measure is appropriate when
one can perform strong measurements and fast unitary op-
erations, but only at discrete time intervals of length t. We
compared Fcorr(t) to the fidelity Fenc(t) obtained when, in-
stead of using our protocol up to time t, no correction was
performed until the final discrete quantum error correction at
time t. As we showed in Eq. ~27!, the expression for Fenc(t)
may be calculated analytically; it is Fenc(t)5

1
4 (213e22gt

2e26gt);123g2t2.
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B. Results

We find that both our optimized estimate feedback
scheme ~35! and our heuristically motivated feedback
scheme ~33! effectively protect a qubit from bit-flip decoher-
ence. In Figs. 2 and 3 we show how these schemes behave
for the ~scaled! measurement and feedback strengths k/g
564, l/g5128 when averaged over 104 quantum trajecto-
ries. Using our first measure, we see that at very short times,

both schemes have codeword fidelities Fcw(t) that follow the

three-qubit fidelity F3(t) closely. For both schemes, Fcw(t)

improves and surpasses the fidelity of a single unprotected

qubit F1(t). Indeed, perhaps the most exciting feature of
these figures is that eventually Fcw(t) surpasses Fenc(t), the
fidelity achievable by discrete quantum error correction ap-
plied at time t. In other words, our scheme alone outperforms
discrete quantum error correction alone if the time between
corrections is sufficiently long.

Looking at our second measure in Figs. 2 and 3, we see
that Fcorr(t) is as good as or surpasses Fenc(t) almost ev-
erywhere. For times even as short as a tenth of a decoherence
time, the effect of using our protocol between discrete quan-
tum error correction cycles is quite noticeable. This improve-
ment suggests that, even when one can approximate discrete
quantum error correction but only apply it every so often, it
pays to use our protocol in between corrections. Therefore,
our protocol offers a means of improving the fidelity of a
quantum memory even after the system has been isolated as
well as possible and a discrete quantum error correction is
applied as frequently as possible.

There is a small time range from t>0.01 to t>0.05 for
the parameters used in Fig. 2 in which using our protocol
before the discrete quantum error correction actually under-
performs not doing anything before the correction. Our simu-
lations suggest that the reason for this narrow window of
deficiency is that, in the absence of our protocol, it is pos-
sible to have two errors on a qubit ~e.g., two bit flips! that
cancel each other out before discrete quantum error correc-
tion is performed. In contrast, our protocol will immediately
start to correct for the first error before the second one hap-
pens, so we lose the advantage of this sort of cancellation.
This view is supported by the fact that Fcorr(t) in our simu-
lations always lies above the fidelity line obtained by sub-
tracting such fortuitous cancellations from Fenc(t). In any
case, this window can be made arbitrarily small and pushed
arbitrarily close to the beginning of our protocol by increas-
ing the measurement strength k and the feedback strength l .

In Figs. 2 and 3, the Fcw(t) line is much more jagged than
the Fcorr(t) line. The jaggedness in both of these lines is due
to statistical noise in our simulation and is reduced when we
average over more than 104 trajectories. The reason for the
reduced noise in the Fcorr(t) line has to do with the proper-
ties of discrete quantum error correction—on average, neigh-
boring states get corrected back to the same state by discrete
quantum error correction, so noise fluctuations become
smoothed out.

The improvement our optimized estimate feedback proto-
col yields beyond our heuristically motivated feedback pro-
tocol is more noticeable in Fcw(t) than in Fcorr(t) as seen in
Figs. 2 and 3. Our optimized protocol acts to minimize the
distance between the current state and the codespace, not
between the current state and the space of states correctable
back to the original codeword, so this observation is perhaps
not surprising. In fact, optimizing feedback relative to
Fcorr(t) is not even possible without knowing the codeword
being protected. Nevertheless, our optimized protocol does
perform better, so henceforth we shall restrict our to discus-
sion to it.

FIG. 2. Behavior of our protocol with optimized feedback ~35!

for parameters k/g564, l/g5128, averaged over 104 quantum

trajectories. The analytical curves shown are as follows: the dashed

line is the fidelity of one decohering qubit, F1(t); the dashed-dotted

line is the fidelity of three decohering qubits, F3(t); and the dotted

line is the fidelity of an encoded qubit after one round of discrete

error correction, Fenc(t). Our simulation results are as follows: the

solid line is the codeword fidelity Fcw(t), and the thick solid line is

the correctable overlap Fcorr(t).

FIG. 3. Behavior of our protocol with nonoptimized feedback

~33! for parameters k/g564, l/g5128, averaged over 104 quan-

tum trajectories. As in Fig. 2, the dashed line is F1(t), the dashed-

dotted line is F3(t), the dotted line is Fenc(t), the solid line is

Fcw(t), and the thick solid line is Fcw(t). Note that this feedback is

qualitatively similar to that in Fig. 2 but does not perform as well.
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We investigated how our protocol behaved when the
scaled measurement strength k/g and feedback strength l/g
were varied using the two measures described in Sec. V A.
Our first measure, the codeword fidelity Fcw(t), crosses the
unprotected qubit fidelity F1(t) at various times t as de-
picted in Fig. 4. This time is of interest because it is the time
after which our optimized protocol improves the fidelity of a
qubit beyond what it would have been if it were left to itself.
Increasing the scaled feedback strength l/g improves our
scheme and reduces t , but the dependence on the scaled
measurement strength k/g is not so obvious from Fig. 4.

By looking at cross sections of Fig. 4, such as at l/g
580 as in Fig. 5, we see that for a given scaled feedback
strength l/g there is a minimum crossing time t as a func-

tion of measurement strength k/g . In other words, there is an
optimal choice of measurement strength k/g . This optimal
choice arises because syndrome measurements, which local-
ize states near error subspaces, compete with Hamiltonian
correction operations, which coherently rotate states between
the nontrivial error subspaces to the trivial error subspace.
This phenomenon is a feature of our continuous-time proto-
col that is not present in discrete quantum error correction; in
the former, measurement and correction are simultaneous,
while in the latter, measurement and correction are separate
noninterfering processes.

In order to study how our second measure, the correctable
overlap Fcorr(t), varies with k and l , we found it instructive
to examine its behavior at a particular time. In Fig. 6 we plot
Fcorr(t), evaluated at the time t50.2/g , as a function of k
and l . As we found with the crossing time t , increasing l
always improves performance, but increasing k does not be-
cause measurement can compete with correction. Since
Fenc(0.2/g)>0.927, for all the k and l plotted in Fig. 6,
using our protocol between discrete quantum error correction
intervals of time 0.2/g improves the reliability of the en-
coded data.

Finally, we note that when no feedback was performed
(l50), the continuous measurement of the syndrome by
itself did not offer any suppression of errors via some kind of
quantum Zeno effect @34#. This is because the decoherence
the measurements are competing with are also first order in
time by their Markovian nature. However, for Hamiltonian
errors, which affect the state to second order in time at the
earliest, we indeed found additional suppression of errors
arising solely from the continuous syndrome measurement.

VI. CONCLUSION

In many realistic quantum computing architectures, weak
measurements and Hamiltonian operations are likely to be
the tools available to protect quantum states from decoher-
ence. Moreover, even quantum systems in which strong mea-

FIG. 4. Time t at which Fcw(t)5F1(t) as a function of mea-

surement strength k/g and feedback strength l/g . This crossing

time is the time after which our optimized protocol improves the

fidelity of a qubit beyond what it would have been if it were left to

itself.

FIG. 5. Time t at which Fcw(t)5F1(t) as a function of mea-

surement strength k/g , keeping correction strength fixed at l/g
580.

FIG. 6. Fcorr at gt50.2 as a function of measurement strength

k/g and feedback strength l/g . This quantity corresponds to the

fidelity of a state given continuous error correction up to gt50.2, at

which point discrete error correction is performed.
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surements and fast operations are well approximated, such as
ion traps @33#, it is likely that these operations will only be
possible at some maximum rate. Our protocol is able to con-
tinuously protect unknown quantum states using only weak
measurements and Hamiltonian corrections and can improve
the fidelity of quantum states beyond rate-limited quantum
error correction. In addition, because our protocol responds
to the entire measurement record and not to instantaneous
measurement results, it will not propagate errors badly and
therefore has a limited inherent fault tolerance that ordinary
quantum error correction does not.

We expect that our protocol will be applicable to other
continuous-time quantum information processes, such as re-
liable state preparation and fault-tolerant quantum computa-
tion. We also expect that our approach will work when dif-
ferent continuous-time measurement tools are available, such
as direct photodetection. Finally, although current computing
technology has limited our simulation investigation to few-
qubit versions of our protocol, we are confident that many of
the salient features we found in our three-qubit bit-flip code
protocol will persist when our protocol is applied to larger
codes.
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APPENDIX A: FEEDBACK BASED ON THE COMPLETELY

MIXED STATE

Even though our quantum error correction feedback con-
trol scheme described in Sec. IV does not distinguish be-
tween codewords, it is not obvious that we do not need to
know the initial codeword to integrate its SME and calculate
the relevant expectation values. Since we are interested in
protecting unknown quantum states, this property is crucial
to our scheme’s success. Fortunately, for a large class of
stabilizer codes, the computation of the feedback can be
done by assuming the initial state is the completely mixed

codespace state re5(1/2n)) l51
n2k(I1M l), which we prove

here.
We begin by defining the set G for the @@n ,k ,d## code C

with stabilizer S(C) as

G5$asuaPPn ,sPS~C!,@s ,a#50 iff uau is even%,

~A1!

where uau denotes the weight of a , namely the number of
nonidentity terms in its representation as a tensor product of
Pauli operators.

It is also useful to define the normalizer N(S) for the code
as the group of operators which commute with every element
in S(C). The elements of N(S)\S can be thought of as the
encoded operations for the code—they move one codeword
to another.

We shall rewrite the conditions we require for the compu-
tation of the feedback to be insensitive to the initial code-
word in terms of the Pauli basis coefficients Rg(r) which we
define as follows. Let g5s i1

^ ••• ^ s in
, where i1 , . . . ,in

take on the values x ,y ,z ,I and s I5I . Then

Rg~r ![tr~rg !/2n
5^g&/2n. ~A2!

We can then formulate the problem in terms of proving con-
ditions on G as follows:

~1! For every Rg used in our feedback scheme, gPG .
~2! For every gPG and every r1 and r2 in C, Rg(r1)

5Rg(r2).
~3! Evolution under the SME couples members of the set

$RgugPG% only to each other.
Theorem. Let C be an @@n ,1,3##4 stabilizer code whose

stabilizer S(C) has generators of only even weight and whose
encoded operations set N(S)\S has elements of only odd
weight.5 Then the conditions 1–3 above are satisfied; conse-
quently, our scheme does not require knowledge of where the
initial codeword lies in C.

Proof: In this proof, any variable of the form aa is an
arbitrary element of Pn , and any variable of the form sa is
an arbitrary element of S(C). We prove each of the condi-
tions listed above separately.

Condition 1. By construction, G contains all M of the

form M5s is j
(k) , where @s i ,s j

(k)#Þ0. These are precisely the

operators used to compute the feedback in Eq. ~40! for a
code encoding one qubit.

Condition 2. Let g5asPG and let rPC. We know either
aPS , aPN(S)\S , or a¹N(S). Suppose aPS . Then g

PS acts trivially on all states in the codespace, so Rg

51/2n tr(rg)51/2n for this case. Now suppose aPN(S)\S .
Then @a ,s#50, and since asPG , uau is even. But every
element of N(S)\S has odd weight by hypothesis, which is a
contradiction. Hence a cannot be in N(S)\S . Finally, sup-
pose a¹N(S). Then there exists some s8PS such that

@a ,s8#Þ0; let s8 be such an element. Then for uc& ,uf&PC,

4The restriction to @@n ,1,3## codes is for simplicity of analysis;

the proof may be extended to larger codes. Note that for an

@@n ,1,3## code, the F l in the master equation ~39! are all of the

form s j
(k) , where this notation denotes the weight-one Pauli opera-

tor s j acting on qubit k.
5It is possible that this restriction may be able to be relaxed;

however, it is sufficiently general that it holds for the most well-

known codes, including the bit-flip code, the five-bit code, the Ste-

ane code, and the nine-bit Shor code. This condition also ensures

that G is consistent, i.e., if a jskPG and a j5ansm , then an and

smsk also fulfill the conditions for an(smsk) to be in G.
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^cuauf&5^cuas8uf&52^cus8auf&52^cuauf&50.
~A3!

Hence for this case Rg51/2n tr(ras)50. Note that these
expressions for Rg must be the same no matter where r is in
the codespace; therefore, for every gPG and r1 ,r2

PC, Rg(r1)5Rg(r2).
Condition 3. We prove this by considering dRM , where

MPG: we will show that dRM5 f ($RNuNPG%) for some
real function f. Now, for any MPPn , dRM5Tr(dr M ),
where dr is given by the master equation ~39!, and we can
show condition 3 for each term of the master equation sepa-
rately. First, substituting in the master equation shows that
any term of the form D@c#rdt contributes either 0 or the
simple exponential damping term 22RM to dRM if M and c

commute or anticommute, respectively.
As for the master equation term H@s j#dW jr , by writing

the master equation in the Pauli basis we can see that RN

contributes to dRM through this term precisely when Ns j

5M and $s j ,N%Þ0. Here we know that MPG , so we may
write M5aks l ~with the appropriate restriction on @ak ,s l#
depending on the weight of ak). N5aks ls j5aksm , so the
condition above that @s j ,N#50 becomes @s j ,aks ls j#
5(ak@s j ,s ls j#1@s j ,ak#s ls j)⇒@s j ,ak#50. Therefore,

@ak ,sm#5s l@ak ,s j#1@ak ,s l#s j5@ak ,s l#s j which is zero or
not depending on the original weight of ak . So if M5aks l

is such that MPG , N5aksm must fulfill that same condi-
tion, implying that NPG also.

Similarly, RN contributes to dRM through the master

equation term @s j
(k) ,r# when Ns j

(k)
5M and @s j

(k) ,N#Þ0.

Now, MPG so M5a lsm , again with the appropriate restric-
tion on @a l ,sm# depending on the weight of a l . Then N

5s j
(k)a lsm[ansm , so the condition above that $s j

(k) ,N%
Þ0 becomes

$s j
(k) ,s j

(k)a lsm%5s j
(k)@s j

(k) ,a l#sm1s j
(k)a l$s j

(k) ,sm%

5s j
(k)$s j

(k) ,a l%sm2s j
(k)a l@s j

(k) ,sm#50.

~A4!

We can now divide the analysis of this term into two

cases. Case 1 occurs when s j
(k)a l has weight ua lu, implying

that $a l ,s j
(k)%50. Then $s j

(k) ,s j
(k)a lsm%5

2s j
(k)a l@s j

(k) ,sm#50, which implies that @sm ,an#

5@sm ,s j
(k)#a l1s j

(k)@sm ,a l#5s j
(k)@sm ,a l# . So @sm ,an#50

just when @sm ,a l#50, which means that NPG since uanu
5ua lu.

In Case 2, s j
(k)a l has weight ua l61u⇒@a l ,s j

(k)#50.

Then Eq. ~A4! becomes $s j
(k) ,s j

(k)a lsm%5s j
(k)a l$s j

(k) ,sm%
50, which implies that @sm ,an#5$sm ,s j

(k)%a l

1s j
(k)$sm ,a l%5s j

(k)$sm ,a l%. So @sm ,an#50 just when

$sm ,a l%50, which means that NPG since uanu5ua l61u.
j

Thus we have shown the three conditions that all the R’s
used to compute the feedback are of the form RNPG ; that for
a given MPG , RM will be the same for any state in the
codespace; and that evolution via the master equation mixes
the R’s of the form RNPG only with each other. Therefore,
we can conclude that taking the initial state to be any state in
the codespace, including the true initial state and the entirely
mixed state, produces the same expression for the feedback
when the master equation is evolved conditioned on a mea-
surement record, and so we do not have to know the true
initial state to use our protocol.

Another consequence of using the completely mixed state
for feedback arises from the fact that doing so corresponds to
discarding information about the state of the system. There-
fore, this procedure should reduce the number of parameters
needed to compute the feedback. Unfortunately, this only
leads to a modest reduction in the number of parameters,
which can be found by using a simple counting argument.
There are 2n/2k

52n2k different error subspaces, including
the no-error ~code! space, and if we start with the completely
mixed state in the codespace we do not need to worry at all
about any movement within any of these spaces. We must
only worry about which error space we are actually in, along
with coherences between these spaces, so we find that
(2n2k)2 parameters are needed to describe the system.
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