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1 Introduction

Most asset pricing theories relate expected returns on assets to their con-
ditional! variances and covariances. See, for example, the review of the
ARCH literature in Bollerslev, Chou, and Kroner (1992). It is widely
recognized that these conditional moments change over time. Unfortu-
nately, conditional covariances are not directly observable, so in tests of
asset pricing theories researchers must use estimates of conditional sec-
ond moments. Similarly, market participants use estimates of conditional
variances and covariances in hedging, option pricing, and in many other
aspects of portfolio selection. How accurate are these estimated variances
and covariances? How can they be estimated more accurately?

If conditional variances and covariances were constant over time, then
standard statistical techniques would yield the answer to these questions.
When conditional heteroskedasticity is present, these techniques will not
suffice. In fact, as we see in Section 2 below, statistical methods that
assume constant variances and covariances even over short time intervals
present a misleadingly optimistic picture of how accurate the measure-
ment is. : ‘

Though there are many strategies for estimating time-varying variances
and covariances, among the most popular have been (a) chopping the
returns data into blocks of time and treating conditional variances and
covariances as constant within each block (e.g., Merton (1980), Poterba
and Summers (1986), French, Schwert, and Stambaugh (1987)), and (b)
the rolling regression approach of Officer (1973) and Fama and MacBeth
(1973).

The appeal of such strategies is clear: on the one hand, they allow
for the possibility (almost a certainty in economic applications!) that the
parameters of the process evolve randomly over time. On the other hand,
they impose little structure on the precise way in which the parameters
evolve. All of these strategies accommodate random evolution in param-
eters by estimating the value of the parameters at time ¢ using only data
“near” t. For example, Fama and MacBeth {1973) estimated conditional
betas at date t using only the returns data for a period of five to eight
years prior to date t—a “rolling regression.”?

These estimation strategies are also popular on Wall Street: see, for example, the
Merrill Lynch (1986) beta book, which uses a five-year rolling regression with monthly
data to estimate betas. Rolling regressions are also used in estimating conditional means
(see, for example, Banerjee, Lumsdaine, and Stock (1991)), although our results do not



As Fama and MacBeth explain it, this estimation strategy “reflects
a desire to balance the statistical power obtained with a large sample
from a stationary process against potential problems caused by any non-
constancy of the 3;..” The more important “the statistical power obtained
with a large sample” is, the more inclined a researcher should be to
use a long string of data in the rolling regression. On the other hand,
minimizing the “potential problems caused by any non-constancy of the
B;” points toward using a short period for the rolling regression.

Fama and MacBeth'’s choice of a 5-7 year window was motivated by the
work of Fisher (1970) and Gonedes (1973), who found that this window
length gave the best out-of-sample forecasting performance for individual
stocks. In related work, Fisher (1970), and Fisher and Kamin (1985)
develop approximate distributions for measurement errors in betas and
optimal weighting schemes under the assumption that conditional betas
are random walks independent of market returns.?

In this paper, we extend these theoretical results to a much broader
class of data generating processes. In Section II we show how, under
weak assumptions, to approximate the distribution of measurement er-
rors in estimated conditional variances and covariances. These results
are broad enough to accommodate not only one and two-sided rolling re-
gressions, but also more general weighting schemes such as the ARCH(p)
model of Engle (1982) and one of the multivariate extensions proposed by
Bollerslev, Engle, and Wooldridge (1988).% In Section 3, we characterize
optimal window lengths and optimal weights to use in rolling regressions.
Section 4 considers estimation of conditional betas. In Section 5, we pro-
vide an empirical example. Section 6 is a brief conclusion. The proofs
are collected in the Appendix.

apply directly to this case.

IThere is a large literature on random coefficient regression, of which the work of
Fisher (1970) and Fisher and Kamin (1985) is an application. See, for example, Chow
(1984) and the references therein.

3Asymptotic measurement error distributions for conditional variances generated by
other ARCH models (which cannot be accommodated by the methods in this paper) are
given in Nelson and Foster (1994).



2 Asymptotic distributions

To illustrate the intuition behind our approximation method, consider the
following simple case; suppose the data are generated by the diffusion

dXt = [.L(Xi, G't)dt + Gt - dWl,i (1)
do} = MXi,00)dt + A(Xe, 0r) - AWy (2)

where W) ; and W are (possibly correlated) standard Brownian motions,
X; and o7 are scalars, and A(,-), A(+, -, ), and u(:, -, -) are continuous, with
A(-,-) strictly positive.

Suppose that the {X,} process is observable but {¢?} is not. How can
we use the information in the sample path of {X;} to estimate the path
of {?}? It is well known that as a diffusion is observed at finer and finer
time intervals (say of length h), its conditional variance at any instant
can be approximated with ever greater accuracy, until in the limit as
h — 0, it is known exactly. To understand why, note first that because
o? in (1)-(2) is generated by a diffusion, it is continuous (with probability
one) as a function of time. This implies that for every € > 0 and every
t > 0 there exists, with probability one, a random é(¢) > 0 such that

sup |o?—o?|<e. (3)
t-8(t)<s<t

That is, over suitably small time intervals, the change in 0? can be made
as small as we like. Now choose a small constant § > 0 and chop the
interval [t — 6,t] into M equal pieces. We then estimate o7 by

M
636, M) =61 Zl(Xt-(j-l)ajM — Xe—jsm)? (4)
J=

(4) is a standard one-sided rolling regression in which we act as if y;
were identically zero. When 6 is small, y;, and ¢? are effectively con-
stant. so when we condition on y,_s and o?_;, the normalized increments
(AL/E)'VP X _(jo1y6/m — Xi—js/m] are approximately i.i.d. N(0, o2 ;). Un-
der suitable moment conditions, the tails of these normalized increments
are well-behaved (i.e., not too thick), allowing us to apply a law of large
numbers yielding [62(8, M )—o2] — 0 in probability as§ — 0 and M — oo.
Failing to correct for the non-zero drifts in X, and aZ does not interfere
with consistency-the effect of the drift terms on 67(6, M) vanishes as
M — oo and 6§ — 0.



Though quite a special case, (1) — (4) illustrate the basic intuition
underlying our results: as M — oo and 6 — 0, the normalized increments
in X; become approximately i.i.d. with zero conditional mean, finite
conditional variance, and sufﬁciently thin tails, allowmg us to apply a
law of large numbers to estimate o?. As we see below, it is possible-in a
far more general setting-to apply a central limit theorem to develop an
asymptotic normal distribution for the measurement error [62(6, M) —o?)].

We will now introduce the notation need for our theorems. For each
h > 0, consider a random vector step function ;X; € R* which makes
jumps only at times 0, h, 2h, and so on. Assume that ;,X; is a random
process with an (almost surely) finite conditional covariance matrix. For-
mally, X, is a locally square intergrable semimartingale— see e.g., Jacod
and Shiryaev (1987) chapters 1 — 2. We take ,X; to be adapted to the
filtration {4F,} where {4, } is increasing and right continuous. ,X; € R*
can be decomposed into a “predictable” part and a martingale part, i.e.,
the Doob-Meyer decomposition.

RAX: =X, — 3 Xy = wisrh + (hMr+h - hMr) = hﬂ'rAT + ApM,

where 5, € RY is 4 F,_; measurable, and AyM, € R* is a local martin-
gale difference array with an (almost surely) finite conditional covariance
matrix. Further, to make our sums look like integrals, we set AT = h,
and AV, = p M, — s M, _}.

The conditional covariance matrix of ;AX; per unit of time is the k x k
matrix 2, = [4Q;)-]. In other words,

E(WAM, - hWAMT |\ Fo_p) = 100AT.

#§1; is 4 F,_p measurable.

Our interest is in estimating {2, when it randomly evolves over time.
Just as the change in ,X, can be decomposed into a drift component
(i.e., a component that is predictable one step ahead) and a martingale
component. so, we assume, can 52,

ApSY, = b A AT + hAM:

where 3 A,, the instantaneous drift in ,,, is s F,_qs measurable, and anM?
is a k x k matrix-valued local martingale with respect to the filtration
»Fr-n. Further,

E(wAMGj)e - sAM{yelnFr-am) = shgjans AT
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So nA; is 4 Fr-os measurable. yA; and sA: are, respectively, the drift and
variance per unit of time in the conditional variance process x§d. Since
#fY is a k x k matrix, its drift ;) is as well. The “variance of the variance”
process A, is a k x k x k x k tensor. As we see below, the more variable
the 4§ process is (as measured by »A) the less accurately it can be
measured.

The class of data generating processes encompassed in this setup is very
large, including, for example, discrete time stochastic volatility models
(e.g., Melino and Turnbull (1990)), diffusions observed at discrete inter-
vals of length h, (e.g., Wiggins (1987), Hull and White (1987)), ARCH
models, (e.g., Bollerslev, Chou and Kroner (1990)) and many random
coefficient models (Chow (1984)).

As is well known for standard regressions, the efficiency of least squares
covariance matrix estimates depends to a considerable extent on tail
thickness of the noise terms (see, e.g., Davidian and Carroll (1987)). This
is true for rolling regressions as well. To motivate our next bit of nota-
tion, suppose for the moment that the Az X;’s were i.1.d., scalar draws
from a distribution with mean zerg and variance ). If we estimate Q2

using T observations by @ = T7!' Y (ArX,)?, the variance of Qis T
t=1

Var[(AxX;)?]. That is, the sample variance of () depends on the fourth
moments of the A, X;s. When {2, randomly evolves over time, we require
an analogous measure of the conditional tail thickness of ApX;. Accord-
ingly, we define ,B;, a k x k matrix-valued martingale by the following
martingale difference array:*

RAB, = V2L AM, - )AMT — QA7)

4 B. is essentially an empirical second moment process with its conditional
mean removed each period to make it a martingale. We next define the
conditional variance process for 4B, the k X k x k x k tensor process 16
with

800k AT = E(hABijyr - hABiyr |nFr-s)-
8ijery is closely related to the multivariate conditional fourth moment of
Ap My

Oty = El(hAXig — nptie - hY — sQelnFen]

AThe reason for the A~Y/? in the definition of B is to keep »B = Op(1). Thus, the
notation will remind us the size of various integrals. In other words, for M and M=, we
have the usual “size” condition that yAM? = O(Ar), and ,AM*? = O(At), and now
this also holds for the B process: yAB? = y0A7 = O(ArT).

5



= E[AnM{ — i Qi nFin].

Biiii)r /Qfﬁ), is the conditional coefficient of kurtosis less one of the ith
variable at time 7. If AX;, is conditionally normal, then i = 20, -
We next define

wP(ikyr = COTT(AnBijyrs AnMikyr—arlaFr-n)-

»p¢ is the conditional correlation between the innovations in the empirical
second moment process ,B; and the innovations in the conditional vari-
ance process ;. The behavior of spjey, is an important determinant
of our ability to measure 5§ accurately. To see why, suppose that ,{}
is generated by a diagonal multivariate GARCH model as in Bollerslev,
Engle, and Wooldridge (1988). In this case 4{2; equals a distributed lag
of the outer product of residual vectors and therefore 4p(;ii; = 1. In this
case, rolling regressions can estimate 4§}, arbitrarily well, since ApSY is
perfectly correlated with elements of A;,X,A;,X,T . Le., when we see Ap X,
this tells us all we need to know about the change in ,§2;." On the other
hand, suppose that ;) is generated by a diffusion observable at intervals
of length h. In this case pp(juy = 0, and though A X;ApX{ contains in-
formation about the level 4§, it in general contains no information about
changes in 1. The case where »p < 0 is a sort of “reverse GARCH”
case, in which larger than expected residuals cause variance to drop. Our
results are able to accommodate this case, though it seems unlikely to be
practically relevant. In general, however, the higher |npgjuy/, the more
accurately measurable is 4§y
The estimator we will study is

Wi = Zweiye-n AKXy = b - siadbAXGy = B adgy), (5)

h

where 41 is a estimate of 44, and 4§} is the ijt component of 40, afi;)

is the ith component of xjt, and pw,_7 is a k X k weighting matrix for
which Taw(j)r-1yA7 = 1. For now both the conditional mean estimate
nfie and the weights yw(;;); as exogenously given, though below we consider
data-dependent selection of pwyjy-

A special case of the above is the standard flat—-weight rolling regression
motivated by the following argument. E(AM)*/Ar = , so it seems
reasonable that if we average terms like AM 2/Ar, we should get a good

6



approximation to Q. So, the rolling regression estimator of 2 is defined
as:

r=T4(m-1)h

WQr=[(n+mp)™ ) ) WAX, — BahAX, - hat,])
r=T-n

Thus the weights are equal over some region. So,

1
N R —nh <7< mh
AWGj)r { 0 otherwise (6)

So, for example, whenn =m = kh~1/2 for some constant k, (which when
p = 0 will turn out to be the asymptotically optimal way of choosing a
rolling regression) we see that ,w,_r & h~12k~! near T, and O far away
from T, with ¥ wAT = 1. Here m is the number of leads and n is the
number of lags. In a standard one-sided rolling regression, m is set equal
to zero and pw(ij—r = 1/nh for T —nh <t < T and zero otherwise.

When m = 0 and the weights are non-negative but otherwise uncon-
strained in (5), we have a special case of the multivariate GARCH model
of Bollerslev, Engle, and Wooldridge (1988). The method of treating con-
ditional covariances as constant over blocks of time (e.g., Merton (1980),
Poterba and Summers (1986), French, Schwert, and Stambaugh (1987))
is also easily accommodated: here w = 1/hK whenever ¢t — T is in the
same time block as time T and equals zero otherwise. J{ is the number
of observations within the block. ‘

2.1 Assumptions

The first assumption requires the first few conditional moments of ,X;
and Y remain bounded with small changes over small time intervals as
h — 0: This assumption essentially allow us to apply the central limit
theorem locally in time.

Assumption A The following 8 expressions are all Oy(1):



i su 1y — -
& s,te[T,Tghl/?JI# bl (vi) wAT

(ii) sup Ay — Al (vit) for some e >0,
te[T.T+h1?) E ([h‘mhAM}I?“I Fr-on)
(“_") AT (viii) for some € > 0,
) o B (Ih/%ABr ™| Frs)
v wUT '

Assumption A is not as formidable as its 8 parts appear. For exam-
ple, if all these processes are actually continuous semi-martingales, then
assumption A will hold with only non-explosiveness conditions. This is
made precise in the following definition and following restatement of as-
sumption A.

Definition We will call 3 X, a discretized continvous semi-martingale if
there exists a process ¢ X,, such that X, = oXiy and X, s a continu-
ous semi-martingale with differential representation of do X, = ou,dr +
o 2dyW,, where both g, and o), are continuous semi-martingales with
(Y positive definite [a.s]. Further, dyQ, = oA dT + oA dyW], where both
0Ar and oA, are continuous semi-martingales, and W, and W, are mul-
tivariate Brownian motions.

Assumption (A"} , X, is a discretized continuous séemi-martingale for
which there ezists a random variable M with finite mean such that for all
7 the following five inequalities [almost surelyf: |op.| < M, |1Q2;] < M,
08| < M, |oA:] < M, |oA;]| < M. Also assume fi. = 0.

From standard arguments Assumption A’ can be shown to imply as-
sumption A. Thus, we see that assumption A is more of a regularity
condition rather than a restrictive assumption.

Assumption B ;0,,,A; and yp, change slowly over time. That is to say

sup  |ubr — afr| = o0p(1),

T<r<T+h1/?
sup |aAr ~ pAr|] = 0p(1),and
TLr<T+ht/?
su Py = o(1).
TSTSTI.::.};U? Ihp('JH)r hp(‘JH)Tl p( )

8



Assumption B tells us that the “hyper-parameters” are regular enough
that they can be estimated. Again this isn’t a very restrictive assumption
in the sense that these terms would naturally be O,(h!/?) if 8, A, and p
followed SDEs.

Assumption C The diagonal elements of 10, and A, are non-vanishing.
That s to say Vi VJ ]-/hg(ijij)T = Op(l), and l/hA(,'J','j)T = OP(]')

Assumption C tells us that we can get a non-degenerate asymptotic
distribution at the natural rate of convergence. If assumption C were
dropped, our asymptotic variance calculation would still hold. But the
results might be trivial in the sense that we get an asymptotic normal
with zero variance. Assumption C avoids this.

niies hils, and g, drop out of the asymptotic distribution of the mea-
surement error in the conditional covariance estimate produced by the
rolling regression-i.e., these terms are of only second order importance in
determining the measurement error. In fact, if we explode pp, afli, and
A\ to infinity as h — 0 at a sufficiently slow rate, these conditional mo-
ments still drop out of the asymptotic distribution of the measurement
error.

Definition ,T.and ;T are the “start” and “end” times of the rolling
regression. That means pw,_7 = 0 for 7 < 4T, or 7 > yT*.

Note it is not required that pw,_r be non-zero between T, and T“.
This will be useful when considering two different weights. T, will then
typically be the earlier of the starting times and T* the later of the ending
times. The next assumption restricts the behavior of the weights jw._7:

Assumption D

hT'—hTt — O(hllz),
T.
Z h'l.U(,'J-),--TAT = 1, and
=T.,T.+h....

sup(|nwejyrl)

O(h~'13).

Assumption D requires that the total number of lags and leads used in
the rolling regression is going to infinity as rate h~1/2, though the time
interval over which the weights are nonzero is shrinking to 0 at rate h!/2,
Assumption A guarantees that changes in ;(2; are small over small time

9



intervals: As in the illustration at the beginning of this section,as h — 0
the rolling regression generates its conditional covariance estimate s&Y%
using a growing number of residuals generated over a shrinking period
of time. Unfortunately, however, Assumption D also requires that the
number of residuals assigned nonzero weights is bounded for each h. This
accommodates the ARCH(p) model of Engle (1982) with p growing at
rate k=12 as h — 0, but formally excludes the GARCH(p,q) model of
Bollerslev (1986). We can, however, approzimate GARCH models to
arbitrary accuracy by considering ARCH(p) models for arbitrarily large
but finite (for each h) order.

Typically wjjr—r = 0 but this is not required. Assumption D also
requires ¥ w;j)r-rA7T = 1. Interpreting the rolling regression as a mul-
tivariate GARCH model, this corresponds to an IGARCH (“Integrated
GARCH”) model- see Engle and Bollerslev (1986). For the theorems we
can relax this condition to only assume that T wjr—7AT = 1 + o(h!/4).
For intuition on why IGARCH is approached as h — 0, see Nelson (1992).

Definition
(= 4]

) Wi AT ifz >0
h‘l’(:’j)x = r=z+i_1,z+2h... . i
— D AW AT ifz <0
r=—00

Note: ¥ is only defined if z/k is an integer. This is like an integral
of yw; in the sense that A¥(z)/Ar = —pw,. For example, in the case of
the flat weight rolling regression for a univariate process

(o T* — 8)Lst — (s = s T )l st
hT* ! hT- ’

where ,T* is the right end point of the rolling regression and ,7, is the
left end point. Define the following sums,

WSuww = hlﬂzhszT
ASyy = hﬂlﬂzh‘IlgAT

AOwy = Zhw'r'hq,rAT

h\I’s—T =

In the multivariate case, w, is replaced by w,qj). So, pSuwis k X &k X
kxk. So, these sums are actually tensors. For example pSy, v, = L,
hwr(ij)'h‘I’r(H)AT.

10



Finally, define the normalized measurement error process
k@ = YA — 1)

Its conditional covariances are asymptoticly the £ X k X k X k tensor
process ;Cr with elements given by

wCljety = nSwijun * Wikt + pSw;wy - A Gk T
+ wSuijwns - w2z RO * MRty +
+ wSuwnrty; - hP(kI RORED: - AA (i)

Which in the scalar case is just (where the ‘a4’ has been delete from
C,0,A,p, ¥, and S)

Ci = Suubt + 2SuupiVOiA + Swu Ay (M)

2.2 Main Convergence Theorems

Theorem 1 (Representation:) If assumption A & D hold, then

rQuHT = h_1/4(hﬁ(:‘j)T - hQ(iJ')T)
= h*Y pw,_raBuje + VA WU rh AM), + 0p(1)

Theorem 2 (Asymptotic Distribution:) If assumptions A-D hold, then
+Qr|Fr, is asymptotically distributed N(0, 4Cr.). (8)

PROOFS: See the Appendix.

The matrix normal distribution in Theorem 2 has the obvious inter-
pretation —i.e., the asymptotic covariance of ,Q;; and 2@ ey given Fr, is
Ciijenyt.- Alternatively, using an appropriate sense of a tensor square-root,
equation (8) says, C~1/2Q D N (0,1) where 1 is the tensor identity.

To illustrate the application of Theorem 2, consider a multivariate
rolling regression with flat weights. Assume that pn;; = noh~Y/?, and
ami; = moh™V/2. This is a restricted form of a rolling regression In
which all of the windows are the same size. For all i and j the same
weighting is then used. In other words, ,w, = h/%(ng + mo)~ I{T €
[—noh!/?, mgh'/?)}. Thus, assumption D is satisfied. So, in this case, (the

11



following approximations are easy to see if you think of each sum as being
approximated by an integral):

(mO - S)IszT + (S - nO)Is<T

W ey = mg + 1o
Sww = wah%’m—o-_l—l_—n—o
Sey = Z\Ilfhga(—z%}—:‘j—y
Swy = Zws\p'hgﬂ%

Because of our assumption that all w;; are the same, we don’t need to
distinguish between Sy, ,, and just call all of them Sy,. Likewise for Sue

and Syy. We can now compute the variance of ;. Then, (where to sin-
plify the equations we have taken: a8jijiz. = 0, aljiim. = Ay wPGjIHT. =
p) -

C(ijij)T. = 8S,, + 2V BApqu + ASyy

/) Mg — 7 md + nd (9)
= \/OA 0 0 A 0 0
mp + ng + pno +my + 3(ng + my)?

Consider the three components of the asymptotic covariances in (9):
the first term, 6.5,., would be present even in the i.i.d. case. This term
reflects sampling error, and can be made arbitrarily small by making
ng + my sufficiently large. Indeed, if the conditional covariance matrix
»§l were constant, the other terms in Cjing, would vanish, and letting
ng + my be infinite would be optimal. The third term, ASyy, reflects the
variability in ;€. This term can be made arbitrarily small by making
ng + my sufficiently small: the smaller the window over which the rolling
regression is conducted, the more like a constant 4§2; is within the window.
As indicated in our discussion of ,p, the second term, VOApS,y, comes
from the covariance between the first and last terms. This term drops out
when the data are generated by a diffusion but not, for example, when
the data are generated by a GARCH model. This term also controls how
much information about ,{), is in the “past” residuals as opposed to the
future residuals,

12



2.3 Consistent Estimation of Nuisance Parameters

To construct correct asymptotic confidence intervals, we must have con-
sistent estimates of the components of the conditional covariance of the
measurement error @y, namely 6;, 1A, and pp;. Sometimessome of these
are known a priori: for example, when {3 X, 4%} is generated by a dif-
fusion process, sp(ijene = 0, W0y /6y — 2 and O — 0 otherwise as
h — 0, thus leaving only A4 to estimate. In more general circumstances,
however, they all must be estimated.

We next consider estimation of ,8rand zA,.

Since we have only the most indirect methods of obtaining information
about these parameters, we will need to assume that the processes under
consideration are “regular” over a slightly longer interval. To do this
we will use the following uniform convergence idea. We will say that
X7 = 0,(1) holds uniformly over T € [T*,T' + Kxh'/? if for all € > 0,

sup P(|Xr|>€) —=0ash— 0.
T e [T, T + K,h'/?)

Assumption E Assume there ezxists a function Kpsuch that Ky — oo as
h — O such that Assumption A holds uniformly over T € [T', T'+ K yh'/?].

By way of example, consider assumption A part {iii). It tells us that
Ar is small: [pAr] = Op(1). In other words, Assumption A-iii by itself
says: Ve > 0, 3M such that P(|sAr| > M) < € for sufficiently small h.
Under assumption E, we have the following stronger statement:Ve > 0,
3M such that

sup P(Ihf\Tl > M) <€
T[T T'+ Ky h'13)
for sufficiently small h. We now need to assume that our “targets” don’t
change very much over short time intervals. In other words, we need a
stronger version of assumption B.

Assumption F For the K in assumption E,

sup |n8r — 167| = 0p(1)
7€ [T, T' + Kyh'/?)

sup [sAr — aAT| = 0p(1)
TE [T’, T + Khhl/2]

sup [nor- woT| = 0p(1)
T € [T",T' 4+ K h'/?
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Assumption (F’) For the K in assumption E, (in the univariate case

only) \ ,
sup  [w0:/nS2; — w07/uQ7| = 0p(1)
TE[T',T"}'!{};’?”!]

sup |hAf/hQ3 - hAT/hQ%‘I = 0p(1)
re[T" T'+Knh'/?)

sup |wpr- npr| = 0p(1)
Te[T T+ K h1/2)

Assumption F trivially implies assumption B. That L' implies assump-
tion B follows from the “near” constancy of Qr over intervals of length
hY/2. Assumption F is more natural for the proof of our convergence
theorem, and is easily understood in the multivariate setting.

In the univariate case, the advantage of using §/Q? and A/Q? instead of
6 and A respectively, is that it may be more believable that the “shape”
parameters are constant than the parameters themselves: Constant 6/Q?
is equivalent to constant conditional kurtosis of the increments in 2 X4
When ,X, is generated by a diffusion, for example, 8/922 = 2. Constant
A/Q? is equivalent to In(x§)) being conditionally homoskedastic. Many
ARCH and stochastic volatility models effectively assume this (see Nelson
and Foster (1994)) and, as we see in the empirical application below, this
homoskedastic In(,{2;) seems a reasonable approximation for U.S. stock
prices.

In the univariate case, these assumptions are equivalent in the sense
that a process that satisfies L for some K will satisfy L' for some other
L'y (and visa versa). But if one of these K;s is significantly larger than
the other, it will allow the use of more data in estimating § and A.

We will now outline estimators for # and A. First define a matrix fc(7)

which can be thought of as being ), — Q,_, for an appropriately defined
Q:
r+chl/?

f( = % A VHARX, — hfieDs)(AnX, — pftsAs) e —

s=r,7+h,...

r—eht/?
— Z h_IIQ(Ath - hﬁsAs)(Ath - hﬁ,AS)'/ﬁ

s=r,r—h,r=2h,...

# and A can now be defined as:

e THEM/?

ijenr = oK, _T%h Fiine(T) Fane(r) = Agjunret /3 (10)
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. 3 T+K.n/? R
Agrgr = === % Ffans(D Funs(t) = 30 /6* (1)
20Kk r=TT+h,..

In the case where € < 6 these estimators are more intuitive because the
“corrections” are small and only the sums themselves need be consid-
ered. To actually get the estimators, we have to solve the simultaneous
equations (10) and (11). These estimators are designed to work with
Assumption F. The following theorem shows they achieve this goal.

Theorem 3 (Consistency) Under assumption D, E, and F, both br
and At are consistent pointwise in T.

Proof: See the Appendix.

For the scalar case, assumption F’ should hold over a longer interval
and so “better” estimates of § and A should be available. Estimators
appropriate for this situation will now be given. The definition of f is
notationally simpler in the scalar case:

T+echil?
f(r) = Y RYHALX, - nfrsDs)Pfe—
s=1,7+h,...
r—ch!/?
Y RYHARX, — hitas)P /e

s=r,7—h,...
Now modify (10) and (11) as follows:

Qe T+K.h'/?

br = =L= S FAr)2 /0% — Arel/3 (10)
2'[{’1 7=T,T+h,...

) 302 T+K.A? . .

Ar === 3 falr)2/QE - 367/6° (117)

- 261{}1 r=TT+4h,...

These are the estimators that we actually use in the empirical example.
We will see from the simulations that the following estimator appears
to do some what better for A in the scalar case:

N2 T4+ K h1/?
. 302 T+

r= TSN 1og(QUT + 8RY2) /Qr)? — 361/67, (12)
WK,

where ) is taken to be a 1 sided rolling regression of length sh1/2. Eq.
(12) can be seen to be close to (11°) if a one term Taylor series for the
log is used.
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The problem of how to estimate 4k is currently open. We haven’t
been able to come up with an estimator we are even willing to conjecture
will be consistent for p. If fact, we are not sure that any consistent
estimator for p exists. On the other hand, this isn’t a problem for many
models because p is assumed to be known. For example, p is one for
GARCH and p is zero for stochastic volatility or diffusion.

Based only on the process X; itself we believe that the idea of a “true”
value for p maybe meaningless. In other words, there might exist a family
of processes §2,, such that {2, satisfies the assumptions of being a condi-
tional variance of X and each 2, has corr(AB, AM*|F_n({X},{,})) =
pAt. Thus, it would be impossible to actually estimate p.

3 Efficiency and Optimality

Throughout this section, we will use various techniques of estimating a
particular §2;;. Thus, we will think of ¢, j as fixed. We will call 8551, =
8, 1\ Auji1. = A, wpgjijT. = p- Further, because we will want to compare
windows of different lengths, we will take our conditioning time to be
T. = T — kh™"/2 for some sufficiently large k.

3.1 Optimal Lead and Lag Lengths in Standard (flat-weight)
Rolling Regressions

Consider again the example of the standard rolling regression in the pre-
vious Section, in which, for some nonnegative ng and mg the weights are
given by sw, = h'/2(ng + myg) - I(t € [-noh'/%, myhl/?]). This weighting
scheme is of special interest, since it is most frequently encountered in
practice. The asymptotic standard error for the ¢ jt’h element of the mea-
surement error in the conditional covariance matrix is given in (9). In
other words,

SE(Sy;) = (bias)®+ Var($;) = 0% + Ciji;

0 mo — N m + n3
~ Y ok +A .
mo + Ny pno + my 3(1’10 + 1!’1’2.0)2

Theorem 4 (flat-weight)

o The asymptotic variance-minimizing backward looking flat-weight rolling

regression (i.e., mg = 0) is given by setting ng = \/'3%. The asymptotic

16



measurement error variance (see (9)) achieved by this choice of my

and ng ts (2 — p) ATG

o The asymptotic variance-minimizing forward looking flat-weight rolling
regression (i.e., ng = 0) is given by setting mg = %. The asymptotic
measurement error variance achieved with this choice of my and ng
is (2 + p)[A8/3]'/%.

o When p > (3/4)'2, the one-sided backward-looking flat-weight rolling
regression s asymptotically optimal tn the class of flat-weight rolling
regressions. When p < —(3/4)Y/2, the optimum is a one-sided forward-
woking rolling regression. When |p| < (3/4)Y/2, the asymptotic opti-
mum is a two-sided rolling regression with

ng = 3(1— p)8/A + p\J8/A, and (13)
mo = 3(1 = p?)8/A - pJB/A (14)

The minimized asymptotic variance when |p| < (3/4)*? is \/A8(1 — p?)/3.

Proof: See the Appendix.

Note the role of ;p in determining the optimal weighting scheme: when
GARCH generates the data, ,p = 1 and all information used by the
rolling regression about ,2; is in the lagged residuals. The closer pp is to
1 therefore, the more weight is optimally put on lagged (as opposed to
led) residuals.

The »p = 0 case is also instructive: here the optimal weighting scheme
is two-sided with equal window lengths on each side. This cuts the asymp-
totic variance exactly in half compared with the optimal one-sided rolling
regression.

3.2 Optimal Weighted Rolling Regressions

Although flat-weight rolling regressions are widely used, they are gener-
ally nonoptimal:

Theorem 5 (Optimal weights) Define 6 and A as in (7) and let o =
A/8.

17



o The asymptotic variance-minimizing backward looking (i.e., all the
weight is on lagged residuals) weight function gwy s given by Tycoyoe.
This achieves an asymptotic measurement error variance of vV A6(1—
p)-

o The asymptotic variance-minimizing forward looking weight function
oW s given by I{Do}ae"“‘. This achieves an asymplotic measurement

error variance of VAO(1 + p).

o The asymptotic variance-minimizing weight function qw; is given by

_ [ pae™®* fors >0
oWs = { (1 - p)ce®* for s <0, (15)

where p = (1 —p)/2. This achieves an asymptotic measurement error

variance of (1/2)VAB(1 — p?).

Proof: See the Appendix.

Note that the estimators recommended by the above theorem violate
our assumptions in the sense that qw, does not have compact support.
Of course the recommended qw, can be arbitrarily well approximated by
a w which does have compact support.

Further notice that in terms of forecasting (i.e. backwards looking)
the optimal weighting is the same regardless of the value of p. Thus even
if p can not be estimated, optimal forecasts for §) are still available. Of
course, we wouldn’t know how accurate these forecasts in fact are!

Another popular strategy for estimating conditional covariances—chopping
the data up into short blocks and estimating covariances as if they were
constant within the blocks (see, e.g., Merton (1980), Poterba and Sum-
mers (1986), French, Schwert, and Stambaugh (1987))-is a special case
of the two-sided flat-weight rolling regression. Suppose the block is com-
posed of a total of K observations. At the left (right) end point of the
block, the covariance matrix estimate is a one-sided rolling regression us-
ing I\ led (lagged) residuals. Between the two end points, the estimate
is a two-sided rolling regression. If we set K = h~1/2k, then the asymp-
totic measurement error variance at a point a fraction 7 through the block
(0 € n € 1) is obtained from (9) by setting ny = kon and mq = ko(1 —7):

C = 8/ko+ pVOA(1 - 20) + (Ake/3)[n* + (1 — 7)) (16)
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which, when [p\/ﬁkd < 1/2, is minimized when n = 1/2 — p\/8/Aky,
lending a bow shape to the confidence intervals.

~ An obvious implication of Theorem 5 is that flat-weighting schemes
such as one or two-sided rolling regressions or block-constant estimators
are inefficient. Unfortunately, however, constructing the asymptotically
efficient weights requires consistent estimates of the nuisance parameter
processes {p;}, {A:}, and {6;}. Can we construct dominating weighting
schemes without knowing {p}, {A:}, and {6;}? The answer, it turns out,
is yes:

Theorem 6 (Dominating flat weights) For every i and j, define the
weights swiij—1 by (6) (i-e., we use n = noh™'/? lagged residuals and
m = moh~'/? led residuals). Define an alternative set of weights yw(;;, 7
by

wi = { 3%(no+ mo) exp[-32RVAT — 1) [mo] if 7> T (17)
RGN T-T = 3Y2(ng 4+ mg) exp[=3V2RYYT — 1) /ng] ifr < T.

Then the asymptotic variance obtained using yw(;;,.r is lower than the
asymptotic variance obtained by using yw(j),—r for any p,8, and A, with

C—C* = (1-v3/2) ($(0-)2(8/mqo+Amo/3)+(0)*(6/no+Ano/3) ) > 0.

The idea behind Theorem 6 is simple: we leave the total share of the
weight put on led and lagged residuals unchanged, but alter the shape of
the weights on each side of time T from a block-shape to an exponential
decline.

There is another natural way to dominate a block-constant estimation
scheme, provided we are willing to consider average, rather than point-
wise, measures of accuracy: integrate the measurement error variance
(16) across the block (i.e., integrate (16) over 7 from 0 to 1), yielding
an average measurement error variance across the block of (“b.c.” is for
“block constant”) Cy, . = 8/ky + (Aky/6) Now consider a flat-weight,
two-sided rolling regression using K/2 = .5k,h~"/? leads and the same
number of lags. By (9), this achieves an average measurement error vari-
ance of (“t.s.” is for “two sided”) Cis = 6/ko + (Ako/12), which is
strictly smaller whenever A > 0, regardless of the values of kg, p, and
Q1. Of course, this two-sided rolling regression is itself dominated by an
exponentially weighted rolling regression constructed as in Theorem 6.
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If we are willing to assume that p = 0, as it would be, for example, if the
data are generated by a diffusion observed at discrete intervals, further
dominance relations follow: in particular, a one-sided rolling regression
using, say, n lags and no leads has exactly twice the asymptotic variance
of a rolling regression using n lags and n leads. The resulting two-sided
rolling regression is itself dominated by an exponential-weighted rolling
regression constructed as in Theorem 6.

Several of the dominance relations are illustrated in figure 1. Using
numbers from the empirical application in Section 5, figure 1 plots the
ratios of the standard deviation of measurement errors in S&P 500 volatil-
ity estimates using various estimation schemes to that obtained using the
optimal two-sided exponentially weighted estimator. The graph was con-
structed under the assumption that p = 0. In switching from the optimal
two-sided exponentially weighted estimator to the optimal flat-weight es-
timator, the standard deviation of the measurement error rises about
7%. In switching from the optimal-two sided to the optimal one-sided
estimate, the standard deviation goes up by a factor of v/2. The bow-
shaped pattern attained by the block-constant scheme of French, Schwert,
and Stambaugh (1987) and of Poterba and Summers (1986) is clear in
figure 1: when p = 0, this estimate does relatively well mid-month but
poorly at the beginning and the end of the month. Switching from this
block constant scheme to using a two-sided rolling regression with the
same number of residuals (as proposed above) achieves a standard error
equal to the (minimized) mid-month standard error.

If standard errors are estimated for the variance estimate under the
false assumption that the covariance matrix truly is constant within blocks,
only the sampling error term 8/ky appears, giving an unrealistically op-
timistic picture of the accuracy of the estimated covariance matrix. This
is illustrated in figure 2.

3.3 The Relation between the Regularity Conditions and the
Optimality Results

Clearly there are relaxations in the regularity conditions which would in-
validate the optimality results. For example, suppose that within each
month, volatility is constant, with each month’s volatility an i.i.d. draw
from some distribution. Presumably in this case the block-constant es-
timation scheme of Poterba and Summers (1986) and French, Schwert
and Stambaugh (1987) would dominate two-sided exponentially declin-
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ing weights. This, however, would violate our regularity conditions, which
(asymptotically) ruled out discrete jumps in x{;.

A more subtle example was suggested to us by John Campbell: sup-
pose volatility follows a moving average process in which volatility shocks
persist—with constant weight—for some period and then suddenly die out.
In this case, a flat-weight rolling regression would presumably dominate
an exponential weighting scheme. (This is obviously true, for example,
if volatility follows Engle’s (1982) ARCH(p) process with equal weights
on p lagged residuals.) Here discrete jumps are not the problem, since it
is easy to show that such a moving-average scheme is consistent with a
continuous sample path for volatility in the limit as h — 0. For example,
for some A > 0, set Q; = exp(W; — Wi_a).

Though it may not be as obvious, this scheme is also ruled out by our
regularity conditions, which not only assumed that the sample paths of
the state variables were (asymptotically) continuous, but also that over
short time intervals, the unpredictable component of changes in the state
variables swamps the predictable component’—i.e., the noise swamps the
signal for sufficiently small h. In the moving average example just given,
the noise and the signal are of the same stochastic order as h — 0. Our
regularity conditions effectively assume that shocks to the state variables
decay either gradually or not at all. This means that over very short time
intervals, the movements in ;€ and ,X; look like random walks.

Since our estimates of §; are formed over short intervals, and since X;
and ; behave asymptotically like random walks over such short intervals,
it should not be too surprising that our optimal weighting scheme is two-
sided exponential: this is the weighting scheme obtained in the literature
on random coefficient models under the assumption of a Gaussian random
walk (independent of the right-hand side variables) for the regression
coefficients—see, for example, Fisher and Kamin (1985).

If the regularity conditions asymptotically ruling out discrete jumps in
»X; are relaxed, our results are invalidated: suppose, for example, that
»-X, is generated by a jump process, say a poisson, observed at discrete
intervals of length h. For each T, the normalized residual V2 X, -
»-Xi_n] converges in probability to zero as h — 0, yet its conditional
variance does not vanish to zero with h. Clearly a rolling regression

A continuous time semimartingale is decomposable (by definition) into the sum of a
martingale (which may be of unbounded variation, and so very rapidly oscillating) and an
instantaneously predictable component of bounded variation (which is much more slowly
varying over short time intervals).
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using O(h"/?) window widths cannot consistently extract this variance;
since unless there is a jump within the window (which happens with
vanishingly small probability as h goes to zero), the variance estimate
produced by the rolling regression is 0! The problem here is that the
normalized residuals h~1/2[, X, — 4 X;—4] are too thick tailed (i.e., they are
nearly always small but are occasionally enormous — i.e. 8 = 00). This
prevents us from applying a law of large numbers and a central limit
theorem locally in time to extract ,€ from the squared increments in
9.

We have also assumed that our variance process, 2, does not have
jumps. In this case though, the problem becomes in some sense easier
instead of harder. If the variability of {2 is contained in jumps, then “most
of the time”(} is relatively constant. So, long windows can be used for
the rolling regression. Unfortunately, the asymptotic variance will still
be infinite, but this is now due to a few large errors. In other words, most
of the time, we will be getting very accurate estimates, but when a jump
occurs, we get asymptotically an infinite error.

4 Estimating conditional betas

In many applications, especially in finance, conditional betas are of greater

importance than conditional variances or covariances. Suppose that A, X ;
is the return on some market index, while Az X, is the return on some

other asset or portfolio. The true and estimated conditional betas of asset

j with respect to the market index are defined respectively as

7350 = w0/ a1, and 485 = a5/ 6 1,12

Since the estimated beta is a differentiable function of the‘asymptotically
normal covariance and variance estimates 5§ ;; and {2314, it is also
asymptotically normal (see, e.g., Serfling (1980, Section 3.3, Theorem
A). with mean zero and asymptotic variance

W8 (kCrazugy + 1B2aCarny — 21B5nCransjyel- (18)

We next consider optimality, assuming, for simplicity, that the same
weights are used in forming both ;€ ;¢ and Q1,14 This corresponds
to using weighted least squares (regressing A X;.on ApX),.) to estimate
nBj¢. Substituting from (7) into (18) yields

AVAR, (A Y4850 — aBia]) = [05Sww + AgSuw + 2p5y/0pAsSwe]  (19)
24



where ) 2o
96 = (h9(1_,'1j)¢ + hﬁj'zhg(llll)t - Zhﬁj.ihg(lllj)t)/hQl.?,ta (20)

Ag = (hAjupe + w82 Ay = 2885 ) /a8 14, (21)
and (deleting the h and ¢ subscripts to improve legibility)

ps = ij\/91,‘:j-\mj+.5"’mmm—ﬂpuu1/aunﬂmj—ﬂpun\/9111;'1‘\1111
— Q% v/Oshs
As in Section 2, the three terms‘/are easily interpreted: 6 is the sam-
pling error variance, Ag is the instantaneous conditional variance of the
increments in ,3;;. The 2pg,/0sAp term arises from the covariance be-
tween the other two terms. Again, this term is zero for diffusion models
and many stochastic volatility models. Note that (19) has the same form
as (9) if we substitute 83, Ag, and ps for 6, A, and p. Apart from these
substitutions, the optimality and dominance results of Section 3 are un-
affected. In particular, the asymptotically optimal weights are two-sided
and exponentially declining, just as derived in the random coefficients
literature under the assumption that betas follow random walks indepen-
dent of returns on the market index.

5 An application: Volatility on the S & P 500

To illustrate the application of our results, we estimate the conditional
variance of continuously compounded daily capital gains on the S&P 500.
Our data extend from January 1928 through December 1990. Poterba
and Summers (1986) and French, Schwert, and Stambaugh (1987) em-
ployed the same series (up to 1985) in their work. The series exhibits
small but statistically significant serial correlation of about 6% at one
lag, presumably caused by thin trading of the stocks in the underlying
index-see, e.g., Scholes and Williams (1977). There is little serial cor-
relation at longer lags. Since this serial correlation is not of interest
to our application, we pre-whitened the series with an AR(1). Another
‘nuisance’ aspect of this data is the contribution of non-trading days to
variance: i.e., stock volatility is typically higher following weekends and
holidays, since the information arriving during the period of market clo-
sure must be reflected in asset prices when the market re- opens. (See,
e.g., French and Roll (1986).) Nelson (1989) estimated that each non-
trading day adds 22.8% to the variance of the S&P 500 on the next trading
day. Accordingly, we divide each of the pre-whitened capital gains § by
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(14 .228- N,)!/?, where NV, is the number of non-trading days preceding
trading day t. The transformed series is plotted in figure 3.

As noted earlier, French, Schwert, and Stambaugh (1987) employed a
block-constant estimation strategy for the variance. They noted that the
resulting series is skewed to the right, and that the variance of the
innovations in (Y is an increasing function of 2. French, Schwert, and
Stambaugh took the log of € and found that this transformation ade-
quately stabilized the variance. This is apparent in figure 4, which plots
the log of a simple flat-weight rolling regression with a window length
of 25 days on each side. We therefore make the simplifying assumption
that In(€) is conditionally homoskedastic (i.e., Ar = AQ?) . We also
make the simplifying assumptions that conditional kurtosis is constant
(i.e., 6, = 60Q7), and that p; = 0, i.e., stochastic volatility or diffusion
rather than GARCH as the data generating process. These assumptions
allow us to set K = oo in Theorem 3. We then formed initial conditional
variance estimates using two-sided flat-weight rolling regressions. From
these initial variance estimates, we created estimates of § and A using
the method of Theorem 3. These estimates in turn implied optimal n
and m values (n = m) for two-sided rolling regressions through formulas
(13) and (14). We then iterated this procedure, at each stage using the
“optimal” n and m suggested at the previous step until the procedure
converged. (This occurred very rapidly, since for m + n values below 52
a higher value was suggested, while for n + m above 54 a lower value was
suggested. We settled on a window length of 52.) The estimated ¢ and A
values were 2.72 and .0120, respectively, implying through Theorem 5 an
optimal exponential decay rate of o = .0665 for a two-sided exponentially
weighted rolling regression.®

To gauge the reliability of our asymptotic approximations, we per-
formed 600 replications of the following experiment calibrated to the S&P
500 data: First, we generated 16885 observations of In(;) and AM; as

In(€) = —.4246 + .0944 - [In(Qy_,) + .4246] + 2o, (22)

AM, =0 2y, (23)

where z),, and 2y, are mutually independent and i.i.d., with z;; dis-
tributed as a Student’s t with 12 degrees of freedom, mean 0 and variance

6To gauge the importance of our pre-whitening and non-trading days adjustment, we
repeated the estimation procedure using the raw (i.e., unadjusted) capital gains data.
The results changed very little: the estimated § and A were respectively, 2.668 and .0124,
and the optimal m + n and exponential decay rate were 51 and .068 respectively.
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1 and z9, is IV(0,.0120). The degrees of freedom of the Student’s t distri-
bution was selected to match the estimated conditional kurtosis from the
S&P 500 data. The variance of z3; was selected to match the estimate of
A for the S&P data. The population mean of In(), which was -.4246,
matched the sample mean of the fitted In(€). The slow mean reversion
(.9944) was selected to match the unconditional variance of In(£2;) to the
sample variance of the fitted In(€}) plus the variance of (In 2, — In {},).

For each replication, we repeated precisely the same estimation proce-
dure we had applied to the S&P data. Tables 1 & 2 below report means
and standard deviations of the estimated parameters in the simulations.
Standard errors (i.e., sample standard deviations divided by the square
root of the number of simulations) are given in parenthesis.

Mean of Sample
Estimated égi‘g}z ¢ Standard
Coefficient ten Deviation
A .01051 0.0120 .0012
(8.00085)
) 4 2.75 .082
(609

Table 1: Using equation (12)

Mean of Sample
Estimated éctlflﬁal. ; Standard
Coefficient oetcien Deviation
A 8.087 0.0120 00088
(0.001)
! 2.527 2.75 .088
:864)

Table 2: Using equation (11°)

The estimates for both A and 8 are downward biased (by 1.2 and 3.3
standard deviations respectively in table 1 and 5.1 and 2.5 standard de-
viations in table 2). The width of the asymptotic confidence intervals,
the optimal m + n etc., are functions of \/A/6. The bias in this ratio is
quite small-for example the optimal m + n for two-sided rolling regres-
sions is given by (13) and (14) as (12-6/A)"/? = 52.4 for the simulation.
The mean estimated optimal m + n was 53 with a standard deviation of
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3.6 (using equation 12 it was 64 + 4.3). Our estimates of (A/6)Y/? were
close despite the biases in both A and . Since A and 6 are biased in the
same directions, the biases partially offset in (A/6)'/2, 1t is also worth
noting that the asymptotic standard deviation of the measurement error
achieved by the optimal flat-weight or exponentially weighted rolling re-
gressions is proportional to (A8)1/4, This means that measurement errors
in A and 8 must be quite large to have much effect on the accuracy of
the confidence intervals. For example, getting § wrong by a factor of 2
throws off the confidence intervals by only about 19%. Tables 3 and 4
compare the asymptotic versus actual coverages in the measurement er-
ror, giving the proportion of measurement errors falling between *1,+2,
and +3 estimated asymptotic standard deviations, along with the stan-
dard errors. The asymptotic confidence bands are slightly too narrow,
but not drastically so.

Standaed | Govuragein | ASYERISHC
Simulation

1 (8888% 0.6827

2 (88882) 0.9545

3 (88 %El)) 0.9973

Table 3: Using equation (12}

Mean .
Deviadons | Coverssein | GRS
1 (838(1)%) 0.6827
2 (8%88%) 0.9545
3 (88885) 0.9973

Table 4: Using equation (11)
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Figure 5 plots 95% confidence bands. We used the delta method to
transform our asymptotic distribution for A=1/4(2 — Q) into an asymp-
totic distribution for A~/4(InQ) — InQ). This, combined with our as-
sumption that 8 = 6 - Q? and A; = AQ} implies that the width of the
confidence bounds in a log plot is constant, so the extension from figure
5 to confidence bounds for the whole sample is immediate.

Figure 6 is analogous to figure 5, except that it uses simulated data,
and plots the true (simulated) Q) along with the £2 standard devia-
tion confidence bounds. Overall, the asymptotic approximation performs
tolerably well using equation (11’) and extremely well using (12).

6 Conclusion

While this paper has, we believe, shed new light on rolling regressions as
conditional variance and covariance estimators, much work remains. For
example, in tests of asset pricing theories the link between conditional
means and conditional covariance matrices is usually crucial. As we have
seen, conditional covariances can be accurately measured using high fre-
quency data (i.e., taking h to zero). Unfortunately, estimating conditional
means requires a long span of data as opposed to a high observation fre-
quency, see e.g., Merton (1980). Since the asymptotic results developed
in this paper are pointwise in time, they do not adequately equip us to
study the joint evolution of conditional means and covariances over time.

A second limitation is our consideration only of unconstrained linear
regression to compute the estimated conditional covariance matrix. Con-
straints on the conditional covariance matrix (e.g., on the eigenvalues or
eigenvectors) are likely to prove important in dynamic factor analysis or
principle components.

Finally, as we have seen, conditionally thick-tailed processes reduce the
efficiency of least squares based procedures such as rolling regressions. It
should be possible to adapt the methods for robust estimation of covari-
ance matrices developed for the i.i.d. case (see, e.g., Huber {1981)) to the
rolling regression framework.” Extending our results in these directions

"Robust conditional variance estimation methods have been employed in the ARCH lit-
erature. For example, Taylor (1986) and Schwert (1989) estimate the conditional standard
deviation as a distributed lag of absolute residuals (rather than estimating the conditional
variance as a distributed lag of squared residuals). Schwert was explicitly motivated by
the robust variance estimation methods of Davidian and Carroll (1987). For a formal
. analysis of the robustness properties of these models see Nelson and Foster (1992).
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may prove quite challenging, but should be worth the effort.

The Wharton School, University of Pennsylvania, Philidelphia PA 19104
Phone: 215 898 8233.

University of Chicago Graduate School of Business and N.B.E.R., Chicago
IL 60637. Phone: 312 702 3231.

APPENDIX

We will drop the prefix “h” from our stochastic processes to conserve
space in our proofs. Lemma’s, theorem’s etc., will include the “h™’s. All
processes depend on h.

PROOF OF THEOREM 1: We will first divide the problem into two

pleces.
Definition ,Qujr = &, 8Qyjjrawr-TAT.
Lemma 1 If assumptions A & D hold, then

h_1/4(ﬁ(ij)T - ﬁ(ij)T) = h1/4 ; w.,-_TAB(,'j)f + Op(l)
R Qe = Quipr) = B L W rAMG;), + 0p(1)

From lemma A.1, it is obvious that theorem 1 holds. The proof of
lemma A.1 relies on some other lemmas which we will prove first.

Lemma 2

Qupr = Qijr + VR Z wrrAQqj), + h(Bij + Bji + D)

where
Bj; = ZT:(”(J')T — By )Wr-TAM 3y,
and
D = 3 (ki) = By )beyr — By )wr-TAT
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PROOF OF LEMMA A.2: First note that
AXGyr = hityr = AMgyr + hpgg) = hisg)r

= AM)r + h{pG)r — D))
So

[AX(G)r — Riw)[AX Gy — RG] = (DM + gy — Br)) X
(AMeyr + hug)risye)
=AMy, AMiG), + h(ugy: — By ) AMi: +
+ h(payr — ey )AMgy, +
+ R (piiye — By Y pgyr = Bgyr)

Define A = ):T 'wr—-TAM(i)-rAM(j)r Thus, Q(ij)T =A + h(B;'j + BJ-,' + D) .
Now analyzing A:

A = 2 wr-rAMHAM),
= ZT: Q(,-j),.w,_TAT + XT: w,-_T(AM(,')TAM(j),- — Q(;J‘),-AT)
= Qujir + VA w,rAQ )

Lemma 3

ﬁ(ij)T Q(IJ)T z ’wf...TAT = Z \IIS-TAM(gJ)s + &+ F

s=0
where £ = MT) LRy YorlAs and F = T2y V,—r(A(s) — A(T))As.
PROOQOF:

ﬁ(:’j)T ko Q(ij)T Eow,-..TAT = Z,.:(Q(ij)f — Q(ij)T)wr—TAT

= (z Z AQ(U)GwT"TAT - Z E AQ(:J)awf—TAT)

>T s=T T<T 8=T
= ( Z w,-._TAQ(,'j)sAT— z: wr-—TAQ(l'j)sAT)
T<s<r T<s<T
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o oo T-h s
= (Z Z 'LU,-_']'ATAQ(,-J')s - Z E wr—TATAQ(ij)s)

s—T r=s+h 3—0 =0
= Z(L)T Z wr—TAT - ,<T Z w,-_TAT)AQ(,J)s
0 r=s+h r=0

= Zo U7 AQj)s
Now use the Doob-Meyer decomposition of A2, and we get

Qipyr — Uigyr Lwr-r = % U,r(A(s)As + AMG;),)

= \T) z Uy 7hs+ 3 Uy r(A(5) = M(T))As + > T AMi,
s=0 5=

Lemma 4 Under assumptions A & D the following hold

(A.1) | Bij = op(h™3/f4.3) £ = 0,(h?)
(A.2) D=0,1) (A.4) F = 0,(h1/?)

PROOF OF (A.1): Because u, 1, and w are all predictable, and AM is
a martingale difference array, :

E(Bi;) =0

and

E(B5) = B( (i — fuiiye Y wi o) AT).

But, by part i of assumption (A) we know that

iyt T )T = 1
250 (e — fiye)® = Op(2)

By assumption D, we know sup(w?_r) = Op(h~!). By parts iv and vii of
assumption A, we know that sup(Qj)r) = Op(1). By D, we know that
there are O(h*” ?) terms in our sum. And by definition, A7 = h. Thus,
E(B%) = O,(h™'/?). So, by Jensen’s inequality

P(B;; > MR~y < O, (h™/%)/M*h~3/2
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= Op(hl) = 0p(1)
PROOF OF (A.2): Using part i of Assumption A and assumption D we
see that D = O,(1).
PROOF OF (A.3): Using part iii of assumption A, we see that Ay =
Op(1). By assumption D and the definition of ¥ we can therefore conclude
that £ = O,(hl/2).
PROOF OF (A.4): Using part ii of assumption A, the definition of v,

and assumption D, we see that F = O,(h/?). 0
PROOF OF LEMMA A.1: Follows by substituting lemma A.4 into lem-
mas A.2 and A.3. =]

Thus, we have now completed the proof of theorem 1.
PROOF OF THEOREM 2: By Theorem 1, we need only analyze

R4 w,_rABijye + B W AM,,.

But since B and M* are martingales, we know its mean to be zero and
its covariance between terms ij and ki to be:

h'7? ; Wiy r—TW(ktyr 1Ok e OT + B2 ; Yijyr-TYkyr—TAGijrnyr AT

+ Z Wiy T Y(k)r TV Oijijyr Mrtktyr Pajinyr AT

+ }_T: Wk —T Wiy -TVOkityr Aiijis)r Pktizyr AT

which by assumptions (A.v), (A.vi) and B is asymptotically equal to
Clijrnr- Now applying the standard martingale central limit (which uses
assumptions C and A.vii and A.viii) see, e.g., Liptser and Shiryayev
(1980), we get the desired result. O
PROOF OF THEOREM 3: Before we begin we have to mention a detail
about what we are going to prove. We will prove that trimmed-mean
versions of (10) and (11) will work have the desired properties. Thus, we
will replace the sum
Zr: fe(r)?

by a trimmed version, namely
- min(f,(r)?, M).

(In the multivariate case, each element of the matrix f(7)f.(7)" should
be trimmed by the constant M.)
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First we need to represent f.(7) as

r+ehtl? T
=S AKX, s e = X WVHAX, = luAs)e

s=T s=r—ch!/2
=3 b~ Y ((s — T)RYVE)(AX, — fAs)

where w(z) is defined as h=1/21sgn(z)fj_.q(z), where sgn(x) is the sign
of x. Le. sgn(z) = 1 if z > 0, and sgn(z) = ~1 if z < 0. Thus, we have
written f, in the form of equation (5). If T, w.(s)h = 1, then assump-
tion D would hold and we could apply lemmas A.2-A.4. But, looking at
the proofs of A.2-A.4 we see that this fact isn’t used. Thus, from lem-
mas A.2-A.4 we have an asymptotic representation for f.(7) in terms of
martingales. Using the same CLT as before, we can find the asymptotic
distribution for f.(7). In particular f.(r) converges to a normal with
mean zero and variance of 26, /e + 2eA,/3. Thus, asymptotically

~ Jim lim E(min( f(T)?, M) — 28, /e + 2¢A, /3.

Now applying the law of large numbers

yhm o lim o /K S min(f(r)*, M)/Q(7) — 20: /€ + 2eA/3.
Substituting this into equations (10) and (11) we get the desired result.

Note: This proof also works for the multivariate problem.

Note: The importance of the truncation is that convergence in distra-
bution will imply convergence in mean only for bounded random vari-
ables. So, we must make the f.(7)?> bounded to use the law of large
numbers. m

PROOF OF THEOREM 4: This theorem consists of three different
optimizations of equation (9). Part (a) forces mg to be zero, part (b)
forces ng to be zero, and part (c) only constrains ng and mg to be non-
negative. Parts (a) and (b) follow from taking derivatives and setting
equal to zero. By the form of equation (9), it is obvious that there is a
unique minimum. Part (c) is solved by using partial derivatives. The side
constraints of non-negativity for ng and mg come into play for extreme
values of p. Thus, we get the three part solution. O

Lemmas A.3 through A.8 set up theorem 5.
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Lemma 5 (Some calculations for exponential weights) let c; = 5'(1 - 3),
fori=10,1,2,.... Define

o

C,'EZCJ‘=[)"..

j=i
Then,
S =0-8Y01- Y
and o
)3 Cl=1/(1-p%
. The minimum of

S+ Ay C (24)

1=0 i=0
occurs at 3 = 1 — VA + o(VA), and the minimum value obtained is
VA +o(VA). '

PROOF: Note that formula (24) is equivalent to
(1-87°/(1 - B%) + A/(1 - %) (25)
The following algebra minimizes (25) to generate our result. (e =1 — 3)
mein(e2 +A)/(1-(1-¢€P
min(e + A/0)/(2 ~ ¢)

for which the minimum occurs at €2 = A(1—¢), which is € = VA+0o(VA),
and the value of (25) at this point is VA + o(v/A). a

Lemma 6 (Discrete approrimately equals continuous), Any c;s which
sum to one have the property that the value of equation (24) is at least
VA. In particular, let Dt = {f(-)| [§° f(t)dt = 1}, then
SE+AYCE > mingep [ f@dt+A[ ([T f(s)ds) dt (26)
=1 i=1 0 ¢ 0
< VA,
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PROOF: Taking
f(t)::w,fOI"lSt<t+1

which is in D, and its value is exactly the left hand side of (26). This
proves the inequality part. Write

f(t) = ae™ +n(t),
with a = v/A. Then
L (@t =0 (27)

Because [ f(¢)dt = 1, and Jae™®dt = 1. The following follows by an
interchange of integrals and the definition of 7(-):

J7 rdt = a/2+ [ n(t)ae™'dt + £ n(®)?dr. (28)

Obviously, - -
j; f(s)ds = e""‘—i—jt n(s)ds

Some more calculus yields:

7 f(s)ds)2 dt = [~ n(t)dt - [ n(eyeetdt + £ n(s)ds)2dt
29

Substituting (27) into (29) yields: _ (#9)
7 f(s)ds)2 dt = — [~ n(t)e=dt + 5 ( [o > n(s)ds)2 dt  (30)

Our desired result is now A times equation (30) plus equation (28).
Putting these together yields (recall o = VA):

goal = a+ /000 n(t)’dt + /ooo(/ooo n(s)ds)*dt > e,

with equality holding if f(-) = ae™*".
O

Lemma 7 If ¥2,¢; = p, then ¢; = pBi(1 — B) is asymptotically (as
A — 0) the minimizer of equation (24) with an asymptotic value of p*V/A.

PROOF: Lemma A.5 shows the value of (24) for these cs, and lemma
A.6 shows they can't be improved upon. o
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Lemma 8 Restrict w, such that f§° qw,ds =p. Then the optimum w, is

__ | pae™®¢ fors >0,
oWs = (1-plae™*® fors <0,

(where o« = \/A/8), which yields an asymptotic variance of
VA((2p — 1)3/2 4+ 1/2 — (2p —~ 1)p.

PROOF: We will break the problem into two pieces, the positive part
(s > 0) and the negative part (s < 0). Each will be separately minimized
for each value of p = [§° gw,ds. First consider

/Ooo w,V,ds = /Ooo w, /:o w,dtds

= (U2([ " w, ["wdtds + [ w, [7w,dsdt)
= (1/2) ‘/[;00/000 w,wdtds = p?/2

Therefore for fixed p, minimizing the w’s is the same as minimizing
equation (26) above with A = A/6. Thus, the parameter of the exponen-
tial function is identical regardless of p and regardless of which side of
Zero we are on. So, o = \/Ag, is optimal. ‘ 0
PROOF OF THEOREM 5: Lemmas A.5 through A.8 prove everything
except picking the value of p. For parts (A) and (B), the value of p is
determined so we are done. For part {C) we need to minimize the variance
with respects to p. The variance is

VA§((2p — 1)?/2+ 1/2 - (2p - 1)p)

Which is minimized at (2p — 1) = p. Thus, the minimum occurs at
p = (1—p)/2, so the optimum variance is

= (1/2)VA6(1 - p2)

a
PROOF OF THEOREM 6: Equation 3.7 follows from 9 by substitution.
3.7 is obviously positive which proves our result. O
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