
Continuous Subgraph Pattern Search over Graph
Streams

Changliang Wang and Lei Chen

Department of Computer Science and Engineering
Hong Kong University of Science and Technology

{sonicwcl, leichen}@cse.ust.hk

Abstract— Search over graph databases has attracted much
attention recently due to its usefulness in many fields, such
as the analysis of chemical compounds, intrusion detection in
network traffic data, and pattern matching over users’ visiting
logs. However, most of the existing work focuses on search over
static graph databases while in many real applications graphs
are changing over time.

In this paper we investigate a new problem on continuous
subgraph pattern search under the situation where multiple
target graphs are constantly changing in a stream style, namely
the subgraph pattern search over graph streams. Obviously the
proposed problem is a continuous join between query patterns
and graph streams where the join predicate is the existence of
subgraph isomorphism. Due to the NP-completeness of subgraph
isomorphism checking, to achieve the real time monitoring of the
existence of certain subgraph patterns, we would like to avoid
using subgraph isomorphism verification to find the exact query-
stream subgraph isomorphic pairs but to offer an approximate
answer that could report all probable pairs without missing
any of the actual answer pairs. In this paper we propose a
light-weight yet effective feature structure called Node-Neighbor
Tree to filter false candidate query-stream pairs. To reduce the
computational cost, we further project the feature structures into
a numerical vector space and conduct dominant relationship
checking in the projected space. We propose two methods to
efficiently check dominant relationships and substantiate our
methods with extensive experiments.

I. INTRODUCTION

As one of the most popular data models, graph has been

used in various real applications such as social network

modeling and chemical compound analysis. Due to their

wide usages, many interesting graph problems are extensively

studied, for example, graph reachability [22], [21], subgraph

search [24], [17], [4], and keyword search in graphs [10], [7].

In fact, in many applications, graphs are often evolving

along the time in a stream fashion instead of remaining static.

For example, in a traffic network, the links between nodes

are changing over the time. Given another example, during

a chemical reaction, the structures of chemical compounds

often change along the reaction process. We can model these

evolving graphs as graph streams, i.e., a sequence of graphs

which grows indefinitely over time [18]. However, most of the

previous work assumes that graph data are rather static, which

raises challenges when applying to graph streams. Compared

to static graphs, graph streams not only inherit the complexity

of graphs but also possess their own characteristics: 1) graphs

are frequently updated, and 2) real time response is necessary.

In this paper, we study the problem of continuous subgraph
pattern search over graph streams. Subgraph search has been

used as an effective tool for finding useful substructures in

a graph database. For example, a bio-chemist can utilize

the subgraph search to analyze the functionality of newly

found chemical compounds; network security administrators

can conduct a pattern (subgraph) matching over the network

traffic data to detect possible malicious attacks. Formally,

subgraph search over a graph database D is defined as follows:

Given a query graph Q, we need to find all data graphs
Gi ∈ D, where Gi contains the query Q, namely, Q is
subgraph isomorphic to Gi.

Due to the NP-completeness of subgraph isomorphism

checking [5], most of the previous works on subgraph search

employ a filter-and-verify strategy to reduce the number of

isomorphism checking. Specifically, graphs in the database are

indexed by a set of distinguishing features, such as paths [17],

trees [28] and subgraphs [24], then during query processing,

the extracted features are first used to prune the graphs that do

not contain the query graph, and afterward the left candidate

graphs are verified by the subgraph isomorphism checking.

Unfortunately, we can not directly apply the previous meth-

ods for subgraph search over static graphs to graph streams

due to their unique characteristics. For example, gIndex [24]

needs to mine frequent subgraphs(features) at each timestamp,

which does not satisfy the real time response requirement of

graph streams. Given another example, GraphGrep [17] may

satisfy the real time response requirement, however, it only

uses paths to filter out candidates and many false positives

(i.e. not the actual results that are reported as positive) still

exist in the result after filtering.

Motivated by shortcomings of previous approaches and the

challenges raised by graph streams, we address the problem of

continuous subgraph search over graph streams, that is, given

a set of predefined query graphs (patterns), we continuously
monitor a set of graph streams and report the possible ap-

pearances of a set of subgraphs (patterns) in a set of graph

streams at each timestamp (The formal problem definition

is given in Section II). In this work, in order to satisfy the

real time response requirement of search over graph streams,

we focus on retrieving the possible appearance instead of

exact appearance of the subgraph. Here possible appearance

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE
DOI 10.1109/ICDE.2009.132

393

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE
DOI 10.1109/ICDE.2009.132

393

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 14, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

means the pattern-graph matching candidate pairs are detected

using an approximate method without conducting the subgraph

isomorphism checking. Furthermore, we also require that

the proposed approximate method should not introduce false
negatives (i.e. the actual answers that are missed) and has as

less false positives as possible.
Obviously, the general problem that we target on is a

continuous “join” operation between query patterns and graph

streams under the predicate “subgraph isomorphism”. One real

application of this problem is to detect malicious attacks over a

set of traffic stream data where the possible malicious attacks

that are derived from some domain knowledge are modeled

as a set of traffic graph patterns. We need to report all the

possible attacks in real time, i.e., to find the possible matches

between patterns and traffic data whenever the traffic data are

updated. Any delay or missing of the real attacks will cause

millions of dollars’ loss.
Based on the requirements of no false negatives and real

time response, we reinvestigate the previously proposed fil-

tering methods for static graph databases and propose a light-

weight yet effective structure, Node-Neighbor Tree(NNT), as a

filtering feature. Compared to paths, Node-neighbor trees cap-

ture more structural information, and thus have more pruning

power (i.e. resulting less false positives). Moreover, generating

node-neighbor trees does not require performing any mining

process. However, although using subtree as filtering feature

is more effective than only using paths, subtree isomorphism

verification is still expensive. To further reduce this filtering

cost, we propose a novel encoding method to encode each node

neighbor tree into a numerical vector. With such a conversion,

we can search for the possible pattern-graph matching pairs

by only checking the dominant relationship between two set

of converted numerical vectors from query patterns and graph

streams, respectively. To speed up the search process in the

converted vector space, we propose two efficient methods to

check dominant relationship.
To summarize, we list our contributions as follows,

• We propose a new problem, continuous subgraph search

over graph streams and design an effective and light-

weight feature structure, node neighbor tree, to reduce

false negatives and computational cost;

• We further improve the filtering efficiency by introducing

a novel encoding method to transform node-neighbor

trees into numerical vectors and replacing the expensive

subtree isomorphism verification with a dominant rela-

tionship checking in the converted space;

• We propose two different strategies to verify the dominant

relationship between two vector sets efficiently;

• Finally, through extensive experiments, we demonstrate

the effectiveness and efficiency of our proposed methods

in finding approximate matching pairs between query

patterns and graph streams.

The rest of the paper is arranged as follows, we formally

define the problem of continuous subgraph search over graph

streams and related concepts in Section II. In Section III, a new

graph feature, node-neighbor tree is presented for pruning false

positives during the search. We present the novel encoding

method and the dominant relationship checking problem in

Section IV. Extensive experiments on real and synthetic graph

stream data have demonstrated the effectiveness as well as

efficiency of our proposed methods in Section V. We discuss

and compare with related work in Section VI. Finally, we

conclude in Section VII.

II. PROBLEM DEFINITION

A. Graphs and Graph Streams

Definition 2.1: Graph. A labeled graph is denoted as

G =< V (G), E(G), labelv, labele >, where V (G) is the set

of vertices,E(G) is the set of edges, and labelv and labele are

the functions to assign labels to V (G) and E(G) respectively.

Definition 2.2: Subgraph. Given a graph G′, if its vertices

and edges form subsets of that of a given graph G, and G′

has the same labeling functions as G, G′ is a subgraph of G.

Definition 2.3: Subgraph Isomorphism. A subgraph iso-

morphism is an injective function f : V (G) → V (G′), such

that (1) ∀ u ∈ V (G), labelv(u) = label′v(f(u)), (2) ∀
(u, v) ∈ E(G), (f(u), f(v)) ∈ E(G′) and labele(u, v) =
label′e(f(u), f(v)), where label() and label′() are the label

functions of G and G′, respectively.

Definition 2.4: Graph Change Operation Given a graph

G, an edge (u, v) insertion/deletion in G can be represented

as a triple, < op, u, v >, where op = ins/del means the edge

insertion/deletion, and u, v are the vertices of G. Insertion of

a new node w can be represented by a set of edge insertions

which insert all the newly created edges between the vertices in

G and w, similarly, the deletion of a node w can be considered

as a set of edge deletions which delete all the edges associated

with the deleting vertex w. Therefore, graph change operations

refer to a set of edge insertions or deletions. Given a graph

change operation, GC = {< op1, u, v >, . . . , < opk, u, v >}
(k ≥ 1), G can be changed to G′ by applying GC to G
denoted as GC → G = G′.

Note that in Definition 2.4, we do not consider the case

of inserting an isolated vertex. In other words, we assume

graph at each timestamp is connected, which is also assumed

in many works [28], [24], [26]. In the stream scenario, it is

quite common to assume that changes between consecutive

timestamps are not much, which is also referred as temporal

locality in stream data processing [13], [6]. Temporal locality

assumption is valid as well for real applications over graphs.

For example, in a social network, one person’s friendship links

are growing locally and smoothly. Based on this assumption,

we can infer that graph change operations are not many

between two consecutive graphs. Given a sequence of graph

change operations, we define graph change stream as follows:

Definition 2.5: Graph Change Operation Stream. Given

a starting graph G, a graph change operation stream ΔGC is

a sequence of graph change operations GCt, with t denoting

the timestamp. ΔGC can be denoted as:

ΔGC := [GC1, GC2, ..., GCt, ...]

394394

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 14, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

Now, we define graph streams based on the graph change

operation streams:

Definition 2.6: Graph Stream. Given a starting graph G,
and a graph change stream ΔGC, the graph stream GS, is
the sequence of the corresponding graphs defined as follows.

GS = {G0, G1, G2, Gt...},
G0 = G Gt = GCt → Gt−1

Figure 1 shows an example of graph stream. The left

most graph is the starting graph, then from left to right,

there are three graph change operations for timestamp 1 to

3 respectively. The right most graph is the graph at timestamp

3, which is exactly GC3 → (GC2 → (GC1 → G1))).

Fig. 1. Illustration of a graph change operation stream

In the rest of paper, we use term “graph streams” referring

a sequence of graphs (GS) and “stream graph” referring one

of the graphs (Gi) in the sequence of graphs.

B. Problem formulation

In this paper, we focus on answering continuous subgraph
patterns over graph streams. More specifically, we assume

a user has a set of subgraph patterns and starts monitoring

graph streams from timestamp 0, then as time evolves, the

user wants the system continuously report the appearances

of certain subgraph patterns on the graph streams at each

timestamp. Formally, we define the problem as follows:

Definition 2.7: Subgraph Search Over Graph Streams.
Given a set of graph streams < GS1, GS2, . . . , GSk1 > and

a set of query graphs < Q1, Q2, . . . , Qk2 >, we want to

continuously report all the joinable pairs < GS(i,t)Qj > at

each timestamp t, where joinable means Qj is a subgraph of

GS(i,t), 1 ≤ i ≤ k1, 1 ≤ j ≤ k2, and t >= 0.

Note that in Definition 2.7, similar to [6], [13], we assume

the set of query pattern graphs derived from some domain

knowledge in a monitoring application is fixed. We leave the

dynamic set of query patterns as an interesting future work.

According to Definition 2.7, if we want to find the joinable
pairs, we have to conduct subgraph isomorphism checking to

ensure the appearances of certain patterns on graph streams.

However, since subgraph isomorphism checking is an NP-

complete problem [5], it is not possible for us to satisfy the

real time response requirement of graph stream processing,

such as operations on the network traffic streams. Therefore,

we focus on a little bit relaxed problem, approximate subgraph
queries over graph streams, which is defined as follows:

Definition 2.8: Approximate subgraph Search Over
Graph Streams. Given a set of graph streams <
GS1, GS2, . . . , GSk1 > and a set of query graph patterns

Algorithm Average Time Candidate size
Our method 1240ms 16.3%

gIndex 7210ms 13.3%

GraphGrep 5480ms 67.6%

Fig. 2. Efficiency and Effectiveness comparison

< Q1, Q2, . . . , Qk2 >, we continuously report all possible
joinable pairs < GS(i,t)Qj > at each timestamp t, where

possible joinable means Qj is probably a subgraph of GS(i,t),

1 ≤ i ≤ k1, 1 ≤ j ≤ k2, and t >= 0.

For an approximate subgraph search, we do not require

reporting the exact appearances of patterns on graph streams.

Instead, all the possible appearances of the subgraph patterns

should be promptly detected once data graphs enter the sys-

tem. In addition, the solution should not introduce any false

negatives and report few false positives.

III. A NOVEL FEATURE STRUCTURE FOR FILTERING

To address the problem defined in Definition 2.8, we can

employ previously proposed filtering methods, such as gIndex

[24] and GraphGrep [17], to report the possible joinable pairs.

However, most of the existing work [24], [28] rely on frequent

subgraph (sub-tree) mining algorithms to extract features for

filtering, which makes the methods inefficient in detecting

patterns over graph streams. Different from gIndex, GraphGrep

enumerates all pathes with lengthes up to a given value L to

filter out false positives. We can directly apply GraphGrep in

graph stream setting, however, it is time consuming if we set

L to be a larger value, i.e. 10, for good effectiveness. On

the other hand, setting L to a smaller value, i.e. 4, although

efficient, will introduce many false positives.

Figure 2 lists a preliminary test result of the three algorithms

(gIndex, Graphgrep, and our proposed method) with respect to

the average query processing time and the average candidate

size per timestamp. In this test, we use 70 subgraph patterns

and 70 graph streams. The processing time is measured by

milliseconds. Candidate size is computed as the ratio between

the number of possible joinable pairs returned and the total

number of query-stream pairs. From the results, we can ob-

serve that gIndex has the minimal candidate size but consumes

much more time than the other two algorithms do. Though

GraphGrep requires less time, it reports more than half of the

total pairs as candidates, which makes the result less useful.

A. Node-neighbor Tree

In this section, we present a novel feature, node-neighbor

tree (NNT), which captures the local structure around each

vertex. Most importantly, a node-neighbor tree does not mine

features and has much higher pruning power than GraphGrep.

The formal definition of NNT is as follows:

Definition 3.1: Node-neighbor tree Given a graph G and

a depth value l, for any vertex u ∈ G, the NNT of u, denoted

as NNT (u), is a tree rooted at u and contains all the simple

paths up to length l from u in G. A simple path refers to a

path without repeated edges.

An example graph G together with NNTs of all its vertices

and edges under l = 2 is shown in Figure 3(a). In the example,

395395

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 14, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

(a) A Graph and NNTs (b) Node and Edge tree indexes

Fig. 3. Graph, Node-neighbor trees, and Index

G has four vertexes with ids from 1 to 4, which have labels

A,A,B,C respectively. The NNTs of vertices 1 and 2 have the

same structure, thus, we use only one tree to represent T1 and

T2 in the example. T3 rooted at vertex 3 has two branches

consisting of the same labels A, which indicates that node 3

has two distinct neighbors with label A. T4 has two different

branches rooted at a node with label B.

For node-neighbor trees, we have the following lemma:

Lemma 3.1: If query graph Q is a subgraph of a data graph

G, for each vertex u ∈ Q, there must exist a vertex v ∈ G
satisfying u’s NNT (u) is a subtree of v’s NNT (v).

Lemma 3.1 provides a necessary condition to filter out query

graphs that are not contained in the stream graphs. Specifically,

for each vertex u in the query graph, we check whether there

is a node v in the stream graph satisfying u’s node-neighbor

tree is contained in v’s. Totally, we need to conduct O(n1∗n2)
comparisons if the query graph has n1 nodes and the stream

graph has n2 nodes. For each comparison, we need to perform

subtree isomorphism checking, of which the complexity is

O((|T1|1.5/ log |T1|)|T2|) [15], where |T1| and |T2| are the

sizes of two comparing trees. However, this computational

cost of NNT filtering is not cheap based on the above analysis.

Later, in Section IV, we present a novel encoding method to

reduce the filtering cost significantly.

In addition to reducing the filtering cost, there is another key

issue has to be solved before we can apply NNT over graph

streams, that is how to incrementally maintain the NNT tree

sets when a new data graph comes. To resolve this issue, we

create a node tree index to show the appearances (positions) of

nodes in each node-neighbor tree generated from a graph G.

The position of each node in a NNT is labeled by an unique

id within the node set of that NNT. In Figure 3 (a), the label

besides each tree node in T1 (T2) is the position label of that

node. Figure 3(b) shows an example of node-tree index for

NNTs in Figure 3 (a). In the example index, node 2 appears

in position b and e of tree T1 rooted at node 1, thus in the

entry 2 of the node-tree index, appearances (T1, b) and (T1, e)
are stored. We also build an edge-tree index to denote the

appearances of edges in each node-neighbor tree. Again, as

shown in the Figure 3 (b), edge 13 appears as edge (a, c) in

T1 and as edges (b, d) and (c, e) in T2. Thus in the entry 13 of

the edge-tree index, (T1, ab), (T2, bd), and (T2, ce) are stored.

When a new graph change operation arrives, we update

the tree sets accordingly. We sequentialize a graph change

operation into a series of insertions and deletions of edges

and process all deletions first and then insertions. For deleting

an edge, we locate all appearances of the edge and delete

their subtrees and update all related entries. For inserting an

edge, we locate all appearances of the nodes associated with

the edge and append subtrees and update all related entries.

The deletion steps are illustrated in Procedure Delete Edge
(Figure 4). To delete an edge e, we first retrieve all the

appearances of e from the edge-tree index (line 1 in 4). Each

appearance (Ti, u, v) means in node i’s NNT, nodes u and v
correspond to the two nodes of e in the graph. Line 3-7 uses

a stack to traverse the subtree under edge (u, v) in a DFS

style, and delete nodes and edges along this traversal. When

an edge x in the subtree is visited (line 5), we delete its entry

in Iet and two associated nodes’ entries in Int(line 6). If x has

children edges, all will be pushed into stack (line 7). Then the

procedure will choose an edge at the top of the stack to visit,

unless the stack is empty (line 4), which means the subtree is

deleted completely thus the deletion for current appearance is

finished. Take figure 3 for example. Suppose we are going to

delete edge (1,3), we first find an appearance as (a, c) in T1.

After executing line 3 to 7, (a, c), (c, e), (c, f) are all deleted

from T1 and indexes. Then we continue to find an appearance

(b, d) in T2, and then an appearance (c, e) in T2. This process

goes on until all appearances of (1,3) are deleted.

Procedure Insert Edge (Figure 5) lists the detailed steps

to insert an edge. To insert an edge e(a, b), we first retrieve

all the appearances of node a from the node-tree index(line

1 in 5). Each appearance (Ti, u) means in node i’s NNT,

node u corresponds to a in the graph. We first append an

edge (u, b) to u and update e’s entry in Iet and b’s entry in

Int(line 3). To append the subtree under (u, b), we adopt a

BFS style expansion(line 4-9). Each time we pop up the head

of the queue(line 6) and check if current node can be expanded

further(line 7). If yes, we enumerate all v’s associated edges

in the graph(line 8). If edge (v, x) does not appear in the path

from root to node v, it means the path expanding from v to x
will remain a simple path. Thus x is pushed to the back of the

queue, edge (v, x) is added to Iet and x is added to Int(line

9). After updating a’s appearances, we update b’s appearances

using the same procedure (line 10-11). Assume that we want

to insert edge (1,4) to G, we first find 1’s appearance at a in

T1. We add branch (A− > C− > B) to a. Then we find

appearance at b in T2. We add branch (A− > C) to b. This

process continues until we expand all appearances of node 1.

Then we apply the similar processing to node 4.

Lemma 3.2: The over all complexity for deleting (inserting)

an edge to NNTs of graph G is O(rl−1), where r is the

maximum node degree of G.

.

IV. JOINING STREAMS WITH QUERIES

As discussed in the previous section, though NNTs have

greater pruning power than paths, we have to conduct subtree

396396

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 14, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

Procedure Delete Edge {
Input: Edge e, edge-tree index Iet, node-tree index Int

Output: Updated indexes
(1) retrieve appearances of e in Iet

(2) for each appearance (Ti, u, v)
(3) push (u, v) to stack st
(4) While st not empty do
(5) x ← st.pop()
(6) delete x’s entry in Iet and Int

(7) push children edges of x to st
(8) return Iet and Int

}
Fig. 4. Delete an edge

Procedure Insert Edge {
Input: Edge (a, b), edge-tree index Iet, node-tree index Int

Output: Updated indexes
(1) retrieve appearances of a in Int

(2) for each appearance in (Ti, u)
(3) append an edge (u, b) at node u; update Iet,Int

(4) put b in queue qu
(5) while qu not empty
(6) v ← qu.pop head()
(7) if v’s depth in tree=max depth then goto(5)
(8) for each edge (v, x) associated with v in graph
(9) if path from root of Ti to v does not

contain edge (v, x) then create a node x
and set it as v’s child and put it to qu
and update Iet and Int

(10) retrieve appearances of b in Int

(11) conduct the similar processing as a’s
(12) return Iet and Int

}
Fig. 5. Insert an edge

isomorphism checking between the NNTs of a pattern graph

and a stream graph, which is not efficient enough. In this

section, we propose a novel encoding method to transform a

NNT to a set of vectors and approximate subtree isomorphism

checking by dominant relationship verification between two

vector sets. Most importantly, the proposed encoding method

will not introduce false negatives. In following discussion, for

simplicity, all examples are illustrated with a scenario of join

between single stream and single query pattern.

A. Projecting to numerical vectors

The inefficiency of NNT origins from subtree isomorphism

checking. In fact, if a tree T1 is a subtree of another tree T2, all

the simple pathes (branches) of T1 should be included in the

branches of T2. Thus we can check if all of the simple pathes

of T1 are contained in T2. Once we find there exists one path in

T1 that is not contained in T2, we can conclude that T1 is not a

subtree of T2. So instead of verifying subtree isomorphism, we

approximate it by comparing the simple paths of two NNTs.

We have the following lemma.

Lemma 4.1: Given a query graph Q and a stream graph G,

if Q is subgraph isomorphic to G , for any vertex u ∈ Q, there

must exist a vertex v ∈ G satisfying that NNT (u) is branch

compatible to NNT (v), where branch compatible means that

all the simple paths (branches) of NNT (u) are contained in

the branches of NNT (v).
Lemma 4.1 provides a O(n1n2r

l) filtering method, which

is much lighter than subtree isomorphism checking (O(n1 ∗
n2 ∗ (|T1|1.5/ log |T1|)|T2|)), where n1 and n2 are the number

of nodes in stream and query graphs, and |T1|, |T2| are the

maximum sizes of NNTs in two graphs. However, for verifying

whether Q is a subgraph of G, we need to check branch

compatibility between every possible pair of nodes. In order

to speed up this process, we propose a projection scheme to

map a node-neighbor tree into a numerical vector, called node-
projected vector (NPV). Before giving the definition of NPV,

we first define the dimension of NPV as follows:

Definition 4.1: Dimension Given a node-neighbor tree, T ,

a dimension of the projected vector from T is defined as a

triple < l, lab1, lab2 >, where lab1, lab2 are the corresponding

node labels for a distinct edge E located in the depth l of T .

Figure 7 (a) shows an example of dimension derived from

a query graph Q (left) and a stream graph G (right). For

the purpose of demonstration, we only show the NNTs of

vertices {1, 2, 3, 4, a, b, c, d} with l = 1. Thus, there are only

two dimensions from the NNTs, (1, A,C), and (1, A,B).
Based on these two dimensions, we can apply Procedure

Tree Projection in Figure 6 to project a NNT into a node
projected vector (NPV), which is defined as follows.

Definition 4.2: Node Projected Vector Given a vertex v
in a graph G, and n dimensions, Dim1, . . ., Dimi, Dimn,

(defined in Definition 4.1), the node projected vector of vertex

u (NPV (u)) is a vector storing the numbers of appearances

in each Dimi in NNT (u).
As shown in Figure 7(b), based on the two dimensions,

(1, A,C), and (1, A,B). The NPVs of nodes {1, 2, 3, 4} in

Q and nodes {a, b, c, d} in G are {(1, 1), (0, 3), (2, 3), (3, 1)}
and {(2, 2), (1, 3), (2, 3), (3, 2)}, respectively.

Procedure Tree Projection {
Input: A NNT tree up to depth of l
Output: Node projected set
(1) NPV ← 0
(2) for each level li in Input
(3) for each edge (u, u′) at level li
(4) NPV [(li, label(u), label(u′))] ←

NPV [(li, label(u), label(u′))] + 1
(5) return NPV

}
Fig. 6. Tree Projection

(a) A query and a stream graph (b) NNTs and their projections

Fig. 7. Illustration of NNT Projection

397397

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 14, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

After converting each NNT to its NPV , a

graph G is now represented as a set of vectors

G = {NPV (u1), NPV (u2), . . . , NPV (un)}. According to

Lemma 4.1, we have the following necessary condition if a

graph Q is subgraph isomorphic to graph G.

Lemma 4.2: Given two graphs Q and G, if Q is subgraph

isomorphic to G, for each node u ∈ Q, there must exist node

v ∈ G such that NPV (v) dominates NPV (u) (denoted as

NPV (u) � NPV (v). Here “dominates” means the value of

each dimension in NPV (v) is no less than that in NPV (u).
According to Lemma 4.2, if one node u in Q cannot find a

vertex v in a stream graph G satisfying NPV (u) � NPV (v),
we can safely remove this pair (Q,G) from the result subgraph

isomorphism candidate set without introducing false negatives.

Thus, for joining streams with queries, our strategy is to use

Lemma 4.2 to prune as many pairs as possible. Though the

proposed projection offers an efficient comparison solution

between two NNTs, the projected vectors encounter a high

dimensionality problem. For example, the projected vectors

could have h2l dimensions where h is the number of distinct

labels and l is the maximum depth of node-neighbor tree. In

practice, this value could be large, i.e., hundreds to thousands.

Such high dimensional vectors are of course unaffordable and

intractable in stream settings. Fortunately, by taking a closer

look at the projected vectors, we find that although we project

NNTs into a high dimensional space, for each projected vector,

most of its dimensions have zero values. To take advantage of

this sparsity, we store the projected vectors in a compact form.

In other words, we only store non-zero entries.

B. Search in the vector space

After projecting NNTs to their NPVs, we can check every

possible joinable pair of streams and query graphs based on the

dominant relationship of NPVs using a nested loop algorithm.

We set this nested loop algorithm as the baseline and propose

two improved search strategies in following subsections. Since

dominant relationship refers to node projected vectors, and

also vectors correspond to points in the space, in the follow-

ing sections, “node u”, “vector u”, and “point u” are used

interchangeably to refer to the NPV (u).
1) Dominated set cover method: The first improved method

untilizes the idea of checking the dominated vector set as a

whole instead of checking the dominant relationship pair by

pair. We give the formal justification in the following Theorem.

Theorem 4.1: Given two graphs Q and G, if Q is subgraph

isomorphic to G, then the union set of query vectors dominated

by G covers all node projected vectors in Q.

Proof Use lemma 4.2. If a query graph Q is subgraph

isomorphic to G, for each node u in Q, there must exist a

node v in G, where NPV (u) � NPV (v). Enumerate all

the dominated vectors of query Q and union them will get the

dominated cover set of Q. Since each vector in Q is dominated

by a vector in G, the union of all the dominated vector, covers

all node projected vectors of Q. �
Given a query graph Q and a stream graph G, to get the

dominated vector set for G, we can first compute the domi-

nated vectors for each node of G, then union the dominated

vectors of all the nodes of G to get the dominated vector

set. This simple method works, yet not efficient, especially in

the graph stream scenario. Thus, we propose an efficient and

incremental updatable method for joining streams with queries.

The basic idea is that we project all the vectors of query graph

Q to their corresponding distinct single dimensional spaces

(i.e. the values of vectors are not 0 in those dimensions)

and sort them in each dimension. When a stream graph G
comes, we project each vector of G to its single distinct

dimensional space and count the number of vectors of Q
that G dominates in that space. Then, we merge the results

from each single dimension to generate the dominated vector

set of Q. Only when all the vectors of Q are contained in

the dominated set, we consider Q and stream graph G as

a result candidate pair. Most importantly, in the proposed

method, when the stream graph of the next timestamp comes,

for each dimension, we only need to update the number of

dominated vectors of Q when the position of a projected node

vector in G changes. The detailed steps are listed in Procedure

Dominated Set Cover Join in Figure 8. k1 and k2 are the

numbers of stream graphs and query graphs respectively.

Procedure Dominated Set Cover Join {
Input: stream graphs {G1, ...Gk1}, query graphs {Q1, ...Qk2}
Output:Reported positive pairs
(1) for i ← 1 to k1

(2) for u ∈ Gi

(3) for each non-zero dimension of NPV (u) {
(4) update u’s position counter NPV (u)pos

(5) update u’s dominant counter NPV (u)dom

(6) mark query vectors dominated by Gi based on
NPV (u)dom }

(7) for j ← 1 to k2

(8) if Gi dominates all vectors in Qj

(9) answer ← answer ∪ (i, j)
(10) return answer

Fig. 8. Dominated Set Cover Method

In Procedure Dominated Set Cover Join (Figure 8), a few

additional data structures are used to record the dominant

information. First we need to store sorted vectors of a query

graph Q in each distinct dimension. For example, we project

the query vectors {NPV (1), NPV (2), NPV (3), NPV (4)}
of Q in Figure 9 (a) into 2 single dimensions, i.e.

Dim1 and Dim2 as shown shown in Figure 9 (b), Af-

ter sorting vectors in their increasing order in each di-

mension, we get {NPV (2), NPV (1), NPV (3), NPV (4)}
and {NPV (4), NPV (1), NPV (2), NPV (3)} for Dim1 and

Dim2, respectively. Second, for each vector of a stream

graph, we maintain two counter vectors for it, namely

the position counter vector and the dominant counter vec-

tor. Position counter records the stream vector’s posi-

tion at each single dimension. For example, for node

NPV (b) of G in Figure 9 (b), it is no less than the

first two query vectors {NPV (2), NPV (1)} at Dim1 and

{NPV (4), NPV (1), NPV (2), NPV (3)} at Dim2. Thus in

NPV (b)’s position counter NPV (b)pos for Dim1 and Dim2

398398

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 14, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

are 2 and 4, respectively, which indicates that NPV (b)
dominates 2 vectors at Dim1 and 4 vectors at Dim2 . The

dominant counter vector has N entries, each for a query vector.

The value in an entry indicates how many dimensions that a

vector of stream graph has dominated the corresponding query

vector so far. In Figure 9 (b), the dominant counter vector of

NPV (b), NPV (b)dom, has 4 entries, each for a query vector.

NPV (b)dom shows that NPV (b) dominates node NPV (1)
twice, NPV (2) twice, NPV (3) once, and NPV (4) once.

Since the full space in the example has only two dimensions

and query vectors NPV (1) and NPV (2) are dominated by

NPV (b) in the two dimensions, we can infer that query

vectors NPV (1) and NPV (2) are dominated by NPV (b) at

the full space. To illustrate incremental update of Procedure

Dominated Set Cover Join, we assume that node b changes

to b′, thus b’s NPV (b) moves to NPV (b′), we can simply

update its position counter vector by decreasing/increasing its

position for Dim1. Then, the dominant counter vector of b
becomes {1, 1, 0, 1}. Since no entries have value 2, we infer

the updated b′ will not dominate any query vectors.

(a) NPVs of Q and G (b) Position and dominant

counters for G

Fig. 9. Illustration of dominated set cover method

We analyze the space cost of Procedure Domi-
nated Set Cover Join (Figure 8). For maintaining sorted

order in each dimension, we do not need to consider vectors

having zero entries on that dimension. We define function

non − zero(i) to denote the number of vectors having

non-zero entries on dimension i and L as the total number of

dimensions in the vector space, then the space cost is:

L∑

i=1

non − zero(i) =
k2∑

j=1

|Qj |∑

u=1

j.Lu ≈ L̄

k2∑

j=1

|Qj | = L̄N

Here |Qj | is the size of a query graph j and j.Lu is the

number of non-zero dimensions of vertex u in graph j, and L̄
is the average number of non-zero entries for a vector, and N
is the total number of vertices in query graphs.

Instead of maintaining all L + N counters for each stream

graph node, we only maintain counters of query nodes it

encounters in its non-zero entries so far. In summary, by using

compact form, the total space cost is improved to O(L̄M +
N̄M+L̄N), where N̄ is average number of encountered query

nodes and L̄ is average number of non-zero entries for a vector

and M is the total number of vertices in stream graphs. Both

L̄ and N̄ will be much smaller than L and N respectively.

In terms of the time complexity, it is easy to see that the

complexity of a nested loop algorithm is the lower bound of

this Domincate Set Cover Join procedure.

2) Skyline with early stop join method: In previous subsec-

tion, we proposed an improved method by checking whether

the dominant vector set for a stream graph covers all the

query vectors. Now we consider the complement problem of

dominated set cover problem, search query vectors that can

not be dominated by any vector of the stream graph. In other

words, we want to find the skylines for stream graph vector set

from the query vectors. In order to well illustrate the skyline-

based method for joining graph streams and queries, we first

briefly review the definitions of skylines as follows:

A Monochromatic Skyline, or Skyline, is defined as follows:

Definition 4.3: Given a set V of vectors in a |D|-
dimensional space D, the skyline of D returns the vectors

that are not dominated by the others. Here, vector v dominates

tuple v′, if it holds that: 1) v[i] ≤ v′[i] (no worse than) for

each dimension i ∈ D, and 2) v[j] < v′[j] (better than) for at

least one dimension j ∈ D. [14]

The traditional skyline is proposed for single type data set.

Recently, Bichromatic Skyline for two types of data sets is

proposed, which is defined as:

Definition 4.4: Given two |D|-dimensional space D and

D′, the bichromatic skyline of D with regard to D′ returns

vectors in D that cannot be dominated by any vectors in D′.
In this paper, to adapt to our join problem between stream

vector sets and query vector sets, we use the “dominant”

definition stated in Lemma 4.2, that is, given two node pro-

jection vectors, NPV (u) and NPV (v), if for each dimension

NPV [v] ≥ NPV [u], NPV (v) dominates NPV (u), denoted

as NPV (u) � NPV (v).
Based on the above skyline definitions, we propose a

method to find bichromatic skyline points from query vector

set with regard to stream vectors. Since once we find one

skyline point in the query vector set with respect to stream

vector set, we can conclude that the query graph Q is not

a subgraph of the current stream graph G and remove the

investigating pair from the result candidate set. Therefore, we

called the proposed method skyline with earlystop join. The

naive way to find a skyline point with regard to the stream

vector set is to compare all query vectors with all stream

vectors, as long as we find one skyline point, we stop the

enumeration. This naive solution is of course inefficient. Thus,

we exploit three optimization techniques to speed up searching

for a skyline point. The three techniques can be categorized

as query side optimization and stream side optimization.

First of all, we observe that we do not need to check

all query vectors for skylines. For example, using the same

query and stream graph in Figure 9, Figure 10 (a) shows that

query vector NPV(3) dominates query vectors NPV(1) and

NPV(2). If query vectors NPV(1) or NPV(2) is a skyline with

respect to the stream vectors, due to the transitive property of

399399

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 14, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

(a) skylines of NPVs from Q (b) Counters maintained for

NPVs in G

Fig. 10. Illustration of skyline with early stop method

dominant relationship, query vector NPV(3) will be a skyline

point as well. Furthermore, if there are some stream vectors

dominate query vector NPV(3), they will dominate query

vectors NPV(1) and NPV(2) as well. The above observation

are formalized into the following theorem:

Theorem 4.2: Given a query graph Q and a stream graph G,

if Q is subgraph isomorphic to G, all monochromatic skyline

vectors of query vector set of Q will be dominated by some

vectors of stream graph G.

Proof. According to Lemma 4.2, for any node u in Q, its

vector NPV (u) will be dominated by a node vector from

G, NPV (v), if Q is subgraph isomorphic to G. Thus, for

any monochromatic skylines of Q, they will be dominated by

some vectors of stream graph G. �
According to Theorem 4.2, we propose the first optimiza-

tion: Off-line compute the monochromatic skyline points of

query graph vector set, and only check whether these points

are only bichromatic skylines in the stream vector set. Since

the query set is fixed, we can offline compute the skyline points

for this set and ignore the cost overhead of this preprocessing.

Take points in figure 10 (a) for example, after preprocessing,

we obtain the monochromatic skyline point set of query

vectors as {NPV (3), NPV (4)}. Thus we only need to check

whether these 2 points are bichromatic skylines of the stream

vector set instead of checking all the 4 points.

The second optimization is to adjust the order in which

the query points are processed. For example, if we always

start from checking query point that is least possible to be

a bichromatic skyline point with regard to the stream points,

no early pruning would be possible. Our idea here is that in

order to maximize the possibility of reaching an early stop, we

first sort the query points based on some simple criteria such

that we often can check points with high possibility of being

skyline points first. Here we simply sort the query points by

the maximal value of their non-zero dimensions. The rational

of this heuristic is that a point with a larger value on one

dimension will have less chance to be dominated by other

points on the same dimension.

The optimizations above are based on the query side. After

reordering the monochromatic skyline points of query vectors,

we need to enumerate these points in the pre-sorted order and

check whether at least one of them is a bichromatic skyline

point with regard to the stream vectors. We optimize at stream

side to further reduce the search cost.

The third optimization is that we will not enumerate all

vectors in the stream, but only conduct subspace search within

the non-zero dimensions of the query vector. An important

observation is that a stream vector u will potentially dominate

a query vector v if and only if u dominates v in at least

one of v’s non-zero entries. Take figure 10 (a) for example.

When we are checking whether NPV (3) is a bichromatic

skyline of stream vector set, the vectors that can poten-

tially dominate NPV (3) is NPV (d) and NPV (c), since

NPV (d)(NPV (c)) has larger (equal) value in Dim1 (Dim2)

than NPV (3). Finally, vectors in stream vector set that can

dominate NPV (3) is NPV (c). Since we only conduct sub-

space search within non-zero dimensions of query vectors, the

searching cost can be reduced. To facilitate this optimization,

we project stream vectors into their corresponding single

dimensions. After projection, we check whether the skyline

point u of the query vector set is the bichromatic skyline

for the stream vector set by choosing one of u’s non-zero

dimension and comparing u to all stream vectors appear in

the selected dimension. Furthermore, when we choose one

dimension of stream vectors to access, we heuristically pick

up a dimension potentially has as few vectors to compare

as possible. As shown in figure 10 (b), for each dimension,

we maintain maximal value and cardinality of stream vectors

in this dimension. In a certain dimension, if a query skyline

node has value larger than the max value, this query vector

is a skyline point and we filter out the current checking pair.

For example, in figure 10, if we want to verify query point

NPV (4) is a bichromaitc skyline of the stream vector set or

not, we search in the two dimensions and find NPV (4) has

value no larger than max value of each dimension. Thus, we

have to use the cardinality of this dimension to estimate the

number of vectors potentially need to be compared with query

vector. Among all non-zero dimensions of a query vector,

we take the dimension with minimal cardinality and compare

query vector to vectors only appear in this dimension. When

there is a tie as shown figure 10 (b) that both Dim1 and Dim2

have cardinality of 4, we arbitrarily choose one dimension and

check all stream vectors in that dimension. The detailed steps

of skyline with early stop join method are given in Procedure

Skyline with Earlystop Join (Figure 11).

To analyze the complexity of procedure in figure 11, we

observe in the worst case, we have to enumerate all query

vectors and compare with all stream vectors. Thus the lower

bound of this procedure is O(L̄MN). In average case, with

early stop, the procedure will skip many comparisons if most

of the queries do not appear in streams. In such case , the

complexity is estimated as O(L̄M̄N), where M̄ represents

the average of minimal candidate sizes.

400400

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 14, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

Procedure Skyline with Earlystop Join {
Input: stream graphs {G1, ...Gk1}, query graphs {Q1, ...Qk2}
Output:Reported positive pairs
(1) for each query graph Qj

(2) for each stream graph Gi

(3) for each monotonic skyline node u ∈ Qj {
(4) check counters of non zero Dim of NPV (u)
(5) if exist Dimk, NPV (u) > Max
(6) NPV (u) is a skyline to stream vectors, break
(7) else { select Dimk with minimum Card

to evaluate
(8) if NPV (u) is skyline to stream, break}
(9) if Qj’s skyline nodes are not skylines to Gi

(10) answer ← answer ∪ (i, j)
(11) return answer

Fig. 11. Skyline with Early Stop Join Method

V. EXPERIMENTS

In this section we report the experimental results of effec-

tiveness and efficiency tests on our method. We compare with

GraphGrep[17] and gIndex[24]. We have the following results:

1) Our method has comparable high effectiveness as gIndex

on static real and synthetic datasets, and is better than

that of GraphGrep.

2) Our method has comparable high effectiveness as gIndex

on stream real and synthetic datasets, and is more

efficient than gIndex under such settings.

3) Our method scales well when the number of streams and

graphs increases.

We have done extensive experiments on both static and

stream datasets as well as real and synthetic datasets. For static

datasets, we use a real dataset and a synthetic dataset:

1) The real static dataset we use is an AIDS Antiviral

Screen Dataset containing chemical compounds. This

dataset is available to the public on website of the

Developmental Therapeutics Program[1].

2) The synthetic static dataset we use is generated by a

generator provided by [12]. The tool can generate graphs

with a specified expected average size and a specified

number of distinct labels.

For stream datasets, we use real and synthetic datasets:

1) The real stream dataset is from a project in MIT Media

Lab, namely the Reality Mining Dataset[2]. It contains

the cell phone communication information of a certain

group of MIT people during Jan. 2004 and May 2005.

We use a subset called Device Span Dataset.

2) The synthetic stream dataset we use is again based on

graphs generated by the tool provided by [12]. Based

on the generated graphs, we will randomly generate a

group of graph streams.

All experiments are conducted on a machine with Intel core

2 quad 2.4GHz * 4 CPU and 2GB memory, running on Fedora

Core 7 Linux operating system. We use a few short terms to

refer to several methods. They are: NPV for Node Projected

Vector method of our Node-Neighbor Tree feature, gIndex for

[24]’s method, GGrep for [17]’s method; NL for nested loops

algorithm, DSC for dominated set cover method, Skyline for

skyline with early stop method.

A. Experiments on Static datasets

We use static datasets to test our feature’s general effective-

ness on graph search. For the AIDS dataset, we randomly

select 10,000 graphs from the whole dataset. The selected

sample has average number of nodes 24.8 and average number

of edges 26.8. We use six set of queries, each of which

has 1,000 queries. We denote a query set as Qm where m
means that queries in this set are connected size-m graphs

extracted randomly from the dataset. We test effectiveness

by using Q4, Q8, Q12, Q16, Q20, Q24, the same setting used

in [24]. The synthetic dataset is generated as follows: first,

a set of S seed fragments are generated randomly, the size

of which is determined by a Poisson distribution with mean

value I . The size of each graph is a Poisson random variable

with mean T . Seed fragments are then randomly selected

and inserted into a graph one by one until the graph reaches

its size. Detailed description about the generator is in [12].

We generate a dataset by following parameters as suggested

in [24]: D=10,000, L=200, I=10, T=50, V=4, E=1. Here D

means the number of graphs to generate, L means the number

of frequent patterns as possible frequent graphs, I means the

average size of frequent patterns, T means the average graph

size, and V means the number of distinct node labels, and E

means the number of distinct edge labels. We also generate

the query sets with the same parameter except that we change

T to a smaller value and change D to 1,000.

1) Maximum depth of node-neighbor tree: Before compar-

ing to other methods, we first conduct self test on the selection

of maximum depth of the node-neighbor tree. In figure 12(a)

and 12(b), the y-axis represents the size of candidates after

filtering. We can see that using depth more than 3 will not help

much in reducing the size of candidates. Thus we conclude that

it suffices to use depth at most 3 for effective filtering.

2) Effectiveness test on static data: Based on the previous

results, we fix the depth to 3 and continue to compare the

effectiveness with GraphGrep and gIndex.

We set following parameters for GraphGrep and gIndex: For

GraphGrep we use default setting for index construction. Thus,

GraphGrep indexes all paths up to length 4. The reason is that

it takes too long for GraphGrep to finish enumerating paths

at a longer length, i.e., 10. For gIndex, we have two settings,

”gIndex1” is to set the maximum fragment size maxL to be

10; and the maximum support Θ to be 0.1N . These are the

default parameters in [24]. Another setting of gIndex, namely

the ”gIndex2” setting is to set maximum fragment size to be

3, thus the support becomes 1 according to [24], i.e., indexing

all structures up to size 3. This setting is for better running

time and is used in stream dataset only.

Figure 13(a) demonstrates the comparison of performance

in the AIDS dataset. We can see our method has compa-

rable pruning power as gIndex, and is much effective than

GraphGrep, which will report many false positives. Then we

compare the effectiveness on the synthetic dataset. We can see

from figure 13(b), again our feature has comparable pruning

power as gIndex and is much more effective than GraphGrep.

401401

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 14, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

1

10

100

1000

10000

24 20 16 12 8 4

C
an

di
d

at
e

an
sw

er
 s

et
 s

iz
e

Query Size

�������
�������
������	
������

(a) Varying depth on AIDS data

1

10

100

1000

20 15 10

C
an

di
d

at
e

an
sw

er
 s

et

si
ze

Query size

�������

�������

������	

������

(b) Varying depth on syn. data

Fig. 12. Selection of depth

1

10

100

1000

10000

24 20 16 12 8 4

C
an

di
da

te
 a

ns
w

er
 s

et
 s

iz
e

Query Size

gIndex1
NPV
GGrep

(a) Comparison on AIDS data

1

10

100

1000

10000

20 15 10

C
an

di
da

te
 a

ns
w

er
 s

et
 s

iz
e

Query size

gIndex1
NPV
GGrep

(b) Comparison on syn. data

Fig. 13. Comparison of effectiveness on static data

0%

20%

40%

60%

Device Span Dataset

C
an

di
da

te
 a

ns
w

er
 s

et

si
ze

 (
pe

rc
en

t)

NPV
gIndex1
gIndex2
GGrep

(a) Effectiveness on real data

0%

30%

60%

90%

Sparse Dense

C
an

di
da

te
 a

ns
w

er
 s

et

si
ze

 (p
er

ce
nt

)

Graph type

NPV
gIndex1
gIndex2
GGrep

(b) Effectiveness on syn. data

Fig. 14. Comparison of effectiveness on stream data

0

5

10

15

Device Span Dataset

T
im

e
(s

ec
on

ds
)

NPV
gIndex1
gIndex2
GGrep

(a) Efficiency on real data

0

5

10

15

Sparse Dense

T
im

e
(s

ec
on

ds
)

Graph type

NPV
gIndex1
gIndex2
GGrep

(b) Efficiency on syn. data

Fig. 15. Comparison of efficiency on stream data

0

0.3

0.6

0.9

15 25

T
im

e
(s

ec
on

ds
)

Number of queries

��

���

����	
�

(a) Varying queries on real data

0

1.5

3

4.5

10 30 50 70

T
im

e
(s

ec
on

d
s)

Number of queries

��

���

����	
�

(b) Varying queries on syn. sparse data

0

2

4

6

10 30 50 70

T
im

e
(s

ec
on

ds
)

Number of queries

��

���

����	
�

(c) Varying queries on syn. dense data

Fig. 16. Varying queries on stream data

B. Experiments on Stream datasets

We test on effectiveness and efficiency of our methods on

both real and synthetic stream datasets.

For the real dataset, we use a subset of the Reality Mining

Dataset from MIT Media Lab[2]. The dataset records the

cellphone activity for m=n=97 users from two different labs

in MIT. The records are ranging from Jan 2004 to May 2005.

For our experiment, we extract the Device Span subset of the

data. Device Span dataset is collected on the same 97 users

whose cellphones periodically scan for nearby phones and

computers over Bluetooth. We convert the data into graphs

by the following way: We group all proximity information

402402

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 14, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

0

0.3

0.6

0.9

15 25

T
im

e
(s

ec
on

ds
)

Number of streams

��

���

����	
�

(a) Varying number of streams on real data

0

1.5

3

4.5

10 30 50 70

T
im

e
(s

ec
on

ds
)

Number of streams

��

���

����	
�

(b) Varying number of streams on syn. sparse data

0

2

4

6

10 30 50 70

T
im

e
(s

ec
on

d
s)

Number of streams

��

���

����	
�

(c) Varying number of streams on syn. dense data

Fig. 17. Varying number of streams on stream data

by days. In total we have 300 distinct groups thus we have

a stream graph of 300 timestamps. In a certain timestamp, a

person is represented by a vertex in the graph and there is an

edge between two vertices if in that day there exists proximity

information record for that two people. We generate queries as

follows: we randomly pick up graphs among the series having

size of edges between 20 to 40. Any two people whose id

values are congruent modulo 10 to each other will be labeled

into the same type. By such way, we derive a graph stream

with 10 kinds of distinct labels. To simulate multiple streams,

we randomly reorder the original graph series to derive new

graph streams. We generate 25 query graphs and 25 streams.

For synthetic dataset we first generate graphs using the tool

provided by [12]. We set the parameters to D=70, L=20, I=10,

T=40, V=4, E=1 to generate 70 basic query graphs. Then for

each query graph we increase its number of vertices to 1.5

times of its original size by adding randomly labeled vertices

into it. For each derived graph, we assign probability p1 as

edge appearing probability and p2 as edge disappearing proba-

bility for each vertex-vertex pair. After that, we randomly flip a

biased coin base on the appearing/disappearing probability for

each vertex-vertex pair for 1000 timestamps, resulting a 1000

timestamp graph stream. Thus in total we have 70 streams each

of which has 1000 timestamps. Setting different values of p1

and p2 will affect the property of stream graph significantly.

We set p1 = 20% and p2 = 15% for generating dense graph

and p1 = 10% and p2 = 30% for generating sparse graph. We

will conduct experiments on both sparse and dense situations.

1) Effectiveness test of stream data: Figure 14 illustrates

the average percent of candidate sizes reported by the three

methods. Here we use our dominated set cover method to

compare with the other two. In this experiment we set the

number of queries and number of streams to the maximum

values in their dataset, i.e., 25 queries and 25 streams for the

real dataset and 70 queries and 70 streams for the synthetic

dataset. According to the figure, we can see that GraphGrep

has a very large candidate size. GraphGrep will report half

of all stream-query pairs as candidates. On the other hand,

our method and gIndex perform quite well. Here gIndex2

means the setting for better running time and gIndex1 rep-

resents the setting for better effectiveness. For the test on

the real dataset, our method reports less than 6% data as

candidates, while gIndex1 and gIndex2 report around 3% and

10% data as candidates, respectively. For sparse and dense

synthetic datasets, our method reports around 17% and 30%
respectively, while gIndex1 reports 14% and 26% and gIndex2

reports 22% and 36% respectively. The reason gIndex1 has

such good performance is that it conducts frequent graph

mining to extract powerful filtering features up to size 10.

Our method is fast and has comparable good effectiveness.

2) Efficiency test of stream data: Figure 15 illustrates the

average cost per timestamp for GraphGrep, gIndex and our

method to process the stream graph search. Here we use our

dominated set cover method to compare with the other two.

And in this experiment we also set the numbers of queries

and streams to maximum in their dataset. We can see that

gIndex1 is much more costly than the rest of the methods. The

reason is that gIndex has to perform mining the stream graphs

at each timestamp. The mining cost is so high that gIndex

becomes very inefficient in such settings. gIndex2 runs faster.

However, in such settings the effectiveness goes down a lot.

Both our method and GraphGrep have low cost as well due

to not performing graph mining to generate feature structures.

We test the scalability of our two stream-query joining

methods by varying the number of queries and the number

streams. Figure 16 demonstrates average processing cost per

timestamp for different number of queries when the number

of streams is fixed to maximum. We can see the processing

cost increases as we increase the size of queries. Also, we

can see that increasing the number of queries will not affect

the overall cost much for our proposed two joining methods.

Figure 17 illustrates average processing cost per timestamp

for different number of real and synthetic (sparse and dense)

graph streams when the number of queries is fixed to the

maximum. We can find that with the increase of the number

of streams, the processing costs of our two proposed methods

increase linearly on all the data sets. We can also observe that

dominated set cover method achieves the best performance

among the three compared methods in synthetic dataset and

skyline with early stop method is better in the real dataset. The

reason is that in the synthetic dataset, the stream graphs are

relatively denser than stream graphs in the real dataset. This

indicates that each vertex’s NPV of the query graphs in the

synthetic dataset is always dominated by some vertex’s NPV

in the synthetic stream graphs. In other words, the chance of

earlier stop for the skyline method is small.

VI. RELATED WORK

As a powerful modeling tool, graph has been applied in

various fields for many applications. A lot of interesting works

have been done in general subgraph search problem. [17]

proposes GraphGrep to enumerate paths as indexing features

403403

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 14, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

for filtering. In the paper a maximum path length controls the

size of all possible path features. Because of the limitation

of path features, [24] proposes gIndex to index frequent

subgraphs as filtering features. Because of anti-monotonicity,

once a subgraph pattern is not frequent, any supergraph that

contains it will not be frequent as well. In query processing,

the paper uses a cost model to estimate which index entries

to retrieve. [8] proposes closure-tree to organize graphs into a

tree based multi-dimensional index and used graph closures as

bounding box. In verification of the existence of a subgraph

pattern, it uses maximum matching to refine candidate vertex

set. The method’s pruning power is very effective, but the

cost of conducting maximum matching at each iteration is

relatively high. [11] uses line, circle and star as the basic

features and converts the graph query task into subsequence

matching problem. It is very suitable for particular domain

usage, such as searching chemical compounds. [27] uses

frequent subtrees as features and use central distance to further

prune candidate size. In query processing, the query graph

is partitioned into several frequent subtrees. By checking

candidate graphs in those subtrees’ index entries, the paper

verifies subgraph isomorphism by reconstructing the graph

using these subtree partitions. [23] decomposes graph into

full set of subgraphs and index the hash value of canonical

forms of the subgraphs. One drawback of this method is

scalability since the size of index may be exponential. [19]

index fragments of graph and join the retrieved part for query

fragments. It is an approximate graph matching method. [4]

uses frequent subgraphs as indexing features. Frequent graph

queries are answered directly. Only infrequent queries need to

be verified for subgraph isomorphism.[28] found that indexing

frequent tree patterns plus a few subgraph patterns, subgraph

search performance could be better than indexing all subgraph

patterns. [25] proposes partition based index and search for

superimposed graph search. [29] proposes GCoding for graph

search. Its effectiveness is high compared to other methods.

However the computation of eigenvalue features is too costly

for stream setting. [26] discusses feature selection for substruc-

ture similarity search. The optimal feature selection is proved

by the paper NP-complete. Thus the paper proposes approx-

imate algorithms for finding a good selection.[20] proposes

TALE for approximate large graph pattern matching. It uses

hashing to encode each node’s neighborhood information. By

considering matching of at most two step neighbors, it prunes

many unnecessary branches. [3] proposes methods for graph

containment search where given a query graph the goal is to

find all graphs in database that are contained by the query.

[9] proposes a general graph query language for a large graph

database. [16] proposes an improved subgraph isomorphism

checking method using tree features. The paper also integrates

indexing with subgraph searching. Thus not only subgraph

isomorphism verification time is reduced, the filtering and

search time is reduced as well. Compared to all the previous

works on subgraph search, our work is different because our

methods are proposed to conduct approximate subgraph search

over graph streams, while all the previous works focus on

search over static graph databases.

VII. CONCLUSIONS

In this paper, we have studied the problem of continuous

subgraph search over graph streams. We have proposed an

effective light-weight feature structure node-neighbor tree for

effective filtering. We further proposed a novel encoding

method to transform node-neighbor trees into numerical vec-

tors and transform the approximate subgraph search problem

to dominant relationship checking in the vector space. More-

over, we have proposed two different strategies to efficiently

search in the space. Extensive experiments have verified the

efficiency and effectiveness of our proposed methods.

ACKNOWLEDGMENT

Funding for this work was provided by Hong Kong RGC

Grant No. 611608 and National Natural Science Foundation

of China (NSFC) under Grant No. 60763001 and Grant No.

60736013.

REFERENCES

[1] http://dtp.nci.nih.gov. Developmental Therapeutics Program.
[2] http://reality.media.mit.edu. Reality Mining Dataset.
[3] Chen et al. Towards graph containment search and indexing. VLDB ’07.
[4] Cheng et al. Fg-index: towards verification-free query processing on

graph databases. SIGMOD ’07.
[5] Fortin et al. The graph isomorphism problem. Department of Computing

Science, University of Alberta.
[6] Gao et al. Continually evaluating similarity-based pattern queries on a

streaming time series. SIGMOD ’02.
[7] He et al. Blinks: ranked keyword searches on graphs. SIGMOD ’07.
[8] He et al. Closure-tree: An index structure for graph queries. ICDE ’06.
[9] He et al. Graphs-at-a-time: Query language and access methods for

graph databases. SIGMOD ’08.
[10] Hulgeri et al. Keyword searching and browsing in databases using banks.

ICDE ’02.
[11] Jiang et al. Gstring: A novel approach for efficient search in graph

databases. ICDE’07.
[12] Kuramochi M. et al. Frequent subgraph discovery. ICDM 2001.
[13] Lian et al. Similarity match over high speed time-series streams. ICDE

’07.
[14] Papadias et al. An optimal and progressive algorithm for skyline queries.

SIGMOD ’03.
[15] Shamir et al. Faster subtree isomorphism. J. Algorithms, 33(2).
[16] Shang et al. Taming verification hardness: an efficient algorithm for

testing subgraph isomorphism. VLDB ’08.
[17] Shasha et al. Algorithmics and applications of tree and graph searching.

PODS ’02.
[18] Sun et al. Graphscope: parameter-free mining of large time-evolving

graphs. KDD ’07.
[19] Tian et al. Saga: a subgraph matching tool for biological graphs.

Bioinformatics, 23(2).
[20] Tian et al. Tale: A tool for approximate large graph matching. ICDE’08.
[21] Trissl et al. Fast and practical indexing and querying of very large

graphs. SIGMOD ’07.
[22] Wang et al. Dual labeling: Answering graph reachability queries in

constant time. ICDE’06.
[23] Williams D.W. et al. Graph database indexing using structured graph

decomposition. ICDE’07.
[24] Yan et al. Graph indexing: a frequent structure-based approach. SIG-

MOD ’04.
[25] Yan et al. Searching substructures with superimposed distance. ICDE

’06.
[26] Yan et al. Substructure similarity search in graph databases. SIGMOD

’05.
[27] Zhang et al. Treepi: A novel graph indexing method. ICDE’07.
[28] Zhao et al. Graph indexing: tree + delta <= graph. VLDB ’07.
[29] Zou et al. A novel spectral coding in a large graph database. EDBT’08.

404404

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 14, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

