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Continuous Role Adaptation for Human-Robot
Shared Control

Yanan Li, Member, IEEE, Keng Peng Tee,Member, IEEE, Wei Liang Chan, Rui Yan,Member, IEEE, Yuanwei
Chua, and Dilip Kumar Limbu

Abstract—In this paper, we propose a role adaptation method
for human-robot shared control. Game theory is employed for
fundamental analysis of this two-agent system. An adaptation law
is developed such that the robot is able to adjust its own role
according to the human’s intention to lead or follow, which is
inferred through the measured interaction force. In the absence of
human interaction forces, the adaptive scheme allows the robot to
take the lead and complete the task by itself. On the other hand,
when the human persistently exerts strong forces that signal an
unambiguous intent to lead, the robot yields and becomes the
follower. Additionally, the full spectrum of mixed roles between
these extreme scenarios is afforded by continuous online update
of the control that is shared between both agents. Theoretical
analysis shows that the resulting shared control is optimalwith
respect to a two-agent coordination game. Experimental results
illustrate better overall performance, in terms of both error and
effort, compared to fixed-role interactions.

I. INTRODUCTION

Human-robot shared control is an emerging research field
with many applications such as robotic rehabilitation [1],
search and rescue [2], and tele-operation [3]. Humans and
robots have complementary capabilities, and their collabo-
ration is a necessity in many situations [4]. In particular,a
robot is able to perform a task autonomously with a desired
trajectory prescribed based on the rough knowledge about
the workpiece, environment, and process, while the human
may provide on-task corrective action, fine tuning control,
and situational guidance to the robot. This is useful for
high-mix low-volume manufacturing where it is not cost-
effective to determine accurately the desired robot trajectory
corresponding to each workpiece variant. Unfortunately, it is
generally difficult to design a good human-robot interface
since multiple factors like stability, safety and usability need
to be addressed together [5]. It is also very challenging to
apply techniques from multi-robot collaboration (e.g. [6], [7])
to scenarios in which humans are in the loop, because these
techniques are not designed to accommodate unpredictability
and unmeasurable uncertainties introduced by humans [8].

The traditional approach of dealing with physical human-
robot interaction typically involves the robot yielding com-
pliantly to the motion of the human through an impedance
or admittance controller [9]. Subsequently, more sophisticated
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methods in estimating and recognizing human intention (see
e.g. [10], [11]) have been developed to provide more cues for
the robot to react to, but the control philosophy remains the
same, namely, human as leader and robot as follower. The ra-
tionale for fixing the roles distinctly is that humans have better
cognitive abilities, such as situational awareness and decision-
making skills, while robots have better physical abilities, such
as precision and strength. However, to require the human to
always lead the task and drive the robot means subjecting the
human constantly to a high cognitive load, which degrades
performance over prolonged operation. Although specialized
applications such as robotic surgery [12] and assistive ex-
oskeletons [13] can benefit from such a fixed-role leader-
follower paradigm, the same may not be true in general for
other applications. A case in point is cooperative welding [14],
where it was shown to be advantageous for a robot to lead
during the welding process because the information required to
control welding can be obtained more accurately by the robot.
Another example is obstacle avoidance, where it is useful for
the robot to take over the lead and automatically modify the
human-intended motion when it senses an impending collision
or safety constraint violation [15], [16], [17].

The importance of adjustable leader/follower roles for
shared control has been emphasized in a recent review [18],
and there are several works in this direction. In [19], the role
of the robot was switched between leader or follower based on
online estimates of impedance parameters that indicate human
intention. In [20], a homotopy switching model allowed the be-
havior of the robot to be adjusted between leader and follower
roles in two-agent haptic collaborative tasks. An example of
how such tuning can be achieved in practice was given in [21].
A thorough formal analysis of human-robot cooperative load
transport was presented in [22], and constructive dynamic role
assignment was shown to be advantageous over a static one. It
required that a shared plan in the form of a desired trajectory,
as well as the common goal of the cooperation task, be known
to both agents. In [23], the possibility that the human diverges
from the robot’s assumed final configuration or path to the goal
was considered, and an adaptation strategy was developed to
switch between model-based and model-free predictions based
on risk-sensitive optimal feedback control [24]. In [25], role
adaptation was achieved by adaptive attitude design depending
on the disagreement level and the environmental situation,
and the possibility of using game theory for the modeling of
attitude negotiation between two partners was suggested. As
discussed in [26], game theory provides useful tools to analyze
complex interactive behaviors involving multiple agents.
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In this paper, we employ game theory to analyze human-
robot interactive behavior, and develop a framework to make
on-the-fly adjustment of the robot’s role across a continuous
scale between a leader and follower, with the human’s goal
unknown to the robot. We propose an adaptation law that
automatically adjusts the role of the robot, according to
the measured interaction force, in order to achieve human-
robot coordination. It is important to emphasize that this role
adaptation is continuous and not a discrete switching between
different states. Moreover, it does not require the human and
the robot to share a common goal known to both agents.

The rest of the paper is organized as follows. In Section
II, the human-robot shared control problem is formulated
as a two-agent game based on game theory. In Section III,
an adaptation law is developed to achieve the human-robot
coordination, and its performance is theoretically analyzed. In
Section IV, the validity of the proposed method is verified
through experimental studies. The limitation of the proposed
method and possible future works are discussed in Section V.
Section VI concludes this work.

II. HUMAN-ROBOT SHARED CONTROL AS A
TWO-AGENT GAME

Definition 1: The term “role” is defined as the behavioral
pattern that an agent (human/robot) takes on due to a certain
shared control scheme [22], and it will be shown to be directly
related to the balance of the control input contributed by each
agent (human/robot).

We consider an example scenario as illustrated in Fig. 1,
where a robot collaborates with a human to perform a task
on a workpiece. In this shared control scenario, when the
robot end-effector is away from the workpiece, the human
should be allowed to take the lead and have the flexibility
to pre-empt or react to unexpected problems, especially in
unstructured environments. On the other hand, when the end-
effector is near the workpiece, it is desired for the robot to
take the lead, since the robot is able to sense the workpiece
more accurately and perform the task more precisely. Note
that although we illustrate a kinesthetic interaction scenario,
the proposed method can also be applied to a teleoperation
scenario.

 

Fig. 1. Illustration of an example scenario of human-robot shared control
with adjustable roles

A. Dynamic Model

The forward kinematics of a robot are described byx(t) =
φ(q(t)), wherex(t) ∈ R

m andq(t) ∈ R
n are positions in the

Cartesian space and in the joint space, respectively. Differen-
tiating it with respect to time leads tȯx(t) = J(q(t))q̇(t),
whereJ(q(t)) ∈ R

m×n is the Jacobian matrix. The dynamics
of the robot in the joint space are

M(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) +G(q(t))

= τ(t) + JT (q(t))f(t) (1)

where M(q(t)) ∈ R
n×n is the inertia matrix,

C(q(t), q̇(t))q̇(t) ∈ R
n the Coriolis and centrifugal forces,

G(q(t)) ∈ R
n the gravitational force,τ(t) ∈ R

n the control
input, andf(t) ∈ R

n the interaction force in the Cartesian
space.

We adopt the two-loop impedance control, which includes
an inner position control loop and an outer loop [27]. As state-
of-the-art robots have controllers that provide very accurate
joint position control, we assume a perfect inner position
control loop, i.e.,q(t) = qr(t), whereqr(t) is the reference
position in the joint space. The outer loop is used to generate
qr(t) according to the following impedance model in the
Cartesian space

Mdẍr(t) + Cdẋr(t) = u(t) + f(t) (2)

whereMd ∈ R
m×m andCd ∈ R

m×m are given inertial and
damping matrices, respectively,u(t) ∈ R

m the control input
in the Cartesian space, andxr(t) ∈ R

m the reference position
in the Cartesian space. By designingu(t) and measuringf(t),
the reference velocity in the joint space is obtained based on
inverse kinematics, i.e.,

q̇r(t) = J†(q)ẋr(t) (3)

whereJ†(q) is the pseudo-inverse of the Jacobian matrixJ(q).
Based on the above assumption of a perfect inner position
control loop, we have

Mdẍ(t) + Cdẋ(t) = u(t) + f(t) (4)

From (4), we see that the two sourcesu(t) andf(t) are sharing
control of the robot.

For ease of analysis, (4) can be rewritten in the state-space
form

ż(t) = Az(t) +B1u(t) +B2f(t) (5)

where z = [xT ẋT ]T , A =

[

0m×m Im×m

0m×m −M−1
d Cd

]

and

B1 = B2 =

[

0m×m

M−1
d

]

, with 0m×m and Im×m denoting

m × m zero and unit matrices, respectively. To solve the
optimal tracking problem, it needs to be transformed to a
regulation problem [28]. In particular, the desired trajectory
xd is generated by a given system

{

ẇ = Uw

xd = V w
(6)

where w ∈ R
l is an auxiliary state, andU ∈ R

l×l and
V ∈ R

n×l are two matrices designed to generatexd. Then,
by denotingz̄ = [zT wT ]T , we have the following augmented
system

˙̄z = Āz̄ + B̄1u+ B̄2f (7)
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whereĀ =

[

A 02m×l

0l×2m U

]

, B̄1 = B̄2 =

[

B1

0l×m

]

, and

02m×l, 0l×2m, and 0l×m denote zero matrices with proper
dimensions.

B. Problem Formulation

We consider that the robot’s control objective is to minimize
the following infinite-horizon cost function

Γ =

∫ ∞

0

c(t)dt

c(t) = (x− xd)
TQ1(x− xd) + ẋTQ2ẋ+ uTR1u

+fTR2f (8)

whereQ1, Q2 ∈ R
m×m � 0 andR1, R2 ∈ R

m×m ≻ 0 are the
weights. The first term of the above cost function penalizes
the error between the actual and desired positions of the robot,
while the second term regulates the velocity. The last two
terms determine the contributions of the human and the robot:
a higherR1 indicates a higher propensity for the human to
lead, and conversely, a higherR2 indicates a higher propensity
for the robot to lead.

Remark 1:In [10], the desired trajectory is solely deter-
mined by the human, and the strategy of the robot is to track
the intended motion of the human. In comparison with [10],
the cost function defined by (8) describes a more general
situation, where the desired trajectory is determined/negotiated
by both the human and the robot. The situation discussed in
[10] is thus a special case, either when the weightR1 is chosen
to be very large, or when the desired trajectory of the robot
xd is identical to the intention of the human. Conversely, if
the weightR1 is chosen to be relatively small, the decision
of the robot will be more respected. This is especially useful
in situations when the robot should take the lead, e.g., precise
positioning as discussed in the introduction.

According to the definition of the augmented statez̄, the
cost function (8) can be rewritten as

Γ =

∫ ∞

0

(z̄TQz̄ + uTR1u+ fTR2f)dt (9)

where Q =





Q1 0m×m −Q1V

0m×m Q2 0m×l

−V TQ1 0l×m V TQ1V



. In human-

robot shared control, the robot should change its control
objective according to the human’s. Therefore, we expect that
the human’s objective can be also described by minimization
of a cost function.

Assumption 1:The cost function structure of the human is
the same as that of the robot, which is described in (9).

However, the human’s cost function is typically unknown
to the robot. Therefore, in the rest of this paper, we aim to
develop a method to adapt the robot’s cost function based on
interactions with the human.

C. Game Theory

Human-robot shared control can be studied based on game
theory. In particular, the human and the robot are involved in
a common game and have individual objectives (described by

individual cost functions). In game theory, different types of
multi-agent behaviors, such as cooperation and competition,
have been defined and analyzed [26]. We follow the charac-
terization of multi-agent behaviors in terms of the relationship
between the cost functions of individual agents [29], [30].
There are different solution concepts to the game that will
result in different multi-agent behaviors, and Nash equilibrium
is considered in this paper.

Definition 2: Coordination refers to the case that the cost
functions of all agents are the same.

Based on Assumption 1 and Definition 2, coordination is
realized in human-robot shared control if the human’s cost
function is alsoΓ. Then, the Nash equilibrium can be achieved
by the following optimal control

u∗ = −
1

2
R−1

1 B̄T
1 P z̄∗ (10)

f∗ = −
1

2
R−1

2 B̄T
2 P z̄∗ (11)

where P is obtained by solving the following well-known
Riccati equation [31]

ĀTP + PĀ+Q− PB̄1R
−1
1 B̄T

1 P

−PB̄2R
−1
2 B̄T

2 P = 0m×m (12)

and z̄∗ denotes the optimal state in the following optimal
system

˙̄z∗ = Āz̄∗ + B̄1u
∗ + B̄2f

∗ (13)

Remark 2:Note that the Riccati equation (12) takes into
account the interaction between two agents (the human and
the robot) and their shared control of the same system. It
is different from the linear quadratic regulator (LQR) for an
individual agent, given by

ĀTP + PĀ+Q− PB̄1R
−1
1 B̄T

1 P = 0m×m (14)

for the cost function
∫∞

0
[z̄TQz̄ + uTR1u]dt, and by

ĀTP + PĀ+Q− PB̄2R
−1
2 B̄T

2 P = 0m×m (15)

for the cost function
∫∞

0
[z̄TQz̄ + fTR2f ]dt.

As discussed in the previous subsection, the cost function of
the human is unknown to the robot and probably not equal to
Γ. This leads to different Nash equilibria which require control
inputs different from (10) and (11). As the actual control input
of the human,f , is measurable, the difference betweenf and
f∗ in (11) can be used as a measure of conflict between the
human’s objective and that of the robot, i.e., eliminating the
difference will realize the coordination of the human and the
robot. Based on this idea, we will develop a role adaption
method, which is detailed in the following section.

III. ROLE ADAPTATION FOR HUMAN-ROBOT
COORDINATION

The relative roles of the human and the robot can be adapted
by updating eitherR1 or R2 in the cost function (8) to
minimize E = 1

2e
T
f ef , whereef = f − f∗. We realize this

with the adaptation law

Ṙ2 = −α
∂E

∂R2
(16)
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whereα > 0 is the update rate.
Whenever the human interacts with the robot by exerting a

forcef , the weightR2 will be updated via (16) untilf tracks
the optimal controlf∗ with a new cost function and a new
R2. In other words, the human claims a new role by applying
a forcef which will result in a force error, and the robot will
adapt to this new role by reducing the force error. This can
be intuitively understood through two illustrative cases.In the
first case, suppose that the human does not want to lead; he/she
would reduce the interaction force applied to the robot. Then,
the adaptation law increasesR2 to the effect of increasing
the penalty of the human input in the cost function. As a
result,u increases to make the robot take on a greater leading
role. In the second case, if the human wants to lead the task,
he/she would apply a larger force to the robot. This causes the
adaptation law to decreaseR2 to the effect of increasing the
penalty of the robot input in the cost function, thereby causing
the robot to give up a portion of the shared control.

For ease of implementation, we letR2 = r2Im×m. This
simplifies the adaptation law to

ṙ2 = −α
∂E

∂r2
= −αeTf

∂ef

∂r2
(17)

According to (11), we have

∂ef

∂r2
=

1

2r22
B̄T

2 P z̄∗ −
1

2r2
B̄T

2

∂P

∂r2
z̄∗ −

1

2r2
B̄T

2 P
∂z̄∗

∂r2
(18)

whereP (t) is obtained by solving (12).∂P
∂r2

is obtained by
solving the following equation

ĀT ∂P

∂r2
+

∂P

∂r2
Ā−

∂P

∂r2
B̄1R

−1
1 B̄T

1 P

−PB̄1R
−1
1 B̄T

1

∂P

∂r2
−

∂P

∂r2
B̄2R

−1
2 B̄T

2 P

−PB̄2R
−1
2 B̄T

2

∂P

∂r2
+

1

r22
PB̄2B̄

T
2 P = 0m×m (19)

which is obtained by differentiating (12) with respect tor2.
By denoting

X = Ā− (B̄1R
−1
1 B̄T

1 + B̄2R
−1
2 B̄T

2 )P

Y = −
1

r22
PB̄2B̄

T
2 P (20)

we can rewrite (19) as

XT ∂P

∂r2
+

∂P

∂r2
X = Y (21)

Then, we have

∂P

∂r2
=

1

2
X−TY (22)

by considering that∂P
∂r2

andY are symmetric. Also, from (13),
we can obtain

˙̄z∗ = ṙ2
∂z̄∗

∂r2
(23)

Lastly, by substituting (17) and (18) into (23), we obtain∂z̄∗

∂r2
,

and thus∂ef
∂r2

in (18).

After R2 is updated andP obtained, the actual control input
of the robot can be designed as follows

u = −
1

2
R−1

1 B̄T
1 P z̄ (24)

Implementation procedures of the proposed role adaptation
method are summarized in Algorithm 1.

Algorithm 1: Role adaptation
Input : The current statēz and the measured interaction

force f .
Output : The reference velocity in the joint spaceq̇r.
begin

SetMd andCd in the impedance model (4). SetU
andV in (6) to generatexd. Initialize z̄∗ = z̄ and the
weightsQ1, Q2, R1, andR2 in the cost function (8).
Set parameterα in the adaptation law (17).
while t < tf wheretf is the terminal timedo

Collect the current statēz = [xT ẋT wT ]T and
the measured interaction forcef .
CalculateP by solving (12).
Calculate optimal controlsu∗ andf∗ in (10) and
(11), respectively.
Obtain the optimal statēz∗ in (13).
Obtain the control input of the robotu in (24).
Calculate the reference velocitẏxr in (2).
Obtain the reference velocity in the joint spaceq̇r
according to (3).
UpdateR2 according to (17), (18), (22), and (23).

The block diagram of the proposed control framework
is given in Fig. 2, whereK1 = 1

2R
−1
1 B̄T

1 P and K2 =
1
2R

−1
2 B̄T

2 P are the optimal feedback gains for the robot
and the human, respectively. SinceP is updated during role
adaptation, the gainK1 will also be changed. To understand
the effect of role adaptation on the impedance, we first write
the impedance model (4) in the form

Mdẍ(t) + Cdẋ(t) +K1z̄ = f (25)

SubstitutingK1 = [K1,1 K1,2 K1,3], whereK1,1 ∈ R
m×m,

K1,2 ∈ R
m×m, andK1,3 ∈ R

m×l, we obtain

Mdẍ(t) + (Cd +K1,1)ẋ(t) + (K1,2x+K1,3w) = f (26)

The above equation clearly shows that stiffness is modulated
byK1,2 andK1,3, and damping byK1,1. Note that the stiffness
component(K1,2x + K1,3w) includes the desired trajectory
of the robotxd (recalling (6)). As such, the resulting control
u can be viewed as a variable impedance control where the
damping and stiffness parameters are concurrently adapted
[32]. Through experimental studies in the next section, we
will show that this control makes the robot more compliant
when the human is leading the task, but stiffer when the robot
is leading.

Theorem 1:Consider the robot dynamics governed by the
given impedance model (4). Iff is of classC2, the control
input (24) with the developed role adaptation law (17) will
guarantee that
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Fig. 2. The proposed control framework

• limt→∞ ef(t) = 0, which indicates that the human
control input is optimal in the sense of minimizing the
cost function (8);

• limt→∞ u(t) = u∗(t), which indicates that the robot
control input is optimal; and

• all the other closed-loop signals are bounded.

Proof 1: By subtracting (13) from (7), we have

ėz̄ = Āez̄ + B̄1(u− u∗) + B̄2ef (27)

whereez̄ = z̄ − z̄∗. By considering optimal control (10) and
actual control (24), we have

ėz̄ = (Ā− B̄1K1)ez̄ + B̄2ef (28)

Consider the following Lyapunov function candidate

W = E +
χ

2
eTz̄ ez̄ (29)

whereχ = 4αλ1λ2

‖B̄2‖2
, with λ1 being the lower bound of the

minimum eigenvalue of∂ef
∂r2

(
∂ef
∂r2

)T and λ2 the minimum
eigenvalue ofB̄1K1 − Ā.

By differentiating (29) with respect to time, and considering
(17) and (28), we obtain

Ẇ = (
∂E

∂r2
)T ṙ2 + χeTz̄ ėz̄

= −αeTf
∂ef

∂r2
(
∂ef

∂r2
)T ef + χeTz̄ (Ā− B̄1K1)ez̄

+χeTz̄ B̄2ef

≤ −αλ1‖ef‖
2 − χλ2‖ez̄‖

2 + χeTz̄ B̄2ef

= −(
√

αλ1‖ef‖ −
√

χλ2‖ez̄‖)
2

−2
√

αχλ1λ2‖ef‖‖ez̄‖+ χeTz̄ B̄2ef

≤ (−2
√

αχλ1λ2 + χ‖B̄2‖)‖ef‖‖ez̄‖ = 0 (30)

According to (30), if λ1 6= 0, ef and ez̄ are bounded;
otherwise, (17) indicateṡr2 = 0, and thusef and ez̄ are
bounded. According to (28),̇ez̄ is also bounded.

According to Barbalat’s lemma [33], we need to verify the
boundedness of̈W to conclude the asymptotic stability of the
system under study. Therefore, we differentiate (30) and obtain

Ẅ = eTf ëf + ėTf ėf + χeTz̄ ëz̄ + χėTz̄ ėz̄ (31)

From (31), we know that iḟef , ëf , and ëz̄ are bounded, then
Ẅ is bounded,

Sincef is exerted by the human and it is bounded,f∗ is
bounded. By comparing (11) and (10), and considering (12),
we obtain thatu∗ is bounded, as well asP and Ṗ . Hence,
ṙ2 is bounded according to (17), and̄z∗ and ˙̄z∗ are bounded
according to (13). By considering (11), we have

ėf = ḟ −
ṙ2

2r2
B̄T

2 P z̄∗ +
1

2r2
B̄T

2 Ṗ z̄∗ +
1

2r2
B̄T

2 P ˙̄z∗ (32)

Since ḟ is bounded,ėf is bounded. By differentiating (32),
we have

ëf = f̈ −
r̈2

2r22
B̄T

2 P z̄∗ −
ṙ2

2r22
B̄T

2 Ṗ z̄∗ −
ṙ2

2r22
B̄T

2 P ˙̄z∗

+
1

2r2
B̄T

2 P̈ z̄∗ +
1

r2
B̄T

2 Ṗ ˙̄z∗ +
1

2r2
B̄T

2 P ¨̄z∗ (33)

In (33), we have thaẗr2 is bounded by differentiating (17), and
P̈ is bounded by differentiating (12). By considering (10), we
know thatu̇∗ is bounded. By differentiating (13), we have that
¨̄z∗ is bounded. Hence,̈ef is bounded. Besides, we have that
ëz̄ is bounded by differentiating (28).

Therefore, we can conclude thaẗW is bounded. According
to Barbalat’s lemma [33], we can claim thatlimt→∞ ef(t) = 0
and limt→∞ ez̄(t) = 0, which lead tolimt→∞ u(t) = u∗(t),
by considering (24). This completes the proof.

Remark 3: Following Theorem 1, we elaborate how to
design control (24) given design requirements such as the
bound of the input signal. By substituting control (24) to
the augmented system (7), we have the closed-loop system
described bẏ̄z = (Ā− B̄1K1)z̄+ B̄2f , which has the solution
z̄(t) = e(Ā−B̄1K1)tz̄(0) + B̄2

∫ t

0 f(s)ds. The two terms in
this solution are two parts of the system state: the first under
the robot control, and the second under the human control.
Because the second part is determined by the human, we have
to assume that the human does not cause the system instability
on purpose, i.e.,‖

∫ t

0
f(s)ds‖ ≤ bf where bf is a positive

scalar. Because the eigenvalues ofĀ− B̄1K1 are negative, we
have‖z̄(t)‖ ≤ ‖z̄(0)‖ + bf‖B̄2‖. Considering Eq. (24) and
this inequality, we obtain

‖u‖ =
‖B̄1‖‖P‖

2‖R1‖
‖z̄‖

≤
‖B̄1‖‖P‖

2‖R1‖
(‖z̄(0)‖+ bf‖B̄2‖) (34)

According to the above inequality, the bound ofu is deter-
mined by values of the following parameters:B̄1, P , R1, and
B̄2. Suppose that rough knowledge ofbf is available,Md and
Cd in the impedance model (4), which relate tōA, B̄1, and
B̄2, are chosen by consideringbf‖B̄2‖. Then, the weightsQ1,
Q2, andR1 in cost function (8), which relate toP , are chosen
by considering‖B̄1‖‖P‖

2‖R1‖
.

IV. EXPERIMENTS

In the following, the units of all variables are SI units, unless
otherwise stated.
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A. Experiment I: Adaptation to Different Force Levels

In this experiment, we considered a scenario where a robot
with two revolute joints moved in a planar space and an
external force was applied to its end-effector by a human.

1) Settings: As discussed in Section II, the dynamics of
the robot were governed by an impedance model (4), where
Md = I2×2 and Cd = I2×2. The desired trajectory of
the robot was a circle with a radius of0.2m, i.e., xd =
[−0.2 cos(π5 t), 0.2 sin(

π
5 t)]

T . It was generated by (6) with

U =

[

0 π
5

−π
5 0

]

and V = 1
π
I2×2. The initial weights in

the cost function (8) were set as:Q1 = 50I2×2, Q2 = I2×2,
R1 = 0.5I2×2, andR2 = 20I2×2. The rationale for choosing
these initial values is: if there is no human intervention, the
robot should lead the task (with a smallR1 and a largeR2)
and the control objective is to track the desired trajectory(with
a largeQ1). The update rate in the adaptation law (16) was
α = 5000. If r2 becomes too small (large), the human (the
robot) may take full control of the system. It is dangerous for
an inexperienced human to take full control of the system,
while it is very difficult to interact with a robot under its own
full control. Therefore, to preventr2 from becoming too small,
we set a lower bound, i.e., the value ofr2 was set as0.4 if
it was smaller than0.4. To clearly show the results of role
adaptation, we considered different force levels applied by the
human at different time intervals, i.e.,

fX =















0N, t ≤ 4s;
0.5N, 4s< t ≤ 5s;
0.1N, 5s< t ≤ 7s;
0N, t > 7s.

andfY = 0N for t ∈ [0, 10]s, where the subscriptsX and Y

represent the respective directions.
2) Results:The result of the trajectory tracking is shown in

Fig. 3. When the interaction force was applied by the human
from 4s to 7s, the actual trajectory of the robot deviated from
the desired trajectory; otherwise, the actual trajectory of the
robot tracked the desired one.
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)
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movement    

 

 actual
robot’s desired

t=4s

t=5s

t=7s

Fig. 3. The trajectory of the robot

Results of the role adaptation are shown in Figs. 4 and 5,
where the whole process is divided into four stages.

In the first stage, the weightr2 converged to a certain value
when there was no interaction force and the robot was leading
the task to track the desired trajectory.

In the second stage, the human applied a force of0.5N to
the robot, sor2 decreased to reduce the penalty of the human

input in the cost function. As a result, the feedback gain of
the robotK1 decreased in this stage, indicating that the robot
became more compliant to give up a higher portion of shared
control to the human. Conversely, the optimal feedback gain
of the humanK2 increased. The crossover of the two feedback
gains in the second stage clearly shows the exchange of roles
between the human and the robot. Fig. 5 illustrates that role
adaptation decreased the error between the optimal forcef∗

and the actual forcef .
In the third stage, because a relatively smaller force was

applied to the robot (0.1N), a portion of the control shifted
from human to robot. Therefore,r2 became larger than in the
second stage, as didK1, to make the robot stiffer. Nonetheless,
the error between the optimal forcef∗ and actual forcef
became smaller, as shown in Fig. 5.

In the fourth stage, the interaction force was set to zero, and
r2 converged back to the same value in the first stage. Note
that there are large overshoots in Figs. 4 and 5. This is because
the interaction force was switched from a constant to another.
In a real-world scenario, the human would change force in a
smoother way so the large overshoots should not exist.

From the above results, we conclude that the following
expected behavior of the robot was achieved: when the human
intervened to lead a task by applying a larger force, the robot
became more compliant; when the human was satisfied with
the current situation and did not intervene, the robot triedto
lead the task. Thus, the role adaptation was triggered from the
human side, and was achieved automatically by the robot.
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Fig. 4. The weight of the interaction force (top), and feedback gains of the
robot and the human (bottom)
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Fig. 5. The force error (top) and the interaction force (bottom)

B. Experiment II: User Study

As uncertainties of the human behavior and human motor
control cannot be described in above simulations, we further
verify the validity of the proposed method through a user
study.
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1) Settings:The experiment setup is illustrated in Fig. 6,
where a 7-DOF Meka A1 arm was used as the experiment
platform. Each of its joint was under position control and its
reference velocityq̇r was obtained from Algorithm 1. The
joint angle was measured directly by the ContElec Vert-X 13
encoder at the joint, and the velocity was filtered by a low pass
filter with cutoff frequency of 20Hz. A 6-axis ATI load cell
was used for direct sensing of the tool force/torque wrench,
and it was attached to the tool plate of the arm. There was a
40-inch monitor behind the Meka robot to display the human’s
and the robot’s desired paths, and the actual trajectory of the
robot end-effector.

 

human Meka arm 

robot’s desired path 

human’s 

desired path 
actual trajectory 

monitor 

Fig. 6. Experiment setup

The desired path of the robot end-effector was a circle on a
vertical plane in front of the robot, parallel to its frontalplane.
The desired trajectory wasxd = [0.125 cos(t), 0.125 sin(t)].
The human’s desired path was different, comprising an
arc overlapping with the above-mentioned circle and four
straight line segments. These path segments were joined at
the points:xh,1 = [−0.063, 0.104]T , xh,2 = [−0.185, 0]T ,
xh,3 = [−0.063,−0.104]T , xh,4 = [0,−0.095]T , andxh,5 =
[0.063,−0.104]T . Based on the human’s desired path, we
defined the tracking error as

e =







































x− xd, t0 < t ≤ t1;

x− xh,1 −
(xh,2−xh,1)

t2−t1
(t− t1), t1 < t ≤ t2;

x− xh,2 −
(xh,3−xh,2)

t3−t2
(t− t2), t2 < t ≤ t3;

x− xh,3 −
(xh,4−xh,3)

t4−t3
(t− t3), t3 < t ≤ t4;

x− xh,4 −
(xh,5−xh,4)

t5−t4
(t− t4), t4 < t ≤ t5;

x− xd, t5 < t ≤ t6.

wheret0 = 0.0s, t1 = 3.6s, t2 = 8.8s, t3 = 14.0s, t4 = 16.8s,
t5 = 19.6s, andt6 = 32.0s. This setting was motivated by the
application of robotic welding: while the robot was automated
to follow a prescribed trajectory with a basic shape (a circle
in this setting), the human might have some position points of
interest based on the actual odd shape of a workpiece (xh,2 and
xh,4 in this setting). We selected the impedance parameters
as Md = 5I2×2 and Cd = 750I2×2, the initial weights as
Q1 = 105I2×2, Q2 = I2×2, andR1 = 0.001I2×2, and the
adaptation rate asα = 10. To show the significance of the
proposed method, the following conditions were compared:
“robot leading” with r2 ≡ 0.01, “human leading” withr2 ≡
0.0001, and “adaptation” withr2(0) = 0.01. To preventr2
from becoming too small or too large, we set lower and upper

bounds as follows: if the value ofr2 was smaller than 0.0001,
it was set as 0.0001; and if the value ofr2 was larger than
0.01, it was set as 0.01.

Ten subjects participated in the experiment. They were
informed that there were 3 different experimental conditions,
but were not told what they were. For each condition, the
subject was instructed to stand in front of the robot facing
the monitor, and move the end-effector along the human’s
desired path shown on the monitor. Subjects were allowed to
practise until they were familiar with the task. Subsequently,
each subject performed 5 trials of each experimental condition.

2) Results: For clarity and conciseness, we only show
results from representative trials in Figs. 7 and 8. It is
clear from Fig. 7 that the actual end-effector path under the
“adaptation” condition was close to the human’s desired path.
On the other hand, the end-effector fell short of reaching the
leftmost point on the human’s desired path under the “robot
leading” condition, while the tracking error was smaller along
the curved segment where both desired paths overlap. Besides
this, the force vectors illustrate that larger forces were needed
for the “robot leading” condition when the desired paths were
different. These experimental results are largely in line with
expectations, except for the tracking performance under the
“human leading” condition, in which the end-effector did
not follow the human’s desired path closely even though it
should. This is likely to be due to the underdamped human
motion resulting in frequent overshooting when moving the
robot in the “human leading” condition. Note that the above
comparisons are not valid point by point due to the variance of
the human dynamics across trials. Therefore, we will perform
statistical analysis in the following to study the effect ofthe
proposed method. In Fig. 8, we show the weight of the human
contribution to the shared control,r−1

2 , the robot control gain
K1, as well as the profiles of the tracking error and the
interaction force. The results show that increased interaction
force led to an increase of the weightr−1

2 but a decrease of
the gainK1 that makes it easy for the human to take the lead.
The converse is also true, i.e. decreased interaction forceis
accompanied by a decrease ofr−1

2 but an increase ofK1,
allowing the robot to regain control.

For analysis purpose, the human’s desired path was divided
into 2 segments. The first segment consists of the straight line
segments that were not found in the robot’s desired path. The
second segment comprises the circular arc that overlapped with
the robot’s desired path. Then, for each segment as well as
the complete path, we carry out quantitative evaluation of the
outcome from the different experimental conditions based on
the following measures:

1) First Segment:tracking errorE1 =
∫ t5

t1
‖e(t)‖dt and

interaction forceF1 =
∫ t5

t1
‖f(t)‖dt

2) Second Segment:tracking errorE2 =
∫ t1

t0
‖e(t)‖dt +

∫ t6

t5
‖e(t)‖dt and interaction forceF2 =

∫ t1

t0
‖f(t)‖dt+

∫ t6

t5
‖f(t)‖dt

3) Complete Path:tracking errorE =
∫ t6

t0
‖e(t)‖dt, inter-

action forceF =
∫ t6

t0
‖f(t)‖dt, and work doneW =

∫ t6

t0
‖fT (t)ẋ(t)‖dt
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Fig. 7. The trajectories of Meka’s end-effector for adaptive- and fixed-role cases. Each grey arrow shows the force vector at the corresponding position point
along the trajectory.
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Then, we employed one-way analysis of variance (ANOVA) to
test the null hypothesis that there is no difference betweenthe
population means for the 3 experimental conditions. The mean
and standard deviation of the above measures were computed
using50 data points for each experimental condition (5 trials
× 10 users).

The first column of Fig. 9 is for the first segment, and
shows that the null hypothesis was rejected for the interaction
force but not the tracking error. In particular, the interaction
force for the “adaptation” and “human leading” conditions
were significantly smaller (p < 0.001) than that for the “robot
leading” condition.

The second column of Fig. 9 corresponds to the second
segment, and shows that the null hypothesis was rejected
for the tracking error but not the interaction force. It is
observed that the tracking error for the “adaptation” condition
is significantly smaller (p < 0.001) than that for the “human
leading” condition. That the interaction forces were similar
across the conditions is due to the overlap in the desired paths,
which obviated the need for corrective intervention from the
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Fig. 9. Comparison of performance measures: the tracking error and the
interaction force along the first segment, the second segment and the complete
path (indicated by the solid lines in the three top diagrams). A double asterisk
“**” indicates p < 0.001.
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Fig. 10. Comparison of performance measures: the work done by subjects
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p < 0.001.

subjects.

For measures involving the complete path, as shown in
the third column of Fig. 9, the null hypothesis was rejected
for both tracking error and interaction force. The tracking
errors for the “adaptation” and “robot leading” conditions
were significantly smaller (p < 0.001) than that for the
“human leading” condition, while the interaction forces for
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the “adaptation” and “human leading” conditions were signif-
icantly smaller (p < 0.001) than that for the “robot leading”
condition. Besides this, the work doneW for the “adaptation”
and “human leading” conditions was significantly smaller
(p < 0.01 andp < 0.001 respectively) than that for the “robot
leading” condition, as shown in Fig. 10.

The above results demonstrate that role adaptation achieved
the best overall performance, in the sense of minimizing both
human effort and trajectory tracking error, as compared to
fixed-role strategies (human or robot leading) that were limited
by a trade-off between effort and error.

V. DISCUSSIONS

As discussed in the introduction, role adaptation should
take place when the current performance is unsatisfactory.
The proposed method only considers the situation when the
human is unsatisfied, i.e., the role adaptation is engaged by
the human changing the interaction force applied to the robot.
The situation when the robot engages the adaptation is task-
dependent. For example, in robotic painting, the robot can
be assigned a leading role when it is in close proximity to
the painting surface. We do not have a generic framework to
handle this situation, other than giving the robot a higher-level
authority.

Although not revealed by the experimental results, the issue
of co-adaptation exists and should be further addressed. When
the proposed method adapts the robot’s motion to the human’s,
the human may also adapt his/her motion intention according
to the robot’s motion. As a result, adverse effects such as
oscillation and even instability may take place. The future
works may be focused on looking for convergence conditions
of co-adaptation.

As discussed in Section III, the proposed method results
in a variable impedance control with the robot’s impedance
parameters adapted to the human’s different intentions. How-
ever, the robot’s reference trajectory should also be adapted,
otherwise there will be additional interaction force and even
wind-up due to the possible difference between the robot’s
actual velocity and the human’s desired one. Therefore, to
realize the reference adaptation in the proposed frameworkis
also one of our future works.

During the experiments, we find that the update rateα in
(16) should be carefully selected: if adaptation is too slow, it
is unable to guarantee a good performance, but if adaptation
is too fast, it may create discomfort for the user and lead
to a worse performance. The current trial-and-error procedure
is time-consuming and impractical. This problem leads to a
fundamental issue that we have not addressed in this work:
where, explicitly, are the Nash equilibria during adaptation,
and how to determine if they even exist? In particular, we
have only shown that the proposed method achieves a better
performance by implicitly adjusting the robot’s role in a two-
agent game. These open problems will be investigated in our
future works.

VI. CONCLUSIONS

Human-robot shared control has been studied based on
game theory in this paper. A continuous adaptation law has

been developed to make the robot change its role according
to the interaction force applied by the human, such that coor-
dination is achieved. The adaptation behaviors with different
force levels has been observed through an experimental study.
Moreover, the proposed method has been compared with fixed-
role interactions through a user study, which has demonstrated
that the former yields better overall performance than the later.
Limitations of the proposed method and possible future works
have been also discussed.
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