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Abstracc In a database to which data is continually added, users

may wish to issue a permanent query and be notified whenever

data matches the query. If such continuous queries examine only

single records, this can be implemented by examining each record

as it arrives. This is very efficient because only the incoming

record needs to be scanned. This simple approach does not work

for queries involving joins or time. The Tapestry system allows

users to issue such queries over a database of mail and bulletin

board messages. The user issues a static query, such as “show me

all messages that have been replied to by Jonesfl as though the

database were fixed and unchanging. Tapestry converts the query

into an incremental query that efficiently finds new matches to the

original query as new messages are added to the database. This

paper describes the techniques used in Tapestry, which do not

depend on triggers and thus be implemented on any commercial

database that supports SQL. Although Tapestry is designed for fil-

tering mail and news messages, its techniques are applicable to

any append-only database.

1.0 INTRODUCTION

Anew class of queries, continuous queries, are similar to conven-

tional database queries, except that they are issued once and

henceforth run “continually” over the database. As additions to the

database result in new query matches, the new results are returned

to the user or application that issued the query. This paper concen-

trates on the semantics and implementation of continuous queries.

Continuous queries were developed and incorporated into the Tap-

estry system for filtering streams of electronic documents, such as

mail messages or news articles. The Tapestry system maintains

information about a document, such as its author, date, keywords,

and title, in a database. The database is append-only, that is, new

documents are added to the database as they arrive and are never

removed. Continuous queries are used to identify documents of

interest to particular users. Although the concept of continuous

queries was developed for Tapestry, it applies to any database that

is append-only.

Tapestry users desire more elaborate filtering queries than those

that use only the properties of the individual message, such as

selecting all messages that were written by a given person or that
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contain a given keyword [16]. Tapes~’s filter queries can also

select a message based on its relationship to other messages, such

as the fact that it is a reply to a particular message or that one or

more messages are replies to it. They can select a message baaed

on its age, such as the fact that it is two weeks old and nobody has

replied to it. They can select a message based on annotations

attached to the message by one or more users for example, users

might vote for messages they liie rmd have such votes registered

as annotations on the messages. To support these desires, the sys-

tem cannot simply examine each message as it arrives, but needs

to run arbitrary database queries continuously.

Writing a continuous query should be as easy as writing a con-

ventional query for a relational database. In the Tapestty system,

users write continuous queries in a special language TQL (Tapes-

try Query Language) that is similar to SQL. These queries are

written as queries over a static database. This permits a user to try

out a query by running it as an ad hoc query against the database,

refine it, and then try it again. Once satisfied with the query, the

user cart install it in the Tapestry system as a continuous query.

For its storage, the Tapeshy system uses a commercial relational

database management system that supports SQL. A straightfor-

ward method of implementing a continuous query over such a

database is to periodically execute the query, say once every hour.

Figure 1 outlines the basic algorithm.

Figure 1 Periodic Query Execution

FOREVER DO

Execute Query Q
Return results to user
Sleep for some period of time.

ENDLOOP

While simple to implement, this approach has three main defi-

ciencies:

. Nondeterministic results. The records selected by a query

depend on when that query is executed. A query that is exe-

cuted every hour on the hour may produce a different compos-

ite set of results than the same query executed once per day or

even every hour on the half hour. This means that two users

with the exact same continuous query could be presented with

a different set of results.

● Duplicates. Each time the query is executed the user will see

ail records selected by the query, old as well as new. Since the

database is append-only, the set of records returned by a query

will increase steadily over time. In practice, users are only

interested in the records matchhtg a continuous query that

have not been previously returned.
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. Inejjiciency. Executing the same query over and over again is

overly expensive. Just as the size of the query’s result set

increases over time, so does the execution cost. Ideally, the cost

of executing a continuous query should be a function of the

amount of new data, and not dependent on the size of the whole

database.

The problem of duplicates can be solved by having the system

remember the complete set of records that has been returned to

each user. The system would then take care to only return query

results that are not in thk set. While this approach strictly avoids

duplicates, it still has efficiency problems. Much of the computa-

tion cost of the query is spent selecting records that are subse-

quently discarded.

Active databases, such as the 21ert system [12], address the ineffi-

ciency problem by using triggers to execute queries over new data

as it arrives. Continuous queries are similar to the active queries of

the ~ert system but can be implemented in standard SQL [2].

Tapestry transforms each user-provided query into an incremental

query that is run periodically. These incremental queries execute

efficiently and avoid duplicates, to a large extent, by limiting the

query to the portion of the database that might newly match the

query. This is similar to the approach taken by active databases but

does not require a trigger mechanism. The result of running a

sequence of incremental queries is the same as executing the orig-

inal user query after every update to the database, but the compu-

tation cost is drastically reduced.

The following section explains in more detail why periodic execu-

tion can yield nondeterministic results and proposes a clean, time-

independent semantics for continuous queries. Sections 4.0 and

5.0 detail the translation steps needed to convert a general SQL

query into its associated incremental query. Section 6.0 dkcusses

the implementation of incremental queries and their performance

when run on a sample database. Section 7.0 dkcusses other

approaches to supporting continuous queries and related work.

Section 8.0 suggests applications of continuous queries and future

work.

2.0 CONTINUOUSSEMANTICS

The most significant problem with simply executing a query per-

iodically is that this can produce nondeterministic results. Consider

the query: “select messages to which nobody has sent a reply.”

When a message is added to the database, it matches the query.

However, once a reply message arrives, the message bhg replied

to no longer matches the query. If a particular message were to

arrive in the database at 8:15 and a reply to it arrived at 8:45, then

the message would not be returned by a system that ran the algo-

rithm in Figure 1 every hour on the hour, but would be returned by

a system that ran it every hour on the half hour (since the message

would match at 8:30).

Thk raises the general question: What are reasonable semantics

for a query that executes “continuously?” In other words: What

guarantees can be provided to users about the set of records

returned by a continuous query?

Users should not need to understand the implementation of the

system in order to know what results to expect as the result of a

continuous query. The semantics should be independent of how

the system operates internally and when it chooses to perform var-

ious operations such as executing queries. Two users with the

same continuous query should see the same result data. Thk

implies that the semantics of continuous queries should be time-

independent.

We suggest that the semantics of a continuous query should be

defined as follows:

Continuous semantics: the results of a continuous query is the

set of data that would be returned if the query were executed at

every instant in time.

This says that the behavior of a continuous query is that it appeam

to be executed continuously by the system. That is, the system

guarantees to show the user any record that would be selected by

the query at any time. The system may implement this behavior in

any number of ways, such as collecting results and presenting

them to the user periodically, but the actual set of results eventu-

ally seen by the user is well-defined and time-independent.

To be precise, let Q(t) be the set of records returned by the execu-

tion of query Q over the database that existed at time t.That is,

Q(t) is the result of running Q at time t. Now let Q~(t) denote

the total set of data returned up until time t by executing query Q

as a continuous query

Q~t) = UQ(s) (EQ1)

When a query Q is executed with continuous semantics, it returns

QM(t), not Q(t).

Continuous queries are qualitatively different from one-time que-

ries. Consider the user who wants to see all the messages that do

not receive replies. The obvious formulation: “select messages to

which nobody has sent a reply,” when executed as a continuous

query, would return every message to the user, since every mes-

sage has no replies when it first arrives. This is undoubtedly not

what the user intended. The problem does not lie with continuous

semantics, but rather with the user’s imprecise specification of his

continuous query. Flndlng the messages that never receive a reply

would require waiting forever, but a short wait will find most mes-

sages that never receive a reply. Thus a more precise query would

be something like “select messages that are more than two weeks

old and to which nobody has sent a reply.” This illustrates the

point that not all database queries are suitable as continuous que-

ries. Nevertheless, continuous queries are a valuable concept.

Throughout the remainder of this paper, continuous semantics are

assumed to be the desired semantics for continuous queries.

One very important question remains: Can continuous semantics

be realized in a practical system? Certainly, running a query at

every time is not possible, and if it were possible, would not be

practical. This paper dkcusses techniques for providing continu-

ous semantics in an effective and efficient manner.

3.0 PROVIDINGCONTINUOUSSEMANTICS

The key to providing efficient continuous queries is the following

observation If we have a query Q~ that can compute Q~(t) as

defined above, then the simple technique of periodically executing

QM @ ret~iw$ the new results yields continuous sern~tics.
The frequency with which QM is executed simply affects the size

of each batch of results, not the collective set of results. Figure 2

shows a modification to the rdgorithm in Figure 1 that obeys con-

tinuous semantics. The algorithm keeps track of the last time it

ran, T.

TMs algorithm works because QM is monotone, that is,

Q~~l) ~ QJ~2) whenevertl < t2.Many interesting queries are
not monotone and are converted to QM. We call QM the minimum

bounding monotone query since it is the smallest monotone query

that returns all the messages in Q.
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Figure 2 Continuous Query Execution using QM.

Set T = –m
FOREVER DO

set t:= current time
Execute queries ~t)andQ~T)

8Return Q~t)- ~@touser
set T:= t
Sleep for some period of time

ENDLOOP

Tapestry’s approach to implementing continuous queries is two-

fold. Fust, a query, Q, is converted into the minimum bounding

monotone query, Q~. If the user’s query is already monotone then

QMisUSU~lYtie same as Q, andin ~Y event produces the same
results. Section 4.0 gives the details of how to generate an efficient

QM.

Second, t e monotone query is converted into an incremental

query, J , that can quickly compute an appro imation to

aQ~t) - Q~~). The queries Q, Q~, and can all be in

expressed in SQL.

Incremental queries e introduced for performance reasons. An

incremental query, 2 , is parametrized by two time : the time

that it was last executed ~, and the current time t. d) ‘c, t is

intended to return the records that begin matching query Q~ in

the time interval from ‘t to t.The incremental query works by

restricting the portion of the database over which it runs to those

objects that might match the query and have not been previously

returned. This allows incremental queries to run much more effi-

ciently than queries over the complete database.

An incremental query should obey the following two properties:

It returns enough Q~t) – ~T) G Q’(T, t).

$

(a)

It doesn’t return too much: (T, 0 G QMW. (b)

Ideally, Q’ should return exactly the new results, but the current

rewrite rules do not achieve this, UnlikeI Q~, which is exactly the

mirdmum bounding m otone query, Q is only an approximation

of Q&) - Q~@ . (?’ returns at least the new results, and occa-

sionally returns a past result. Thus, to guarantee that previously

returned results are not returned to a user again, the system must

keep track of these results and explicitly filter out duplicates. In

practice, if users are not bothered by occasional duplicates, then

the results of the incremental queries can be returned directly to

users.

As long as the minimum bounding monotone query for Q can be

obtained and this query can b incrementalized so as to satisfy the

two properties above, then the incremental query can be executed

periodically and still guarantee continuous semantics. This is

because the union of the results of all the incremental queries is

exactly Q~t):

which is true because (using (a))

QAJ = Q#J - Q~-c=) U

QM(~2)- Q,&I) U ... u QM(f/J- Q~~n-I)

and (using (b))

This indicates an effective strategy for executing a continuous

query using a conventional relational database manager. The basic

algorithm is presented in Figure 3. The system runs each incre-

mental query, queues up the results for delivery to users, records

the time at which each query was run, waits some period of time,

and then repeats this process using the recorded times as parame-

ters to the incremental queries

Figure 3 Continuous Query Execution

Set T. –W
FOREVER DO

set t:= current tirye
Execute query Q (z, t)

Return result to user
set T:= t
Sleep for some period of time

ENDLOOP

As mentioned before, in the Tapestry system users write queries in

a special language TQL (Tapestry Query Language). We have

developed algorithms for taking a TQL query, transforming it to

be monotone, incrementaIizing that monotone query, and then

converting it to SQL. Rather than introduce TQL, the following

sections present versions of the algorithms that translate SQL que-

ries. Because they were designed to work for TQL, the algorithms

have some restrictions in the SQL environment. The major dMer-

ence is that Tapestry queries always want duplicate suppression

(DISTINCT) because they are always retrieving mail messages.

While the algorithms below do not always suppress duplicates,

they often do, and this means they do not support the use of aggre-

gates (such as SUM or COUNT). Another area we have not

addressed is outer joins. These are areas for future work.

The following sections examine various constructs that can be

used in SQL and discuss how to generate minimal bounding

monotone and incremental queries for continuous queries that use

these constructs. The rules for producing monotone and incremen-

tal queries make two principal assumptions about the database (1)

the database is append-only, namely, records are added to the data-

base but no data is deleted or modhied, and (2) each table contains

a timestamp column, called “ts”, that indicates when the record

was added to the database.

4.0 MONOTONE QUERIES

4.1 The Class of Non-monotone queries

Whhout the database being append-only, no query is monotone

since it is always possible to delete a record that has been previ-

ously returned as the result of a query, thereby reducing the que-

ry’s result set, For an append-only database, many common SQL

queries are monotone. For example, SQL queries that are simply

boolean predicates over the column values of a single table are

monotone in nature. Such queries can include the comparison

operators (=, <, >, ...) and boolean operators (AND, OR, and

NOT). The following is an example of a simple query:

SELECT * FROM tbl

WHERE

tbl.fieldl = “Foo” AND NOT tbl.field2 < tbl.field3
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This query is monotone because once a record is added to the data-

base, it either satisfies the query or not, and that satisfaction

doesn’t change over time (since the database is append-only).

Queries involving joins are also monotone in nature. Again, this is

because the database is append-only. Conceptually, a query with a

join is the same as a query over a single table formed by taking the

cross product of the joined tables. This single “join” table is

append-only as long as the base tables are append-only.

Tapestry queries may include the following constructs, which can

lead to non-monotone queries:

. functions that read the current time

Q subqueries prefaced by “NOT EXISTS”

First consider time. While the original SQL standard does not

include an explicit data type for storing dates, many versions of

SQL, such as Sybase’s Transact-SQL [15], as well as the proposed

new ISO SQL standard [2], do support dates. These systems gen-

erally provide functions that read and return the current date and

time. In Transact-SQL, for example, GetDateo is such a function,

and the 1S0 SQL standard uses the variable CURRENT.TIMES-

TAMP. Queries involving calls on such functions are often non-

monotone. The simplest example of a query involving time is

SELECT * FROM tbl WHERE tbl.field op GetDateo

When op is c, this query can be illustrated as follows:

— TRUE

FALSE

1
>

t

tbl.field

The horizontal axis represents time t, (the value returned by Get-

Dateo), and the graph represents the boolean value of the query

tbl.field < GetDateo for a fixed message. It is false when time t is

less than tbl.field (evaluated for that one fixed message), true when

t is greater than tbl.tield. The fact that this graph is monotone

increasing translates directly into the query being monotone.

When op is >, the graph is decreasing, and the query is no longer

monotone.

TRUE —
FALSE

>

t

tbl.field

An example of a non-monotone query is “select messages that

have not expired”, or

SELECT * FROM m WHERE m.expires > GetDateo

‘Ilk is not monotone because any message that satisfies the query

will eventually cease to satisfy it (after it expires).

The graph argument just given suggests that a query is monotone

if its only reference to time is in subexpressions of the form

E < GetDateo

or
E < GetDateo

and likely to be non-monotone if it the comparison operator is >,

>, =, or*.

Here E is some date-valued expression, possibly involving fields

of one or more tables and other buih-in functions. The next section

will show that queries involving the AND and OR of terms of the

first form are indeed monotone. However, boolean combinations

of terms of the second form are not always non-monotone. For

example,

SELECT * FROM tbl

WHERE

(tbl,field > GetDateo AND tbl.string = “base”) OR

(tbl.field < GetDateo AND

tbl.strirtg LIKE “%base”)

is monotone, because it carJ be rewritten as

SELECT * FROM tbl

WHERE tbl.string = “base” OR

(tbl.fields GetDateo AND

tbl.string LIKE “%base”)

assuming that the two calls to GetDateo in the original query

return the same value.

This example illustrates that a monotone rewriting rule is not the

same as a test for monotonicity. Although the rewriting rules of the

next section will rewrite the first form of the query into the second,

it requires knowledge about the semantics of LIKE to conclude

that the two queries are the same, and thus that the original query

was monotone.

Only the failure of monotonicity due to time has been discussed so

far. A second cause of nonmonotonicity is the use of NOT

EXISTS. The simple query “select messages that have no reply”,

might be written in SQL as

SELECT * FROM msgs m

WHERE NOT EXISTS (

SELECT * FROM msgs ml

WHERE ml .inreplyto = m,msgid)

This is non-monotone because a message may satisfy the query for

a while, but then fail because of the arrival of a reply. No explicit

occurrence of time in the query is involved. Assuming that each

append-only table has a column named “ts” that contains a times-

tamp of when the row was added to the table, the following figure

illustrates the non-monotonicity.

TRUE —

t

ml .ts

A more realistic non-monotone query is “select messages that are

more than two weeks old and to which nobody has sent a reply.”

Although it involves time, it uses the monotone construction E e

GetDateo, but is still non-monotone because of NOT EXISTS.

4.2 The Basic Rewriting Rules

This section will show how to compute the minimal bounding

monotone query for any SQL query in stanalzrd form (see below).

Throughout the next two sections, several shorthands are used in

expressing SQL queries. Table 1 lists these shorthands and their

SQL equivalents. In particular, the term t used in a query refers to

the current time. All instances oft in a query should obtain the

same value. To ensure thk, t could be a parameter to the query that

is set by calling GetDateo exactly once, QM(t) occasionally refers

to both the query Q~ and the set of records returned by Q~ when

evaluated at time t. The meaning should be clear from context.
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Standard form queries have the form

SELECT ,.. FROM tbll, tb12, ...

WHERE (En AND E12 AND.. AND El~,) OR

(Ezl AND E22 AND ,,. AND Ezk,) OR

...

(Enl AND En2 AND ... AND Enk )
“

where each E/j is either of the form NOT EXISTS(q), or a boolean

expression without subqueries. Furthermore if Eti involves tiie,

then it must be of the form top c, where op is one of <, =, >, S, 2,

#, and c is an arithmetic expression that does not involve t. The

subqueries q of NOT EXISTS(q) must also be in standard form.

The technical report gives examples to show how most common

SQL queries can be rewritten to this standard form [17].

Table 1 SQL shorthands.

t

c+ 2 weeke

MAX(CI, C2, . . . . Ck) < t

t < MIN(dl, da .... d/J

P(x, y ...)

AND P(xj)
l<i<k

OR P(xi)
l<i<k

CURRENT_TIMESTAMP or GetDateo

c + INTERVAL”14 DAY or
DateAdd(week, 2, c)

c,<t ANDc2ct AND... ANDc~c t

t<dl ANDt<d2AND ... ANDt<dk

Some expression involving x, y ...

P(xl) AND f(X2) AND ... AND p(X~)

P(xl) OR P(X.2) OR ... OR p(X~)

The rewrite rules need only consider each of the AND subexpres-

sions, since the minimal bounding monotone query QM of a query

Q in the form P OR R is PM OR RM. Here is a proofi

~Q(s)

~ (P(s) OR R(s))

U (P(s) u R(s))

(9P(s) u ~R(s))

(PM(t) OR R&))

(EQ5)

This section assumes there are no NOT EXISTS terms. Then each

AND subexpression has the form (,!31AND E2 AND ... AND Ek).

If a term Ei doesn’t test the current time (the GetDateo function),

then its truth value cannot change as time passes. Since the truth

values of these terms are unchanging with respect to time, they

don’t affect the monotonicity of the query. Each of the remaining

terms are of the form c op Z,with op a simple relational test,

A device that will simplify the algorithms is to add a term tbl.ts < t

for each table tbl (recall that each table has a ‘ts’ column with the

time the row was added). Thus the query

SELECT * FROM tbl WHERE tbl.field = “joe”

becomes

SELECT * FROM tbl

WHERE tbl.field = “joe” AND tbl.ts < t

After the manipulations are over, any remaining tbl,ts e tterms are

redundant and cart be removed since a record will not apperu in the

table before time tbl,ts. An example follows shortly.

To avoid multiple cases, first assume that op is < or > (the minor

changes needed for the other relational operators are indicated at

the end of this section). Then each AND subexpression is of the

fomcl<t~... A~cn<t~t<dl AND,., ANDt<dm

AND P, where P is the conjunction of all the terms that don’t

involve t. The tbl.ts < tterms mentioned above simply add to the

list of ci’s. The expression c1 < t AND C2 c t AND . . . AND C. c t is

equivalent to MAX(Cl, C2, .... Cn) c t,and the expression t < dl

AND t c d2 AND ... AND t< dm is equivalent to tc MIN(dl, d2,

.... din). Thus, the AND subexpression can be rewritten as

MAx(cl, C2, .... Cn) < tAND t< MIN(dl, d2, .... dm) ANDP

where P is the conjunction of all the terms that don’t involve t.If

MAx(cl, C2, .... Cn) c MIN(dl, d2, ..,, din), then the AND subex-

pression is true between those times, as in the figure below.

I
I I I I t
c1 C2 dl d2 d3

If MAX(C1, C2, .... Cn) > MIN(dl, d2, .... din), then the AND subex-

pression can never be true. Combining these cases yields

MAx(cl, C2, .... Cn)< MIN(dl, d2, .... dm) AND MAx(cl, cz, ....

cn)<t ANDP.

Since SQL does not have MAX and MIN functions as such, this

must be rewritten as

AND(cj c d) AND f:i~(:i c O AND p
l<i<n

~<j<m

Here are two examples. Fwst, consider the query “select messages

whose date field is in the future,” This can be written as

SEL~ m.msgid FROM m WHERE t < m.date

After adding the m.ts < t subexpression, c1 = m.ts and dl = m.date,

so the monotone query is

SELECT m.msgid FROM m

WHERE m.ts c m.date AND m.ts e t

The redundant m.ts e t can be removed for a final answer of

SELECT * FROM m WHERE m.ts c m.date

Note how the introduction of the m.ts < t tenrt is reflected in the

final answer. For a second example, consider the query “select

messages that are between 2 and 3 weeks old”, which can be writ-

ten in SQL as

SELECT * FROM m

WHERE m.ts + 2 weeks c tAND t c m.ts + 3 weeks

There is no need to add art m.ts < tsubexpression, since it would

be redundant. Then c1 = m.ts + 2 weeks, dl = m.ts + 3 weeks, so

the monotone query is

SELECT * FROM m

WHERE m.ts + 2 weeks c m.ts + 3 weeks AND

m.ts + 2 weeks c t

Or simplifying,
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SELECT * FROM m

WHERE m.ts + 2 weeks < t

Here is an example. The query “select messages more than 2

weeks old that no one has replied to” might be written in SQL as

The operatorss and 2 can be dealt within the same spirit. For

example, if there is a subexpression c’ S t, then add c’ in with the

ci’s, but change c’ < tto c’s t.If there is also a subexpression tS

d’, then add d’ in with the ~’s, but in the first AND operation,

change c’< d’ to c’s d’. Finally, convert tetms of the form el = t

intoelS tANDt Se1artde2#t intoe2<t ORe2>t.

4.3 Handling NOT EXISTS terms

The previous section required that there were no NOT EXISTS

terms in the query. This restriction is now removed by allowing

terms of the form

NOT EXISTS(

SELECT * FROM tbll, tb12, .... tbln WHERE R).

These new terms can be thought of as “for every” terms, since

-13xP(x) is the same as VX-#(x).

Complications arise if the subexpression R involves calls to Get-

Dateo. Since calling GetDateo returns the current vahte of time t,

R is written as R(t) to indicate that it depends on the current time.

First, assume that the function R(t) is already monotone (this

includes the case when R does not involve t,that is, does not con-

tain any GetDateo calls).

The NOT EXISTS subexpression shown above is true for the orig-

inal query Q(t) if no records exist at time t that satisfy the R(t).’As

before, the rewrite rules need to add tbl.ts < tsubexpressions to

encode the fact that messages are not in the database until time t=

tbl.ts:

NOT EXISTS (

SELECf’ * FROM tbll, tb12, .... tblk

WHERE R(t) AND

tbll .ts < tAND tb12.ts < t AND ... AND tblk.ts < t).

This is equivalent to

NOT EXISTS (

SELECT * FROM tbll, tb12, .... tblk

WHERE

R(t) AND MAX(tbll.ts, tb12.ts, .... tblk.ts) < t).

As explained in the previous section, each disjunct can be handled

separately, and each disjunct containing a NOT EXISTS subex-

pression will be in the form

SELECT * FROM m

WHERE m.ts + 2 weeks < tAND

NOT EXISTS(

SELECT * FROM m ml

WHERE ml.inreplyto = m.msgid)

addktg the MAX subexpression gives

SELECT * FROM m

WHERE m.ts + 2 weeks < tAND

NOT EXISTS(

SELECT * FROM m ml

WHERE ml .inreplyto = m.msgid AND ml .ts < t)

C = m.ts + 2 weeks, so the monotone query is

SELECT * FROM m

WHERE m.ts + 2 weeks < tAND

NOT EXISTS(

SELECT * FROM m ml

WHERE

ml .inreplyto = m.msgid AND

ml .ts < m.ts + 2 weeks)

This says “select messages more than 2 weeks old that did not

receive a reply in their first two weeks”, which is exactly the

smallest monotone query returning at least the messages of the

original query.

Next, consider the most general case, where R(t) is not necessarily

monotone. Unfortunately, R(t) cannot simply be converted to the

minimal bounding monotone query and use the rules from above,

as this would change the meaning of the query. For example, con-

sider the query “select messages that have not received a reply for

the last two weeks.” This is

SELECT m.msgid FROM m

WHERE NOT EXISTS(

SELECT * FROM m ml

WHERE

ml .irtreplyto = m.msgid AND t< ml .ts + 2 weeks).

which means “select messages for which there does not exist a

reply less than two weeks old.” Making the subquery in the NOT

EXISTS monotone produces a query that means “select messages

for which there does not exist a reply of any age,” which is not the

same query.

MAX(CI, C~, . . . . CJ < t AND

M~(dl, d2, ... . dm) > t AND P AND
Monotonizing a NOT EXISTS with arbitrary R(t), requires finding

NOT EXISTS (
a way to quantify over time, turning NOT EXISTS(...)...) into 3 t

SELECT * FROM tbll, tb12, .... tblk
NOT EXISTS(...) ....). It is not possible to quantify over tin SQL,

WHERE
but it is possible to quantify over tbl.ts. For more details, see the

R(t)AND MAX(tbll .ts, tb12.ts, .... tblk.ts) < t)
technical report [17].

Because R(t) is monotone, any row that satisfies it can never

cease to satisfy it as time goes on. Therefore, the NOT EXISTS

subexpression can never go from FALSE to TRUE. Thus, it suf-

fices to test R at the earliest time that the rest of the dkjunct could

become true, namely C = MAX(CI, C2, .... c.). The subexpression

becomes

C < tAND MIN(dl, d2. .. .. dm) > t AND P AND

NOT EXISTS (

SELECT * FROM tbll, tb12, .... tblk

WHERE

R(C) AND MAX(tbll .ts, tb12.ts, .... tblk.ts) < C)

5.0 INCREMENTAL REWRITE RULES

This section now explains how to compute ~(~, t)from Q~ (t).

The hard work was done in the previous section, which gave the

algorithms for computing Q~ from Q.

Simply setting ~(~, t) = QM (t) AND (NOT Q~(~)) would be very

inefficient since typically both QM(t) and QM (~) will involve

searching the whole database, and will both return large sets of

messages that are mostly identical. To get a more efficient form for

&(’c, t) consider a very sim le query such as “select messages

Jfrom joe”. For this query (~, t) is obvious: just check the records

that arrived in the interval (’c, t),namely
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SELECT * FROM m WHERE

m.from = “joe” AND ~ S m.ts < t

The same idea works in general. Note that the rewriting rules of

the previous section always result in a QM of the form ORi(Pi

AND ci < t), where ci is a MAX of constants. In the case that QM

has NOT EXISTS subexpressions, there maybe NOT EXISTS

inside the Pi, but the monotone rewrite will make it independent of

t. Choosing ~(~, t) = ORi(Pi AND ~ < Ci < t) clearly satisfies ~(~,

t) c QM(t) since @is just QM with an extra restriction. TO show

QM(t) – QM(T) ~ @(T, t), compute

QM(t) - QMO)

= ORi(Pi ND ci < t)AND NOT(OR1{Pj Am cj < ~))

= ORi(Pl AND ci < t)ND A~J{N~ Pj OR CJ2 T)

= ORi[(Pi AND ci < t)Am ~J(NOT Pj OR cj 2 ~)]

= ORi[(Pi ~ 7 S Cj< t) AND

A~j>i (NOT P, OR C2 T)]

This shows that QM(t) _ Q~(z) G ORi(Pi AND ~ S ci < t) = @(T,

t). This is not the only choice for ~(~, t), but it is a simple one that

should run efficiently over the database (because of the zs ci < t

guard), and for most queries be reasonably close to the “ideal” of

QM(t) - QM(T).

As an example of the above, consider the query “messages that

received a reply.” This might be written in SQL as

SELECT ml .msgid FROM m ml, m m2

WHERE m2.inreplyto = ml.msgid

Adding MAX(ml .ts, m2.ts) < tand applying the above gives @(z,

t)as

SELECT ml .msgid FROM m ml, m m2

WHERE m2.inreplyto = ml .msgid AND

~ < MAx(ml.ts, m2.ts) < t

which expands out to

SELECT ml .msgid FROM m ml, m m2

WHERE m2.inreplyto = ml .msgid AND

ml.ts < tAND m2.ts < tAND

(~< ml.ts OR ~ < m2.ts)

6.0 IMPLEMENTATION, EXPERIENCE, AND

PERFORMANCE

6.1 The Tapestry service

The techniques for converting a query into a minimal bounding

monotone query and then to an incremental query are used in the

Tapestry service. The Tapestry service gathers articles from Net-

News and indexes them in a Sybase relational database. Tapestry

users can install continuous queries to select interesting articles

with specific characteristics. Articles matching any of a user’s con-

tinuous queries are sent to the user via electronic mail.

When a Tapestry user adds a new continuous query, it is first con-

verted into its minimal bounding monotone query if the query is

not already monotone. This query is then converted into an incre-

mental query. The incremental query is added to the database as a

stored procedure that takes two date parameters, one indicating the

last time that this procedure was executed (f) and one indicating

the current time. Installing each incremental query as a stored pro-

cedure allows Sybase to parse the query, generate a query plan,

and then compile the query so that it runs efficiently. Once a query

is installed in this manner, it never needs to be recompiled, unless

the user decides to modify the query.

The Tapestry query engine simply executes the algorithm outlined

in Figure 3. That is, it wakes up periodically and calls each of the

stored incremental queries with the appropriate parameters, Infor-

mation about when each query was last executed as well as lists of

which articles have been selected by which queries is maintained

in the database along with the queries and the indexed information

extracted from the news articles. The articles themselves are not

stored in the database.

The Tapestry service has keen in operation for over 12 months and

has been used daily by its developers (a group of 5). A second ver-

sion of the Tapestry service will be released shortly for more gen-

eraJ use by researchers at Xerox PARC.

6.2 Performance measurements

Incremental queries were introduced as a cost-effective implemen-

tation of continuous queries. A key conjecture has been that the

incremental queries generated by the rewrite rules described in

section 5.0 can be run efficiently by a commercial relational data-

base manager. The question is: can a reasonably intelligent query

optimizer produce suitable query plans for such queries? In order

to answer this question, a number of experiments and measure-

ments were conducted.

Figure 4 Test queries.

Q1. “Select messages from the comp.databases newsgroup”

SELECT msgid FROM msgs

WHERE newsgroup = “comp.databases”

Q2. “Select messages from all of the comp.sys newsgroups”

SELECT msgid FROM msgs

WHERE newsgroup LIKE “comp.sys.%”

Q3. “Select messages that have a reply sent to comp.databases”

SELECT m.msgid FROM msgs m, msgs ml

WHERE ml.inreplyto = m.msgid

AND ml .newsgroup = “comp.databases”

Q4. “Select messages more than 4 weeks old that have not been

replied to”

SELECT m.msgid FROM msgs m

WHERE m.ts < dateadd(week, -4, getdateo)

AND NOT EXISTS (

SELECT * FROM msgs ml

WHERE ml.inreplyto = m.msgid)

Q5. “Select first messages in conversation chains greater than two

in length”

SELECT m.msgid FROM msgs m, msgs ml, msgs m2

WHERE m.inreplyto =””

AND ml .inreplyto . m.msgid

AND m2.inreplyto = ml.msgid

6.2.1 Methodology

All of the performance experiments discussed in this section con-

sist of running queries over a trimmed-down version of the Tapes-

try database, containing data extracted from 380,000 news articles

(or messages). This information is stored in a table, called “msgs”,

which has one record per article. The “msgs” table contains the

following fields: msgid, from, subject, date, newsgroup, inreplyto,

and ts. Most of these fields are character strings whose meanings

should be evident. The “inreplyto” field contains the unique identi-

fier (msgid) of the message to which the given message is a
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respons~ this field is blank if the message is not a reply. The “ts”

field is the timestamp indicating when the message data was added

to the database. The data is stored as a clustered index on the “ts”

field. Non-clustered indices are maintained on the msgid, from,

date, newsgroup, and inreplyto fields.

Figure 4 lists the set of queries measured. (The queries are written

in Sybase’s Transact-SQL.) These are representative of typical

continuous queries submitted by Tapestry users. To measure the

cost of executing a query, each query was executed once to “warm

start” the buffer cache, and then executed 10-20 times in succes-

sion. Each measurement reported in the next section is the average

elapsed time to execute a query. All times are in seconds. For most

queries, all of the data fits in the buffer cache, so the measurements

do not include disk 10s. We would have preferred to start with an

empty buffer cache, but convincing Sybase to flush its cache is not

easy.

6.2.2 Results

The first experiment measured the time to execute a non-incre-

mentalized query compared to the time to execute the incremental

version of the same query for various values of ~. Values of T were

chosen so that the range horn ‘t to the current time included the

complete database, 10% of the database, and 1% of the database.

The notation ti(n%) is used to indicate that the incremental ver-

sion of query Q was run with a time range covering nYo of the

database. Figure 5 presents the measured execution times.

Figure 5 The cost of incremental queries vs. regular queries
(seconds).

Query Q Q@o%) d(lo%) (2’(1%)

Q1 2.8 123.8 4.2 0.086

Q2 138.0 139.3 5.7 0.18

Q3 10.6 10.2 8.0 8.5

Q4 9405.2 13105.4 2118.7 1373.5

Q5 819.0 1276.6 1210.6 1230.8

Ideally, the cost of executing @(loO%) should be comparable to

the cost of executing the original query. In some cases this is true

and in some, notably for query #1, it is not true. For the original

query #1, the query optimizer uses the index on the newsgroup

field. For the incrementalized query #1, the optimizer decides to

use the clustered index on the “ts” field instead. This turns out to

be a bad choice. Using the clustered index is preferable only when

~ is recent enough that the incremental query considers a small

percentage of the database. In practice, this is always the case.

The most disturbing measurements in Figure 5 are those showing

that the incremental versions of queries #3 and #5 run no faster

than the full queries. This is not a fundamental problem with the

incremental queries, but merely a limitation in the Sybase query

optimizer. A smarter query optimizer that can utilize multiple indi-

ces for join queries should yield better results [9].

To understand this, consider incremental query #3 (in which

“@tau” is the parameter containing the value of @:

SELECT m.msgid FROM msgs m, msgs ml

WHERE ml .inreplyto = m.msgid

AND ml.newsgroup = “comp.databases”

AND (m.ts > @tau OR ml.ts > @tau)

Sybase cannot deal effectively with the timestamp restrictions in

the query since they are ORed together. Thus, it chooses to use the

index on the newsgroup field to get the candidate set of “ml “s and

then use the index on the msgid field to get the “m”s. This is the

same plan chosen for the original query, so it is not surprising that

the two queries have similar execution costs.

The Tapestry system can take advantage of domain-specific

knowledge to get a more efficient incremental query. In particular,

since reply messages are known to come after messages to which

they reply, the incrementalized version of query #3 can be more

simply written as:

SELECT m.msgid FROM msgs m, msgs ml

WHERE ml .inreplyto = m.msgid

AND ml .newsgroup = “comp.databases”

AND ml.ts > @tau

Query #5 can be treated similarly. TMs revised query, when

handed to Sybase, does perform much better than the original

query for small values of c The new execution times are presented

in Figure 6. Q3’ and Q5’ are the revised queries.

Figure 6 The cost of incremental queries using a single
timestamp comparison.

Query Q @( IOO%) ~(10%) (j(l%)

Q3 10.6 10.2 8.0 8.5

Q3’ 10.6 619.0 9.1 0.60

Q5 819.0 1276.6 1210.6 1230.8

Q5’ 819.0 1268.7 158.3 9.6

A more general technique for efficiently running the incremental-

ized version of queries involving joins of two (or more) tables,

such as Query #3, is to break them up into two (or more) queries,

each of which can be more readily optimized. For example, query

#3 becomes:

SELECT m.msgid FROM msgs m, msgs ml

WHERE ml .inreplyto = m.msgid

AND ml .newsgroup = “comp,databases”

AND ml.ts > @tau AND ml.ts 2 m.ts

SELECT m.msgid FROM msgs m, msgs ml

WHERE ml .inreplyto = m.msgid

AND ml.newsgroup = ‘{comp.databases”

AND m.ts > @tau AND m.ts 2 ml .ts

Ruining these two queries and summing their execution times

yields an improvement over the original cost of @(l %).

Figure 7 The cost of incremental queries as a function of T.
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The next set of measurements demonstrates that the cost of run-

ning an incremental query is proportional to the number of mes-

sages that have been added to the database since the query last ran
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and not proportional to the overall size of the database. Figure 7

plots the results of running incrementalized Query #1 for various

values oft. The value of ‘c was varied so that the proportion of the

database considered by the incremental query ranged from the

whole database to none of it. As expected. the cost of executing

the query decreases as z increases.

Figure 8 plots the cost of executing incrementalized Query #3

(with a single ~ comparison) for various database sizes. In this

experiment, the number of messages in the range from ~ to the cur-

rent time was kept constant at about 10% of the maximum data-

base size, or about 38,000 messages. The execution cost remains

basically constant as the database size grows.

Figure 8 The cost of incremental queries as a function of
database size.
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All of the experiments reported thus far were run over a database

with simple indices, that is, indices built on the values of single

fields. A better indexing scheme is to provide composite indices

on indexed fields. These composite indices are built by appending

the thnestamp value to the field value. They provide a big

improvement for incremental queries that include equivalence

comparisons and do not hinder other comparisons. For example,

replacing the index on the newsgroup field with a composite index

on the concatenation of the newsgroup and timestamp fields sub-

stantially benefits the incremental versions of both query #1 and

#3. This is shown in Figure 9. The composite index relieves the

query optinizer from having to choose between using the news-

group and timestarnp index

Figure 9 The cost of incremental queries with a composite
index on (newsaroum ts).

Query Q Q’(1OO%) Q’(lo%) &( I%)

QI 2.4 2.7 0.022 0.002

Q3 6.1 5.3 5.3 5.3

Q3’ 5.2 5.3 0.187 0.011

7.0 RELATED WORK

Recently, much work has been done on active databases

[8][11][14]. Active databases allow users to specify actions to be

executed whenever changes are made to a table. These systems

give the actions access to the new data being added or deleted

from the database. For any given continuous query, it would be

possible to write a trigger that would look at the new data provided

and use it to calculate the new query results. This would still not

handle time queries.

The ~ert system[12] provides active queries, which are very sim-

ilar to continuous queries. Lke continuous queries, active queries

provide continuing results for queries over append-only databases.

However, flert cannot actively compute queries such as “all mes-

sage that are two weeks old,”

~ert implements active queries using the Stsrburst database sys-

tem by checking for new query matches whenever data is added to

the append-only tables. The batching inherent in our style of incre-

mental queries should allow more efficiency when many small

chunks of data are added to a table. In addition, our techniques

require no changes to the underlying database system.

Differential update algorithms for materialized views are related to

incremental queries [1]. These algorithms determine the insertions

needed to update a view given updates to the base tables. The set

of inserted records are essentially incremental results to the query

that specifies the view. Tapestry uses similm algorithms, but rather

than relying on “delta” relations provided by the database system,

it rewrites continuous queries into incremental queries that run

over the existing tables of the append-only database.

Some message-processing systems perform filtering of continuous

data streams based on per-user profiles [4] [6][7][10]. That is, these

systems allow users to provide a collection of predicates over the

contents of a message, document, or other form of record. When a

new message arrives, it is comprwed against each of a user’s predi-

cates, and if any of them “match” the message, then it is returned

to the user. These predicates area form of continuous queries.

However, the type of queries supported is quite limited. All of

existing filtering systems restrict a predicate to be a simple query

over the fields and contents of a single object, These systems do

not support continuous queries involving joins or time.

Temporal (or historical) databases [3][5][13] record every change

made to a table, allowing a query to ask about the state of the data-

base at some time in the past. A typical implementation technique

is to associate with each record a time range indicating over what

time interval the record is valid. Queries must be rewritten to

ensure consistency; for instance, the records participating in a join

must both have been valid at the same time.

The append-only tables with timestamps for new records used in

historical databases match nicely the requirements for continuous

queries. It should be possible to add our techniques to a historical

database. The resulting system would allow continuous queries

over tables while relaxing the append-only restriction. This is an

area for future work.

8.0 CONCLUSIONS

Continuous queries run “continuously” over a growing database.

These queries can be arbitrarily complex, including joins of multi-

ple tables, calls to read the current time, and existential subqueries.

Whh continuous semantics, the results of such a query are well-

specified aad time-independent. Specifically, a user is guaranteed

to see any record that ever matched the query.

A variety of applications ranging from information filtering to data

monitoring to active reminders, can make use of continuous que-

ries. For example, continuous queries have proven to be vrduable

in the Tapestry system, a service that finds interesting messages

based on per-user interest profiles. Such profiles are represented as

a set of continuous queries. Many existing databases, such as those

storing payroll data, billing information, stock market reports, res-

ervations, or reminders, share the append-only nature of the Tapes-

try database, and hence, are suitable targets for continuous queries.

Continuous queries are no more difficult to write than traditional

database queries. In fact, the Tapestry system allows users to write

continuous queries and ad hoc queries in the same language. Thk
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permits users to experiment with and refine a query before install-

ing it as a continuous query.

Tapestry’s implementation of continuous queries has three signifi-

cant features:

● Use of conventional relational databases. Tecbriques that

rewrite a query fust into a minimal bounding monotone query

and then into an incremental query enable continuous queries to

be implemented on top of a commercial database manager.

Moreover, performance experiments indicate that incremental

queries execute efficiently given appropriate indices for the

database. A clustered index on the timestamp field of each

record is strongly recommended.

● Support for time-oriented queries. To illustrate the difference

between current active databases and Tapestry, consider the fol-

lowing example. Suppose a database contains reminders, where

each reminder includes a “whenToRemind” field. Then the fol-

lowing continuous query can serve to issue the reminders:

“SELECT * FROM reminders WHERE whenToRemind = t“.

A trigger-based system cannot handle this since the reminders

should be delivered at certain times instead of in response to

database changes.

● Flexible scheduling. An incremental query, derived from the

minimal bounding monotone query, produces the same overall

set of results independent of its frequency of execution. This

permits the system to vary this frequency in response to server

load or user requirements. For instance, in the Tapestry system,

some users want to see messages selected by their queries as

soon as possible while others only read such messages once per

day or once per week. Tapestry can set the “timeliness” of

query execution on a user-by-user basis. This flexibility in

scheduling incremental queries is not possible in systems based

on triggers.

The results of a continuous query maybe returned to a user by

several means, including sending them in electronic messages (as

is done in Tapestry), writing them to a file, updating a per-user

database, or making them available via a database cursor (ala

Aert).

This paper presents a consistent semantics for continuous queries

and a model for efficient execution of such queries. However,

there are some classes of queries for which efficient incremental

versions are not known. This includes queries involving aggre-

gates, such as “select messages that have been voted on by more

than 5 people” or “select messages that are among the top 10 vote

getters.” Supporting queries of this sort, as well as relaxing the

append-only restriction on databases, is a fruitful area for future

work.
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