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1. Introduction. A class of Markov processes having properties re­
sembling those of ordinary branching processes, but with continuous 
instead of discrete states, was introduced by M. Jirina in [3]. Re­
cently it has developed that these processes (assuming continuous 
time parameter, stationary transition probabilities, and one-dimen­
sional state space) form precisely the class of possible limiting 
processes for a sequence of Gal ton-Watson, or simple branching, 
processes which have their time and space units expanding at suitable 
rates to infinity [5]. The purpose of this announcement is to describe 
the construction of the most general process of the above sort. I t 
turns out that every such process can be obtained by a random time 
change from a process with stationary independent increments which 
cannot jump to the left. We will state these results precisely in §3 
below, and discuss some details and examples in §4. Proofs of the 
main results will appear elsewhere. 

2. Definitions and examples. The exact class of processes we will 
consider has been defined in [5], where some elementary properties 
and examples are also given. We repeat here only the essentials. 

DEFINITION. A 'C.B. function' is a Markov transition function 
on the Borel sets of [0, oo) with Pt(x, [0, oo)) = l and such that 
Pt(x, E) is jointly measurable in t and x for each JE, is nontrivial in 
the sense that Pt{x, { O } ) < 1 for some t>0f # > 0 , and that the 
'branching property' 

(i) P.(* + y, •) = **(*, - )*P.(y , •) 

is satisfied for all /, x, y^0f where * denotes convolution. 
DEFINITION. A 'C.B. process' is a Markov process on [0, oo) with 

right-continuous paths whose transition probabilities are given by a 
C.B. function. 

In [5] it is shown that a C.B. function must be stochastically con­
tinuous and map the space of continuous functions on [0, oo ] into 
itself; it is a consequence that every C.B. process is automatically 
strong Markov. 

We will work with the spatial Laplace transforms of C.B. func­
tions, which can be written in the form 
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/

» oo 

exp(-X;y)P,0, dy) = exp(-#*(X)), X ^ O . 
o 

The Chapman-Kolmogorov equation is then equivalent to the func­
tional equation 

(3) h+s(\) = MfcOO). 

These facts are easy consequences of (1). 
Perhaps the most important examples, and certainly the best 

known ones, are given by the formulae 

lh(X) - X exp(«0[l - (j8X/2a)(l - expfc/))]-1, if a 7* 0, 

= X[l + GMX/2)]-1, i f a - 0 . 

(See [2].) The transition functions with transforms (4) correspond to 
diffusion processes having the (backward) Kolmogorov equations 

(5) d<j>/dt = ax(d<t>/d%) + (I3x/2)(d2(t>/dx2). 

A somewhat more general class of processes have transforms given by 

MX) = X exp(a*/*)[l - C8X*/2a)(l - exp(a*) ]-*/», if a * 0, 

= X[l + (tf/2)*p]-llp, if a = 0, 

where 0 < £ ^ g l . The case a = 0 is especially important, for then (6) 
determines the totality of limiting processes which can arise from a 
single Galton-Watson process as the units and the initial population 
size tend to infinity [4], We will return to these examples in §4. 

3. The main theorems. The examples (5), as well as the C.B. 
processes with step-function paths constructed by Jirina, suggest 
that a C.B. function would be translation invariant, a t least away 
from the absorbing state 0, if it were not for the fact that the 'local 
speed' of the process at x is not constant but proportional to x. I t is 
therefore quite plausible to at tempt removing this factor by means 
of a random time change. 

Let {xt} be any C.B. process, and define J(co)«sup{f: xt(o))>0}. 
The functional 

(7) 4>T(U>) = I xu(œ)du 
•J 0 

is then strictly increasing as long as T<J; let T(t)(=T(t, co)) be its 
inverse function, defined for each t such that 

ƒ» 00 

Xu(u)du. 
0 



384 JOHN LAMPERTI [May 

Finally, we define a new random process {yt} by means of 

Vt = ocT a) iit<K, 

= 0 otherwise. 

From the general theory due to Volkonski (as presented in slightly 
more generality by Dynkin [l, Chapter 10]), it follows that {yt} 
is also a right-continuous strong Markov process with stationary 
transition probabilities. 

THEOREM 1. The process {yt} defined above is a process with sta­
tionary independent increments, unable to jump to the left, which has 
been stopped upon the instant of first reaching state 0. 

COROLLARY 1 ( J IRINA). A C.B. process of the purely-discontinuous 
type has increasing paths. 

COROLLARY 2. If a C.B. process has continuous paths, it must be one 
of those satisfying (5). 

PROOF OF COROLLARY 2. The effect of the time change is to mul­
tiply the generator of {xt} by x"1 for x>0, and so the processes 
satisfying (5) go over into Brownian motion with a drift. Since there 
are no other additive processes with continuous paths and the cor­
respondence is unique, there can be no additional C.B. diffusions 
beyond those of (5). 

Turning from analysis to construction, we now assume that {yt} 
is a process with independent increments, unable to jump to the left, 
which has been stopped when (if) it reached 0 (^0 >0 ) . We further 
assume that 

/

,0° du 
-

0 Vu 

00 du 
= oo a.s. 

o yu 

The only way (10) can fail occurs when yt—><*> 'too fast'; it is easy 
to see that a sufficient condition for (10) is that the increments of the 
(unstopped) additive process have finite expectations. This time we 
set /'(co) = {sup t:yt(o))>0}, and for T<J' define the additive func­
tional 

CT du 
(11) fr(«) - I - • 

Jo yu 
This function is strictly increasing (as long as T<J') and its inverse 
will again be denoted T{t). A new Markov process is then defined by 
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*«(«) = yTW if T(f) < J', 

= 0 otherwise. 

THEOREM 2. The process {xt} constructed above is a C.B. process. 

I t is easy to see that the two transformations we have described 
are inverse to each other. Therefore a one-to-one correspondence has 
been established between C.B. processes and additive ones without 
negative jumps satisfying (10). Since the latter class can all be repre­
sented through the Levy-Khintchine formula for their characteristic 
functions, we may now claim to have given a construction of all (one-
dimensional) C.B. processes. 

4. Corresponding processes. In this section we shall examine some 
examples of the correspondence between {xt} and {yt}> Let {yt\ 
be any suitable additive process, and suppose y0 is a 'large' state x. 
During the initial time segment [0, t], the ratio yt/yo remains close to 
1 with high probability. During this time, therefore, the correspond­
ing C.B. process {xe} behaves as if its transition function were the 
same as that of {yt} except for a change of time scale by the fixed 
fac tors ; the interval [0, t/x] for {xt} corresponds to [0, t] for {yt}> 
These considerations strongly suggest the truth of the following 
proposition: If Pt and Qt are the transition f unctions of a C.B. process 
and the corresponding additive process, then 

(13) Qt(0, E) = lim Pt/,(x, E + x). 

We shall apply (13) to the examples mentioned in §2. First it is 
convenient to recast it by taking Laplace transforms: 

ƒ 00 

exp(—\y)Qt(0, dy) = lim exp(—^«/x(X) + \x) 

= exp(—xtc(\)), 

where c(\) = dip^(X)/'dt\ *„0- Applying (14) to the C.B. diffusions whose 
\p functions are given in (4), we obtain 

ƒ 00 

exp(-\y)Qt(Pi dy) = exp(-otf\ + pt\2/2t), 
- O O 

which is the moment generating function of a shifted normal law. 
Thus (as expected) {yt} in this case is Brownian motion with a drift. 
Treating (6) the same way, we find that the corresponding additive 
processes satisfy 
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(16) I exp(~X;y)<2*(0, dy) = e x p C - c ^ X + P(2p)~H\*+l), X > 0. 

These functions are the transforms of stable laws of order p + 1, with 
a drift term if a -^0. The formula is momentarily deceptive in that 
X is real rather than imaginary; in fact, these laws are the ones whose 
canonical (Levy-Khintchine) measure has no mass on (—°o, 0). In 
particular, the C.B. processes given by (6) with OJ = 0, which are the 
possible limits of a single Galton-Watson process in the manner 
studied in [4], are obtained from a drift-f ree, maximally unsymmetric 
stable process via the time change determined by (11). We will return 
to these examples and give further applications to the limiting theory 
of branching processes in a future publication. 
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