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Stochastic signal processing techniques have pro- 

foundly changed our perspective on speech processing. 

We have witnessed a progression from heuristic algo- 

rithms to detailed statistical approaches based on itera- 

t ive analysis techniques. Markov modeling provides a 

mathematically rigorous approach to developing robust 

stat is t ica l  signal models. Since t h e  i n t roduc t i on  of 

Markov models t o  speech processing in t h e  middle 

1970s. continuous speech recognition technology has 

come of age. Dramatic advances have been made in 

characterizing the temporal and spectral evolution of 

the speech signal. A t  the same time, our appreciation o f  

t he  need to  explain complex acoustic manifestations 

b y  integration of application constraints in to  low level 

signal processing has grown. In th is  paper, w e  review 

the use of Markov models in continuous speech recogni- 

tion. Markov models are presented as a generalization 

of i t s  predecessor technology, Dynamic Programming. A 

unified view is offered in which bo th  linguistic decoding 

and acoustic matching are integrated in to a single opti- 

mal network search framework. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Though automatic speech understanding by machine remains 

a distant goal in speech research, great strides have been made 

recently in the development of constrained, or application- 

specific, continuous speech recognition systems. Despite the 

fact that spoken language recognition still awaits more funda- 

mental breakthroughs in linguistics, we are witnessing the 

emergence of structural methods 111 that promise to be the 

foundation upon which future speech understanding systems 

will be built. At the core of this new generation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof technology 

are powerful statistical signal processing approaches that inte- 

grate detailed statistical characterizations of the acoustic signal 

with probabilistic models of application constraints. 

In this review, we will restrict our scope to one particular 

class of statistical signal processing algorithms: first order Hidden 

Markov models (HMMs). Other variations 11-71 and generaliza- 

tions [8-91 hold great promise towards extending the frontier of 

speech recognition technology, and share similar foundations in 

statistical estimation theory. We present Hidden Markov model- 

ing as a generalization of its predecessor technology, Dynamic 

Programming (DP) [10,111. A unified view is offered in which 

both linguistic decoding and acoustic matching are integrated 

into a single optimal network search framework. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Advances in Recognition Architectures 

The goal in continuous speech recognition is to  provide a 

transcription of the incoming speech utterance, as depicted in 

Fig. 1. In this example, the speech signal has been decomposed 

into a sequence of phonetic units. This decomposition was the 

result of considering many possible explanations of the speech 

data given a model of all possible sentences that could be spo- 

ken, and choosing the best sequence based on some estimate 

of its likelihood. Information about the possible sentences that 

can be spoken, or language model, is represented using a hier- 

archy of representations that include general phonological prin- 

ciples and application specific information. (For example, 

doctors examine patients, not vice-versa.) 

The output of the recognition system, in i ts simplest form, 

can be the sequence of words that was spoken. This task is 

often referred to as speech recognition (speech to text). More 

often, it is desired to have a system perform some useful func- 

tion in response to a user's command, a task often referred to 

as speech understanding. In this case, it is frequently more use- 

ful to represent the information in a more abstract form [121, 

such as the logical form shown at  the top of Fig. 1. 

An example of a typical commercially available transcription 

system [13], circa 1984, is shown in Fig. 2. This system can be 

tersely described as a bottom-up zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[I41 DP approach (also known 

as word lattice parsing). In the block labelled feature extractor, 

the digitized speech signal is converted into a sequence of fea- 

ture vectors using a spectral analysis technique. Each feature 

vector corresponds to an interval of speech data, denoted a 

frame. The output of the feature extractor is processed by a DP 

based hypothesizer that incorporates an unconstrained end- 

point DP algorithm [151. Recognition hypotheses (words or any 

other user-defined recognition unit) are output asynchronously, 

whenever the match between the speech signal and a recogni- 

tion model is reasonably good. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig 1 With the emergence of structural methods in speech 

recognition, it is possible to tightly integrate application 

constraints into the recognition process, and to let knowledge 

of the application guide the potential choices of recognition 

units Markov models provide a powerful paradigm for 

implementing such hierarchically organized systems 

a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA hierarchical labeling (or parse) of a speech signal 

depicting the influence application constraints can have on the 

speech recognition process The verb "examine in a medical 

context significantly limits the possible subjectlobject 

zombinations Differentiating between "patient's" and 

'patients" requires additional context (One might consider the 

subtlety of distinguishing the patient's knees from the patient's 

niece when "knees" is pronounced with a final unvoiced 

fricative) 

b) A phonetic labeling of a speech signal Previously, 

common approaches to phonetic recognition involved scanning 

the input utterance for probable locations of phones, and 

reducing these to a single transcription through the use of 

higher level knowledge (or application constraints) 

The hypotheses generated by this low level DP recognizer are 

then postprocessed for the best "sentence" hypothesis by 

searching a finite state machine, or finite automation (FA) [14], 

for the lowest cost sequence of hypotheses. The system is de- 

scribed as a bottom-up system because information enters at  

the bottom (the speech signal), and exits in a distilled form a t  

the top (the best sentence hypothesis output from the recogni- 

tion system). No high level constraints encoded in the FA are 

exploited in the low-level recognition processing. 

The main drawback to the DP scheme in Fig. 2 was that a 

sentence containing a particular word could not be recognized 

unless all words in the sentence were hypothesized by the low- 

level hypothesizer. The performance of the system, to a large 
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Fig 2 A bottom-up DP speech recognition system that providl 

a pseudo-connected word recognition capability A woi 

hypothesis output by the unconstrained endpoint DP recogniz 

consists of a word index, the start and stop times of tt 

hypothesis, and a measure of i ts similarity to the correspondir 

speech signal These hypotheses are searched for the be 

grammatical sentence hypotheses using dynamic programmin 

The search procedure often incorporates many heuristics to de 

with hypotheses that overlap in time, and to account fl 

sections of the speech signal for which no hypotheses we 

generated Reference models are often enrolled in an isolatc 

word recognition mode, and updated on continuous speect 

extent, was limited by the performance of the low level hypothe- 

sizer. Configuring the low level hypothesizer to be less discrimi- 

nating often made such systems computationally impractical 

and resulted in unacceptably high error rates. 

An intuitively appealing approach to overcoming these defi- 

ciencies was to incorporate a top-down (141 information flow, 

in which requests for recognition hypotheses at a given point in 

time are initiated by the high level sentence processing. The low 

level recognition system initiates processing of a word model 

only after a request from the high level sentence processor has 

been received. The top-down paradigm is shown in Fig. 3. 

Recognition systems based on top-down search procedures (or 

similar techniques that exhaustively checked all possible combi- 

nations of recognition units) began supplanting bottom-up DP 

systems in the early 1980s [16,17]. 
Top-down processing of FAs is one of many approaches to 

parsing (141. In many applications, such as unconstrained 

speech understanding, top-down parsing is neither practical 

nor efficient. (For example, consider the number of nouns that 

can begin a sentence.) Today, however, we are finding an in- 

creasing number of applications, such as data entry tasks, in 

which small language models are useful. The top-down 

paradigm can be quite powerful for this class of applications. 
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Fig. 3. A hierarchical architecture for continuous speech 

recognition based on top-down processing. Each level of the 

system can be represented as a Markov model, or other 

forlmalisms from the Chomsky hierarchy [ 1 11. Alternately, the 

system can be compiled into a single level. Most recognizers 

today operate with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo levels when using whole word 

reciDgnition units, or three levels when using phone recognition 

units. The hierarchical architecture facilitates the training process 

in s,peech recognition. 

The motivation for such hierarchical systems is based on an 

underlying model of the speech communication process in 

whic:h the speech signal is a composite of hierarchically orga- 

nized structures [18] that specify the permissible combinations 

of some fundamental set of units. The hope was that this type 

of hierarchy would bear some close resemblance to  rule- 

governed linguistic theories. The exact constitution of each 

structure in this hierarchy, the topological constraints on the 

hierarchy, and the appropriate choice of fundamental units all 

remain issues of great debate within the linguistics and speech 

research communities. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Statistical Pattern Matching 

Simultaneously with the development of improved network 

searching strategies, approaches to  the problem of computing 

the similarity between a recognition model and a segment of a 

speech signal were being recast in a statistical signal processing 

framework using HMMs. One simple way to view the introduc- 

tion of HMMs at the acoustic level is to  consider HMMs as a 

generalization of the DP solution to the discrete time normaliza- 

tion problem (191. as depicted in Fig. 4. 
In DP, time normalization and pattern matching are accom- 

plished in a single discrete optimization procedure in which the 

incoming speech signal, decomposed into a sequence of feature 

vectors, is matched against precomputed reference vectors. Part 

of the system design includes development of heuristic functions 

[ll] to impose global and local constraints on the time normali- 

zation process. Often these constraints impose a left to right 

structure on the mapping function, and effectively penalize de- 
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viations from a linear mapping. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs in most optimization prob- 

lems, there is no specific method for designing an optimal cost 

function (one that maximizes recognition performance) to  bal- 

ance these penalties. 

In HMMs, the view of measuring acoustic similarity as a tem- 

plate matching problem is generalized to a problem of finding 

an optimal path through a recognition model.’ The DP match- 

ing procedure in Fig. 4 is replaced with a computation of the 

probability of the speech data given a recognition model. There 

is no strict requirement to preserve the left to right structure of 

DP, though in practice, it is wise to do so. The major advantage 

in HMMs, from a time normalization perspective, is that a local 

constraint function can be reestimated, or optimized, by an it- 

erative training procedure. Reestimation allows HMMs to assimi- 

late the statistical characteristics of the training data, and to 

optimize performance on the training database. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Language Processing 

Traditionally, the task of language processing has been sepa- 

rated from the task of acoustic matching. Language processing 

is often described in terms of automata theory and draws heav- 

ily on deterministic techniques commonly used in computer 

science. Acoustic matching, on the other hand, usually is de- 

scribed in statistical signal processing terms, such as HMMs. 

Only recently, with the introduction of stochastic language 

models in speech recognition (181 have the two tasks merged 

towards a common approach. 

With the addition of statistical information, such as word 

probabilities, t o  finite automata, the descriptive power of a 

finite automation and an HMM are essentially equivalent. Often, 

differences are only cosmetic, in that language models have tra- 

ditionally associated output symbols, such as words, with tran- 

sitions between states, while HMMs have associated output 

symbols, feature vectors, with states. Throughout this paper, 

we will use the term HMM to represent both an acoustic model 

and a language model. The term symbol will mean both an or- 

thographic unit, such as a word, and an acoustic unit, such as a 

feature vector, depending on which level in the recognition pro- 

cess is being discussed. 

Isolated Word Recognition 

One final introductory note regarding HMM based speech 

recognition is necessary. Previously, it has been convenient to 

distinguish recognition systems based on an ability to recognize 

isolated or continuous speech. Computational issues notwith- 

standing, it is advantageous in an HMM framework to consider 

the isolated word recognition problem using a continuous 

speech recognition framework. The basic advantage of this ap- 

proach is that a heuristic utterance detectiordsegmentation al- 

gorithm is no longer needed: the recognizer determines the 

optimal start and stop times of an utterance. 

The first network depicted in Fig. 5 shows an isolated word 

speech recognition task implemented using an HMM that al- 

lows an arbitrary duration of silence or nonspeech to precede 

or succeed a word. This is the analog in HMMs to DP with un- 

’ Strictly speaking, this statement assumes use of the Viterbi al- 
gorithm (described in Section 11) to compute the best state sequence, 
rather than the forward-backward procedure (described in Section 111). 
which computes the probability of all possible state sequences. 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADynamic Programming Approach t o l i m e  Normaliition 
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Fig. 4. An illustration of the similarity between Dynamic 

Programming and Hidden Markov model based time 

normalization. The HMM approach is a generalization of the 

traditional DP approaches for two reasons: 1) Time normaliza- 

tion is often less constrained, and 2) The properties of the 

network are statistically optimized. 

a) In fixed endpoint dynamic programming, the optimal 

path is constrained to map frame 0 of the reference model to 

frame 0 of the input utterance, and to map frame 5 of the 

reference model to frame 5 of the input utterance. In 

unconstrained endpoint dynamic programming, the optimal 

path is not required to start at frame 0 of the input utterance. 

b) The fixed endpoint dynamic programming problem 

of Fig. 4a can be formulated as a network search problem. The 

topology of the network can be arbitrarily complex. States in the 

network correspond zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto frames in the reference model of Fig. 4a. 

Each frame of speech data forces a transition between states. 

The darkened path represents the result of an optimal search 

computation to find the best match between the model and the 

speech data. 

constrained endpoints [ll, 151. This network forces non-speech 

hypotheses to  precede and succeed a word hypothesis. The 

word hypothesis is free to begin and end anywhere within the 

input utterance. By adding a transition from state sz to  itself, 

the network in Fig. 5 accommodates a continuous speech 

recognition task in which any word can follow any other word, 

with arbitrary durations of non-speech occurring between any 

two words. 

This example illustrates the flexibility of the hierarchical HMM 

approach. Achieving this level of flexibility was previously very 

difficult in a DP system. This poses a radical departure from the 

old bottom-up DP systems for two reasons. First, each recogni- 
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tion hypothesis must now account for the entire speech signal. 

Second, rejection of background noise and out of vocabulary 

utterances will largely rest on an ability to characterize a class 

of extraneous signals using explicit models. In the example in 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5, silence, channel noise, acoustic noise, and out of vocabu- 

lary speech will all be lumped into the non-speech model. 

Thus, the speech recognition problem, reduces to two basic 

tasks: ( 1 )  searching for an optimal path through a hierarchy of 

HMMs, and (2)  computing some measure of similarity between 

the acoustic signal (a feature vector) and a stored model (refer- 

ence vector). In the next section, we discuss the fundamentals 

of Viterbi beam search, the dominant search algorithm used 

today in speech recognition. In Section Ill, we discuss ap- 

proaches to  estimating the probabilities associated with an 

HMM model. In Section IV, we present the HMM supervised 

training paradigm. Finally, in Section V, we review several ex- 

amples of successful zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHMM based speech recognition systems. 
~ ~~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

HMM Isolated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWord Recognition 

HUM Continuous Speech Recognition 

A r\ 

non-rpcech 
word, 

Fig 5 Common HMM structures that are used for isolated word 

recognition and continuous speech recognition In systems that 

require one frame of speech data to produce a transition, 

background noise and out of vocabulary utterances will be 

modelled by the non-speech model 

VlTERBl BEAM SEARCH 

Let us formally define a discrete observation HMM as: 

G = (S,V,A.B,d. (1) 

where 5 = {s f ,sz , .  . . , sN}  are the N individual states, V = 

{vl ,vz,.  . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,vM} are the M output symbols, A is an N x N matrix 

containing the state transition probabilities: 

A = {a,}, 

B = {b,(k)}, 

a,, = P(sl at  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt + l/s, at  t ) ,  

b,(k) = P(vk at t/sl at  t ) ,  

(2)  

B contains the observation symbol probability distributions: 

(3) 

and i~ are the initial state probabilities: 

T = {T!}, .rr, = P ( s ,  a t  t = 1). (4) 

The variable t denotes discrete time. Note that B is often imple- 

mented as an N x M matrix in a discrete observation HMM. 

There is one additional useful parameter that can be added to 
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the HMM of Eq. 1 : a state duration distribution [20,21] that 

controls the amount of time spent in a given state. State dura- 

tions are primarily useful in the development of recognition 

models, and have not been used extensively in language model- 

ing. An alternate way of implementing a state duration model is 

to explicitly embed HMM topologies for each state in the origi- 

nal HMM model that models the desired duration distribution 

for the original state.2 Thus, for simplicity and uniformity, 

we will not consider state durations as an explicit parameter in 

an HMM. 

In continuous speech recognition, HMMs are used in a genera- 

tive mode to  begin hypothesis processing. At initialization (of- 

ten considered the beginning of an utterance, or speech data 

file), all possible start symbols a t  the highest level are enumer- 

ated as separate hypotheses. The general objective of the 

search algorithm is to explore each of these hypotheses in some 

orderly fashion until the "best" explanation of the speech data 

is found. The details of this procedure depends heavily on the 

particular type of search algorithm used. 

The Viterbi Algorithm 

There is a vast amount of literature on the problem of opti- 

mal search techniques [21-251. To exhaustively search a hier- 

archy of HMMs for an optimum solution, even for the simple 

HMMs shown in Fig. 5, is impractical. For example, an exhaus- 

tive search solution of a simple digit recognition task (any digit 

can follow any other digit) results in a number of hypotheses 

proportional to M', where M is the number of words in the vo- 

cabulary and T is the total number of frames of speech data. 

Fast search techniques produce functionally equivalent soh- 

tions, yet only search a fixed number of hypotheses versus time 

(or use a fixed amount of memory). Fast search techniques can 

be as much as two orders of magnitude more efficient in pro- 

cessing and memory requirements for very simple recognition 

problems. For realistic problems, exhaustive search techniques 

are simply not computable (consider M = 1000 and T = 100). 
The Viterbi algorithm [22] is an efficient algorithm for finding 

an optimal solution. It is based on the Principle of Optimality 

[IO], and has been used extensively in DP based speech recogni- 

tion. it imposes the restriction that the cost, or probability, of 

any path leading to a given state can be computed recursively 

as the sum of the cost at the previous state, plus some incre- 

mental cost in making a transition from the previous state to 

the current state. This constraint integrates nicely with the tem- 

poral constraints imposed by a Markov model. 

The Viterbi algorithm, used within a single Hidden Markov 

model [26,27] ,  can be summarized as follows: 

Initialization (t = 1): 

t i l ( / )  = 7rlbI(O,), 1 5 i 5 N ,  (5) 

* , ( i )  = 0 ,  (6 )  
Recursion: 

F o r t r 2 ,  1 5 j S N ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Sdi)  = max [~t- l( i )a,, lb,(Ot). (7 )  

*d j )  = argmax [ t i t - l ( i )a,, l I  (8) 
l%sN 

1drSN 

' An example of an HMM topology with a state duration model im- 

plemented explicitly by an embedded HMM topology is given in 

Fig. 9(c). Fig. 9 is discussed in Section V. 



Termination: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6* = rnax[ST(i)], (9) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i,* = argmax[Sr(i)], (10) 

ldrdN 

IdidN 

Backtracking: 

F o r t =  T - l , T - 2  , . . . ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, 

i t *  = %+,(it+,*), (11) 

where 0, denotes the discrete symbol observed at  time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt. Of- 

ten, rather than accumulating products of terms, probability 

computations are carried out in the log domain. 

The importance of transition probabilities and observation 

probabilities can be adjusted in Eqs. 7 and 8 by weighting each 

probability. For example, a,, can be replaced by (J , , )~ .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is often 

referred to as the language model weight, since a controls the 

contribution the transition probabilities of the language model 

have in the overall sentence hypothesis probability. (a is also 

useful in acoustic modeling as a means of adjusting the contri- 

butions of transition probabilities in acoustic model scoring). 

The key calculation in the Viterbi algorithm occurs in Eq. 7. 

The only path propagated is the most probable path selected 

from all possible paths that can make a transition to the current 

state at time t .  We introduce this process of eliminating alter- 

nate choices as our first method of limiting the search space, or 

pruning. The Viterbi algorithm is optimal in the sense that none 

of the discarded paths can ever be more probable than the path 

that is propagated. Unfortunately, the reduction in the search 

space achieved by the Viterbi algorithm still does not make 

most continuous speech recognition tasks tractable. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Viterbi Beam Search 

A common goal with most fast search algorithms is reduc- 

tion of the search space over which all acceptable hypotheses 

must be evaluated by establishing some measure of goodness 

of a hypothesis. This is generally denoted as a beam search 

problem (from the analogy that objects that fall outside of a 

beam of light fall into darkness). Hypotheses that fail the good- 

ness test are discarded, or pruned. Beam search approaches are 

generally sub-optimal: occasionally a hypothesis that might 

prove to  be the best global hypothesis is discarded at  some 

prior point in the search. Fortunately, in speech recognition, 

sub-optimal solutions tend to produce useful (and accurate) 

results. 

There are three characteristics of the speech recognition task 

that make the beam search problem non-trivial. First, the proba- 

bility of all hypotheses always decreases with time, since the 

probability of a hypothesis is the product of probabilities that 

are normally (significantly) less than one. Thus, direct compari- 

sons of hypotheses that account for different amounts of 

speech data are difficult. Second, uncertainty in the observa- 

tion of any symbol mandates entertaining many alternate hy- 

potheses. Acoustic matching is not refined to the point where 

hard decisions can be made at  a low level. Finally, since the true 

start and stop times of a hypothesis are unknown, we must 

ntertain many hypotheses of the same symbol that differ pri- 

marily in start and stop times. 

Many beam search approaches differ in the details in which 

the search is carried out. Some algorithms are depth-first [14]: 

the most probable path is repeatedly expanded until a stop 

node is encountered, thereby establishing some bound on the 

cost of an acceptable solution. Other approaches are breadth- 

first [14]: all hypotheses are expanded simultaneously. It is the 

latter approach that we currently find most interesting for 

speech recognition. 

Viterbi beam search incorporates a breadth-first search strat- 

egy into the Viterbi algorithm in a time synchronous fashion. 

The basic principle is that at  any point in time, we need only keep 

all hypotheses whose probabilities fall within some threshold of 

the best global hypothesis. Viterbi beam search can be summa- 

rized as follows: 

Details of various implementations of Viterbi beam search can 

be found in Lee and Rabiner (211 and Ney et al. [281. 

There are a number of significant bookkeeping issues that go 

into managing the complexity of this search process. The most 

important considerations include ensuring evaluation of each 

recognition model a t  most only once per frame, and visiting 

only those states that are active at  any level. For large language 

models with highly constrained grammars, processing by iterat- 

ing over active hypotheses is useful, since the number of active 

hypotheses may be small compared to the number of states, 

and all states at  a level may not be active. On the other hand, 

for language models with few constraints, all states are likely to 

be active, and state oriented processing is efficient. 

This process of extending each active hypothesis requires reg- 

istering new requests for symbol hypotheses from the next 

lower level, and coordinating the return of these hypotheses 

(with probabilities) at  a later point in time. The Viterbi algorithm 

step considers only hypotheses that have no pending requests 

for symbol explanations at  a lower level (a portion of the active 

hypotheses will be waiting for a symbol probability to be re- 

turned by the lower level). A hypothesis that has no outstand- 

ing requests for a symbol probability can make a transition 

between states in an HMM, and hence can be processed by the 

Viterbi algorithm, since only the best hypothesis at  any state at  

point in time must be retained. 

Pruning, the process of discarding unpromising hypotheses, is 

accomplished by discarding all hypotheses whose probability 

falls below a certain threshold of the global best hypothesis 

[29]. A simple decision rule to implement pruning is: 

P H ( t )  > PH*( f )  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6( t ) ,  (12) 

where PH is the accumulated probability of the current hypothe- 

sis being tested, PH. is the probability of the best hypothesis cur- 
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rently active, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS( t )  is a threshold, or beam width. Because 

the search is time synchronous, all hypotheses explain the same 

amount of speech data, and hence need not be normalized 

before pruning. 

The amounts of memory and processing required in Viterbi 

beam search are proportional to the number of active hypothe- 

sis that fall within the beam. This is loosely correlated with S(t),  
the independent variable in the search algorithm. Processing 

time is often exponentially proportional to S(t ) .  Pruning frees 

memory that can be reused in future processing. If the search is 

highly ambiguous, thereby generating a large number of com- 

peting hypotheses, longer processing times and more memory 

will be required. Recognition accuracy is also typically related to 

the ambiguity of the search: longer processing times are often 

symptoms of poor performance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ESTIMATING PROBABlLltlES IN HMMS 

The input to the hierarchical search procedure described in 

Section II is the probability of observing a segment of the 

speech data given an HMM. The first method introduced to 

allow efficient computations of this probability, known as the 

forward-backward procedure [30], followed in the true spirit of 

a doubly stochastic system. Since states of the hidden stochas- 

tic processes cannot be directly observed, the single path that 

actually produced the observation sequence is essentially un- 

known. There are typically many ways in which a single obser- 

vation sequence can be produced in an HMM. The Viterbi 

algorithm, presented in the previous section, based a symbol 

probability on the probability of the single most probable path 

through the model. 

The forward-backward procedure is based on an approach in 

which the symbol probabilities are estimated as the sum of the 

probabilities of all paths that could have produced the observa- 

tion sequence. The symbol probability computation using the 

forward-backward procedure can be summarized as follows 

[26,27]: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N 

P{O/G) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm, (13) 
, = l  

where 

f o r t  = 1,2 , . . . ,  T - 1, 

r N  1 

and 1'; 5 N 

and, 

for 1s i s  N ,  

Prm = 1. (16) 

for t = T - 1, T - 2,. . . ,1, and 1 5 j 5 N I  

(17) 

Perhaps the most significant aspect of HMMs in relation to 

speech processing is the existence of an iterative training proce- 

dure in which the parameters of a Hidden Markov model can be 

adjusted to better represent the statistics of a training database 

(a representational technique). One such approach, the Baurn- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Welch method [30], is based on the maximum likelihood princi- 

ple. A new model is computed that is guaranteed to improve 

the probability of the observation sequence given the model. 

The Baum-Welch procedure can be summarized as follows: 

Gl = expected no. of times in s, at t = 0, 

= c u l ( i ) P l ( i ) .  (18) 

expected no. of transitions from 5 ,  to 5, 

expected no. of transitions from 5 ,  

r - i  

2, = 

c c u t ( i b y ~ , ( o ~ + l ) P ~ + l ( ; )  

2 f f t ( i )Pf( i )  

(19) 
f = l  - 

r-i - 

t = l  

expected no. of times in s, and observed symbol vk 
expected no. of times in s, b,(k) = 

(20) 

The Baum-Welch reestimation procedure is based on the intu- 

itive notion that a new estimate of a transition probability can 

be based on the expected number of transitions from state i to 

state j ,  divided by the expected number of,transitions out of 

state i .  Similarly, the new output symbol probability for the kth 

symbol a t  state i is the expected number of times a symbol 

is output from the state divided by the expected number of 

times of being in the state. We use the term expected because 

these statistics are usually averaged over large amounts of data, 

and because the actual state transitions and output events 

are hidden. 

The Baum-Welch reestimation procedure can be replaced 

with a much simpler Viterbi procedure based on the Viterbi al- 

gorithm [31]. Rather than compute the expectations of events, 

the actual counts are accumulated at  each state based on the 

Viterbi best path calculation. for instance, a transition probabil- 

ity is reestimated by merely counting the number of times the 

transition is used and dividing it by the number of times the 

source state for the transition is used. This requires maintaining 

counters to  t r ack  each transition and each output symbol 

during training. 

The reestimation equations for the Viterbi algorithm are: 

(21) 

. (22) 

The Viterbi algorithm is a popular alternative to the forward- 

backward procedure for two reasons. First, it is computation- 

ally more efficient than the forward-backward procedure, yet, 

in practice, it gives comparable recognition performance. Sec- 

ond, the Viterbi algorithm is easily extended to  more general 

approaches to language modeling that depart from the finite 

automation structure [l, 311. 

We have deferred perhaps the most important issue in 

speech processing for last. How do we actually compute obser- 

vation probabilities given a speech signal? 

no. of transitions from 5 ,  to s, 
no. of transitions from 5 ,  

a, = ' 

no. of times in 5, and observed symbol vt 
no. of times in 5, 

bj(k) = 



Nonparametric Acoustic Measurements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
HMMs were first introduced in speech recognition in the dis- 

crete observation form. A straightforward way to  exploit 

HMMs was to build upon a feature extraction technique, such 

as Vector Quantization (VQ) [32], in which the speech signal is 

converted to  a sequence of feature vectors drawn from a dis- 

crete distribution. VQ is a simple nearest neighbor classification 

technique in which a measured feature vector is quantized into 

one of a set of Q vectors using a minimum distortion criterion. 

The primary advantage of VQ from a statistical signal process- 

ing viewpoint is that complex vector spaces can be modeled 

with arbitrary precision by simply designing a sufficiently large 

codebook. Hence, VQ is referred to  as a nonparametric model- 

ing technique. 

There are many approaches to feature analysis used today in 

speech recognition. Comparative analyses of different tech- 

niques can be found in [33,34]. Most approaches share three 

common characteristics: LPC-derived features are used for com- 

putational efficiency; static measures of the spectrum are com- 

bined with short-term time differences that capture dynamic 

aspects of the spectrum; and multiple energy measures are in- 

cluded, such as absolute energy, normalized energy, and/or dif- 

ferenced energy. The most common front-ends for continuous 

speech recognition incorporate [35,36] approximately 12 cep- 

stral coefficients, the time-derivatives of these 12 cepstral coef- 

ficients, log energy and differential energy. 

A codebook for a vector quantizer can be constructed from 

a set of feature vectors (considered the training sequence) by 

use of a hierarchical clustering algorithm. There are generally 

two approaches used today: the K-MEANS [37] or the Linde- 

Buzo-Gray algorithm [38]. Both of these algorithms generating 

a reduced dimensionality space by replacing groups of similar 

codewords (or clusters) in the training database with a single 

codeword that represents the group centroid. VQ codebooks 

ranging from 32 vectors for small vocabulary tasks (such as 

digit recognition) to  256 vectors for large vocabulary systems 

(such as phone-based recognition) are typically used. 

A VQ system is conceptually simple in that the feature vector 

extracted from the speech signal is assigned a codeword in the 

vector quantization process by choosing the codeword produc- 

ing minimum distortion. The details of the distortion measure 

often depend on the particular feature set used. However, in 

most cases, a weighted Euclidean distance measure is used. We 

defer the details of the distortion computation until the next 

section, in which we discuss stastically optimal techniques to  

compute distortion. 

Parametric Acoustic Measurements 

An alternate method to compute observation probabilities in 

an HMM is to  compute an observation probability directly from 

the feature set, and avoid accumulating the distortion that 

might occur in the VQ process. The most common approach to 

doing this is the Continuous Density HMM (CDHMM) [39]. In 

CDHMM, we associate a multivariate Gaussian distribution with 

each state in the HMM: 

b,(O) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANO,  U,. U,] I (23) 

where X represents a Gaussian distribution whose mean is U 

and whose covariance is U. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOr is a feature vector measured 

from the speech signal. 

In the CDHMM model, we assume that the feature vector dis- 

tribution encountered at a given state can be modeled by a 

Gaussian distribution whose underlying mean represents the 

"true value" of the feature vector at that state. A more general 

approach is to  associate with each state a weighted sum, or 

mixture of Gaussian distributions [27]. Mixture distributions are 

capable of modeling arbitrarily complex distributions, similar to  

the VQ approach in the discrete case. 

The output symbol probability distribution in CDHMM is rees- 

timated in a similar manner to  the discrete case using the 

forward-backward procedure: 

r-i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc adi)Pt(i)Ot 

c f fS j )P t ( i )  

c at(j)Pr(j)[(Ot - u,)(Ot - U,)'] 

E ar(i)Pr(i) 

A t = l  

U, = r-1 

t=1 

T-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(2 5) 6, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt=' 

T-1 

t=1 

In the case of a Viterbi approach, the mean of the distribu- 

tion is simply reestimated by averaging all observation vectors 

that were associated with a given state during training. Simi- 

larly, the covariance matrix, in the Viterbi approach, is reesti- 

mated by computing the covariance for all vectors associated 

with a state during training. To summarize: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
NI 

ir, = (W,) c 01, (26)  
,=l 

and, 
NI 

6, = (l/N,) c (0, - u,W, - U,)', (27) 

where 0, is the i th  observation vector associated with state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj 
and N, is the number of observation vectors associated with 

state j .  

The More Things Change.. . 

It is at this point that we have almost come full circle: that is, 

the CDHMM, with a single distribution per state, and a single 

output symbol per state, resembles a DP system with frame 

specific features [34]. If we process log probabilities, Eq. 23 

simplifies to: 

1=1 

log(b,(O)) = (1/2)(0 - u,)U;'(O - U,)T 

(28) 

where P is the number of dimensions in the observation vector. 

The distance measure in Eq. 28 is equivalent to  computing a 

Euclidean distance of a transformed observation vector: 

6 = K V 2 @ O ,  (29) 

where A is a diagonal matrix of eigenvalues of U, and @ is a uni- 

tary matrix of eigenvectors of U. 
The transformation of Eq. 29 is known as a whitening trans- 

formation [40]. It performs a principal components analysis of 

0, retaining all dimensions. Additional discrimination can be 

achieved by discarding the dimensions with the largest eigen- 

vectors (dimensions of least discrimination). This procedure has 

been successfully employed in both DP [34] and HMM [41]. 
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Over the years, much work as been done on appropriate 

ceptually meaningful way. The HMM paradigm provides an ex- 

plicit mechanism to compute optimal feature transformations 

on a per state basis. Eq. 28 effectively computes a Euclidean 

distance (actually known as the Mahalanobis distance) of two 

feature vectors after the input feature vector has been trans- 

formed into an orthogonal space in which each dimension has 

equal weight in the distance measure. This transformation 

decorrelates elements of the feature vector and equalizes the 

variances of each dimension. This is extremely important when 

mixing heterogeneous parameters in a feature vector (for ex- 

ample, mixing cepstral coefficients, differential cepstral coeffi- 

cients, and energy). 

There are two useful simplifications of CDHMMs. First, if the 

correlations between elements of a feature vector are small for 

the off-diagonal terms of the covariance matrix, as is often the 

case with cepstral coefficients, the covariance matrix of Eq. 23 

can be approximated as a diagonal matrix of variances. This is 

weighted cepstral distortion measures [36]. 

Second, if the structure of the correlation matrix is similar 

from state to state, each covariance matrix can be replaced by 

a single COVarianCe matrix representing the average Of all covari- 

ante matrices. The distortion measure, in this case, resembles a 

traditional weighted Euclidean distance measure, similar to 

those used in discrete HMMs with a VQ front-end, and to those 

used in previous DP systems. 

It is tempting to believe that the additional degrees of free- 

dom allocated on a per state basis in CDHMM would result in 

ways to weight features to measure distortion in a more per- 

known as variance-weighting, and is similar to several common 

significant improvements over discrete HMMs. In instances 

where large amounts of training data exist, and the vocabulary 

of the recognition task is small in size, this seems to be the case 

[41,42]. for large vocabulary recognition tasks, however, this is 

still an open issue. 

The CDHMM significantly increases the number of free vari- 

ables that must be estimated, often by two orders of magni- 

tude in an HMM system. Frequently, training databases are not 

large enough to support robust estimation of as many parame- 

ters as can be encountered in a CDHMM system. Further, 

whether all these degrees of freedom are true dimensions of dis- 

crimination in a large speech recognition task is an open ques- 

tion. Often, if improperly estimated, additional degrees of 

freedom can add significant amount of noise probability calcu- 

lations, and degrade performance. 

- 
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weration, training, and conective training, 

In the supervisd m+e, sw is forced zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto rg-gnize an 
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b@~aU%? it forces the rKWmtiOn models to capture contextual 
, presented in the databa*.' 

TRAINING SPEECH RECOGNITION SYSTEMS 

The training procedure for an HMM-based speech recogni- 

tion system is a three step process. In the first step, denoted 

seed model generation, an initial set of prototype models must 

be generated. The second step, reestimation, uses the maximum 

likelihood based techniques described in the preceding sections, 

to reestimate model parameters. Recently a third phase [43] in 

the training process has been introduced which seeks to im- 

prove recognition performance by enhancing the discrimination 

power of the reference models. The three-step training proce- 

dure is summarized in Fig. 6. 

Seed Model Generation 

The iterative training process, at  a very basic level, is a nonlin- 

ear optimization technique. As with all such techniques, sensi- 

tivity to initial conditions is a concern: more so in CDHMM than 

in discrete HMM. Put very simply, good recognition perfor- 

mance is obtained by using good HMM reference models, 

which, in turn, are generated by choosing good seed models. 

HMMs leave a large number of free variables under the control 

of system designer. Some of these choices are analogous to  

similar issues in DP, and our intuitive sense of the correct proce- 

dure is well-developed (for instance, how many models should 

be used per lexical item?). Several key system parameters, 

such as the reference model topology, are not altered in the 

reestimation process, and hence, must be judiciously chosen 

before training. 

One general observation about the development of good 

seed models is that model development is often an iterative 

process. Models using simple parameter sets are trained, and 

then successively refined and extended by bootstrapping from 

the models of a previous stage of the procedure. For instance, a 

CDHMM system using a mean and covariance per state will not 

be generated from scratch, but often built from the result of a 

CDHMM system using a single covariance matrix for all states. 

In general, we seek to minimize the number of free variables 

added to the system at any point in the training process. 

The number of states in a model is often chosen to be pro- 

portional to the number of distinct acoustic events in the recog- 
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Input Token 

Associated HMM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAModel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.99 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.005 

1 2 3 4 5  

Fig 7 Initialization of a CDHMM is often accomplished by 

hand-excising a representative token and creating one state for 

each frame in the token Transition probabilities are initialized 

to favor a path through the model consisting entirely of 

progress transitions The representative token IS typically selected 

based on its duration (for example, in the model above, the 

number of states should be equal to the average duration in 

frames of the recognition unit) 

nition unit (number of phones, for instance). At one end of the 

spectrum are phone-based HMM systems that use as few as 5 

states per phone 1351. while the other extreme is CDHMMs that 

use a number of states proportional to  the average duration (in 

frames) of a unit [44]. The latter process is summarized in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. 
The transition model probabilities are typically initialized to re- 

flect an equiprobable distribution (another approach is to  ini- 

tially favor the most intuitively appealling path through the 

model). Often, the initial observation means are hand-excised 

from a nominal pronunciation of the recognition unit. Cluster- 

ing procedures, analogous to those used in DP, can be used to  

generate seed values that more closely reflect the state observa- 

tion means [44,45]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Supervised Training 

Perhaps the most significant advancement introduced to  

speech recognition in HMM, supervised training, is not solely re- 

stricted to  HMM. Simultaneously with the development of 

HMM and hierarchically organized recognition systems, training 

recognition units in context have become the dominant training 

technique for continuous speech recognition. Though the no- 

tions of HMM and supervised training are almost indistinguish- 

able in the literature, it is important to point out that supervised 

learning, a notion familiar to other areas such as neural net- 

works, is an extremely powerful formalism that applies equally 

well to DP and HMM. 

The supervised training process, summarized in Fig. 6, is very 

simple. For each input utterance, the recognizer is constrained 

only to  recognize the input utterance. The constrained gram- 

mar can be derived by reducing the application language model 

to  a smaller model that generates only the orthographic tran- 

scription of the utterance. Next, the normal recognition process 

is executed for this constrained grammar. HMM parameters are 

then reestimated based on the recognition results. 

For instance, for the utterance of Fig. 1, a grammar would be 

constructed that only allows the sentence "The doctor ex- 

amined the patient's knees" to  be recognized (along with an 

arbitrary amount of silence preceding and following the utter- 

ance). This is summarized in Fig. 8(a). 

Note that, although the recognizer is constrained to  recog- 

nize a particular transcription, the actual speech data need not 

be marked. This is an important practical consideration for two 

reasons. First, transcription of a database is a time-consuming 

process, and hence, there are very few large transcribed data- 

bases. Second, supervised training lets the recognizer capture 

context effects and permits reestimation of the recognition 

units to  optimize recognition performance on the training data- 

base. Thus, the recognizer decides for itself what the optimal 

acoustic representation of a unit might be, rather than being 

heavily constrained by a priori knowledge based on human in- 

tervention. (This is, of course, both good and bad, depending 

on your point of view). 

Often an utterance will be transcribed in terms of words, but 

not transcribed in terms of the actual lower-level recognition 

units. In this case, a partial supervision strategy can be used. In 

a hierarchical phonetic recognition system, for instance, all pos- 

sible phonetic transcriptions for each word in the word-level 

orthographic transcription can be generated. Recognition of 

the utterance can then be performed using this less constrained zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a\  A Constrained Grammar zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkr Supervisd Training 
- I  

WordPhone Qamrnars for Wordlevel SUwniSion of Phonetie h i m  

"The" 

Fig. 8. The Build Grammar model in the supervised training 

paradigm of Fig. 6 is responsible for constraining the recognition 

task during training. 

a) A constrained grammar that generates only the 

orthographic transcription of the input utterance. This grammar 

allows arbitrary amounts of non-speech to precede or succeed 

an utterance. Arbitrary amounts of non-speech are also allowed 

between each word. This permits robust reestimation of models 

on continuous speech utterances with J priori segmentation of 

the data. 

b) In a hierarchical system, phone units can be trained 

using word-level supervision. Several phonetic transcriptions for 

each word in the lexicon are allowed during the recognition 

phase of training. 
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grammar, and HMM parameters reestimated accordingly. A less 

constrained grammar for the utterance of Fig. 1 that describes 

words in terms of phones is shown in Fig. 8(b). 

In the supervised training procedure, reestimated parameters 

are substituted only at the end of an iteration through the en- 

tire training database, rather than after each utterance. The for- 

mer situation is a block-oriented reestimation procedure. The 

latter has three interesting characteristics: it is more in the spirit 

of adaptive in time gradient search techniques; it is somewhat 

reminiscent of early neural network systems; and i t  is some- 

times useful for rapid adaptation. Speaker adaptation [46], 

speaker dependent recognition [471, and channel adaptation 

[48] are all natural extensions of the basic HMM supervised 

training framework. 

Convergence is generally quick in the supervised training sce- 

nario of Fig. 6. Three to nine iterations are usually sufficient to 

capture most of the information in the training database. There 

are certainly points of diminishing return in training: after a few 

iterations, recognition performance is usually within 95% of its 

ultimate performance after many iterations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Discrimination Techniques 

Recently, techniques to  improve recognition performance 

based on notions of discrimination have been introduced in 

speech recognition. The maximum likelihood approach in train- 

ing has been shown to be a special case of a design procedure 

that minimizes the discrimination information zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4913 between the 

signal probability densities and the HMM probability densities: 

where fS denotes the signal probability densities, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPg denotes the 

HMM probability densities, and where ps and pg denote densi- 

ties for fS and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfg respectively. 

Recognition performance can be improved with the inclusion 

of a third step in training process that seeks to  improve recogni- 

tion performance by reducing the probability of incorrect 

recognition hypotheses that compete with the correct choice. 

One such scheme, originally introduced in isolated word recog- 

nition [51], and later extended to continuous speech recognition 

[521, is known as corrective training. In general, these tech- 

niques attempt to  identify utterances incorrectly recognized, 

called the confusion class, and build statistical models that opti- 

mally discriminate between the correct class and the confusion 

class. This has a simple interpretation in the context of HMM 

training: during training, reduce the probability of all competing 

incorrect choices, and increase the probability of the cor- 

rect choice. 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc ~ ( k )  denote the number of times a transition from state i 
to state j occurs and symbol v k  is observed. This count can be 

computed in such a way as to consider the number of compet- 

ing incorrect word choices, and the number of "near-misses" 

that occur during recognition of an utterance: 

c: (k)  denotes the count corresponding to instances in which 

utterance recognition was correct. c,,-(k) denotes the counts 

corresponding to instances in which utterance recognition was 

incorrect or the probability of incorrect recognition was unac- 

ceptably close to the probability of correct recognition, and y is 

an adjustment factor that varies between 0 and 1. 

An attractive feature of this approach is that discrimination is 

built directly into the recognition models, and can be incorpo- 

rated with no additional computational burden during recogni- 

tion. In continuous speech recognition, identification of the 

competing choices is somewhat difficult, because incorrect 

choices often are pruned during the Viterbi beam search. Com- 

peting hypotheses can be tracked using stack decoding [51], by 

examining error patterns for the training database [521, by 

building grammars that explicitly generate the confusion class 

[41], or by performing Viterbi beam search for the next best hy- 

pothesis [21]. 

"There is no data like more data." [53] 

A central issue in speech recognition is "How much training 

data is enough?" Most HMM systems today have at least an or- 

der of magnitude more free variables than prior DP systems, 

and require massive amounts of training data. In speaker inde- 

pendent digit recognition, for instance, when recognition per- 

formance on an 8,000 utterance database is analyzed a t  a 

microscopic level, errors can be associated with particular 

speaker characteristics not well represented in the training data- 

base [41]. Robust parameter estimates from insufficient training 

data in HMM is a topic unto itself. 

The availability of large comprehensive databases has been a 

significant driving force in speech recognition research. Three 

important databases (in English) publicly available today, and 

used extensively in the literature to benchmark HMM perfor- 

mance, are the TlMlT Acoustic Phonetic database [541, the 

DARPA Resource Management database (551, and the TI/NBS 

Connected Digit database (561. The TlMlT database deserves 

special mention in that it is a speaker independent database de- 

signed to cover spoken English, and has been phonetically tran- 

scribed and segmented. In addition to  these existing database, 

DARPA recently initiated programs to collect several databases 

designed to support speech understanding research [571. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
EXAMPLES OF HMM SYSTEMS 

Let us conclude this paper with a brief overview of several 

HMM systems4 that reduced to practice the theory previously 

described. These systems were selected primarily because they 

are generally considered to have demonstrated significant ad- 

vances in the state of the art in speech recognition. 

First, we discuss two large vocabulary speech recognition 

systems based on phonetic models. Much of the original inter- 

est in HMM was motivated by the dream that HMM would 

provide a computationally inexpensive large vocabulary speech 

recognition framework in which states of an HMM represented 

some fundamental acoustic unit, such as a phone. HMM tech- 

nology has at least made phonetic modeling a reality, though 

the systems described here can certainly not be considered 

computationally inexpensive. We conclude with a discussion 

Minimization of discrimination information is a common theme in 

statistical signal processing, and is a foundation upon which several 
approaches to neural nets are based [SO]. 

Naturally, any such review will not do justice to  the multitude of 

speech recognition systems that have served to  advance the state of 

the art. 
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of speaker independent digit recognition, a small vocabulary 

problem that challenges the statistical modeling capabilities 

of HMMs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Recognition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATask zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5,ooO Word Office Correspondence 

20,000 Word Office Correspondence 

2,OOO Most Frequent Words In Office 
Correspondence: Phonetic Baseforms 

2.OOO Most Frequent Words In Office 
Corrzspondence: Fenonic Baseforms 

a) ... ... 

Word Error Rate (%) 

2.9% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.4% 

2.5% 

0.7% 

b) ... ... 
... ... 

A "Macro" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAState zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C) 

... ... 

... 

e) 

Fig. 9. Some examples of acoustic model topologies that are 

used today zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin speech recognition. These models are often 

referred to as progressive models (or left to right models), since 

the acoustic match must proceed forward in time. The concept 

of a progressive model is a straightforward extension of the 

constrained time alignment procedure in DP. 

a) A simple progressive HMM topology. In general, the 

duration probability density function a t  a state has an 

exponential behavior. 

b) The Bakis topology (a progressive model with skip 

states). 

c) A finite duration topology. This topology is most 

analogous to DP. 

d) A fenonic baseform topology. The dashed line 

indicates a transition that produces no output. 

e) A modified fenonic baseform with tied transitions. 

The labels B, M, and E indicate the group to which a transition 

belongs. Transitions in the same group share output 

probabilities. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The Tangora System [SS] 

Perhaps the most visible demonstration of the potential of 

HMM based speech recognition occurred in the mid 1980s at 

IBM. The Tangora system [581, a speaker dependent isolated 

utterance speech recognition system scalable from 5,000 words 

to 20,000 words was the product of IBMs long-term commit- 

ment t o  applying stochastic modeling to speech recognition. 

The 5,000 word real-time version of Tangora was implemented 

using a special purpose processor board occupying a single slot 

on an IBM K. 

Tangora is based on a VQ front-end (a codebook size of 200) 

and discrete HMMs. The recognition problem is segregated into 

an acoustic word matcher and a linguistic decoder. The acoustic 

word matcher is constrained to matching isolated word utter- 

ances. Initially, a Bakis [59] model, shown in Fig. 9(b) was used 

to describe acoustic models (words) in terms of acoustic vectors 

(observations). Later, a more flexible representation, denoted 

denonic baseforms [60], was introduced (see Fig. 9(d)) to reduce 

the amount of training data required to enroll a new speaker. 

Each word is represented as a string of phonetic symbols, which 

in turn are represented as acoustic vectors. 

The most unique aspect of the Tangora system is its use of an 

ngram statistical language model: sentences are described in 

terms of one, two, and three word combinations (unigrams, bi- 

grams, and trigrams, respectively). The language model has 

been statistically trained based on a large text database of 

office correspondence. A spell mode is also incorporated to ac- 

commodate user input of words not contained in the prede- 

fined language model. ' 

Performance has been measured across a variety of large 

vocabulary recognition tasks, and is summarized in Fig. 10. Re- 

cently, corrective training has been incorporated into the sys- 

tem, reducing the word error rate of a 5,000 word recognition 

task bv 16% [511. 

The SPHINX System [351 

Advances in HMM theory have created a renewed focus in 

speech recognition research on phonetic approaches to large 

vocabulary speaker independent continuous speech recognition. 

A good example of the state of the art is the SPHINX system 

developed at CMU. SPHINX is a speaker independent continuous 

speech recognizer based on triphone acoustic models (se- 

quences of three phones). Here, we discuss application of 

SPHINX to the DARPA Resource Management task [551 (a lan- 

guage that consists of a 1000 word vocabulary and a finite 

state automaton of over 7,000 nodes and 65,000 arcs). A real- 

time version of SPHINX has been implemented on a VME bus 

board containing three Weitek general purpose processors. 

SPHINX is a VQ-based discrete HMM. A multiple codebook 

approach for the VQ front-end is used in which cepstral, differ- 

ential cepstral, and energy features are quantized with separate 

codebooks [61]. The acoustic models consist of a set of general- 

ized triphone models designed to  be as extensible t o  other 

applications as possible, yet model as explicitly as possible 

known coarticulatory behavior. The model topology is shown in 

Fig. 9(e). A set of 1000 triphones (out of over 7000 that oc- 

curred in the training database) were found to be sufficient for 

the Resource Management task. 
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAcoustic Model I No Grammar I Word Pair 1 
I Monophones with duration modeling - 1 4 9 . 6 %  I 83.8% 1 

~ 

Monophones with function word and 
function phrase modeling 

Biphones zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith function word modeling 

Generalized Triphones 

Generalized Triphones With Between 
Word Coarticulation 

With Corrective Training I 81.9% 

59.2% 

67.2% 

72.8% 

77.9% 

88.4% 

91.5% 

94.2% 

96.2% 1 

Fig 11 Word accuracy of the SPHINX system as a function of 

the recognition unit [52] on the DARPA Task Domain database 

A monophone represents an acoustic unit similar to a phoneme 

in English Biphones represent an acoustic unit consisting of a 

concatenation of two phones Similarly, generalized triphones 

represent a unit that is a concatenation of three phones In the 

biphone and triphone cases, only those combinations frequently 

occurring in the DARPA Task Domain database were considered 

[52] Performance typically improves as more contextual 

information is added to the acoustic models Hence, best 
performance is obtained with generalized triphones, the largest 

recognition unit used in these experiments 

Performance for a variety of recognition units is summarized 

in Fig. 11. A null grammar is a grammar that allows any of the 

997 words to  follow any other of the word. The word-pair 

grammar is a grammar that models all permissible sequences of 

two word combinations. Observe that accuracy improves signifi- 

cantly as the size of language is constrained, and the number of 

competing choices restricted. Also, Fig. 11 demonstrates that 

increasing the level of detail in acoustic models results in signifi- 

cant improvements in accuracy (provided there are sufficient 

training data for the acoustic units). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
High Performance Connected Digit Recognition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[63] 

Speaker independent digit recognition has traditionally been 

considered a stringent test of a continuous speech recognizer. 

Grammar constraints are minimal: any digit can follow any 

other digit. Simultaneously with the evolving HMM large vocabu- 

lary systems, research at AT&T was focused on the development 

of high performance digit recognition using CDHMM. One 

derivative of this work was a demonstration of a real-time HMM 

digit recognition system using multiple Digital Signal Processors 

(DSPs) on the ASPEN multiprocessing system. 

Digit recognition systems have traditionally used detailed 

statistical models [34]. The AT&T digit recognition system [42] is 

a word-based system that uses progressive models of the form 

shown in Fig. 9(a). In this system, the statistical model used a t  

each state is a mixture of Gaussian distributions. High perfor- 

mance digit recognition was demonstrated using four models 

per digit, ten states per model, nine Gaussian distributions (or 

mixtures) per state, and a unique duration distribution per 

state. All acoustic models have the same number of states. 

In Fig. 12(a), performance, measured as string error rate, is 

shown as a function of the number of models per digit used. In 

Fig. 12(b), string error rate is given as a function of the number 
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of mixtures per state. Fig. 12 is based on a digit recognition task 

consisting of studio quality data [56]. In these experiments, 

since the elements of the feature set were observed to be essen- 

tially uncorrelated with one another, the covariance matrix at 

each state was assumed to be diagonal 

Nuinlxr  Of Mixtures I’erfoniiaiice 

5.8% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 I 5.0% 

4.6% 

4.2% 

a) 

b) 

Fig 12 Sentence accuracy (sentences are on the average 3 5 

digits long) for the AT&T speaker independent digit recognition 

system on a studio-quality digit recognition task 

a) Sentence accuracy as a function of the number of 

mixtures per state for the case of 10 states per model with one 

model per digit 

b) Sentence accuracy as a function of the number of 

models per digit for the case of 10 states per model with 9 

mixtures per state 

The string error rate improves significantly as the number of 

listributions is increased from one tothree, and slightly improves 

beyond that point. It is interesting to  note the similarity be- 

tween a three mixture state distribution and a three codebook 

VQ. Error rate also reaches an asymptote at four models per 

digit. The final recognition performance of this system repre- 

sented a significant improvement compared to previous DP and 

acoustic-phonetic approaches. 

Improved Digit Recognition [411 

Recently, improved performance on the same digit recogni- 

tion task described above was demonstrated by Texas Instru- 

ments. A discrimination transformation designed to  maximize 

discrimination between the correctly recognized data and the 

confusion class for each state in each HMM word model. This 

transformation was applied as an additional transformation in 



Acoustic Model 

Pooled Covariance 

Diagonal Covariance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Full Covariance 

Confusion Discriminants 

~~ ~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SUMMARY 

In this paper, we have reviewed the theory of Hidden Markov 

models in the context of a continuous speech recognition task. 

A unified view has been offered in which both linguistic decod- 

ing and acoustic matching are treated in an HMM framework. A 

supervised training paradigm was reviewed that exploits the 

constraints of the language model to refine recognition models. 

Several examples of HMM continuous speech recognition sys- 

tems that represent significant advances in the state of the art 

were presented. 

There are two unmistakable trends surfacing in speech recog- 

nition research. First, statistical modeling in speech processing 

has been elevated to new levels with the introduction of HMM. 

Our temporal/statistical models of speech are significantly more 

detailed, resulting in a better acoustic match to the signal for 

the correct hypothesis. Second, language processing and 

acoustic processing are more tightly integrated in HMM. It is 

unclear at this point how much acoustic context is required for 

accurate acoustic matching, but a trend towards top-down 

parsing will certainly continue for small language models. 

What lies in the future? Again, there are two trends develop- 

ing. At the acoustic matching level, more general statistical 

techniques, such as neural nets, are being actively pursued. Key 

Performance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.5% 

3.1% 

2.1% 

1.5% 

issues here include finding ways to introduce sequential behav- 

ior (notions of time) into the system, and finding computation- 

ally efficient and data efficient methods of training. At the 

linguistic level, integration of stochastic representations and 

higher level grammar formalisms, such as context sensitive 

grammars, is becoming increasingly important. There is no 

doubt that synergies of these two will give rise to new, and more 

powerful, statistical signal processing systems. Rule-governed 

systems, however, appear to be impractical for unconstrained 

speech understanding. 

Yet at the same time, some basic signal processing problems 

still remain. Sensitivity to background acoustic noise, changes in 

the channel and transducer characteristics, and misrecognitions 

of out of vocabulary responses all remain difficult problems in 

real speech recognition applications. As our ability to represent 

real acoustic variation in the signal grows, the need to reject 

spurious input becomes more acute. While the techniques 

described here work well in noise-free environments, demon- 

stration of high performance on even thesimplest tasks in opera- 

tional environments remains a challenge. 
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