Mihai Mihăilescu • Vicențiu Rădulescu

Continuous spectrum for a class of nonhomogeneous differential operators

Received: 27 June 2007 / Revised: 10 August 2007
Published online: 6 October 2007

Abstract

We study the boundary value problem $-\operatorname{div}\left(\left(|\nabla u|^{p_{1}(x)-2}+|\nabla u|^{p_{2}(x)-2}\right) \nabla u\right)=$ $\lambda|u|^{q(x)-2} u$ in $\Omega, u=0$ on $\partial \Omega$, where Ω is a bounded domain in \mathbb{R}^{N} with smooth boundary, λ is a positive real number, and the continuous functions p_{1}, p_{2}, and q satisfy $1<p_{2}(x)<$ $q(x)<p_{1}(x)<N$ and $\max _{y \in \bar{\Omega}} q(y)<\frac{N p_{2}(x)}{N-p_{2}(x)}$ for any $x \in \bar{\Omega}$. The main result of this paper establishes the existence of two positive constants λ_{0} and λ_{1} with $\lambda_{0} \leq \lambda_{1}$ such that any $\lambda \in\left[\lambda_{1}, \infty\right)$ is an eigenvalue, while any $\lambda \in\left(0, \lambda_{0}\right)$ is not an eigenvalue of the above problem.

1. Introduction and preliminary results

In this paper we are concerned with the study of the eigenvalue problem

$$
\begin{cases}-\operatorname{div}\left(\left(|\nabla u|^{p_{1}(x)-2}+|\nabla u|^{p_{2}(x)-2}\right) \nabla u\right)=\lambda|u|^{q(x)-2} u, & \text { for } x \in \Omega \tag{1}\\ u=0, & \text { for } x \in \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}(N \geq 3)$ is a bounded domain with smooth boundary, λ is a positive real number, and p_{1}, p_{2}, q are continuous functions on $\bar{\Omega}$.

The study of eigenvalue problems involving operators with variable exponents growth conditions has captured a special attention in the last few years. This is in keeping with the fact that operators which arise in such kind of problems, like the $p(x)$-Laplace operator (i.e., $\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right.$), where $p(x)$ is a continuous positive function), are not homogeneous and thus, a large number of techniques which can be applied in the homogeneous case (when $p(x)$ is a positive constant) fail in this new setting. A typical example is the Lagrange multiplier theorem, which does not apply to the eigenvalue problem

$$
\begin{cases}-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)=\lambda|u|^{q(x)-2} u, & \text { for } x \in \Omega \tag{2}\\ u=0, & \text { for } x \in \partial \Omega\end{cases}
$$

[^0]V. Rădulescu: Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania

Mathematics Subject Classification (2000): 35D05, 35J60, 35J70, 58E05, 68T40, 76A02
where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain. This is due to the fact that the associated Rayleigh quotient is not homogeneous, provided both p and q are not constant.

On the other hand, problems like (2) have been largely considered in the literature in the recent years. We give in what follows a concise but complete image of the actual stage of research on this topic.

- In the case when $p(x)=q(x)$ on $\bar{\Omega}$, Fan, Zhang and Zhao [8] established the existence of infinitely many eigenvalues for problem (2) by using an argument based on the Ljusternik-Schnirelmann critical point theory. Denoting by Λ the set of all nonnegative eigenvalues, Fan, Zhang and Zhao showed that Λ is discrete, $\sup \Lambda=+\infty$ and they pointed out that only under special conditions, which are somehow connected with a kind of monotony of the function $p(x)$, we have $\inf \Lambda>0$ (this is in contrast with the case when $p(x)$ is a constant; then, we always have inf $\Lambda>0$).
- In the case when $\min _{x \in \bar{\Omega}} q(x)<\min _{x \in \bar{\Omega}} p(x)$ and $q(x)$ has a subcritical growth Mihăilescu and Rădulescu [12] used the Ekeland's variational principle in order to prove the existence of a continuous family of eigenvalues which lies in a neighborhood of the origin.
- In the case when $\max _{x \in \bar{\Omega}} p(x)<\min _{x \in \bar{\Omega}} q(x)$ and $q(x)$ has a subcritical growth a mountain-pass argument, similar with those used by Fan and Zhang in the proof of Theorem 4.7 in [7], can be applied in order to show that any $\lambda>0$ is an eigenvalue of problem (2).
- In the case when $\max _{x \in \bar{\Omega}} q(x)<\min _{x \in \bar{\Omega}} p(x)$ it can be proved that the energy functional associated to problem (2) has a nontrivial minimum for any positive λ (see Theorem 4.3 in [7]). Clearly, in this case the result in [12] can be also applied. Consequently, in this situation there exist two positive constants λ^{\star} and $\lambda^{\star \star}$ such that any $\lambda \in\left(0, \lambda^{\star}\right) \cup\left(\lambda^{\star \star}, \infty\right)$ is an eigenvalue of problem (2).

In this paper we study problem (1) under the following assumptions:

$$
\begin{equation*}
1<p_{2}(x)<\min _{y \in \bar{\Omega}} q(y) \leq \max _{y \in \bar{\Omega}} q(y)<p_{1}(x) \quad \forall x \% \operatorname{in} \bar{\Omega} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{y \in \bar{\Omega}} q(y)<p_{2}^{\star}(x) \quad \forall x \in \bar{\Omega}, \tag{4}
\end{equation*}
$$

where $p_{2}^{\star}(x):=\frac{N p_{2}(x)}{N-p_{2}(x)}$ if $p_{2}(x)<N$ and $p_{2}^{\star}(x)=+\infty$ if $p_{2}(x) \geq N$.
Thus, the case considered here is different from all the cases studied before. In this new situation we will show the existence of two positive constants λ_{0} and λ_{1} with $\lambda_{0} \leq \lambda_{1}$ such that any $\lambda \in\left[\lambda_{1}, \infty\right)$ is an eigenvalue of problem (1) while any $\lambda \in\left(0, \lambda_{0}\right)$ is not an eigenvalue of problem (1). An important consequence of our study is that, under hypotheses (3) and (4), we have

$$
\inf _{u \in W_{0}^{1, p_{1}(x)}(\Omega) \backslash\{0\}} \frac{\int_{\Omega} \frac{1}{p_{1}(x)}|\nabla u|^{p_{1}(x)} \mathrm{d} x+\int_{\Omega} \frac{1}{p_{2}(x)}|\nabla u|^{p_{2}(x)} \mathrm{d} x}{\int_{\Omega} \frac{1}{q(x)}|u|^{q(x)} \mathrm{d} x}>0
$$

That fact is proved by using the Lagrange Multiplier Theorem. The absence of homogeneity will be balanced by the fact that assumptions (3) and (4) yield

$$
\lim _{\|u\|_{p_{1}(x)} \rightarrow 0} \frac{\int_{\Omega} \frac{1}{p_{1}(x)}|\nabla u|^{p_{1}(x)} \mathrm{d} x+\int_{\Omega} \frac{1}{p_{2}(x)}|\nabla u|^{p_{2}(x)} \mathrm{d} x}{\int_{\Omega} \frac{1}{q(x)}|u|^{q(x)} \mathrm{d} x}=\infty
$$

and

$$
\lim _{\|u\|_{p_{1}(x)} \rightarrow \infty} \frac{\int_{\Omega} \frac{1}{p_{1}(x)}|\nabla u|^{p_{1}(x)} \mathrm{d} x+\int_{\Omega} \frac{1}{p_{2}(x)}|\nabla u|^{p_{2}(x)} \mathrm{d} x}{\int_{\Omega} \frac{1}{q(x)}|u|^{q(x)} \mathrm{d} x}=\infty
$$

where $\|\cdot\|_{p_{1}(x)}$ stands for the norm in the variable exponent Sobolev space $W_{0}^{1, p_{1}(x)}(\Omega)$.

We start with some preliminary basic results on the theory of Lebesgue-Sobolev spaces with variable exponent. For more details we refer to the book by Musielak [14] and the papers by Edmunds et al. [4-6], Kovacik and Rákosník [10], Mihăilescu and Rădulescu [11,13], and Samko and Vakulov [16].

Set

$$
C_{+}(\bar{\Omega})=\{h ; h \in C(\bar{\Omega}), \quad h(x)>1 \quad \text { for all } x \in \bar{\Omega}\} .
$$

For any $h \in C_{+}(\bar{\Omega})$ we define

$$
h^{+}=\sup _{x \in \Omega} h(x) \text { and } h^{-}=\inf _{x \in \Omega} h(x) .
$$

For any $p \in C_{+}(\bar{\Omega})$, we define the variable exponent Lebesgue space $L^{p(x)}(\Omega)=\left\{u ; u\right.$ is a measurable real-valued function such that $\left.\int_{\Omega}|u(x)|^{p(x)} \mathrm{d} x<\infty\right\}$.

We define on this space the Luxemburg norm by

$$
|u|_{p(x)}=\inf \left\{\mu>0 ; \int_{\Omega}\left|\frac{u(x)}{\mu}\right|^{p(x)} \mathrm{d} x \leq 1\right\} .
$$

Let $L^{p^{\prime}(x)}(\Omega)$ denote the conjugate space of $L^{p(x)}(\Omega)$, where $1 / p(x)+$ $1 / p^{\prime}(x)=1$. For any $u \in L^{p(x)}(\Omega)$ and $v \in L^{p^{\prime}(x)}(\Omega)$ the Hölder type inequality

$$
\begin{equation*}
\left|\int_{\Omega} u v \mathrm{~d} x\right| \leq\left(\frac{1}{p^{-}}+\frac{1}{p^{\prime-}}\right)|u|_{p(x)}|v|_{p^{\prime}(x)} \tag{5}
\end{equation*}
$$

holds true.

An important role in manipulating the generalized Lebesgue-Sobolev spaces is played by the modular of the $L^{p(x)}(\Omega)$ space, which is the mapping $\rho_{p(x)}$: $L^{p(x)}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\rho_{p(x)}(u)=\int_{\Omega}|u|^{p(x)} \mathrm{d} x .
$$

If $\left(u_{n}\right), u \in L^{p(x)}(\Omega)$ then the following relations hold true

$$
\begin{align*}
|u|_{p(x)}>1 & \Rightarrow|u|_{p(x)}^{p^{-}} \leq \rho_{p(x)}(u) \leq|u|_{p(x)}^{p^{+}} \tag{6}\\
|u|_{p(x)}<1 & \Rightarrow|u|_{p(x)}^{p^{+}} \leq \rho_{p(x)}(u) \leq|u|_{p(x)}^{p^{-}} \tag{7}\\
\left|u_{n}-u\right|_{p(x)} & \rightarrow 0 \Leftrightarrow \rho_{p(x)}\left(u_{n}-u\right) \rightarrow 0 . \tag{8}
\end{align*}
$$

Next, we define $W_{0}^{1, p(x)}(\Omega)$ as the closure of $C_{0}^{\infty}(\Omega)$ under the norm

$$
\|u\|_{\left.p_{(} x\right)}=|\nabla u|_{p(x)} .
$$

The space $W_{0}^{1, p(x)}(\Omega)$ is a separable and reflexive Banach space. We note that if $s \in C_{+}(\bar{\Omega})$ and $s(x)<p^{\star}(x)$ for all $x \in \bar{\Omega}$ then the embedding $W_{0}^{1, p(x)}(\Omega) \hookrightarrow$ $L^{s(x)}(\Omega)$ is compact and continuous, where $p^{\star}(x)$ denotes the corresponding critical Sobolev exponent, that is, $p^{\star}(x):=\frac{N p(x)}{N-p(x)}$ if $p(x)<N$ or $p^{\star}(x)=+\infty$ if $p(x) \geq N$.

For applications of Sobolev spaces with variable exponent we refer to Acerbi and Mingione [1], Chen, Levine and Rao [2], Diening [3], Halsey [9], Ruzicka [15], and Zhikov [18].

2. The main result

Since $p_{2}(x)<p_{1}(x)$ for any $x \in \bar{\Omega}$ it follows that $W_{0}^{1, p_{1}(x)}(\Omega)$ is continuously embedded in $W_{0}^{1, p_{2}(x)}(\Omega)$. Thus, a solution for a problem of type (1) will be sought in the variable exponent space $W_{0}^{1, p_{1}(x)}(\Omega)$.

We say that $\lambda \in \mathbb{R}$ is an eigenvalue of problem (1) if there exists $u \in W_{0}^{1, p_{1}(x)}$ $(\Omega) \backslash\{0\}$ such that

$$
\int_{\Omega}\left(|\nabla u|^{p_{1}(x)-2}+|\nabla u|^{p_{2}(x)-2}\right) \nabla u \nabla v \mathrm{~d} x-\lambda \int_{\Omega}|u|^{q(x)-2} u v \mathrm{~d} x=0
$$

for all $v \in W_{0}^{1, p_{1}(x)}(\Omega)$. We point out that if λ is an eigenvalue of problem (1) then the corresponding eigenfunction $u \in W_{0}^{1, p_{1}(x)}(\Omega) \backslash\{0\}$ is a weak solution of problem (1).

Define

$$
\lambda_{1}:=\inf _{u \in W_{0}^{1, p_{1}(x)}(\Omega) \backslash\{0\}} \frac{\int_{\Omega} \frac{1}{p_{1}(x)}|\nabla u|^{p_{1}(x)} \mathrm{d} x+\int_{\Omega} \frac{1}{p_{2}(x)}|\nabla u|^{p_{2}(x)} \mathrm{d} x}{\int_{\Omega} \frac{1}{q(x)}|u|^{q(x)} \mathrm{d} x} .
$$

Our main result is given by the following theorem.

Theorem 1. Assume that conditions (3) and (4) are fulfilled. Then $\lambda_{1}>0$. Moreover, any $\lambda \in\left[\lambda_{1}, \infty\right)$ is an eigenvalue of problem (1). Furthermore, there exists a positive constant λ_{0} such that $\lambda_{0} \leq \lambda_{1}$ and any $\lambda \in\left(0, \lambda_{0}\right)$ is not an eigenvalue of problem (1).
Proof. Let E denote the generalized Sobolev space $W_{0}^{1, p_{1}(x)}(\Omega)$. We denote by $\|\cdot\|$ the norm on $W_{0}^{1, p_{1}(x)}(\Omega)$ and by $\|\cdot\|_{1}$ the norm on $W_{0}^{1, p_{2}(x)}(\Omega)$.

Define the functionals $J, I, J_{1}, I_{1}: E \rightarrow \mathbb{R}$ by

$$
\begin{gathered}
J(u)=\int_{\Omega} \frac{1}{p_{1}(x)}|\nabla u|^{p_{1}(x)} \mathrm{d} x+\int_{\Omega} \frac{1}{p_{2}(x)}|\nabla u|^{p_{2}(x)} \mathrm{d} x, \\
I(u)=\int_{\Omega} \frac{1}{q(x)}|u|^{q(x)} \mathrm{d} x \\
J_{1}(u)=\int_{\Omega}|\nabla u|^{p_{1}(x)} \mathrm{d} x+\int_{\Omega}|\nabla u|^{p_{2}(x)} \mathrm{d} x \\
I_{1}(u)=\int_{\Omega}|u|^{q(x)} \mathrm{d} x .
\end{gathered}
$$

Standard arguments imply that $J, I \in C^{1}(E, \mathbb{R})$ and for all $u, v \in E$,

$$
\begin{gathered}
\left\langle J^{\prime}(u), v\right\rangle=\int_{\Omega}\left(|\nabla u|^{p_{1}(x)-2}+|\nabla u|^{p_{2}(x)-2}\right) \nabla u \nabla v \mathrm{~d} x, \\
\left\langle I^{\prime}(u), v\right\rangle=\int_{\Omega}|u|^{q(x)-2} u v \mathrm{~d} x .
\end{gathered}
$$

We split the proof of Theorem 1 into four steps.

- Step 1. We show that $\lambda_{1}>0$.

Since for any $x \in \bar{\Omega}$ we have $p_{1}(x)>q^{+} \geq q(x) \geq q^{-}>p_{2}(x)$ we deduce that for any $u \in E$,

$$
2\left(|\nabla u(x)|^{p_{1}(x)}+|\nabla u(x)|^{p_{2}(x)}\right) \geq|\nabla u(x)|^{q^{+}}+|\nabla u(x)|^{q^{-}}
$$

and

$$
|u(x)|^{q^{+}}+|u(x)|^{q^{-}} \geq|u(x)|^{q(x)} .
$$

Integrating the above inequalities we find

$$
\begin{equation*}
2 \int_{\Omega}\left(|\nabla u|^{p_{1}(x)}+|\nabla u|^{p_{2}(x)}\right) \mathrm{d} x \geq \int_{\Omega}\left(|\nabla u|^{q^{+}}+|\nabla u|^{q^{-}}\right) \mathrm{d} x \quad \forall u \in E \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega}\left(|u|^{q^{+}}+|u|^{q^{-}}\right) \mathrm{d} x \geq \int_{\Omega}|u|^{q(x)} \mathrm{d} x \quad \forall u \in E . \tag{10}
\end{equation*}
$$

By Sobolev embeddings, there exist positive constants $\lambda_{q^{+}}$and $\lambda_{q^{-}}$such that

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{q^{+}} \mathrm{d} x \geq \lambda_{q^{+}} \int_{\Omega}|u|^{q^{+}} \mathrm{d} x \quad \forall u \in W_{0}^{1, q^{+}}(\Omega) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{q^{-}} \mathrm{d} x \geq \lambda_{q^{-}} \int_{\Omega}|u|^{q^{-}} \mathrm{d} x \quad \forall u \in W_{0}^{1, q^{-}}(\Omega) \tag{12}
\end{equation*}
$$

Using again the fact that $q^{-} \leq q^{+}<p_{1}(x)$ for any $x \in \bar{\Omega}$ we deduce that E is continuously embedded in $W_{0}^{1, q^{+}}(\Omega)$ and in $W_{0}^{1, q^{-}}(\Omega)$. Thus, inequalities (11) and (12) hold true for any $u \in E$.

Using inequalities (11), (12) and (10) it is clear that there exists a positive constant μ such that

$$
\begin{equation*}
\int_{\Omega}\left(|\nabla u|^{q^{+}}+|\nabla u|^{q^{-}}\right) \mathrm{d} x \geq \mu \int_{\Omega}|u|^{q(x)} \mathrm{d} x \quad \forall u \in E . \tag{13}
\end{equation*}
$$

Next, inequalities (13) and (9) yield

$$
\begin{equation*}
\int_{\Omega}\left(|\nabla u|^{p_{1}(x)}+|\nabla u|^{p_{2}(x)}\right) \mathrm{d} x \geq \frac{\mu}{2} \int_{\Omega}|u|^{q(x)} \mathrm{d} x \quad \forall u \in E . \tag{14}
\end{equation*}
$$

By relation (14) we deduce that

$$
\begin{equation*}
\lambda_{0}=\inf _{v \in E \backslash\{0\}} \frac{J_{1}(v)}{I_{1}(v)}>0 \tag{15}
\end{equation*}
$$

and thus,

$$
\begin{equation*}
J_{1}(u) \geq \lambda_{0} I_{1}(u) \quad \forall u \in E . \tag{16}
\end{equation*}
$$

The above inequality yields

$$
\begin{equation*}
p_{1}^{+} \cdot J(u) \geq J_{1}(u) \geq \lambda_{0} I_{1}(u) \geq \lambda_{0} I(u) \quad \forall u \in E . \tag{17}
\end{equation*}
$$

The last inequality assures that $\lambda_{1}>0$ and thus, step 1 is verified.

- Step 2. We show that λ_{1} is an eigenvalue of problem (1).

Lemma 1. The following relations hold true:

$$
\begin{equation*}
\lim _{\|u\| \rightarrow \infty} \frac{J(u)}{I(u)}=\infty \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\|u\| \rightarrow 0} \frac{J(u)}{I(u)}=\infty \tag{19}
\end{equation*}
$$

Proof. Since E is continuously embedded in $L^{q^{ \pm}}(\Omega)$ it follows that there exist two positive constants c_{1} and c_{2} such that

$$
\begin{equation*}
\|u\| \geq c_{1} \cdot|u|_{q^{+}} \quad \forall u \in E \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u\| \geq c_{2} \cdot|u|_{q^{-}} \quad \forall u \in E . \tag{21}
\end{equation*}
$$

For any $u \in E$ with $\|u\|>1$ by relations (6), (10), (20), (21) we infer

$$
\frac{J(u)}{I(u)} \geq \frac{\frac{\|u\|^{p_{1}^{-}}}{p_{1}^{+}}}{\frac{|u|_{q^{+}}^{q^{+}}+|u|_{q^{-}}^{q^{-}}}{q^{-}}} \geq \frac{\frac{\|u\|^{p_{1}^{-}}}{p_{1}^{+}}}{\frac{c_{1}^{-q^{+}}\|u\|^{q^{+}}+c_{2}^{-q^{-}}\|u\|^{q^{-}}}{q^{-}}}
$$

Since $p_{1}^{-}>q^{+} \geq q^{-}$, passing to the limit as $\|u\| \rightarrow \infty$ in the above inequality we deduce that relation (18) holds true.

Next, let us remark that since $p_{1}(x)>p_{2}(x)$ for any $x \in \bar{\Omega}$, the space $W_{0}^{1, p_{1}(x)}(\Omega)$ is continuously embedded in $W_{0}^{1, p_{2}(x)}(\Omega)$. Thus, if $\|u\| \rightarrow 0$ then $\|u\|_{1} \rightarrow 0$.

The above remarks enable us to affirm that for any $u \in E$ with $\|u\|<1$ small enough we have $\|u\|_{1}<1$.

On the other hand, since (4) holds true we deduce that $W_{0}^{1, p_{2}(x)}(\Omega)$ is continuously embedded in $L^{q^{ \pm}}(\Omega)$. It follows that there exist two positive constants d_{1} and d_{2} such that

$$
\begin{equation*}
\|u\|_{1} \geq d_{1} \cdot|u|_{q^{+}} \quad \forall u \in W_{0}^{1, p_{2}(x)}(\Omega) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u\|_{1} \geq d_{2} \cdot|u|_{q^{-}} \quad \forall u \in W_{0}^{1, p_{2}(x)}(\Omega) \tag{23}
\end{equation*}
$$

Thus, for any $u \in E$ with $\|u\|<1$ small enough, relations (7), (10), (22), (23) imply

$$
\frac{J(u)}{I(u)} \geq \frac{\frac{\int_{\Omega}|\nabla u|^{p_{2}(x)} d x}{p_{2}^{+}}}{\frac{|u|_{q^{+}}^{q^{+}}+|u|_{q^{-}}^{q^{-}}}{q^{-}}} \geq \frac{\frac{\|u\|_{1}^{p_{2}^{+}}}{p_{2}^{+}}}{\frac{d_{1}^{-q^{+}}\|u\|_{1}^{q^{+}}+d_{2}^{-q^{-}}\|u\|_{1}^{q^{-}}}{q^{-}}}
$$

Since $p_{2}^{+}<q^{-} \leq q^{+}$, passing to the limit as $\|u\| \rightarrow 0$ (and thus, $\|u\|_{1} \rightarrow 0$) in the above inequality we deduce that relation (19) holds true. The proof of Lemma 1 is complete.

Lemma 2. There exists $u \in E \backslash\{0\}$ such that $\frac{J(u)}{I(u)}=\lambda_{1}$.
Proof. Let $\left\{u_{n}\right\} \subset E \backslash\{0\}$ be a minimizing sequence for λ_{1}, that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{J\left(u_{n}\right)}{I\left(u_{n}\right)}=\lambda_{1}>0 \tag{24}
\end{equation*}
$$

By relation (18) it is clear that $\left\{u_{n}\right\}$ is bounded in E. Since E is reflexive it follows that there exists $u \in E$ such that, up to a subsequence, $\left\{u_{n}\right\}$ converges weakly to u in E. On the other hand, similar arguments as those used in the proof of Lemma 3.4 in [11] show that the functional J is weakly lower semi-continuous. Thus, we find

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} J\left(u_{n}\right) \geq J(u) \tag{25}
\end{equation*}
$$

By the compact embedding theorem for spaces with variable exponent and assumption $1 \leq \max _{y \in \bar{\Omega}} q(y)<p_{1}(x)$ for all $x \in \bar{\Omega}$ (see (3)) it follows that E is compactly embedded in $L^{q(x)}(\Omega)$. Thus, $\left\{u_{n}\right\}$ converges strongly in $L^{q(x)}(\Omega)$. Then, by relation (8) it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I\left(u_{n}\right)=I(u) \tag{26}
\end{equation*}
$$

Relations (25) and (26) imply that if $u \not \equiv 0$ then

$$
\frac{J(u)}{I(u)}=\lambda_{1} .
$$

Thus, in order to conclude that the lemma holds true it is enough to show that u is not trivial. Assume by contradiction the contrary. Then u_{n} converges weakly to 0 in E and strongly in $L^{q(x)}(\Omega)$. In other words, we will have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I\left(u_{n}\right)=0 . \tag{27}
\end{equation*}
$$

Letting $\epsilon \in\left(0, \lambda_{1}\right)$ be fixed by relation (24) we deduce that for n large enough we have

$$
\left|J\left(u_{n}\right)-\lambda_{1} I\left(u_{n}\right)\right|<\epsilon I\left(u_{n}\right),
$$

or

$$
\left(\lambda_{1}-\epsilon\right) I\left(u_{n}\right)<J\left(u_{n}\right)<\left(\lambda_{1}+\epsilon\right) I\left(u_{n}\right) .
$$

Passing to the limit in the above inequalities and taking into account that relation (27) holds true we find

$$
\lim _{n \rightarrow \infty} J\left(u_{n}\right)=0
$$

That fact combined with relation (8) implies that actually u_{n} converges strongly to 0 in E, i.e. $\lim _{n \rightarrow \infty}\left\|u_{n}\right\|=0$. By this information and relation (19) we get

$$
\lim _{n \rightarrow \infty} \frac{J\left(u_{n}\right)}{I\left(u_{n}\right)}=\infty,
$$

and this is a contradiction. Thus, $u \not \equiv 0$. The proof of Lemma 2 is complete.
By Lemma 2 we conclude that there exists $u \in E \backslash\{0\}$ such that

$$
\begin{equation*}
\frac{J(u)}{I(u)}=\lambda_{1}=\inf _{w \in E \backslash\{0\}} \frac{J(w)}{I(w)} . \tag{28}
\end{equation*}
$$

Then, for any $v \in E$ we have

$$
\left.\frac{d}{d \epsilon} \frac{J(u+\epsilon v)}{I(u+\epsilon v)}\right|_{\epsilon=0}=0 .
$$

A simple computation yields

$$
\begin{align*}
& \int_{\Omega}\left(|\nabla u|^{p_{1}(x)-2}+|\nabla u|^{p_{2}(x)-2}\right) \nabla u \nabla v \mathrm{~d} x \cdot I(u)-J(u) \\
& \quad \int_{\Omega}|u|^{q(x)-2} u v \mathrm{~d} x=0 \quad \forall v \in E . \tag{29}
\end{align*}
$$

Relation (29) combined with the fact that $J(u)=\lambda_{1} I(u)$ and $I(u) \neq 0$ implies the fact that λ_{1} is an eigenvalue of problem (1). Thus, step 2 is verified.

- Step 3. We show that any $\lambda \in\left(\lambda_{1}, \infty\right)$ is an eigenvalue of problem (1).

Let $\lambda \in\left(\lambda_{1}, \infty\right)$ be arbitrary but fixed. Define $T_{\lambda}: E \rightarrow \mathbb{R}$ by

$$
T_{\lambda}(u)=J(u)-\lambda I(u) .
$$

Clearly, $T_{\lambda} \in C^{1}(E, \mathbb{R})$ with

$$
\left\langle T_{\lambda}^{\prime}(u), v\right\rangle=\left\langle J^{\prime}(u), v\right\rangle-\lambda\left\langle I^{\prime}(u), v\right\rangle, \quad \forall u \in E .
$$

Thus, λ is an eigenvalue of problem (1) if and only if there exists $u_{\lambda} \in E \backslash\{0\}$ a critical point of T_{λ}.

With similar arguments as in the proof of relation (18) we can show that T_{λ} is coercive, i.e. $\lim _{\|u\| \rightarrow \infty} T_{\lambda}(u)=\infty$. On the other hand, as we have already remarked, similar arguments as those used in the proof of Lemma 3.4 in [11] show that the functional T_{λ} is weakly lower semi-continuous. These two facts enable us to apply Theorem 1.2 in [17] in order to prove that there exists $u_{\lambda} \in E$ a global minimum point of T_{λ} and thus, a critical point of T_{λ}. In order to conclude that step 4 holds true it is enough to show that u_{λ} is not trivial. Indeed, since $\lambda_{1}=\inf _{u \in E \backslash\{0\}} \frac{J(u)}{I(u)}$ and $\lambda>\lambda_{1}$ it follows that there exists $v_{\lambda} \in E$ such that

$$
J\left(v_{\lambda}\right)<\lambda I\left(v_{\lambda}\right),
$$

or

$$
T_{\lambda}\left(v_{\lambda}\right)<0 .
$$

Thus,

$$
\inf _{E} T_{\lambda}<0
$$

and we conclude that u_{λ} is a nontrivial critical point of T_{λ}, or λ is an eigenvalue of problem (1). Thus, step 3 is verified.

- Step 4. Any $\lambda \in\left(0, \lambda_{0}\right)$, where λ_{0} is given by (15), is not an eigenvalue of problem (1).

Indeed, assuming by contradiction that there exists $\lambda \in\left(0, \lambda_{0}\right)$ an eigenvalue of problem (1) it follows that there exists $u_{\lambda} \in E \backslash\{0\}$ such that

$$
\left\langle J^{\prime}\left(u_{\lambda}\right), v\right\rangle=\lambda\left\langle I^{\prime}\left(u_{\lambda}\right), v\right\rangle \quad \forall v \in E .
$$

Thus, for $v=u_{\lambda}$ we find

$$
\left\langle J^{\prime}\left(u_{\lambda}\right), u_{\lambda}\right\rangle=\lambda\left\langle I^{\prime}\left(u_{\lambda}\right), u_{\lambda}\right\rangle,
$$

that is,

$$
J_{1}\left(u_{\lambda}\right)=\lambda I_{1}\left(u_{\lambda}\right)
$$

The fact that $u_{\lambda} \in E \backslash\{0\}$ assures that $I_{1}\left(u_{\lambda}\right)>0$. Since $\lambda<\lambda_{0}$, the above information yields

$$
J_{1}\left(u_{\lambda}\right) \geq \lambda_{0} I_{1}\left(u_{\lambda}\right)>\lambda I_{1}\left(u_{\lambda}\right)=J_{1}\left(u_{\lambda}\right) .
$$

Clearly, the above inequalities lead to a contradiction. Thus, step 4 is verified.
By steps 2, 3 and 4 we deduce that $\lambda_{0} \leq \lambda_{1}$. The proof of Theorem 1 is now complete.

Remark 1. At this stage we are not able to deduce whether $\lambda_{0}=\lambda_{1}$ or $\lambda_{0}<\lambda_{1}$. In the latter case an interesting question concerns the existence of eigenvalues of problem (1) in the interval $\left[\lambda_{0}, \lambda_{1}\right)$. We propose to the reader the study of these open problems.

Acknowledgments. The authors have been supported by Grants CNCSIS 79/2007 "Degenerate and Singular Nonlinear Processes" and CNCSIS 589/2007 "Analysis and Control of Nonlinear Differential Systems".

References

[1] Acerbi, E., Mingione, G.: Gradient estimates for the $p(x)$-Laplacean system. J. Reine Angew. Math. 584, 117-148 (2005)
[2] Chen, Y., Levine, S., Rao, R.: Functionals with $p(x)$-growth in image processing. Department of Mathematics and Computer Science, Duquesne University, Technical Report 2004-01, available at www.mathcs.duq.edu/~sel/CLR05SIAPfinal.pdf
[3] Diening, L.: Theoretical and numerical results for electrorheological fluids. Ph.D. thesis, University of Frieburg, Germany (2002)
[4] Edmunds, D.E., Lang, J., Nekvinda, A.: On $L^{p(x)}$ norms. Proc. Roy. Soc. Lond. Ser. A 455, 219-225 (1999)
[5] Edmunds, D.E., Rákosník, J.: Density of smooth functions in $W^{k, p(x)}(\Omega)$. Proc. Roy. Soc. Lond. Ser. A 437, 229-236 (1992)
[6] Edmunds, D.E., Rákosník, J.: Sobolev embedding with variable exponent. Stud. Math. 143, 267-293 (2000)
[7] Fan, X.L., Zhang, Q.: Existence of solutions for $p(x)$-Laplacian Dirichlet problem. Nonlinear Anal. 52, 1843-1852 (2003)
[8] Fan, X., Zhang, Q., Zhao, D.: Eigenvalues of $p(x)$-Laplacian Dirichlet problem. J. Math. Anal. Appl. 302, 306-317 (2005)
[9] Halsey, T.C.: Electrorheological fluids. Science 258, 761-766 (1992)
[10] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{1, p(x)}$. Czechoslov. Math. J. 41, 592-618 (1991)
[11] Mihăilescu, M., Rădulescu, V.: A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 462, 2625-2641 (2006)
[12] Mihăilescu, M., Rădulescu, V.: On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent. Proc. Am. Math. Soc. 135, 2929-2937 (2007)
[13] Mihăilescu, M., Rădulescu, V.: Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz-Sobolev space setting. J. Math. Anal. Appl. 330, 416-432 (2007)
[14] Musielak, J.: Orlicz spaces and modular spaces. Lecture Notes in Mathematics, Vol. 1034. Springer, Berlin (1983)
[15] Ruzicka, M.: Electrorheological fluids: modeling and mathematical theory. Springer, Berlin (2002)
[16] Samko, S., Vakulov, B.: Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators. J. Math. Anal. Appl. 310, 229-246 (2005)
[17] Struwe, M.: Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems. Springer, Heidelberg (1996)
[18] Zhikov, V.: Averaging of functionals in the calculus of variations and elasticity. Math. USSR Izv. 29, 33-66 (1987)

[^0]: M. Mihăilescu • V. Rădulescu (\boxtimes): Department of Mathematics, University of Craiova, 200585 Craiova, Romania. e-mail: vicentiu.radulescu@math.cnrs.fr; mmihailes@yahoo.com

