Mihai Mihăilescu · Vicențiu Rădulescu

Continuous spectrum for a class of nonhomogeneous differential operators

Received: 27 June 2007 / Revised: 10 August 2007 Published online: 6 October 2007

Abstract. We study the boundary value problem $-\operatorname{div}((|\nabla u|^{p_1(x)-2} + |\nabla u|^{p_2(x)-2})\nabla u) = \lambda |u|^{q(x)-2}u$ in Ω , u = 0 on $\partial\Omega$, where Ω is a bounded domain in \mathbb{R}^N with smooth boundary, λ is a positive real number, and the continuous functions p_1 , p_2 , and q satisfy $1 < p_2(x) < q(x) < p_1(x) < N$ and $\max_{y \in \overline{\Omega}} q(y) < \frac{Np_2(x)}{N-p_2(x)}$ for any $x \in \overline{\Omega}$. The main result of this paper establishes the existence of two positive constants λ_0 and λ_1 with $\lambda_0 \leq \lambda_1$ such that any $\lambda \in [\lambda_1, \infty)$ is an eigenvalue, while any $\lambda \in (0, \lambda_0)$ is not an eigenvalue of the above problem.

1. Introduction and preliminary results

In this paper we are concerned with the study of the eigenvalue problem

$$\begin{cases} -\operatorname{div}((|\nabla u|^{p_1(x)-2} + |\nabla u|^{p_2(x)-2})\nabla u) = \lambda |u|^{q(x)-2}u, & \text{for } x \in \Omega\\ u = 0, & \text{for } x \in \partial\Omega, \end{cases}$$
(1)

where $\Omega \subset \mathbb{R}^N$ ($N \ge 3$) is a bounded domain with smooth boundary, λ is a positive real number, and p_1 , p_2 , q are continuous functions on $\overline{\Omega}$.

The study of eigenvalue problems involving operators with variable exponents growth conditions has captured a special attention in the last few years. This is in keeping with the fact that operators which arise in such kind of problems, like the p(x)-Laplace operator (i.e., $\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u)$, where p(x) is a continuous positive function), are not homogeneous and thus, a large number of techniques which can be applied in the homogeneous case (when p(x) is a positive constant) fail in this new setting. A typical example is the Lagrange multiplier theorem, which does not apply to the eigenvalue problem

$$\begin{cases} -\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u) = \lambda |u|^{q(x)-2}u, & \text{for } x \in \Omega\\ u = 0, & \text{for } x \in \partial\Omega, \end{cases}$$
(2)

M. Mihăilescu · V. Rădulescu (🖂): Department of Mathematics, University of Craiova, 200585 Craiova, Romania. e-mail: vicentiu.radulescu@math.cnrs.fr; mmihailes@yahoo.com

V. Rădulescu: Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania

Mathematics Subject Classification (2000): 35D05, 35J60, 35J70, 58E05, 68T40, 76A02

where $\Omega \subset \mathbb{R}^N$ is a bounded domain. This is due to the fact that the associated Rayleigh quotient is not homogeneous, provided both *p* and *q* are not constant.

On the other hand, problems like (2) have been largely considered in the literature in the recent years. We give in what follows a concise but complete image of the actual stage of research on this topic.

- In the case when p(x) = q(x) on Ω, Fan, Zhang and Zhao [8] established the existence of infinitely many eigenvalues for problem (2) by using an argument based on the Ljusternik-Schnirelmann critical point theory. Denoting by Λ the set of all nonnegative eigenvalues, Fan, Zhang and Zhao showed that Λ is discrete, sup Λ = +∞ and they pointed out that only under special conditions, which are somehow connected with a kind of monotony of the function p(x), we have inf Λ > 0 (this is in contrast with the case when p(x) is a constant; then, we always have inf Λ > 0).
- In the case when min_{x∈Ω} q(x) < min_{x∈Ω} p(x) and q(x) has a subcritical growth Mihăilescu and Rădulescu [12] used the Ekeland's variational principle in order to prove the existence of a continuous family of eigenvalues which lies in a neighborhood of the origin.
- In the case when max_{x∈Ω} p(x) < min_{x∈Ω} q(x) and q(x) has a subcritical growth a mountain-pass argument, similar with those used by Fan and Zhang in the proof of Theorem 4.7 in [7], can be applied in order to show that any λ > 0 is an eigenvalue of problem (2).
- In the case when max_{x∈Ω} q(x) < min_{x∈Ω} p(x) it can be proved that the energy functional associated to problem (2) has a nontrivial minimum for any positive λ (see Theorem 4.3 in [7]). Clearly, in this case the result in [12] can be also applied. Consequently, in this situation there exist two positive constants λ* and λ** such that any λ ∈ (0, λ*) ∪ (λ**, ∞) is an eigenvalue of problem (2).

In this paper we study problem (1) under the following assumptions:

$$1 < p_2(x) < \min_{y \in \overline{\Omega}} q(y) \le \max_{y \in \overline{\Omega}} q(y) < p_1(x) \quad \forall x \% in\overline{\Omega}$$
(3)

and

$$\max_{y\in\overline{\Omega}}q(y) < p_2^{\star}(x) \quad \forall \ x\in\overline{\Omega},\tag{4}$$

where $p_{2}^{\star}(x) := \frac{Np_{2}(x)}{N-p_{2}(x)}$ if $p_{2}(x) < N$ and $p_{2}^{\star}(x) = +\infty$ if $p_{2}(x) \ge N$.

Thus, the case considered here is different from all the cases studied before. In this new situation we will show the existence of two positive constants λ_0 and λ_1 with $\lambda_0 \leq \lambda_1$ such that any $\lambda \in [\lambda_1, \infty)$ is an eigenvalue of problem (1) while any $\lambda \in (0, \lambda_0)$ is not an eigenvalue of problem (1). An important consequence of our study is that, under hypotheses (3) and (4), we have

$$\inf_{u \in W_0^{1,p_1(x)}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} \frac{1}{p_1(x)} |\nabla u|^{p_1(x)} dx + \int_{\Omega} \frac{1}{p_2(x)} |\nabla u|^{p_2(x)} dx}{\int_{\Omega} \frac{1}{q(x)} |u|^{q(x)} dx} > 0.$$

That fact is proved by using the Lagrange Multiplier Theorem. The absence of homogeneity will be balanced by the fact that assumptions (3) and (4) yield

$$\lim_{\|u\|_{p_1(x)\to 0}} \frac{\int_{\Omega} \frac{1}{p_1(x)} |\nabla u|^{p_1(x)} \, \mathrm{d}x + \int_{\Omega} \frac{1}{p_2(x)} |\nabla u|^{p_2(x)} \, \mathrm{d}x}{\int_{\Omega} \frac{1}{q(x)} |u|^{q(x)} \, \mathrm{d}x} = \infty$$

and

$$\lim_{\|u\|_{p_1(x)} \to \infty} \frac{\int_{\Omega} \frac{1}{p_1(x)} |\nabla u|^{p_1(x)} dx + \int_{\Omega} \frac{1}{p_2(x)} |\nabla u|^{p_2(x)} dx}{\int_{\Omega} \frac{1}{q(x)} |u|^{q(x)} dx} = \infty,$$

where $\|\cdot\|_{p_1(x)}$ stands for the norm in the variable exponent Sobolev space $W_0^{1,p_1(x)}(\Omega)$.

We start with some preliminary basic results on the theory of Lebesgue–Sobolev spaces with variable exponent. For more details we refer to the book by Musielak [14] and the papers by Edmunds et al. [4–6], Kovacik and Rákosník [10], Mihăilescu and Rădulescu [11,13], and Samko and Vakulov [16].

Set

$$C_+(\overline{\Omega}) = \{h; h \in C(\overline{\Omega}), h(x) > 1 \text{ for all } x \in \overline{\Omega}\}.$$

For any $h \in C_+(\overline{\Omega})$ we define

$$h^+ = \sup_{x \in \Omega} h(x)$$
 and $h^- = \inf_{x \in \Omega} h(x)$.

For any $p \in C_+(\overline{\Omega})$, we define the variable exponent Lebesgue space

$$L^{p(x)}(\Omega) = \left\{ u; \ u \text{ is a measurable real-valued function such that } \int_{\Omega} |u(x)|^{p(x)} \, \mathrm{d}x < \infty \right\}.$$

We define on this space the *Luxemburg norm* by

.

$$|u|_{p(x)} = \inf \left\{ \mu > 0; \int_{\Omega} \left| \frac{u(x)}{\mu} \right|^{p(x)} dx \le 1 \right\}.$$

Let $L^{p'(x)}(\Omega)$ denote the conjugate space of $L^{p(x)}(\Omega)$, where 1/p(x) + 1/p'(x) = 1. For any $u \in L^{p(x)}(\Omega)$ and $v \in L^{p'(x)}(\Omega)$ the Hölder type inequality

$$\left| \int_{\Omega} uv \, \mathrm{d}x \right| \leq \left(\frac{1}{p^{-}} + \frac{1}{p'^{-}} \right) |u|_{p(x)} |v|_{p'(x)} \tag{5}$$

holds true.

An important role in manipulating the generalized Lebesgue–Sobolev spaces is played by the *modular* of the $L^{p(x)}(\Omega)$ space, which is the mapping $\rho_{p(x)}$: $L^{p(x)}(\Omega) \to \mathbb{R}$ defined by

$$\rho_{p(x)}(u) = \int_{\Omega} |u|^{p(x)} \,\mathrm{d}x.$$

If $(u_n), u \in L^{p(x)}(\Omega)$ then the following relations hold true

$$|u|_{p(x)} > 1 \quad \Rightarrow \quad |u|_{p(x)}^{p^{-}} \le \rho_{p(x)}(u) \le |u|_{p(x)}^{p^{+}}$$
(6)

$$|u|_{p(x)} < 1 \quad \Rightarrow \quad |u|_{p(x)}^{p^+} \le \rho_{p(x)}(u) \le |u|_{p(x)}^{p^-} \tag{7}$$

$$|u_n - u|_{p(x)} \to 0 \quad \Leftrightarrow \quad \rho_{p(x)}(u_n - u) \to 0.$$
 (8)

Next, we define $W_0^{1,p(x)}(\Omega)$ as the closure of $C_0^{\infty}(\Omega)$ under the norm

$$||u||_{p(x)} = |\nabla u|_{p(x)}$$

The space $W_0^{1,p(x)}(\Omega)$ is a separable and reflexive Banach space. We note that if $s \in C_+(\overline{\Omega})$ and $s(x) < p^*(x)$ for all $x \in \overline{\Omega}$ then the embedding $W_0^{1,p(x)}(\Omega) \hookrightarrow L^{s(x)}(\Omega)$ is compact and continuous, where $p^*(x)$ denotes the corresponding critical Sobolev exponent, that is, $p^*(x) := \frac{Np(x)}{N-p(x)}$ if p(x) < N or $p^*(x) = +\infty$ if $p(x) \ge N$.

For applications of Sobolev spaces with variable exponent we refer to Acerbi and Mingione [1], Chen, Levine and Rao [2], Diening [3], Halsey [9], Ruzicka [15], and Zhikov [18].

2. The main result

Since $p_2(x) < p_1(x)$ for any $x \in \overline{\Omega}$ it follows that $W_0^{1,p_1(x)}(\Omega)$ is continuously embedded in $W_0^{1,p_2(x)}(\Omega)$. Thus, a solution for a problem of type (1) will be sought in the variable exponent space $W_0^{1,p_1(x)}(\Omega)$.

We say that $\lambda \in \mathbb{R}$ is an *eigenvalue* of problem (1) if there exists $u \in W_0^{1,p_1(x)}$ (Ω) \ {0} such that

$$\int_{\Omega} (|\nabla u|^{p_1(x)-2} + |\nabla u|^{p_2(x)-2}) \nabla u \nabla v \, \mathrm{d}x - \lambda \int_{\Omega} |u|^{q(x)-2} uv \, \mathrm{d}x = 0$$

for all $v \in W_0^{1,p_1(x)}(\Omega)$. We point out that if λ is an eigenvalue of problem (1) then the corresponding eigenfunction $u \in W_0^{1,p_1(x)}(\Omega) \setminus \{0\}$ is a *weak solution* of problem (1).

Define

$$\lambda_{1} := \inf_{u \in W_{0}^{1,p_{1}(x)}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} \frac{1}{p_{1}(x)} |\nabla u|^{p_{1}(x)} dx + \int_{\Omega} \frac{1}{p_{2}(x)} |\nabla u|^{p_{2}(x)} dx}{\int_{\Omega} \frac{1}{q(x)} |u|^{q(x)} dx}$$

Our main result is given by the following theorem.

Theorem 1. Assume that conditions (3) and (4) are fulfilled. Then $\lambda_1 > 0$. Moreover, any $\lambda \in [\lambda_1, \infty)$ is an eigenvalue of problem (1). Furthermore, there exists a positive constant λ_0 such that $\lambda_0 \leq \lambda_1$ and any $\lambda \in (0, \lambda_0)$ is not an eigenvalue of problem (1).

Proof. Let *E* denote the generalized Sobolev space $W_0^{1,p_1(x)}(\Omega)$. We denote by $\|\cdot\|$ the norm on $W_0^{1,p_1(x)}(\Omega)$ and by $\|\cdot\|_1$ the norm on $W_0^{1,p_2(x)}(\Omega)$.

Define the functionals $J, I, J_1, I_1 : E \to \mathbb{R}$ by

$$J(u) = \int_{\Omega} \frac{1}{p_1(x)} |\nabla u|^{p_1(x)} dx + \int_{\Omega} \frac{1}{p_2(x)} |\nabla u|^{p_2(x)} dx,$$
$$I(u) = \int_{\Omega} \frac{1}{q(x)} |u|^{q(x)} dx,$$
$$J_1(u) = \int_{\Omega} |\nabla u|^{p_1(x)} dx + \int_{\Omega} |\nabla u|^{p_2(x)} dx,$$
$$I_1(u) = \int_{\Omega} |u|^{q(x)} dx.$$

Standard arguments imply that $J, I \in C^1(E, \mathbb{R})$ and for all $u, v \in E$,

$$\langle J'(u), v \rangle = \int_{\Omega} (|\nabla u|^{p_1(x)-2} + |\nabla u|^{p_2(x)-2}) \nabla u \nabla v \, \mathrm{d}x,$$

$$\langle I'(u), v \rangle = \int_{\Omega} |u|^{q(x)-2} uv \, \mathrm{d}x.$$

We split the proof of Theorem 1 into four steps.

• *Step 1*. We show that $\lambda_1 > 0$.

Since for any $x \in \overline{\Omega}$ we have $p_1(x) > q^+ \ge q(x) \ge q^- > p_2(x)$ we deduce that for any $u \in E$,

$$2(|\nabla u(x)|^{p_1(x)} + |\nabla u(x)|^{p_2(x)}) \ge |\nabla u(x)|^{q^+} + |\nabla u(x)|^{q^-}$$

and

$$|u(x)|^{q^+} + |u(x)|^{q^-} \ge |u(x)|^{q(x)}.$$

Integrating the above inequalities we find

$$2\int_{\Omega} (|\nabla u|^{p_1(x)} + |\nabla u|^{p_2(x)}) \, \mathrm{d}x \ge \int_{\Omega} (|\nabla u|^{q^+} + |\nabla u|^{q^-}) \, \mathrm{d}x \quad \forall \ u \in E$$
(9)

and

$$\int_{\Omega} (|u|^{q^+} + |u|^{q^-}) \, \mathrm{d}x \ge \int_{\Omega} |u|^{q(x)} \, \mathrm{d}x \quad \forall \, u \in E.$$

$$(10)$$

By Sobolev embeddings, there exist positive constants λ_{q^+} and λ_{q^-} such that

$$\int_{\Omega} |\nabla u|^{q^+} \, \mathrm{d}x \ge \lambda_{q^+} \int_{\Omega} |u|^{q^+} \, \mathrm{d}x \quad \forall \, u \in W_0^{1,q^+}(\Omega) \tag{11}$$

and

$$\int_{\Omega} |\nabla u|^{q^-} \, \mathrm{d}x \ge \lambda_{q^-} \int_{\Omega} |u|^{q^-} \, \mathrm{d}x \quad \forall \, u \in W_0^{1,q^-}(\Omega).$$
(12)

Using again the fact that $q^- \le q^+ < p_1(x)$ for any $x \in \overline{\Omega}$ we deduce that *E* is continuously embedded in $W_0^{1,q^+}(\Omega)$ and in $W_0^{1,q^-}(\Omega)$. Thus, inequalities (11) and (12) hold true for any $u \in E$.

Using inequalities (11), (12) and (10) it is clear that there exists a positive constant μ such that

$$\int_{\Omega} (|\nabla u|^{q^+} + |\nabla u|^{q^-}) \, \mathrm{d}x \ge \mu \int_{\Omega} |u|^{q(x)} \, \mathrm{d}x \quad \forall \, u \in E.$$
(13)

Next, inequalities (13) and (9) yield

$$\int_{\Omega} (|\nabla u|^{p_1(x)} + |\nabla u|^{p_2(x)}) \, \mathrm{d}x \ge \frac{\mu}{2} \int_{\Omega} |u|^{q(x)} \, \mathrm{d}x \quad \forall \, u \in E.$$
(14)

By relation (14) we deduce that

$$\lambda_0 = \inf_{v \in E \setminus \{0\}} \frac{J_1(v)}{I_1(v)} > 0$$
(15)

and thus,

$$J_1(u) \ge \lambda_0 I_1(u) \quad \forall \ u \in E.$$
(16)

The above inequality yields

$$p_1^+ \cdot J(u) \ge J_1(u) \ge \lambda_0 I_1(u) \ge \lambda_0 I(u) \quad \forall \ u \in E.$$
(17)

The last inequality assures that $\lambda_1 > 0$ and thus, step 1 is verified.

• Step 2. We show that λ_1 is an eigenvalue of problem (1).

Lemma 1. The following relations hold true:

$$\lim_{\|u\| \to \infty} \frac{J(u)}{I(u)} = \infty$$
(18)

and

$$\lim_{\|u\|\to 0} \frac{J(u)}{I(u)} = \infty.$$
⁽¹⁹⁾

Proof. Since *E* is continuously embedded in $L^{q^{\pm}}(\Omega)$ it follows that there exist two positive constants c_1 and c_2 such that

$$\|u\| \ge c_1 \cdot |u|_{q^+} \quad \forall \ u \in E \tag{20}$$

and

$$\|u\| \ge c_2 \cdot |u|_{q^-} \quad \forall \ u \in E.$$

$$(21)$$

For any $u \in E$ with ||u|| > 1 by relations (6), (10), (20), (21) we infer

$$\frac{J(u)}{I(u)} \ge \frac{\frac{\|u\|_{p_{1}}^{p_{1}}}{p_{1}^{+}}}{\frac{|u|_{q^{+}}^{q^{+}} + |u|_{q^{-}}^{q^{-}}}{q^{-}}} \ge \frac{\frac{\|u\|_{p_{1}}^{p_{1}}}{p_{1}^{+}}}{\frac{c_{1}^{-q^{+}} \|u\|_{q^{+}}^{q^{+}} + c_{2}^{-q^{-}} \|u\|_{q^{-}}^{q^{-}}}{q^{-}}$$

Since $p_1^- > q^+ \ge q^-$, passing to the limit as $||u|| \to \infty$ in the above inequality we deduce that relation (18) holds true.

Next, let us remark that since $p_1(x) > p_2(x)$ for any $x \in \overline{\Omega}$, the space $W_0^{1,p_1(x)}(\Omega)$ is continuously embedded in $W_0^{1,p_2(x)}(\Omega)$. Thus, if $||u|| \to 0$ then $||u||_1 \to 0$.

The above remarks enable us to affirm that for any $u \in E$ with ||u|| < 1 small enough we have $||u||_1 < 1$.

On the other hand, since (4) holds true we deduce that $W_0^{1,p_2(x)}(\Omega)$ is continuously embedded in $L^{q^{\pm}}(\Omega)$. It follows that there exist two positive constants d_1 and d_2 such that

$$\|u\|_{1} \ge d_{1} \cdot |u|_{q^{+}} \quad \forall \ u \in W_{0}^{1, p_{2}(x)}(\Omega)$$
(22)

and

$$\|u\|_{1} \ge d_{2} \cdot |u|_{q^{-}} \quad \forall \ u \in W_{0}^{1, p_{2}(x)}(\Omega).$$
(23)

Thus, for any $u \in E$ with ||u|| < 1 small enough, relations (7), (10), (22), (23) imply

$$\frac{J(u)}{I(u)} \geq \frac{\frac{\int_{\Omega} |\nabla u|^{p_2(x)} dx}{p_2^+}}{\frac{|u|_{q^+}^{q^+} + |u|_{q^-}^{q^-}}{q^-}} \geq \frac{\frac{||u|_{1}^{p_2^+}}{p_2^+}}{\frac{d_1^{-q^+} ||u||_{1}^{q^+} + d_2^{-q^-} ||u||_{1}^{q^-}}{q^-}}.$$

Since $p_2^+ < q^- \le q^+$, passing to the limit as $||u|| \to 0$ (and thus, $||u||_1 \to 0$) in the above inequality we deduce that relation (19) holds true. The proof of Lemma 1 is complete.

Lemma 2. There exists $u \in E \setminus \{0\}$ such that $\frac{J(u)}{I(u)} = \lambda_1$.

Proof. Let $\{u_n\} \subset E \setminus \{0\}$ be a minimizing sequence for λ_1 , that is,

$$\lim_{n \to \infty} \frac{J(u_n)}{I(u_n)} = \lambda_1 > 0.$$
(24)

By relation (18) it is clear that $\{u_n\}$ is bounded in *E*. Since *E* is reflexive it follows that there exists $u \in E$ such that, up to a subsequence, $\{u_n\}$ converges weakly to *u* in *E*. On the other hand, similar arguments as those used in the proof of Lemma 3.4 in [11] show that the functional *J* is weakly lower semi-continuous. Thus, we find

$$\liminf_{n \to \infty} J(u_n) \ge J(u). \tag{25}$$

By the compact embedding theorem for spaces with variable exponent and assumption $1 \le \max_{y \in \overline{\Omega}} q(y) < p_1(x)$ for all $x \in \overline{\Omega}$ (see (3)) it follows that *E* is compactly embedded in $L^{q(x)}(\Omega)$. Thus, $\{u_n\}$ converges strongly in $L^{q(x)}(\Omega)$. Then, by relation (8) it follows that

$$\lim_{n \to \infty} I(u_n) = I(u). \tag{26}$$

Relations (25) and (26) imply that if $u \neq 0$ then

$$\frac{J(u)}{I(u)} = \lambda_1$$

Thus, in order to conclude that the lemma holds true it is enough to show that u is not trivial. Assume by contradiction the contrary. Then u_n converges weakly to 0 in E and strongly in $L^{q(x)}(\Omega)$. In other words, we will have

$$\lim_{n \to \infty} I(u_n) = 0.$$
⁽²⁷⁾

Letting $\epsilon \in (0, \lambda_1)$ be fixed by relation (24) we deduce that for *n* large enough we have

$$|J(u_n) - \lambda_1 I(u_n)| < \epsilon I(u_n),$$

or

$$(\lambda_1 - \epsilon)I(u_n) < J(u_n) < (\lambda_1 + \epsilon)I(u_n)$$

Passing to the limit in the above inequalities and taking into account that relation (27) holds true we find

$$\lim_{n\to\infty}J(u_n)=0.$$

That fact combined with relation (8) implies that actually u_n converges strongly to 0 in *E*, i.e. $\lim_{n\to\infty} ||u_n|| = 0$. By this information and relation (19) we get

$$\lim_{n \to \infty} \frac{J(u_n)}{I(u_n)} = \infty,$$

and this is a contradiction. Thus, $u \neq 0$. The proof of Lemma 2 is complete. \Box

By Lemma 2 we conclude that there exists $u \in E \setminus \{0\}$ such that

$$\frac{J(u)}{I(u)} = \lambda_1 = \inf_{w \in E \setminus \{0\}} \frac{J(w)}{I(w)}.$$
(28)

Then, for any $v \in E$ we have

$$\frac{d}{d\epsilon} \frac{J(u+\epsilon v)}{I(u+\epsilon v)} |_{\epsilon=0} = 0 .$$

A simple computation yields

$$\int_{\Omega} (|\nabla u|^{p_1(x)-2} + |\nabla u|^{p_2(x)-2}) \nabla u \nabla v \, \mathrm{d}x \cdot I(u) - J(u)$$
$$\cdot \int_{\Omega} |u|^{q(x)-2} uv \, \mathrm{d}x = 0 \quad \forall v \in E.$$
(29)

Relation (29) combined with the fact that $J(u) = \lambda_1 I(u)$ and $I(u) \neq 0$ implies the fact that λ_1 is an eigenvalue of problem (1). Thus, step 2 is verified.

• *Step 3.* We show that any $\lambda \in (\lambda_1, \infty)$ is an eigenvalue of problem (1).

Let $\lambda \in (\lambda_1, \infty)$ be arbitrary but fixed. Define $T_{\lambda} : E \to \mathbb{R}$ by

$$T_{\lambda}(u) = J(u) - \lambda I(u).$$

Clearly, $T_{\lambda} \in C^1(E, \mathbb{R})$ with

$$\langle T_{\lambda}^{'}(u), v \rangle = \langle J^{'}(u), v \rangle - \lambda \langle I^{'}(u), v \rangle, \quad \forall \ u \in E.$$

Thus, λ is an eigenvalue of problem (1) if and only if there exists $u_{\lambda} \in E \setminus \{0\}$ a critical point of T_{λ} .

With similar arguments as in the proof of relation (18) we can show that T_{λ} is coercive, i.e. $\lim_{\|u\|\to\infty} T_{\lambda}(u) = \infty$. On the other hand, as we have already remarked, similar arguments as those used in the proof of Lemma 3.4 in [11] show that the functional T_{λ} is weakly lower semi-continuous. These two facts enable us to apply Theorem 1.2 in [17] in order to prove that there exists $u_{\lambda} \in E$ a global minimum point of T_{λ} and thus, a critical point of T_{λ} . In order to conclude that step 4 holds true it is enough to show that u_{λ} is not trivial. Indeed, since $\lambda_1 = \inf_{u \in E \setminus \{0\}} \frac{J(u)}{I(u)}$ and $\lambda > \lambda_1$ it follows that there exists $v_{\lambda} \in E$ such that

$$J(v_{\lambda}) < \lambda I(v_{\lambda}),$$

or

$$T_{\lambda}(v_{\lambda}) < 0$$

Thus,

$$\inf_E T_\lambda < 0$$

and we conclude that u_{λ} is a nontrivial critical point of T_{λ} , or λ is an eigenvalue of problem (1). Thus, step 3 is verified.

Step 4. Any λ ∈ (0, λ₀), where λ₀ is given by (15), is not an eigenvalue of problem (1).

Indeed, assuming by contradiction that there exists $\lambda \in (0, \lambda_0)$ an eigenvalue of problem (1) it follows that there exists $u_{\lambda} \in E \setminus \{0\}$ such that

$$\langle J'(u_{\lambda}), v \rangle = \lambda \langle I'(u_{\lambda}), v \rangle \quad \forall v \in E.$$

Thus, for $v = u_{\lambda}$ we find

$$\langle J'(u_{\lambda}), u_{\lambda} \rangle = \lambda \langle I'(u_{\lambda}), u_{\lambda} \rangle,$$

that is,

$$J_1(u_{\lambda}) = \lambda I_1(u_{\lambda}).$$

The fact that $u_{\lambda} \in E \setminus \{0\}$ assures that $I_1(u_{\lambda}) > 0$. Since $\lambda < \lambda_0$, the above information yields

$$J_1(u_{\lambda}) \ge \lambda_0 I_1(u_{\lambda}) > \lambda I_1(u_{\lambda}) = J_1(u_{\lambda}).$$

Clearly, the above inequalities lead to a contradiction. Thus, step 4 is verified.

By steps 2, 3 and 4 we deduce that $\lambda_0 \leq \lambda_1$. The proof of Theorem 1 is now complete.

Remark 1. At this stage we are not able to deduce whether $\lambda_0 = \lambda_1$ or $\lambda_0 < \lambda_1$. In the latter case an interesting question concerns the existence of eigenvalues of problem (1) in the interval $[\lambda_0, \lambda_1)$. We propose to the reader the study of these open problems.

Acknowledgments. The authors have been supported by Grants CNCSIS 79/2007 "Degenerate and Singular Nonlinear Processes" and CNCSIS 589/2007 "Analysis and Control of Nonlinear Differential Systems".

References

- Acerbi, E., Mingione, G.: Gradient estimates for the *p*(*x*)-Laplacean system. J. Reine Angew. Math. 584, 117–148 (2005)
- [2] Chen, Y., Levine, S., Rao, R.: Functionals with p(x)-growth in image processing. Department of Mathematics and Computer Science, Duquesne University, Technical Report 2004-01, available at www.mathcs.duq.edu/~sel/CLR05SIAPfinal.pdf
- [3] Diening, L.: Theoretical and numerical results for electrorheological fluids. Ph.D. thesis, University of Frieburg, Germany (2002)
- [4] Edmunds, D.E., Lang, J., Nekvinda, A.: On L^{p(x)} norms. Proc. Roy. Soc. Lond. Ser. A 455, 219–225 (1999)
- [5] Edmunds, D.E., Rákosník, J.: Density of smooth functions in W^{k, p(x)}(Ω). Proc. Roy.
 Soc. Lond. Ser. A 437, 229–236 (1992)
- [6] Edmunds, D.E., Rákosník, J.: Sobolev embedding with variable exponent. Stud. Math. 143, 267–293 (2000)
- [7] Fan, X.L., Zhang, Q.: Existence of solutions for p(x)-Laplacian Dirichlet problem. Nonlinear Anal. **52**, 1843–1852 (2003)
- [8] Fan, X., Zhang, Q., Zhao, D.: Eigenvalues of p(x)-Laplacian Dirichlet problem.
 J. Math. Anal. Appl. 302, 306–317 (2005)
- [9] Halsey, T.C.: Electrorheological fluids. Science 258, 761–766 (1992)
- [10] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{1,p(x)}$. Czechoslov. Math. J. 41, 592–618 (1991)
- [11] Mihăilescu, M., Rădulescu, V.: A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 462, 2625–2641 (2006)
- [12] Mihăilescu, M., Rădulescu, V.: On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent. Proc. Am. Math. Soc. 135, 2929–2937 (2007)
- [13] Mihăilescu, M., Rădulescu, V.: Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz-Sobolev space setting. J. Math. Anal. Appl. 330, 416–432 (2007)
- [14] Musielak, J.: Orlicz spaces and modular spaces. Lecture Notes in Mathematics, Vol. 1034. Springer, Berlin (1983)
- [15] Ruzicka, M.: Electrorheological fluids: modeling and mathematical theory. Springer, Berlin (2002)
- [16] Samko, S., Vakulov, B.: Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators. J. Math. Anal. Appl. 310, 229–246 (2005)
- [17] Struwe, M.: Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems. Springer, Heidelberg (1996)
- [18] Zhikov, V.: Averaging of functionals in the calculus of variations and elasticity. Math. USSR Izv. 29, 33–66 (1987)