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Abstract 

In many recent applications, data may take the form of 

continuous data soeams, rather than finite stored data 

sets. Several aspects of data management need to be re- 

considered in the presence of data streams, offering a new 

research direction for the database community. In this pa- 

per we focus primarily on the problem of query process- 

ing, specifically on how to define and evaluate continuous 

queries over data streams. We address semantic issues 

as well as efficiency concerns. Our main contributions are 

threefold. First, we specify a general and flexible architec- 

ture for query processing in the presence of data streams. 

Second, we use our basic architecture as a tool to clar- 

ify alternative semantics and processing techniques for 

continuous queries. The architecture also captures most 

previous work on continuous queries and data streams, as 

well as related concepts such as triggers and materialized 

views. Finally, we map out research topics in the area of 

query processing over data streams, showing where pre- 

vious work is relevant and describing problems yet to be 

addressed. 

1 Introduction 

Traditional database management systems (DBMSs) ex- 

pect all data to be managed within some form of persistent 

data sets. For many recent applications, the concept of 

a continuous data stream is more appropriate than a data 

set. By nature, a stored data set is appropriate when signif- 

icant portions of the data are queried again and again, and 

updates are small and/or relatively infrequent. In contrast, 

a data stream is appropriate when the data is changing 

constantly (often exclusively through insertions of new 

elements), and it is either unnecessary or impractical to 

operate on large portions of the data multiple times. 

Several applications naturally generate data streams as 

opposed to data sets: financial tickers, performance mea- 

surements in network monitoring and traffic management, 

log records or click-streams in web tracking and personal- 

ization, manufacturing processes, data feeds from sensor 

applications, call detail records in telecommunications, 
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and others. Because today's database systems are ill- 

equipped to perform any kind of special storage manage- 

ment or query processing for data streams, heavily stream- 

oriented applications tend to use a DBMS largely as an 

offline storage system, or not at all. Like other relatively 

recent new demands on data management (e.g., triggers, 

objects), it would be beneficial to provide stream-oriented 

processing as an integral part of a DBMS. Several aspects 

of data management need to be reconsidered in the pres- 

ence of data streams. The STREAM (STanford stREam 

datA Management) project at Stanford is addressing the 

new demands imposed by data streams on data manage- 

ment and processing techniques. 

In this paper we focus on defining a solid frame- 

work for query processing in the presence of continu- 

ous data streams. We consider in particular continuous 

queries [TGNO92], which are queries that are issued once 

and then logically run continuously over the database (in 

contrast to traditional one-time queries which are run once 

to completion over the current data sets). In network traf- 

fic management, for example, continuous queries may be 

used to monitor network behavior online in order to de- 

tect anomalies (e.g., link congestion) and their cause (e.g., 

hardware failure, denial-of-service attack). Continuous 

queries may also be used to support load balancing or 

other network performance adjustments [DG00]. In finan- 

cial applications, continuous queries may be used to mon- 

itor trends and detect fleeting opportunities [Tra]. Both of 

these applications are characterized by a need for continu- 

ous queries that go well beyond simple element-at-a-time 

processing, by rapid data streams, and by a need for timely 

online answers. 

The organization of the rest of  the paper is as follows: 

In Section 2 we provide a broad survey of previous 

work relevant to data stream processing and continu- 

ous queries. Although there has been only a handful 

of papers addressing the topic directly, a number of 

papers in related areas contain useful techniques and 

results. 

In Section 3 we introduce a concrete example to mo- 

tivate our discussion of continuous queries over data 

streams. 

• In Section 4 we define a general and flexible archi- 

tecture for query processing in the presence of data 
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streams. Also in Section 4 we use our basic architec- 

ture to specify alternative semantics for continuous 

queries, and to classify previous related work. We 

also use the architecture to clarify how continuous 

queries over data streams relate to triggers and mate- 

rialized views. 

• In Section 5 we map out, in some detail, a number of 

open research topics that must be addressed in order 

to realize flexible and efficient processing of contin- 

uous queries over data streams. 

• Sections 6 and 7 discuss our vision of and plans for 

a general-purpose Data Stream Management System 

(DSMS). 

2 Related Work 

In this section we provide a general discussion of past 

work that relates in some way to continuous queries 

and/or data streams. A more technical analysis of some of 

the work will be provided in Section 4.3, after we present 

our basic architecture. 

Continuous queries were an important component 

of  the Tapestry system [TGNO92], which performed 

content-based filtering over an append-only database of 

email and bulletin board messages. The system supported 

continuous queries expressed using a quite restricted sub- 

set of SQL, in order to make guarantees about efficient 

(incremental) evaluation and append-only query results. 

The notion of continuous queries for a much wider spec- 

trum of environments is formalized in [Bar99]. The XFil- 

ter content-based filtering system [AF00] performs ef- 

ficient filtering of XML documents based on user pro- 

files. The profiles are expressed as continuous queries 

in the XPath language [XPA99]. Xyleme [NACP01] is a 

similar content-based filtering system that enables very 

high throughput with a restricted query language. The 

Tribeca stream database manager [Su196] provides re- 

stricted querying capability over network packet streams. 

We will revisit much of this work in Section 4.3. 

The Chronicle data model [JMS95] introduced append- 

only ordered sequences of tuples (chronicles), a form of 

data stream. They defined a restricted view definition lan- 

guage and algebra that operates over chronicles together 

with traditional relations. The view definition restrictions, 

along with restrictions on the sequence order within and 

across chronicles, guarantees that the views can be main- 

tained incrementally without storing any of the chronicles. 

Two recent systems, OpenCQ [LPT99] and NiagaraCQ 

[CDTW00], support continuous queries for monitoring 

persistent data sets spread over a wide-area network, 

e.g., web sites over the internet. OpenCQ uses a query 

processing algorithm based on incremental view main- 

tenance, while NiagaraCQ addresses scalability in num- 

ber of queries by proposing techniques for grouping 

continuous queries for efficient evaluation. Within the 

same project as NiagaraCQ, reference [STD+00] dis- 

cusses the problem of providing partial results to long- 

running queries on the internet, where it is acceptable to 

provide an answer over some portion of the input data. 

The main technical challenge is handling blocking opera- 

tors in query plans. As will be seen, our architecture pro- 

vides a framework that captures and classifies all of these 

issues. 

The Alert system [SPAM91] provides a mechanism for 

implementing event-condition-action style triggers in a 

conventional SQL database, by using continuous queries 

defined over special append-only active tables. In Sec- 

tion 4.3.3 we will discuss how Alert and trigger systems 

in general relate to continuous queries over data streams. 

Clearly there is a relationship between continu- 

ous queries and the well-known area of materialized 

views [GM95], since materialized views are effectively 

queries that need to be reevaluated or incrementally up- 

dated whenever the base data changes. There are sev- 

eral differences between materialized views and con- 

tinuous queries: continuous queries may stream rather 

than store their results, they may deal with append- 

only input relations, they may provide approximate rather 

than exact answers, and their processing strategy may 

adapt as characteristics of the data stream change. Nev- 

ertheless, much work on materialized views is cap- 

tured by our architecture and is relevant to our pro- 

posed approach; see Section 4.3.4. Of particularly im- 

portance is work on self-maintenance [BCL89, GJM96, 

QGMW96]--ensuring that enough data has been saved to 

maintain a view even when the base data is unavailable-- 

and the related problem of data expiration [GMLY98]-- 

determining when certain base data can be discarded with- 

out compromising the ability to maintain a view. 

The Telegraph project [AH00, HF+00, UF01] shares 

some target applications and basic technical ideas with 

our problem, although the general approach is differ- 

ent. Telegraph uses an adaptive query engine to process 

conventional (one-time) queries efficiently under volatile 

and unpredictable environments (e.g., autonomous data 

sources over the intemet, or sensor networks). The Tuk- 

wila system [IFF+99] also supports adaptive query pro- 

cessing, in order to perform dynamic data integration 

over autonomous data sources. Adaptive query process- 

ing is likely to be useful for continuous queries over data 

streams, as discussed in Section 5. 

Some work considers traditional data sets but treats 

them like (finite) data streams, processing the data in a 

single pass and possibly providing intermediate or "early" 

query results. For example, online aggregation [HHW97, 
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HH99] is a technique for handling long-running aggre- 

gation queries, continually providing a running aggregate 

with improving probabilistic error bounds. In more theo- 

retical work, [HRR98] studies basic tradeoffs in process- 

ing finite data streams, specifically among storage require- 

ments, number of passes required, and result approxima- 

tions. The problem of computing approximate quantiles 

(equi-height histograms) over numeric data streams of un- 

known length is addressed in [MRL99] and [GK01]. 

Recently there has been increasing interest in data re- 

duction techniques, where the general goal is to trade ac- 

curacy for performance in massive disk-resident data sets, 

with some obvious possible applications to data streams. 

A good survey appears in [B +97]. In related work, syn- 

opsis data structures [GM99] provide a summary of a 

data set within acceptable levels of accuracy while be- 

ing much smaller in size, and a framework for extract- 

ing synopses (signatures) from data streams is proposed 

in [CFPR00]. A variety of approximate query answer- 

ing answering techniques have been developed based on 

data reduction and synopsis techniques including samples 

[AGPR99, AGP00, CMN99], histograms [IP99, PG99], 

and wavelets [CGRS00, VW99]. Reference [GKS01] 

develops histogram-based techniques to provide approx- 

imate answers for correlated aggregate queries over data 

streams. Reference [GKMS01] presents a general ap- 

proach for building small-space summaries over data 

streams to provide approximate answers for many classes 

of aggregate queries. 

There has been some initial work addressing data 

streams in the data mining community. In terms of build- 

ing classical data mining models over a single data stream, 

reference [Hid99] considers frequent itemsets and asso- 

ciation rules, reference [GMMO00] considers cluster- 

ing, and references [DH00, HSD01] consider decision 

trees. The only work we know of addressing multiple data 

streams appears in [YSJ+00], which develops algorithms 

to analyze co-evolving time sequences to forecast future 

values and detect correlations and outliers. 

Finally, stream data management and query process- 

ing techniques are likely to draw on work in sequence 

databases (e.g., [SLR94]), time-series databases (e.g., 

[FRM94]), main-memory databases (e.g., [Tea99]), and 

real-time databases (e.g., [KGM95]). 

3 A Concrete Example 

Let us consider a representative application to illustrate 

the need for continuous queries over data streams and why 

conventional DBMS technology is inadequate. Consider 

the domain of network traffic management for a large net- 

work, e.g., the backbone network of an Internet Service 
Provider (ISP) [DGO0]. Network-traffic-management ap- 

plications typically process rapid, unpredictable, and con- 

tinuous data streams, including packet traces and network 

performance measurements. Due to the inadequacy of 

conventional DBMSs to provide the kind of online con- 

tinuous query processing that would be most beneficial in 

this domain, current traffic-management tools are either 

restricted to offline query processing or to online process- 

ing of simple hard-coded continuous queries, often avoid- 

ing the use of a DBMS altogether. A traffic-management 

system that could provide online processing of ad-hoc 

continuous queries over data streams would allow net- 

work operators to install, remove, and modify appropri- 

ate monitoring queries to support effective management 

of the ISP's network. 

As a concrete example, consider an ISP that collects 

packet traces from two links (among others) in its net- 

work. The first link, called the customer link, connects 

the network of a customer to the ISP's network. The sec- 

ond link, called the backbone link, connects two routers 

within the ISP's network. Each packet trace is a continu- 

ous stream of packet headers observed on the correspond- 

ing link. For simplicity, we assume that a packet header 

comprises the five fields listed in Figure 1. We use PTc 

and PTb to denote the packet traces collected from the 

customer and backbone links respectively. 

Field name i Description 

saddr IP address of packet sender 

daddr IP address of packet destination 

..... id Identification number given by sender so that 

destination can uniquely identify each packet 

length Length of packet 

timestamp Time when packet header was recorded 

Figure 1: Record structure of a packet header. 

A first simple continuous query (Q1) computes the 

load on the backbone link averaged over one minute peri- 

ods and notifies the network operator if the load exceeds 

a threshold T. A SQL version of Q1 using two self- 

explanatory functions is: 

QI: Select n o t  i f y o p e  r a t  or(sum(length)) 

From PTb 

Group By ge tminute( t imes tamp)  

Having sum(length) > T 

Although Ql'S functionality might be achievable using 

triggers in a conventional DBMS, performance concerns 

may dictate special techniques. For instance, if the PTb 

stream is coming very fast (e.g., packets in an optical 

link), the only feasible approach might be to compute an 

approximate answer to Q1 by sampling the data, some- 
thing conventional triggers are certainly not designed for. 
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A more complex continuous query (Q 2) finds the frac- 

tion of traffic on the backbone link coming from the cus- 

tomer network. Q 2 is an example of an ad-hoc continuous 

query that a network operator might register to check in 

response to congestion, whether the customer is a likely 

cause. 

.... <A,B> <B.C> <A.D> ....  ~ ~ ~ A? 

Data Stream Answer 
Continuous Query 

Figure 2: A continuous query Q over a single data stream. 

Q2:(Select count (*) 

From PTc As C, PTb As B 

Where C.saddr = B.saddr and C.daddr = B.daddr 

and CAd = BAd) / 

(Select count (*) From PTb) 

Q2 joins streams PTc and PTb on their keys to count 

the number of common packets on the links. Since un- 

bounded intermediate storage could potentially be re- 

quired for joining two continuous data streams, the net- 

work operator might want the system to compute an ap- 

proximate answer. Possible approximation methods are to 

allocate a fixed amount of storage and maintain synopses 
of the two streams (recall Section 2), and/or exploit appli- 

cation semantics--such as a high probability that joining 

tuples occur within a certain time window--to bound the 

required storage. 

A final example continuous query (Q3) monitors the 

top 5% source-to-destination pairs in terms of traffic on 

the backbone link. (We use the SQL3 W i t h  construct 

[IJW97] for ease of expressing the query.) 

Q3: With Load As 

(Select saddr, daddr, sum(length) as traffic 

From PTb 
Group By saddr, daddr) 

Select saddr, daddr, traffic 

From Load As L1 

Where (Select count(*) 

From Load as L2 

Where L2.traffic < Ll.traffic) > 

(Select 0.95xcount(*)FromLoad) 

Order By traffic 

Processing Qa over the continuous data stream PTb is es- 

pecially challenging due its overall complexity and the 

presence of G r o u p  By and O r d e r  By clauses, which 

are normally "blocking" operators in a query execution 

plan. 

Note that in addition to the issues discussed in each 

example, all three example queries are likely to benefit 

from adaptive query processing [AH00], given the unpre- 

dictable nature of network packet streams. 

4 Architecture for Continuous 

Queries 

Now that we have seen a concrete example motivating 

data streams and continuous queries, the remainder of 

the paper addresses the general problem. We begin in 

Section 4.1 by motivating, through an extremely simple 

scenario, some of  the most basic issues that arise when 

processing continuous queries over data streams. Then 

in Section 4.2 we present our architecture, which allows 

us in Section 4.3 to classify previous work in continuous 

queries, and to relate continuous queries to triggers and 

materialized views. We consider data streams that adhere 

to the relational model (i.e., streams of tuples), although 

many of the ideas and techniques are independent of the 

data model being considered. 

4.1 Motivation 

Let us consider the simplest possible scenario to illustrate 

the differences between querying data streams and tradi- 

tional stored data sets. Suppose we have a single, continu- 

ous stream of tuples and a single query Q we are interested 

in answering over the stream, as illustrated in Figure 2. 

Q is a continuous query--we issue it once and it oper- 

ates continuously as new tuples appear in the stream-- 

and suppose we are interested in the exact answer to Q 

(as opposed to an approximation). Let us further suppose 

that the data stream is append-only--it has no updates or 

deletions--so we can think of the stream as an unbounded 

append-only database D. Even in this simplest of cases, 

there are different possible ways to handle Q, with differ- 

ent ramifications: 

(1) 

(2) 

Suppose we want to always store and make available 

the current answer A to Q. Since the "database" D 

may be of  unbounded size, the size of A also may be 

unbounded (e.g., if Q is a selection query). 

Suppose instead we choose not to store answer A, 

but rather to make new tuples in A available when 

they occur, e.g., as another continuous data stream. 

Although we no longer need unbounded storage for 

A, we still may need unbounded storage for keeping 

track of tuples in the data stream in order to deter- 

mine new tuples in A (e.g., if Q is a self-join). 
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Let us further complicate the problem by considering 

deletions and updates: 

(3) Even if the stream is append-only, there may be up- 

dates or deletions to tuples in answer A (e.g., if Q is a 

group-by query with aggregation). Now, in case (2) 

above we may need to somehow update and delete 

tuples in our output data stream, in addition to gen- 

erating new ones. 

(4) In the most general scenario, the input data stream 

also may contain updates or deletions. In this case, 

typically more--possibly much more- -of  the stream 

needs to be stored in order to continuously determine 

the exact answer to Q. 

One way to address these issues is to restrict the ex- 

pressiveness of  Q and/or impose constraints on charac- 

teristics of the data stream so that we can guarantee that 

the size of Q's answer A is bounded, or that the amount 

of extra storage needed to continuously compute A is 

bounded. Previous work on continuous queries, e.g., 

[JMS95, TGNO92, Bar99], has tended to take this ap- 

proach. Another possibility is to relax the requirement 

that we always provide an exact answer to Q, which re- 

lates to the area of approximate query answering dis- 

cussed in Sections 2 and 3. 

In this paper we do not specifically advocate one of 

these approaches. Instead, we specify a general and flex- 

ible architecture that makes the choices above, and their 

ramifications, explicit. We further use our basic architec- 

ture to explain how continuous queries relate to triggers 

and materialized views, and to define a number of  open 

research problems in processing continuous queries over 

data streams. 

4.2 Architecture 

We now introduce our general architecture for processing 

continuous queries over data streams, illustrated in Fig- 

ure 3. For now let us consider a single continuous query 

Q with answer A, operating over any number of incoming 

data streams. Multiple continuous queries can be handled 

within our architecture (as implied in the figure), and we 

will discuss some of the interesting issues that arise in this 

context in Section 5.4. We also assume that the query is 

over data streams only, although mixing streams and con- 

ventional relations poses no particular problems. 

When query Q is notified of a new tuple t in a relevant 

data stream, it can perform a number of actions, which are 

not mutually exclusive: 

(i) It can determine that because of t there are new tu- 

pies in the answer A. If  it is known that a new tuple a 

in A will remain in A "forever," then Q may send tu- 

pie a to the Stream component illustrated in Figure 3. 

.¢. Slreatl l  

Stream 1 - . . .  - - .  ~ Q I ~ ~  ~ 

Stream 2 . . . . . . . .  ""~'~. -_ 

Stream II ~ ~ " " ~ 

/ 

U 

Figure 3: Architecture for processing continuous queries 

over data streams. 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

In other words, Stream is a data stream containing tu- 

pies appe/aded to A, similar to case (2) discussed in 

Section 4.1. 

If a new tuple a is determined to be in A, but may 

at some time no longer be in A, then a is added to 

the Store component illustrated in Figure 3. In other 

words, together Stream and Store define the current 

query answer A. If our goal is to minimize storage 

for the query result, then we want to make sure that 

tuples are sent to Stream rather than Store whenever 

possible. 

The new stream tuple t may cause the update or dele- 

tion of answer tuples in Store. Answer tuples might 

also be moved from Store to Stream. 

We may need to save t, or save data derived from t, 

so that in the future we are assured of being able to 

compute our query result. In this case, t (or the data 

derived from it), is sent to the Scratch component of 

Figure 3. Combined with action (iii), we might also 

move data from Store to Scratch. 

We may not need t now or later, in which case t is 

sent to the Throw component of Figure 3. Note that 

Throw does not require any actual storage (unless we 

are interested in archiving unneeded data). 

As a result of  the new stream tuple t, we may take 

data previously saved in Scratch (or Store) and send 

it to Throw instead. If  our goal is to minimize stor- 

age, we want to make sure that unneeded data is sent 

to Throw whenever possible, rather than Scratch. 

4.3 The Architecture and Related Work 

In this section we revisit the issues and scenarios dis- 

cussed in Section 4.1, revisit the related work discussed 

in Section 2, and consider triggers and materialized views. 

In all cases we use our basic architecture as a tool for de- 

tailed understanding and comparisons. 
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4.3.1 Query  Processing Scenarios 

Let us consider query processing scenarios (1)-(4) from 

Section 4.1 in light of the architecture specified in Sec- 

tion 4.2. In scenario (1), we want to always store Q 's  

entire current answer A. In terms of our architecture, (1) 

says that Stream is empty, Store always contains A, and 

Scratch contains any data that may be required to keep 

the answer in Store up-to-date. In the example case where 

Q is a selection query, Sto~ may be of unbounded size, 

while Scratch is empty. Conversely in scenario (2) we 

want to make A available exclusively as a data stream, 

i.e., Stream streams the entire answer to A while Store is 

empty. In the example case where Q is a self-join, we can 

send all answer tuples to Stream since they will remain in 

the result forever, but Scratch may need to grow without 

bound. 

Scenario (3) covers the case where answer A can have 

updates and deletions even when the input streams are 

append-only, e.g., a query that performs grouping and ag- 

gregation. Scenario (4) further extends to the case where 

the input streams may have updates and deletions. As 

an example, suppose Q is a group-by query over a single 

data stream with a rain aggregation function. Since rain is 

monotonic for insertions, in scenario (3) A is maintained 

in Store, and Scratch can remain empty. However, in sce- 

nario (4) unbounded storage is required for Scratch to en- 

sure that the rain values over the entire stream can always 

be computed. In both cases, the only time answer tuples 

can be sent to Stream, or moved from Store to Stream, is 

when it is known that for some group there will be no fur- 

ther insertions, updates, or deletions of tuples falling into 

that group, t 

4.3.2 Previous Related Work 

We now revisit some of the related work discussed in Sec- 

tion 2, characterizing it in terms of our basic architecture. 

Note that citations are not repeated in this section except 

when needed to identify the work being discussed. Also 

note that some of the related work from Section 2 is revis- 

ited instead in Section 4.3.3 on triggers or Section 4.3.4 

on views. 

Recall that the Tapestry system supports restricted con- 

tinuous queries over append-only data sets. In Tapestry, a 

continuous query Q is rewritten into its minimum bound- 

ing monotone query QM, which is then rewritten into an 

hwremental query QZ. As a monotone continuous query, 

QM has the property that its answer changes only by ad- 

i Note that we are assuming Stream is constrained to be append-only, 
even though in scenario (4) we discuss input streams with updates and 
deletions. If we allow updates and deletions to Stream tuples, then we 
are always free to send answer tuples to Stream instead of Store, since 
we can update or delete them later. 

dition of new tuples, so in terms of our architecture all an- 

swer tuples can be sent to Stream and Store is empty. The 

incremental version Q i  of the query is meant to improve 

the efficiency of computing new answer tuples when new 

input tuples are appended, but there is no mechanism for 

guaranteeing that Scratch will not grow without bound. 

The work in [STD+00] on maintaining partial results 

for long-running queries is similar to Scenario (3) in Sec- 

tion 4.1. It maintains the current partial result in Store 

and any extra needed information in Scratch. Our discus- 

sion of new query processing techniques in Section 5.3 

is relevant to the problem addressed in [STD+00], and 

we believe that based on these techniques it is possible to 

exploit monotonicity more aggressively to improve upon 

the algorithm in [STD+00], reducing the data saved in 

Scratch. OpenCQ and NiagaraCQ consider Scenario (4) 

in Section 4.1, but they are geared towards data sets that 

change primarily through in-place updates. Thus, they do 

not address the problem of Store or Scratch growing with- 

out bound. 

A number of systems perform tuple-at-a-time process- 

ing over their input data streams: each time a new stream 

element arrives, the element is moved directly to either 

Stream or Throw, without consulting any other data in the 

stream. Packet routing and simple network algorithms 

have this characteristic [Tan96], although for network 

traffic management more sophisticated stream processing 

is needed, as seen in Section 3. The XFilter and Xyleme 

systems discussed in Section 2 also perform element-at- 

a-time processing although the elements are XML docu- 

ments. 

Basic online aggregation [HHW97] maintains the cur- 

rent aggregate in Store along with an estimate of  the error, 

and an empty Scratch. Follow-on work that extends on- 

line aggregation to joins [HH99] does need to maintain 

previously seen tuples in Scratch. Finally, the body of 

work in approximate query answering focuses primarily 

on making the best possible use of a limited size Scratch 

by storing only small synopses (summaries) of the data. 

References [GMP97, MRL99, MVW00, Vit85] address 

the problem of updating the synopses (i.e., Scratch) ef- 

ficiently when the underlying data changes. 

4.3.3 Triggers 

Triggers, also called event-condition-action rules, are 

used to monitor events and conditions in databases, and 

to execute actions automatically when specific situations 

are detected [WC96]. In the Alert system introduced in 

Section 2, triggers are implemented by means of contin- 

uous queries over active tables. Each tuple in an active 

table represents an event, which is an update on a conven- 

tional stored table. When a new tuple is added to one of 

the active tables, each continuous query involving the ta- 
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ble is evaluated, and the trigger action is invoked on each 

new tuple in the query result. 

Our mapping from triggers to the architecture of Fig- 

ure 3 is based on (and slightly generalizes) the Alert ap- 

proach. We assume that events to be monitored are gen- 

erated as data streams, and we allow continuous queries 

over any number of data streams together with conven- 

tional stored tables. As in Alert, these queries perform 

event and condition monitoring. For launching trigger 

actions, like Alert we assume that the desired actions 

are performed by SQL data manipulation commands and 

user-defined stored procedures specified as part of  the 

continuous queries (e.g., query Q1 in Section 3). In 

terms of our architecture, since there is no query "answer" 

in triggers, Stream and Store may remain empty, while 

Scratch is used for any data required to monitor complex 

events or evaluate conditions. Alternatively, depending on 

the desired trigger behavior and application interaction, 

actions could send results to Stream. 

There are a number of benefits to using continuous 

queries over data streams to provide trigger functional- 

ity. Continuous queries specified on event streams to- 

gether with conventional tables enable complex multi- 

table events and conditions to be monitored, equivalent 

to the most powerful trigger language proposals we know 

of [WC96]. More importantly, trigger processing would 

benefit automatically from efficient data management and 

processing techniques for continuous queries over data 

streams, such as specialized query optimization tech- 

niques (Section 5.3). 

4.3.4 Materialized Views 

Materialized views, whether in a conventional DBMS or 

in a data warehousing environment [GM95], fall natu- 

rally into our architecture. The base data over which the 

views are defined, if not available in conventional stored 

tables, is stored in Scratch. The view itself is maintained 

in Story. Updates to the base data can be represented as 

one or more data streams, as discussed in Section 4.3.3 for 

triggers. In terms of this mapping, work on materialized 

view self-maintenance and expiration, discussed in Sec- 

tion 2, is geared specifically towards minimizing the size 

of Scratch. Pure self-maintenance guarantees that Scp~tch 

is empty [BCL89, GJM96], although for many views 

pure self-maintainability is impossible, so auxiliary views 

must be stored and maintained in Scratch [QGMW96]. 

Data expiration exploits constraints to determine precisely 

when data can be removed from Scratch, although no 

bounds on the size of Scratch are guaranteed. The Chron- 

icle data model discussed in Section 2 for materialized 

views is designed to ensure bounded storage for Scratch, 

but like pure self-maintainability it restricts the allowable 

view definitions significantly. To the best of  our knowl- 

edge, no work on materialized views has addressed the 

problem of bounding the size of the materialized view it- 

self, so that the size of  Store also can be bounded. 

5 Research Problems 

In this section we outline a number of  research problems 

associated with processing continuous queries over data 

streams. We begin at a relatively global level, becoming 

more detailed as the section progresses. In several cases 

the architecture of Section 4.2 is used to make the prob- 

lems and issues more concrete. 

5.1 Basic Problems  and Techniques  

At the most global level, what sets continuous queries 

over data streams apart from previous work is a unique 

combination of: 

• Online processing. The applications discussed in 

Section I require that continuous queries are pro- 

cessed, well, continuously. Specifically, when new 

tuples arrive in a data stream they generally must be 

"consumed" immediately, usually performing one or 

more of  actions (i)-(vi) from Section 4.2. In some 

applications the tuples may arrive so fast that some 

of them need to be ignored entirely. 

• Storage constraints. In the general case for con- 

tinuous data streams, the amount of storage required 

for the answer to a continuous query, or to ensure 

that the answer always can be computed, may be un- 

bounded (recall Section 4.1). Furthermore, even if 

there is "nearly" unbounded storage available on disk 

or other tertiary devices, performance requirements 

may be such that Store and/or Scratch from Figure 3 

need to reside in a limited amount of  main memory. 

While neither of these problems in isolation is entirely 

new, dealing with them together, while at the same time 

offering the full functionality and efficiency of a database 

query processor, is a new challenge. 

Next we mention three basic techniques that have been 

explored primarily in other contexts within the database 

or broader Computer Science research community. All of 

them appear directly relevant to our problem. 

• Summarization. S~mzmaries (or data synopses) pro- 

vide a concise representation of a data set at the ex- 

pense of some accuracy. As discussed in Section 2, 

many techniques for summarization have been devel- 

oped, including sampling, histograms, and wavelets. 

(See Section 2 for citations.) We expect summa- 

rization to play an important role in query process- 

ing over data streams due to the storage constraints 
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discussed above. New issues to resolve in the data 

stream environment include: (i) how to make guar- 

antees about accuracy of continuous query results 

based on summaries; (ii) how to maintain summaries 

efficiently in the presence of very rapid data streams; 

(iii) what summarization techniques are best for un- 

predictable data streams. We revisit some of these 

issues in Section 5.3. 

Online data structures. A data structure designed 

specifically to handle continuous data-flow is typi- 

cally referred to as an online data structure [FW98]. 

Continuous queries by nature suggest the use of  on- 

line data structures for query processing. 

• Adaptivity. We expect continuous queries and the 

data streams on which they operate to be long- 

running. Unlike during the processing of  a simple 

one-time query, during the lifetime of  a continuous 

query parameters such as the amount of available 

memory, stream data characteristics, and stream flow 

rates may vary considerably. While adaptive query 

processing techniques for more traditional queries 

have attracted interest recently (see Section 2 for a 

discussion), the work so far that we are aware of has 

not considered all of the parameters or kinds of adap- 

tivity (e.g., changing approximations) that arise in a 

data stream context. 

Distilling the basic problems and techniques above, we 

see that processing continuous queries over data streams 

entails making fundamental tradeoffs among efficiency, 

accuracy, and storage. References [AMS96, HRR98] 

provide some initial contributions from the theory com- 

munity along these lines, but it is an open problem to un- 

derstand the implications of these tradeoffs in a real sys- 

tem processing continuous queries for one or more real 

applications. 

Next we will consider in more detail several specific re- 

search challenges. We will start in Section 5.2 by briefly 

discussing the issue of languages for specifying contin- 

uous queries. Then in Section 5.3 we focus on query 

evaluation and optimization, including execution plans 

and operators for continuous queries. We briefly address 

research problems associated with multiple continuous 

queries in Section 5.4. 

5.2 Languages for Continuous Queries 

Although we certainly do not advocate inventing a new 

query language for the purpose of specifying continuous 

queries over data streams--particularly over streams of 

relational tuples--there are some issues that must be con- 

sidered. Let us take SQL as an example. Most previous 

work on continuous queries has restricted the language 

being considered in order to guarantee certain properties 

such as bounding the size of Scratch (or eliminating it en- 

tirely), or ensuring that all query results can be sent to 

Stream and none to Store. It appears to be an open prob- 

lem to determine for arbitrary SQL queries whether these 

kinds of properties are satisfied, particularly if we accept 

the use of Scratch and Store but want to make sure they 

are bounded in some way. We also believe that for certain 

applications continuous queries will need to refer to the 

sequencing aspect of streams. Here SQL with extensions 

for ordered relations [SLR94], or with built-in time-series 

support [FRM94], might be a reasonable choice. 

5.3 Query Evaluation and Optimization 

In any database system it is the job of the query opti- 

mizer to choose in advance the "best" query plan for exe- 

cuting each query, based on a variety of statistics main- 

tained for this purpose. A continuous query processor 

also should select a "best" execution plan, although we 

expect that fewer of the decisions will be made in advance 

due to the long-running nature of continuous queries dis- 

cussed in Section 5.1. Techniques such as eddies [AH00], 

which construct and adapt query plans on-the-fly, come 

the closest that we know of to the query execution style 

we envision. However, that work is still designed for one- 

time rather than continuous queries, the query execution 

strategies do not adapt to all relevant parameters in the 

data stream context, and the notion of adaptivity is geared 

solely towards online processing. 

Let us assume a standard pipelined (or iterator-based) 

approach to query processing [Gra93]. One of the funda- 

mental differences between traditional query plans oper- 

ating over stored relations and plans operating over data 

streams can be characterized as "push" versus "pull." 

Specifically, a traditional query plan usually has a tree 

shape and is executed top-down in a "pull" style: each 

query operator polls its children for the required input, ul- 

timately accessing stored indexes or relations at the leaves 

of  the query tree. Parallel query plans relax this paradigm 

to some extent [Gra90], but usually do not use the fully 

"push-based" model that data streams may demand. In an 

execution plan for a continuous query over data streams, 

we expect that it will be the appearance of  a new tuple in 

a relevant stream that sets the plan into action. Of course 

this idea is not new, but rather a query processing vari- 

ant on triggers, alerts, and other "active" constructs in 

databases [WC96]. 

"Push" versus "pull" aside, let us consider other 

changes that may be required to adapt traditional query 

plan operators to the data stream context. We will first 

consider true pipelined operators (such as selections and 

joins), then we will consider blocking operators (such 

as aggregation and sorting). Finally we will consider a 
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new class of operators that may be useful for continuous 

queries over data streams. 

5.3.1 Pipelined operators 

The simplest standard pipelined operators, such as selec- 

tions, can be translated to the data stream context with lit- 

tle modification. However, as soon as we introduce joins 

we are faced with a choice. We can either: (i) evaluate 

portions of the query multiple times as in a nested-loop 

style join, which we assume is undesirable or even im- 

possible in the data stream context; or (ii) use Scratch to 

hold temporary results during query processing, as in a 

pipelined hash join [WA91]. 

The case of joins points out that when processing con- 

tinuous queries over data streams, we not only want our 

query operators to be pipelined, we also want them to 

operate with bounded intermediate storage (even in the 

presence of unbounded streams). For example, we might 

modify a pipelined join operator to degrade gracefully to 

an approximate join when the required storage begins to 

reach limits. Semantic constraints in the spirit of data ex- 

piration [GMLY98], or online feedback across operators 

in the spirit of ripple joins [HH99], could be applied to 

compute approximations with minimal loss of informa- 

tion. 

As it turns out, the architecture we introduced in Sec- 

tion 4.2 for continuous queries as a whole also applies 

nicely to individual query plan operators: Store and 

Scratch represent the intermediate storage required by an 

operator, while Stream represents the pipelined operator 

results. Thus, techniques developed at the query level for 

summarization, approximation, or for moving data from 

Scratch or Store to Stream or Throw, might be applicable 

recursively to query plan operators. It is important to bear 

in mind, however, that Scratch and Store will generally be 

bounded globally, not on a per-operator basis. 

5.3.2 Blocking Operators 

A blocking operator is one that must obtain its entire input 

set before it can produce any output--typical examples 

are sorting and aggregation. In a conventional pipelined 

query plan, all operators that follow a blocking operator 

must wait until the operator obtains its entire input and 

begins producing its results. Obviously blocking oper- 

ators cannot behave in their conventional fashion in the 

presence of continuous data streams, since the input is un- 

bounded and the operator would block "forever." Part of 

the solution to this problem must be based on semantic 

considerations such as those discussed in Section 4 . 1 -  

e.g., what is the result of an aggregation or a sort now 

when more data may be coming later? In addition to tech- 

niques such as online aggregation [HHW97, I-II--I99], there 

has been some work addressing closely-related prob- 

lems [LPT99, STD+00] that develops techniques based 

on incremental view maintenance. Developing similar 

teclmiques for continuous queries over data streams, and 

even more fundamentally understanding the semantics 

implied by the various techniques, remains an open prob- 

lem. 

5.3.3 Synopsis Operators 

We discussed the requirement for summaries or synopses 

in Section 5.1 and cited some of the most relevant work 

in Section 2. One approach to incorporating synopsis data 

structures into a database system is to encapsulate them 

as basic operators that may appear in query plans. In sup- 

port of  this approach, reference [GM99] shows that differ- 

ent classes of  queries are supported efficiently by different 

synopsis data structures. Thus, the query optimizer could 

be charged with choosing the best synopsis operator for 

each purpose under current conditions. 

Taking this idea one step further, synopsis query opera- 

tors could provide the capability to "tune" certain param- 

eters within the operator, such as accuracy and confidence 

of  approximation (e.g., probabilistic confidence bounds 

for aggregates [HHW97]), and maximum storage required 

(e.g., a random sample of size N). Particularly relevant in 

this context are the semantic synopsis structures proposed 

in [BGRO1], which summarize a massive disk-resident re- 

lation based on error tolerance parameters provided in- 

dependently for each attribute. If  we provide synopsis 

operators with these types of parameters, then approxi- 

mate query plans can be constructed carefully based on 

the query structure and available storage. Of course this 

power also poses significant challenges for the query op- 

timizer. 

5.4 Multiple Continuous Queries 

In the paper so far we have assumed a single continuous 

query over multiple data streams. Let us now consider the 

more realistic scenario where an application registers mul- 

tiple continuous queries simultaneously, probably over 

shared data streams. Because continuous queries are long- 

running, and some applications may involve a very large 

number of continuous queries, we expect that some form 

of multi-query optimization [Fin82, Sel88, CDTW00] will 

be a relevant and perhaps essential technique. There has 

been some recent work on optimizing multiple contin- 

uous queries, focusing either on very large numbers of 

queries where each query performs element-at-a-time pro- 

cessing [AF00, NACP01], or on subquery merging in the 

XML context [CDTW00]. In terms of our architecture, 

the queries in these systems are limited enough that they 
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always have empty or bounded Store and Scratch compo- 

nents. 

Research yet to be performed includes extending the 

techniques from [AF00, NACP01, CDTW00] to handle 

more complex queries, coupling multi-query optimization 

techniques with approximate query answering, and opti- 

mizing the use of bounded-size Scratch and Store when 

they are shared among many continuous queries. More 

generally, the overall problem of understanding and im- 

plementing the tradeoffs among efficiency, accuracy, and 

storage becomes at least one step more complex in the 

presence of multiple continuous queries. 

6 A Data Stream Management Sys- 

tem 

Our ultimate goal is to build a complete data stream man- 

agement system (DSMS), with functionality and perfor- 

mance similar to that of a traditional DBMS, but which al- 

lows some or all of the data being managed to come in the 

form of continuous, possibly very rapid, data streams. In 

such a system, traditional one-time queries are replaced or 

augmented with continuous queries, and techniques such 

as synopsis and online data structures, approximate re- 

sults, and adaptive query processing become fundamen- 

tal features of the system. Other aspects of a complete 

DBMS also need to be reconsidered, including storage 

management, transaction management, user and applica- 

tion interfaces, and authorization. 

Obviously building a complete DSMS--even a re- 

search prototype--entails a significant effort. One ap- 

proach would be to modify or extend an existing DBMS to 

include the functionality that we envision. However, our 

approach will be to build a complete DSMS from scratch, 

s o  we can fully explore the issues under our own control. 

We have described many novel and interesting research 

problems that we expect to encounter along the way. 

7 Conclusions and Research Plan 

Many recent applications need to process continuous data 

streams in addition to or instead of conventional stored 

data sets. In this paper we have specified a general and 

flexible architecture for processing continuous queries in 

the presence of data streams. We have used our ba- 

sic architecture as a tool to clarify alternative semantics 

and processing techniques for continuous queries, as well 

as to relate past and current work to the general Data 

Stream Management System (DSMS) we envision. We 

have mapped out a number of  research topics in the area 

of  query processing over data streams, including new re- 

quirements for online, approximate, and adaptive query 

processing. 

At Stanford we have begun to build a complete proto- 

type DSMS called STREAM (STanford stREam datA Man- 

ager). We are focusing initially on:  

• A flexible interface for reading and storing data 

streams---or stream synopses~as part of a hierarchi- 

cal storage manager. 

• A processor for continuous queries specified using 

SQL or relational algebra including aggregation. 

• A client Application Programming Interface (API) 

for registering continuous queries and receiving 

query results. 

We expect that the development of our prototype sys- 

tem, as well as continuous detailed evaluation of poten- 

tial applications such as the network monitoring system 

described in Section 3, will lead to further algorithmic 

and system research issues. Please visit http : / / w w w -  

db. stanford, edu/stream. 
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