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Abstract. We study the boundary value problem −div((|∇u|p1(x)−2+|∇u|p2(x)−2)∇u) =
λ|u|q(x)−2u in �, u = 0 on ∂�, where � is a bounded domain in R

N with smooth boundary,
λ is a positive real number, and the continuous functions p1, p2, and q satisfy 1 < p2(x) <

q(x) < p1(x) < N and maxy∈�
q(y) <

N p2(x)
N−p2(x)

for any x ∈ �. The main result of this
paper establishes the existence of two positive constants λ0 and λ1 with λ0 ≤ λ1 such that
any λ ∈ [λ1, ∞) is an eigenvalue, while any λ ∈ (0, λ0) is not an eigenvalue of the above
problem.

1. Introduction and preliminary results

In this paper we are concerned with the study of the eigenvalue problem
{−div((|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u) = λ|u|q(x)−2u, for x ∈ �

u = 0, for x ∈ ∂� ,
(1)

where � ⊂ R
N (N ≥ 3) is a bounded domain with smooth boundary, λ is a positive

real number, and p1, p2, q are continuous functions on �.
The study of eigenvalue problems involving operators with variable exponents

growth conditions has captured a special attention in the last few years. This is
in keeping with the fact that operators which arise in such kind of problems, like
the p(x)-Laplace operator (i.e., div(|∇u|p(x)−2∇u), where p(x) is a continuous
positive function), are not homogeneous and thus, a large number of techniques
which can be applied in the homogeneous case (when p(x) is a positive constant)
fail in this new setting. A typical example is the Lagrange multiplier theorem, which
does not apply to the eigenvalue problem

{−div(|∇u|p(x)−2∇u) = λ|u|q(x)−2u, for x ∈ �

u = 0, for x ∈ ∂� ,
(2)
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where � ⊂ R
N is a bounded domain. This is due to the fact that the associated

Rayleigh quotient is not homogeneous, provided both p and q are not constant.
On the other hand, problems like (2) have been largely considered in the liter-

ature in the recent years. We give in what follows a concise but complete image of
the actual stage of research on this topic.

• In the case when p(x) = q(x) on �, Fan, Zhang and Zhao [8] established the
existence of infinitely many eigenvalues for problem (2) by using an argument
based on the Ljusternik-Schnirelmann critical point theory. Denoting by � the
set of all nonnegative eigenvalues, Fan, Zhang and Zhao showed that � is dis-
crete, sup � = +∞ and they pointed out that only under special conditions,
which are somehow connected with a kind of monotony of the function p(x),
we have inf � > 0 (this is in contrast with the case when p(x) is a constant;
then, we always have inf � > 0).

• In the case when minx∈� q(x) < minx∈� p(x) and q(x) has a subcritical
growth Mihăilescu and Rădulescu [12] used the Ekeland’s variational princi-
ple in order to prove the existence of a continuous family of eigenvalues which
lies in a neighborhood of the origin.

• In the case when maxx∈� p(x) < minx∈� q(x) and q(x) has a subcritical
growth a mountain-pass argument, similar with those used by Fan and Zhang
in the proof of Theorem 4.7 in [7], can be applied in order to show that any
λ > 0 is an eigenvalue of problem (2).

• In the case when maxx∈� q(x) < minx∈� p(x) it can be proved that the energy
functional associated to problem (2) has a nontrivial minimum for any positive
λ (see Theorem 4.3 in [7]). Clearly, in this case the result in [12] can be also
applied. Consequently, in this situation there exist two positive constants λ�

and λ�� such that any λ ∈ (0, λ�) ∪ (λ��,∞) is an eigenvalue of problem (2).

In this paper we study problem (1) under the following assumptions:

1 < p2(x) < min
y∈�

q(y) ≤ max
y∈�

q(y) < p1(x) ∀ x%in� (3)

and

max
y∈�

q(y) < p�
2(x) ∀ x ∈ �, (4)

where p�
2(x) := N p2(x)

N−p2(x)
if p2(x) < N and p�

2(x) = +∞ if p2(x) ≥ N .
Thus, the case considered here is different from all the cases studied before. In

this new situation we will show the existence of two positive constants λ0 and λ1
with λ0 ≤ λ1 such that any λ ∈ [λ1,∞) is an eigenvalue of problem (1) while any
λ ∈ (0, λ0) is not an eigenvalue of problem (1). An important consequence of our
study is that, under hypotheses (3) and (4), we have

inf
u∈W

1,p1(x)

0 (�)\{0}

∫
�

1

p1(x)
|∇u|p1(x) dx +

∫
�

1

p2(x)
|∇u|p2(x) dx

∫
�

1

q(x)
|u|q(x) dx

> 0 .
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That fact is proved by using the Lagrange Multiplier Theorem. The absence of
homogeneity will be balanced by the fact that assumptions (3) and (4) yield

lim‖u‖p1(x)→0

∫
�

1

p1(x)
|∇u|p1(x) dx +

∫
�

1

p2(x)
|∇u|p2(x) dx

∫
�

1

q(x)
|u|q(x) dx

= ∞

and

lim‖u‖p1(x)→∞

∫
�

1

p1(x)
|∇u|p1(x) dx +

∫
�

1

p2(x)
|∇u|p2(x) dx

∫
�

1

q(x)
|u|q(x) dx

= ∞ ,

where ‖ · ‖p1(x) stands for the norm in the variable exponent Sobolev space

W 1,p1(x)
0 (�).

We start with some preliminary basic results on the theory of Lebesgue–Sobolev
spaces with variable exponent. For more details we refer to the book by Musielak
[14] and the papers by Edmunds et al. [4–6], Kovacik and Rákosník [10], Mihăilescu
and Rădulescu [11,13], and Samko and Vakulov [16].

Set

C+(�) = {h; h ∈ C(�), h(x) > 1 for all x ∈ �}.
For any h ∈ C+(�) we define

h+ = sup
x∈�

h(x) and h− = inf
x∈�

h(x).

For any p ∈ C+(�), we define the variable exponent Lebesgue space

L p(x)(�)=
⎧⎨
⎩u; u is a measurable real-valued function such that

∫
�

|u(x)|p(x) dx <∞
⎫⎬
⎭ .

We define on this space the Luxemburg norm by

|u|p(x) = inf

⎧⎨
⎩µ > 0;

∫
�

∣∣∣∣u(x)

µ

∣∣∣∣
p(x)

dx ≤ 1

⎫⎬
⎭ .

Let L p
′
(x)(�) denote the conjugate space of L p(x)(�), where 1/p(x) +

1/p
′
(x) = 1. For any u ∈ L p(x)(�) and v ∈ L p

′
(x)(�) the Hölder type inequality

∣∣∣∣∣∣
∫
�

uv dx

∣∣∣∣∣∣ ≤
(

1

p− + 1

p′−

)
|u|p(x)|v|p′

(x)
(5)

holds true.
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An important role in manipulating the generalized Lebesgue–Sobolev spaces
is played by the modular of the L p(x)(�) space, which is the mapping ρp(x) :
L p(x)(�) → R defined by

ρp(x)(u) =
∫
�

|u|p(x) dx .

If (un), u ∈ L p(x)(�) then the following relations hold true

|u|p(x) > 1 ⇒ |u|p−
p(x) ≤ ρp(x)(u) ≤ |u|p+

p(x) (6)

|u|p(x) < 1 ⇒ |u|p+
p(x) ≤ ρp(x)(u) ≤ |u|p−

p(x) (7)

|un − u|p(x) → 0 ⇔ ρp(x)(un − u) → 0. (8)

Next, we define W 1,p(x)
0 (�) as the closure of C∞

0 (�) under the norm

‖u‖p(x) = |∇u|p(x).

The space W 1,p(x)
0 (�) is a separable and reflexive Banach space. We note that if

s ∈ C+(�) and s(x) < p�(x) for all x ∈ � then the embedding W 1,p(x)
0 (�) ↪→

Ls(x)(�) is compact and continuous, where p�(x) denotes the corresponding crit-
ical Sobolev exponent, that is, p�(x) := N p(x)

N−p(x)
if p(x) < N or p�(x) = +∞ if

p(x) ≥ N .
For applications of Sobolev spaces with variable exponent we refer to Acerbi

and Mingione [1], Chen, Levine and Rao [2], Diening [3], Halsey [9], Ruzicka [15],
and Zhikov [18].

2. The main result

Since p2(x) < p1(x) for any x ∈ � it follows that W 1,p1(x)
0 (�) is continuously

embedded in W 1,p2(x)
0 (�). Thus, a solution for a problem of type (1) will be sought

in the variable exponent space W 1,p1(x)
0 (�).

We say that λ ∈ R is an eigenvalue of problem (1) if there exists u ∈ W 1,p1(x)
0

(�) \ {0} such that∫
�

(|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u∇v dx − λ

∫
�

|u|q(x)−2uv dx = 0 ,

for all v ∈ W 1,p1(x)
0 (�). We point out that if λ is an eigenvalue of problem (1)

then the corresponding eigenfunction u ∈ W 1,p1(x)
0 (�) \ {0} is a weak solution of

problem (1).
Define

λ1 := inf
u∈W

1,p1(x)

0 (�)\{0}

∫
�

1

p1(x)
|∇u|p1(x) dx +

∫
�

1

p2(x)
|∇u|p2(x) dx

∫
�

1

q(x)
|u|q(x) dx

.

Our main result is given by the following theorem.
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Theorem 1. Assume that conditions (3) and (4) are fulfilled. Then λ1 > 0. More-
over, any λ ∈ [λ1,∞) is an eigenvalue of problem (1). Furthermore, there exists a
positive constant λ0 such that λ0 ≤ λ1 and any λ ∈ (0, λ0) is not an eigenvalue of
problem (1).

Proof. Let E denote the generalized Sobolev space W 1,p1(x)
0 (�). We denote by

‖ · ‖ the norm on W 1,p1(x)
0 (�) and by ‖ · ‖1 the norm on W 1,p2(x)

0 (�).
Define the functionals J , I , J1, I1 : E → R by

J (u) =
∫
�

1

p1(x)
|∇u|p1(x) dx +

∫
�

1

p2(x)
|∇u|p2(x) dx,

I (u) =
∫
�

1

q(x)
|u|q(x) dx,

J1(u) =
∫
�

|∇u|p1(x) dx +
∫
�

|∇u|p2(x) dx,

I1(u) =
∫
�

|u|q(x) dx .

Standard arguments imply that J, I ∈ C1(E, R) and for all u, v ∈ E ,

〈J
′
(u), v〉 =

∫
�

(|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u∇v dx,

〈I
′
(u), v〉 =

∫
�

|u|q(x)−2uv dx .

We split the proof of Theorem 1 into four steps.

• Step 1. We show that λ1 > 0.

Since for any x ∈ � we have p1(x) > q+ ≥ q(x) ≥ q− > p2(x) we deduce
that for any u ∈ E ,

2(|∇u(x)|p1(x) + |∇u(x)|p2(x)) ≥ |∇u(x)|q+ + |∇u(x)|q−

and

|u(x)|q+ + |u(x)|q− ≥ |u(x)|q(x).

Integrating the above inequalities we find

2
∫
�

(|∇u|p1(x) + |∇u|p2(x)) dx ≥
∫
�

(|∇u|q+ + |∇u|q−
) dx ∀ u ∈ E (9)
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and
∫
�

(|u|q+ + |u|q−
) dx ≥

∫
�

|u|q(x) dx ∀ u ∈ E . (10)

By Sobolev embeddings, there exist positive constants λq+ and λq− such that

∫
�

|∇u|q+
dx ≥ λq+

∫
�

|u|q+
dx ∀ u ∈ W 1,q+

0 (�) (11)

and
∫
�

|∇u|q−
dx ≥ λq−

∫
�

|u|q−
dx ∀ u ∈ W 1,q−

0 (�). (12)

Using again the fact that q− ≤ q+ < p1(x) for any x ∈ � we deduce that E is

continuously embedded in W 1,q+
0 (�) and in W 1,q−

0 (�). Thus, inequalities (11) and
(12) hold true for any u ∈ E .

Using inequalities (11), (12) and (10) it is clear that there exists a positive
constant µ such that

∫
�

(|∇u|q+ + |∇u|q−
) dx ≥ µ

∫
�

|u|q(x) dx ∀ u ∈ E . (13)

Next, inequalities (13) and (9) yield

∫
�

(|∇u|p1(x) + |∇u|p2(x)) dx ≥ µ

2

∫
�

|u|q(x) dx ∀ u ∈ E . (14)

By relation (14) we deduce that

λ0 = inf
v∈E\{0}

J1(v)

I1(v)
> 0 (15)

and thus,

J1(u) ≥ λ0 I1(u) ∀ u ∈ E . (16)

The above inequality yields

p+
1 · J (u) ≥ J1(u) ≥ λ0 I1(u) ≥ λ0 I (u) ∀ u ∈ E . (17)

The last inequality assures that λ1 > 0 and thus, step 1 is verified.

• Step 2. We show that λ1 is an eigenvalue of problem (1).
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Lemma 1. The following relations hold true:

lim‖u‖→∞
J (u)

I (u)
= ∞ (18)

and

lim‖u‖→0

J (u)

I (u)
= ∞. (19)

Proof. Since E is continuously embedded in Lq±
(�) it follows that there exist two

positive constants c1 and c2 such that

‖u‖ ≥ c1 · |u|q+ ∀ u ∈ E (20)

and

‖u‖ ≥ c2 · |u|q− ∀ u ∈ E . (21)

For any u ∈ E with ‖u‖ > 1 by relations (6), (10), (20), (21) we infer

J (u)

I (u)
≥

‖u‖p−
1

p+
1

|u|q+
q+ + |u|q−

q−

q−

≥
‖u‖p−

1

p+
1

c−q+
1 ‖u‖q+ + c−q−

2 ‖u‖q−

q−

.

Since p−
1 > q+ ≥ q−, passing to the limit as ‖u‖ → ∞ in the above inequality

we deduce that relation (18) holds true.
Next, let us remark that since p1(x) > p2(x) for any x ∈ �, the space

W 1,p1(x)
0 (�) is continuously embedded in W 1,p2(x)

0 (�). Thus, if ‖u‖ → 0 then
‖u‖1 → 0.

The above remarks enable us to affirm that for any u ∈ E with ‖u‖ < 1 small
enough we have ‖u‖1 < 1.

On the other hand, since (4) holds true we deduce that W 1,p2(x)
0 (�) is contin-

uously embedded in Lq±
(�). It follows that there exist two positive constants d1

and d2 such that

‖u‖1 ≥ d1 · |u|q+ ∀ u ∈ W 1,p2(x)
0 (�) (22)

and

‖u‖1 ≥ d2 · |u|q− ∀ u ∈ W 1,p2(x)
0 (�). (23)

Thus, for any u ∈ E with ‖u‖ < 1 small enough, relations (7), (10), (22), (23) imply

J (u)

I (u)
≥

∫
�

|∇u|p2(x) dx

p+
2

|u|q+
q+ + |u|q−

q−

q−

≥
‖u‖p+

2
1

p+
2

d−q+
1 ‖u‖q+

1 + d−q−
2 ‖u‖q−

1

q−

.
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Since p+
2 < q− ≤ q+, passing to the limit as ‖u‖ → 0 (and thus, ‖u‖1 → 0) in

the above inequality we deduce that relation (19) holds true. The proof of Lemma 1
is complete. ��
Lemma 2. There exists u ∈ E \ {0} such that J (u)

I (u)
= λ1.

Proof. Let {un} ⊂ E \ {0} be a minimizing sequence for λ1, that is,

lim
n→∞

J (un)

I (un)
= λ1 > 0. (24)

By relation (18) it is clear that {un} is bounded in E . Since E is reflexive it follows
that there exists u ∈ E such that, up to a subsequence, {un} converges weakly to u
in E . On the other hand, similar arguments as those used in the proof of Lemma 3.4
in [11] show that the functional J is weakly lower semi-continuous. Thus, we find

lim inf
n→∞ J (un) ≥ J (u). (25)

By the compact embedding theorem for spaces with variable exponent and assump-
tion 1 ≤ maxy∈� q(y) < p1(x) for all x ∈ � (see (3)) it follows that E is compactly

embedded in Lq(x)(�). Thus, {un} converges strongly in Lq(x)(�). Then, by rela-
tion (8) it follows that

lim
n→∞ I (un) = I (u). (26)

Relations (25) and (26) imply that if u �≡ 0 then

J (u)

I (u)
= λ1.

Thus, in order to conclude that the lemma holds true it is enough to show that u is
not trivial. Assume by contradiction the contrary. Then un converges weakly to 0
in E and strongly in Lq(x)(�). In other words, we will have

lim
n→∞ I (un) = 0. (27)

Letting ε ∈ (0, λ1) be fixed by relation (24) we deduce that for n large enough we
have

|J (un) − λ1 I (un)| < ε I (un),

or

(λ1 − ε)I (un) < J (un) < (λ1 + ε)I (un).

Passing to the limit in the above inequalities and taking into account that relation
(27) holds true we find

lim
n→∞ J (un) = 0.
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That fact combined with relation (8) implies that actually un converges strongly to
0 in E , i.e. limn→∞ ‖un‖ = 0. By this information and relation (19) we get

lim
n→∞

J (un)

I (un)
= ∞,

and this is a contradiction. Thus, u �≡ 0. The proof of Lemma 2 is complete. ��
By Lemma 2 we conclude that there exists u ∈ E \ {0} such that

J (u)

I (u)
= λ1 = inf

w∈E\{0}
J (w)

I (w)
. (28)

Then, for any v ∈ E we have

d

dε

J (u + εv)

I (u + εv)
|ε=0 = 0 .

A simple computation yields∫
�

(|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u∇v dx · I (u) − J (u)

·
∫
�

|u|q(x)−2uv dx = 0 ∀ v ∈ E . (29)

Relation (29) combined with the fact that J (u) = λ1 I (u) and I (u) �= 0 implies
the fact that λ1 is an eigenvalue of problem (1). Thus, step 2 is verified.

• Step 3. We show that any λ ∈ (λ1,∞) is an eigenvalue of problem (1).

Let λ ∈ (λ1,∞) be arbitrary but fixed. Define Tλ : E → R by

Tλ(u) = J (u) − λI (u).

Clearly, Tλ ∈ C1(E, R) with

〈T ′
λ(u), v〉 = 〈J

′
(u), v〉 − λ〈I

′
(u), v〉, ∀ u ∈ E .

Thus, λ is an eigenvalue of problem (1) if and only if there exists uλ ∈ E \ {0} a
critical point of Tλ.

With similar arguments as in the proof of relation (18) we can show that Tλ

is coercive, i.e. lim‖u‖→∞ Tλ(u) = ∞. On the other hand, as we have already
remarked, similar arguments as those used in the proof of Lemma 3.4 in [11] show
that the functional Tλ is weakly lower semi-continuous. These two facts enable us to
apply Theorem 1.2 in [17] in order to prove that there exists uλ ∈ E a global mini-
mum point of Tλ and thus, a critical point of Tλ. In order to conclude that step 4 holds
true it is enough to show that uλ is not trivial. Indeed, since λ1 = infu∈E\{0} J (u)

I (u)
and λ > λ1 it follows that there exists vλ ∈ E such that

J (vλ) < λI (vλ),
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or

Tλ(vλ) < 0.

Thus,

inf
E

Tλ < 0

and we conclude that uλ is a nontrivial critical point of Tλ, or λ is an eigenvalue of
problem (1). Thus, step 3 is verified.

• Step 4. Any λ ∈ (0, λ0), where λ0 is given by (15), is not an eigenvalue of
problem (1).

Indeed, assuming by contradiction that there exists λ ∈ (0, λ0) an eigenvalue
of problem (1) it follows that there exists uλ ∈ E \ {0} such that

〈J
′
(uλ), v〉 = λ〈I

′
(uλ), v〉 ∀ v ∈ E .

Thus, for v = uλ we find

〈J
′
(uλ), uλ〉 = λ〈I

′
(uλ), uλ〉,

that is,

J1(uλ) = λI1(uλ).

The fact that uλ ∈ E \ {0} assures that I1(uλ) > 0. Since λ < λ0, the above
information yields

J1(uλ) ≥ λ0 I1(uλ) > λI1(uλ) = J1(uλ).

Clearly, the above inequalities lead to a contradiction. Thus, step 4 is verified.
By steps 2, 3 and 4 we deduce that λ0 ≤ λ1. The proof of Theorem 1 is now

complete. ��

Remark 1. At this stage we are not able to deduce whether λ0 = λ1 or λ0 < λ1.
In the latter case an interesting question concerns the existence of eigenvalues of
problem (1) in the interval [λ0, λ1). We propose to the reader the study of these
open problems.
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