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Abstract

Mathematical modeling is used as a Systems Biology tool to answer biological questions, and more precisely, to

validate a network that describes biological observations and predict the effect of perturbations. This article presents

an algorithm for modeling biological networks in a discrete framework with continuous time.

Background: There exist two major types of mathematical modeling approaches: (1) quantitative modeling,

representing various chemical species concentrations by real numbers, mainly based on differential equations and

chemical kinetics formalism; (2) and qualitative modeling, representing chemical species concentrations or activities

by a finite set of discrete values. Both approaches answer particular (and often different) biological questions.

Qualitative modeling approach permits a simple and less detailed description of the biological systems, efficiently

describes stable state identification but remains inconvenient in describing the transient kinetics leading to these

states. In this context, time is represented by discrete steps. Quantitative modeling, on the other hand, can describe

more accurately the dynamical behavior of biological processes as it follows the evolution of concentration or

activities of chemical species as a function of time, but requires an important amount of information on the

parameters difficult to find in the literature.

Results: Here, we propose a modeling framework based on a qualitative approach that is intrinsically continuous in

time. The algorithm presented in this article fills the gap between qualitative and quantitative modeling. It is based on

continuous time Markov process applied on a Boolean state space. In order to describe the temporal evolution of the

biological process we wish to model, we explicitly specify the transition rates for each node. For that purpose, we built

a language that can be seen as a generalization of Boolean equations. Mathematically, this approach can be translated

in a set of ordinary differential equations on probability distributions. We developed a C++ software, MaBoSS, that is

able to simulate such a system by applying Kinetic Monte-Carlo (or Gillespie algorithm) on the Boolean state space.

This software, parallelized and optimized, computes the temporal evolution of probability distributions and estimates

stationary distributions.

Conclusions: Applications of the Boolean Kinetic Monte-Carlo are demonstrated for three qualitative models: a toy

model, a published model of p53/Mdm2 interaction and a published model of the mammalian cell cycle. Our

approach allows to describe kinetic phenomena which were difficult to handle in the original models. In particular,

transient effects are represented by time dependent probability distributions, interpretable in terms of cell populations.
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Background
Mathematical models of signaling pathways are tools that

answer biological questions. The most commonly used

mathematical formalisms to answer these questions are

ordinary differential equations (ODEs) and Boolean mod-

eling.

Ordinary differential equations (ODEs) have been

widely utilized to model signaling pathways. It is the most

natural formalism for translating detailed reaction net-

works into a mathematical model. Indeed, equations can

be directly derived using mass action laws, Michaelis-

Menten kinetics or Hill functions for each reaction

according to the observed behaviors. This framework

has limitations, though. The first one concerns the dif-

ficulty to assign values to the kinetic parameters of the

model. Ideally, these parameters would be extracted from

experimental data. However, they are often chosen by

the modeler so as to fit qualitatively the expected pheno-

types. The second limitation concerns the cell population

heterogeneity. In this case, ODEs are no longer appropri-

ate since the approach is deterministic and thus focuses

on the average behavior. To include non-determinism, an

ODE model needs to be transformed into a stochastic

chemical model. In this formalism, a master equation is

written on the probabilities of the number ofmolecules for

each species. In the translation process, the same param-

eters used in ODEs (more particularly in ODEs written

with mass action law) can be used in the master equation,

but in this case, the number of initial conditions explodes

along with the computation time.

Boolean (or logical) formalism is another formalism

used to model signaling pathways where genes/proteins

are parameterized by 0s and 1s only. It is the most nat-

ural formalism to translate an influence network into a

mathematical model. In such networks, each node corre-

sponds to a species and each arrow to an interaction or an

influence (positive or negative). In a Boolean model, a log-

ical rule linking the inputs is assigned to each node. As a

result, there are no real parameter values to adjust besides

choosing the appropriate logical rules that best describe

the system. In this paper, we will refer to a state in which

each node of the influence network has a Boolean value

as a network state, and the set of all possible transitions

between the network states as a transition graph. There
are two types of transition graphs, one deduced from the

synchronous update strategy [1], for which all the nodes

that can be updated are updated in one transition, and

another one deduced from the asynchronous update strat-

egy [2], for which only one node, of all the possible nodes,

is updated in one transition. In the Boolean formalism,

each transition can be interpreted as a “time” step, though

this “time” does not characterize real biological time but

rather an event. Stochasticity is an important aspect when

studying cell populations. In Boolean framework, it can

be applied: on nodes (by randomly flipping a node state

[3,4]), on the logical rules (by allowing to change an AND

gate into an OR gate [5]), and on the update rules (by

defining the probability and the priority of changing one

particular Boolean value before others in an asynchronous

strategy [6] or by adding noise to the whole system in a

synchronous strategy [7]). One of the main drawbacks of

the Boolean approach is the explosion of solutions. In an

asynchronous update strategy, the size of the transition

graph can reach 2#nodes.

Both logical and continuous frameworks have advan-

tages and disadvantages above-mentioned. We propose

here to combine some of the advantages of both

approaches in an algorithm that we call the “Boolean

Kinetic Monte-Carlo” algorithm (BKMC). It consists of

a natural generalization of the asynchronous Boolean

dynamics [2], with a direct probabilistic interpretation. In

BKMC framework, the dynamics is parameterized by a

biological time and the order of update is noisy, which is

less strict than priority classes introduced in GINsim [8].

A BKMC model is specified by logical rules as in regular

Boolean models but with a more precise information: a

numerical rate is added for each transition of each node.

BKMC is not intended to replace existing tools but

rather to complement them. It is best suited to model

signaling pathways in the following cases:

• The model is based on an influence network, because

BKMC is a generalization of the asynchronous

Boolean dynamics. See “Examples” section. Note that

this is a common requirement for most of Boolean

software.
• The model describes processes for which information

about the duration of a biological process is known,

because in BKMC, time is parameterized by a real

number. This is typically the case when studying

developmental biology, where animal models provide

time changes of gene/protein activities [9].
• The model describes heterogeneous cell population

behavior, because BKMC has a probabilistic

interpretation. For example, modeling heterogeneous

cell population can help understand tissue formation

based on cell differentiation [10].
• The model can contain many nodes (up to 64 in the

present implementation), because BKMC is a

simulation algorithm that converges fast. This can be

useful for big models that have already been modeled

with a discrete time Boolean method [11], in order to

obtain a finer description of transient effects (see

webpage for examples of published models: https://

maboss.curie.fr).

Previous publishedworks have also introduced a contin-

uous time approach in the Boolean framework([12-18]).

https://maboss.curie.fr
https://maboss.curie.fr
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In this article, we will first review some of these works and

present BKMC algorithm. We will then describe the C++

software, MaBoSS, developed to implement BKMC algo-

rithm and finally illustrate its use with three examples, a

toy model, a published model of p53-MDM2 interaction

and a published model of the mammalian cell cycle.

All abbreviations, definitions, algorithms and estimates

used in this article can be found in Additional file 1.

Throughout the article, all terms that are italicized are

defined in the Additional file 1, “Definitions”.

Results and discussion

BKMC for continuous time Booleanmodel

Continuous time in Booleanmodeling: past and present

In Boolean approaches for modeling networks, the state

of each node of the network is defined by a Boolean

value (node state) and the network state by the set of

node states. Any dynamics in the transition graph is rep-

resented by sequences of network states. A node state is

based on the sign of the input arrows and the logic that

links them. The dynamics can be deterministic in the case

of synchronized update [1], or non-deterministic in the

case of asynchronized update [2] or probabilistic Boolean

networks [7].

The difficulty to interpret the dynamics in terms of bio-

logical time has led to several works that have generalized

Boolean approaches. These approaches can be divided

in two classes that we call explicit and implicit time for

discrete steps.

The explicit time for discrete steps consists of adding a

real parameter to each node state. These parameters cor-

respond to the time associated to each node state before

it flips to another one ([12,13]). Because data about these

time lengths are difficult to extract from experimental

studies, some works have included noise in the definition

of these parameters [18]. The drawback of this method

is that the computation of the Boolean model becomes

sensitive to both the type of noise and the initial con-

ditions. As a result, these time parameters become new

parameters that need to be tuned carefully and thus add

complexity to the modeling.

The implicit time for discrete steps consists of adding

a probability to each transition of the transition graph in

the case of non-deterministic transitions (asynchronous

case). It is argued that these probabilities could be inter-

preted as specifying the duration of a biological process.

As an illustration, let us assume a small network of two

nodes, A and B. At time t, A and B are inactive: [AB] = [00].

In the transition graph, there exist two possible transitions

at t+1: [00] → [01] and [00] → [10]. If the first transition

has a significant higher probability than the second one,

then we can conclude that B will have a higher tendency

to activate before A. Therefore, it is equivalent to say that

the activation of B is faster than the activation of A. Thus,

in this case, the notion of time is implicitly modeled by

setting probability transitions. In particular, priority rules,

in the asynchronous strategy, consist of putting some of

these probabilities to zero [6]. In our example, if B is faster

than A then the probability of the transition [00] → [10]

is zero. As a result, the prioritized nodes always activate

before the others. From a different perspective but keep-

ing the same idea, Vahedi and colleagues [14] have set up

a method to deduce explicitly these probabilities from the

duration of each discrete step. With the implementation

of implicit time in a Booleanmodel, the dynamics remains

difficult to interpret in terms of biological time.

As an alternative to these approaches, we propose

BKMC algorithm.

Properties of BKMC algorithm

BKMC algorithm was built such as to meet the following

principles:

• The state of each node is given by a Boolean number

(0 or 1), referred to as node state;
• The state of the network is given by the set of node

states, referred to as network state;
• The update of a node state is based on the signs

linking the incoming arrows of this node and the

logic;
• Time is represented by a real number;
• Evolution is stochastic.

We choose to describe the time evolution of network

states by a Markov process with continuous time, applied

to the asynchronous transition graph. Therefore, the

dynamics is defined by transition rates inserted in a mas-

ter equation (see Additional file 1, “Basic information on

Markov process”, section 1.1).

Markov process for Booleanmodel

Consider a network of n nodes (or agents, that can rep-

resent any species, i.e. mRNA, proteins, complexes, etc.).

In a Boolean framework, the network state of the sys-

tem is described by a vector S of Boolean values, i.e. Si ∈

{0, 1}, i = 1, . . . , n where Si is the state of the node i. The
set of all possible network states, also referred to as the

network state space, will be called �.

A stochastic description of the state evolution is repre-

sented by a stochastic process s : t �→ s(t) defined on

t ∈ I ⊂ R applied on the network state space, where I

is an interval: for each time t ∈ I ⊂ R, s(t) represents a

random variable applied on the network state space. Thus,

the probability of these random variables is written as:

P [s(t) = S] ∈ [ 0, 1] for any state S ∈ �

with
∑

S∈�

P [s(t) = S] = 1 (1)
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Notice that for all t, s(t) are not independent, therefore

P
[

s(t) = S, s(t′) = S′
]

�= P [s(t) = S]P
[

s(t′) = S′
]

. From

now on, we define P [s(t) = S] as instantaneous probabil-

ities. Since the instantaneous probabilities do not define

the full stochastic process, all possible joint probabilities

should also be defined.

In order to simplify the stochastic process, Markov

property is imposed. It can be expressed in the following

way: “the conditional probabilities in the future, related to

the present and the past, depend only on the present” (see

Additional file 1, “Basic information on Markov process”,

section 1.1 for the mathematical definition). The formal

definition of aMarkov process is a stochastic process with

the Markov property.

AnyMarkov process can be defined by (see Van Kampen

[19], chapter IV):

1. An initial condition:

P [s(0) = S] ;∀S ∈ � (2)

2. Conditional probabilities (of a single condition):

P
[

s(t) = S|s(t′) = S′
]

;∀S, S′ ∈ � ;∀t′, t ∈ I; t′ < t

(3)

Concerning time, two cases can be considered:

• If time is discrete: t ∈ I = {t0, t1, · · · }, it can be shown

that all possible conditional probabilities are function

of transition probabilities [20]:
P

[

s(ti) = S|s(ti−1) = S′
]

. In that case, a Markov

process is often named a Markov chain.
• If time is continuous: t ∈ I =[ a, b], it can be shown

that all possible conditional probabilities are function

of transition rates [19]: ρ(S′→S)(t) ∈[ 0,∞].

Notice that a discrete time Markov process can be

derived from continuous time Markov process, and is

called a Jump Process with the following transition proba-

bilities:

PS→S′ ≡
ρS→S′

∑

S′′∈� ρS→S′′

If the transition probabilities or transition rates are time

independent, the Markov process is called a time inde-

pendent Markov process. In BKMC, only this case will be

considered. For a time independent Markov process, the

transition graph can be defined as follows: a transition

graph is a graph in�, with an edge between S and S′ if and

only if ρS→S′ > 0 (or P
[

s(ti) = S|s(ti−1) = S′
]

> 0 if time

is discrete).

Asynchronous Boolean dynamics as a discrete timeMarkov

process

Asynchronous Boolean dynamics [2] is widely used in

Booleanmodeling. It can be easily interpreted as a discrete

time Markov process [21,22] as shown below.

In the case of asynchronous Boolean dynamics, the sys-

tem is given by n nodes (or agents), with a set of directed

arrows linking these nodes and defining a network. For

each node i, a Boolean logic Bi(S) is specified and depends

only on the nodes j for which there exists an arrow from

node j to i (e.g. B1 = S3 AND NOTS4, where S3 and S4 are

the Boolean values of nodes 3 and 4 respectively, and B1 is

the Boolean logic of node 1). The notion of asynchronous

transition (AT) can be defined as a pair of network states

(S, S′) ∈ �, written (S → S′) such that

S′
j = Bj(S) for a given j

S′
i = Si for i �= j (4)

To define a Markov process, the transition probabili-

ties P
[

s(ti) = S|s(ti−1) = S′
]

can be defined: given two

network states S and S′, let γ (S) be the number of asyn-

chronous transitions from S to all possible states S′. Then

P
[

s(ti) = S′|s(ti−1) = S
]

= 1/γ (S) if (S → S′) is an AT

P
[

s(ti) = S′|s(ti−1) = S
]

= 0 if (S → S′) is not an AT

(5)

In this formalism, the asynchronous Boolean dynam-

ics completely defines a discrete time Markov pro-

cess when the initial condition is specified. Notice that

here the transition probabilities are time independent,

i.e. P
[

s(ti) = S|s(ti−1) = S′
]

= P
[

s(ti+1) = S|s(ti) = S′
]

.

Therefore, the approaches, mentioned in section “Con-

tinuous time in Boolean modeling: past and present”, that

introduce time implicitly by adding probabilities to each

transition of the transition graph, can be seen as a gener-

alization of the definition of γ (S).

Continuous timeMarkov process as a generalization of

asynchronous Boolean dynamics

To transform the discrete time Markov process described

above in a continuous time Markov process, tran-

sition probabilities should be replaced by transition

rates ρ(S→S′). In that case, conditional probabilities are

computed by solving a master equation (equation 2 in

Additional file 1, “Basic information on Markov process”,

section 1.1). We present below the corresponding numer-

ical algorithm, the Kinetic Monte-Carlo algorithm [23].

Because we want a generalization of the asynchronous

Boolean dynamics, transition rates ρ(S→S′) are non-zero

only if S and S′ differ by only one node. In that case,

each Boolean logic Bi(S) is replaced by two functions
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R
up/down
i (S) ∈[ 0,∞[. The transition rates are defined as

follows: if i is the node that differs from S and S′, then

ρ(S→S′) =R
up
i (S) if Si = 0

ρ(S→S′) =Rdown
i (S) if Si = 1 (6)

where R
up
i corresponds to the activation rate of node i,

and Rdown
i corresponds to the inactivation rate of node i.

Therefore, the continuous Markov process is completely

defined by all these Rup/down and an initial condition.

Asymptotic behavior of continuous timeMarkov process

In the case of continuous time Markov process, instan-

taneous probabilities always converge to a stationary dis-

tribution (see Additional file 1, “Basic information on

Markov process”, corollary 2, section 1.2). A station-

ary distribution of a given Markov process corresponds

to the set of instantaneous probabilities of a stationary

Markov process which has the same transition probabil-

ities (or transition rates) as the given discrete (or contin-

uous) time Markov process. A stationary Markov process

has the following property: for every joint probability

P
[

s(t1) = S(1), s(t2) = S(2), . . .
]

and ∀τ :

P
[

s(t1) = S(1), s(t2) = S(1), . . .
]

= P
[

s(t1 + τ) = S(1), s(t2 + τ) = S(1), . . .
]

(7)

Notice that instantaneous probabilities P [s(t) = S] of a

stationary stochastic process are time independent.

The asymptotic behavior of a continuous time Markov

process can be detailed by using the concept of indecom-

posable stationary distributions: indecomposable station-

ary distributions are stationary distributions that cannot

be expressed as a linear combination of different sta-

tionary distributions. A linear combination of stationary

distributions is also a stationary distribution, since instan-

taneous probabilities are solutions of a master equation

which is linear (see Additional file 1, “Basic information

on Markov process”, equation 2, section 1.1). Therefore, a

complete description of the asymptotic behavior is given

by the linear combination of indecomposable stationary

distributions to which the Markov process converges.

Oscillations and cycles

In order to describe a periodic behavior, the notion of

cycle and oscillation for a continuous time Markov pro-

cess is defined precisely.

A cycle is a loop in the transition graph. This is a topo-

logical characterization in the transition graph that does

not depend on the exact value of the transition rates. It

can be shown that a cycle with no outgoing edges corre-

sponds to an indecomposable stationary distribution (see

Additional file 1, “Basic information on Markov process”,

corollary 1, section 1.2).

The question is then to link the notion of cycle to

that of periodic behavior of instantaneous probabilities.

The set of instantaneous probabilities cannot be perfectly

periodic. They can display a damped oscillating behavior,

or none at all (see Additional file 1, “Basic information

on Markov process”, section 1.3). A damped oscillatory

Markov process can be formally defined as a continuous

time process that has at least one instantaneous probabil-

ity with an infinite number of extrema.

According to theorems described in Additional file 1

(“Basic information onMarkov process”, theorems 6-8 and

Corollary 3, section 1.3), a necessary condition for hav-

ing damped oscillations is that the transition matrix has at

least one non-real eigenvalue (see Additional file 1, “Basic

information on Markov process”, equation 4, section 1.1).

In that case, there always exists an initial condition that

produces damped oscillations. For the transition matrix

to have a non-real eigenvalue, a Markov process needs to

have a cycle. However, the reverse is not true: a Markov

process with a cycle does not necessarily imply the exis-

tence of a non-real eigenvalue in the transition matrix. In

the toy model of a single cycle, presented in the “Exam-

ples” section, non-real eigenvalues may or may not exist,

according to different values of transition rates.

BKMC: Kinetic Monte-Carlo (Gillespie algorithm) applied to

continuous time asynchronous Boolean Dynamics

It has been previously stated that a continuous time

Markov process is completely defined by its initial con-

dition and its transition rates. For computing any con-

ditional probability (and any joint probability), a set of

linear differential equations has to be solved (the mas-

ter equation). Theoretically, the master equation can be

solved exactly by computing the exponential of the tran-

sition matrix (see Additional file 1, “Basic information

on Markov process”, equation 5, section 1.1). However,

because the size of this transition matrix is 2n × 2n, the

computation soon becomes impossible if n is large. To

remedy this problem, it is possible to use a simulation

algorithm that samples the probability space by comput-

ing time trajectories in the transition graph.

The Kinetic Monte-Carlo [23] (or Gillespie algorithm

[24]) is a simple algorithm for exploring the probability

space of a Markov process defined by a set of transition

rates. In fact, it can be understood as a formal definition

of a continuous timeMarkov process. This algorithm pro-

duces a set of realizations or stochastic trajectories of the

Markov process, given a set of uniform random numbers

in [ 0, 1]. By definition, a trajectory Ŝ(t) is a function from a

time window [ 0, tmax] to �. The set of stochastic trajecto-

ries represents the given Markov process in the sense that

these trajectories can be used to compute probabilities.

A finite set of these trajectories is produced, then, from

this finite set, probabilities are estimated (as described in
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“Methods” section). The algorithm is based on an iterative

step: from a state S at time t0 (given two uniform random

numbers), it produces a transition time δt and a new state

S’, with the following interpretation: the trajectory Ŝ(t) is

such that Ŝ(t) = S for t ∈[ t0, t0 + δt] and Ŝ(t0 + δt) = S′.

Iteration of this step is done until a specified maximum

time is reached. The initial state of each trajectory is based

on the (probabilistic) initial condition that also needs to

be specified.

The exact iterative procedure is the following. Given S

and two uniform random numbers u,u′ ∈[ 0, 1]:

1. Compute the total rate of possible transitions for

leaving state S:

ρtot ≡
∑

S′ ρ(S→S′).

2. Compute the time of the transition:

δt ≡ − log(u)/ρtot
3. Order the possible new states S′(j), j = 1 . . . and their

respective transition rates ρ(j) = ρ
(S→S′(j))

.

4. Compute the new state S′(k) such that
∑k−1

j=0 ρj < (u′ρtot) ≤
∑k

j=0 ρj (by convention,

ρ(0) = 0).

This algorithm will be referred to as Boolean Kinetic

Monte-Carlo or BKMC.

Practical use of BKMC, throughMaBoSS tool

Biological data are translated into an influence network

with logical rules associated to each node of the net-

work. The value of one node depends on the value of

the input nodes. For BKMC, another layer of informa-

tion is provided when compared to the standard defini-

tion of Boolean models: transition rates are provided for

all nodes, specifying the rates at which the node turns

on and off. This refinement conserves the simplicity of

Boolean description but allows to reproduce more accu-

rately the observed biological dynamics. The parameters

do not need to be exact as it is the case for nonlinear ordi-

nary differential equation models, but they can be used

to illustrate the relative speed of reactions. We developed

a software tool, MaBoSS, that applies BKMC algorithm.

MaBoSS stands for Markov Boolean Stochastic Simulator.

How to build amathematical model usingMaBoSS

Once MaBoSS is installed (see webpage for instructions,

https://maboss.curie.fr), the protocol to follow to simulate

a model can be described in four steps:

1. Create the model using MaBoSS language in a file

(myfile.bnd, for instance): (a) write the logic for each

node, and (b) assign values to each transition rate.

2. Create the configuration file (myfile.cfg, for instance)

to define the simulation parameters.

3. Run MaBoSS (the order of the arguments does not

matter):

MaBoSS -c myfile.cfg -o myfile out
myfile.bnd

(we assume that MaBoSS is accessible through you

PATH).

MaBoSS creates three output files:

• myfile out proptraj.csv
This file contains the network state probabilities

on a time window, the entropy, the transition

entropy and the Hamming distance distribution

(see “Methods”)
• myfile out statdist.csv

This file contains the stationary distribution

characterization (see “Methods”)
• myfile out run.txt

This file contains a summary of MaBoSS

simulation run.

4. Import output csv files in Excel or R and generate

your graphs.

Transition rates inMaBoSS

MaBoSS defines transition rates ρ(S→S′) by the functions

R
up/down
j (S) (see equations 6). The functions can be writ-

ten using all Boolean operators (AND, OR, NOT, XOR),

arithmetic operators (+,-,*,/), comparison operators and

the conditional operator (?:). Examples of the use of the

language are given below to illustrate three different cases:

(1) different speeds for different inputs, (2) buffering effect

and (3) the translation of discrete variables (with three

values: 0, 1 and 2) into a Boolean model.

1. Modeling different speeds for different inputs.
Suppose that C is activated by A or B, but that B can
activate C faster than A, and that C is inactivated
when A and B are absent. In this case, we write:

node C {

rate up = B ? $kb : (A ? $ka : 0.0);
rate down = !(A & B ) ? 1.0 : 0.0;

}

When C is off (equal to 0), it is activated by B at a

speed $kb. If B is absent, then C is activated by A at a

speed $ka. If both are absent, C is not activated. Note

that if both A and B are present, because of the way

the logic is written in this particular case, C is

activated at the highest speed, the speed $kb. When

C is on (equal to 1), it is inactivated at a rate equal to

1 in the absence of both A and B.

To implement the synergistic effect of A and B, i.e.

https://maboss.curie.fr
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when both A and B are on, C is activated at a rate

$kab, then we can write:

node C {

rate up = (A & !B ? $ka : 0.0)+(B
& !A ? $kb : 0.0) + (A & B ? $kab :
0.0);

rate down = !(A & B ) ? 1.0 :
0.0;
}

2. Modeling buffering effect.

Suppose that B is activated by A, but that B can

remain active a long time after A has shut down. For

that, it is enough to define different speeds of

activation and inactivation:

node B {

rate up = A ? 2.0 : 0.0;
rate down = A ? 0.0 : 0.001;

}

B is activated by A at a rate equal to 2. When A is

turned off, B is inactivated more slowly at a rate equal

to 0.001.

3. Modeling different levels for a given node.

Suppose that B is activated by A, but if the activity of

A is maintained, B can reach a second level. For this,

we define a second node B h (for “B high”) with the

following rules:

node B {

rate up = A ? 1.0 : 0.0;
rate down = (A | B h) ? 0.0 : 1.0;

}

node B h {

rate up = (A & B) ? 1.0 : 0.0;
rate down = (A) ? 0.0 : 1.0;

}

In this example, B is separated in two variables: B

which corresponds to the first level of B and B h

which corresponds to the higher level of B. B is

activated by A at a rate equal to 1. If A disappears

before B has reached its second level B h then B is

turned off at a rate equal to 1. If A is maintained and

B is active, then B h is activated at a rate equal to 1.

When A is turned off, B h is inactivated at a rate

equal to 1.

Simulation parameters inMaBoSS

To simulate a model inMaBoSS, a set of parameters needs

to be adjusted (see “Parameter list” in the reference card

available in the webpage). MaBoSS assigns default values,

however, they need to be tuned for each model to achieve

optimal performances: the best balance between the con-

vergence of estimates and the computation time needs to

be found. Therefore, several simulations should be run

with different sets of parameters for best tuning.

• Internal nodes: node.is internal
As explained in “Methods” (in “Initial conditions and

outputs”), internal nodes correspond to species that

are not measured explicitly. Practically, the higher the

number of internal nodes, the better the convergence

of the BKMC algorithm.
• Time window for probabilities: timetick

This parameter is used to compute estimates of

network state probabilities (see “Network state

probabilities on a time window” in “Methods”). A

time window can be set as the minimum time needed

for nodes to change their states. This parameter also

controls the convergence of probability estimates.

The larger the time window, the better the

convergence of probability estimates.
• Maximum time:max time

MaBoSS produces trajectories for a predefined

amount of time, set by the parameter max time. If the

time of the biological process is known, then the

maximum time parameter can be explicitly set. If the

time of the biological process is not known, then

there exists a more empirical way to set the

maximum time. It is advised to choose a maximum

time parameter that is slightly bigger than the inverse

of the smallest transition rate.

Note that the computing time in MaBoSS is

proportional to this maximum time. Moreover, the

choice of the maximum time impacts the stationary

distribution estimates: a longer maximum time

increases the quality of these estimates.
• Number of trajectories: sample count

This parameter directly controls the quality of BKMC

estimation algorithm. Practically, the convergence of

the estimates increases as the number of trajectories

is increased.
• Number of trajectories (statdist traj count ) and

similarity threshold (statsdist cluster threshold ) for
stationary distribution estimates

The statdist traj count parameter corresponds to a

subset of trajectories used only for stationary

distribution estimates. To avoid explosion of

computing time, this parameter needs to be lower

than the number of trajectories (rather than equal to).

The statsdist cluster threshold parameter

corresponds to the threshold for constructing the

clusters of stationary distribution estimates. Ideally, it

should be set to a high value (close to 1). However, if

the threshold is too high then the clustering

algorithm might not be efficient.
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Comparisonwith biological data

Each node of the network should account for different

levels of activity of the corresponding species (mRNA,

protein, protein complex, etc.). It is possible to have more

than two levels for one node, as shown in the example

“Modeling different levels for a given node”.

It is possible to extract the transition rates from exper-

imental data, using the following property: the rate of a

given transition is the inverse of the mean time for this

transition to happen. It should be noticed than BKMC

is an algorithm based on a linear equation (Additional

file 1, “Basic information on Markov process”, equation 2,

section 1.1); therefore, small variations of transition rates

will not affect the qualitative behavior of the model.

BKMC algorithm provides estimates of the network

state probabilities over time. These probabilities can be

interpreted in terms of a cell population. The asymptotic

behavior of a model, represented by a linear combination

of indecomposable stationary distributions, can be inter-

preted as a combination of cell sub-populations. Indeed,

a sub-population can be defined by network states with

non-zero probability in the indecomposable stationary

distribution. Therefore, a cell in a sub-population can only

evolved in this sub-population (Additional file 1, “Basic

information on Markov process”, corollary 1, section 1.2

and from the definition of strongly connected component

with no outgoing edges).

Comparison of MaBoSSwith other existing tools for

qualitativemodeling

MaBoSS contributes to the effort of tool development for

qualitative modeling of biological networks. We propose

to compare MaBoSS to some existing tools. However, it is

difficult to compare the performance of these tools since

each of them achieves different purposes and provides

different outputs. As an alternative, we recapitulate, in

Figure 1, the characteristics and implications for each soft-

ware. Some tools may be more appropriate than others

according to the type of input, network size and expected

output. Figure 1 is intended to help the users decide which

software to use in a practical situation. We consider the

following tools: GINsim [8], CellNetAnalyzer [25], Bool-

Net [26], GNA [27], and SQUAD [28]. This list is not

exhaustive but informs on where MaBoSS stands.

As an illustration, the third example of the “Exam-

ples” section below, the mammalian cell cycle, was imple-

mented in three of the tools presented in Figure 1:

MaBoSS, GINsim, BoolNet (see Additional file 2 “Model

of the mammalian cell cycle with GINsim, BoolNet and

MaBoSS.” for details of the results).

Examples

We have applied BKMC algorithm to three models of dif-

ferent sizes. The first one is a toy model illustrating the

dynamics of a single cycle; the second one is a published

Boolean model of p53-Mdm2 response to DNA damage

and illustrates a multi-level case; and the third one is a

published Boolean model of mammalian cell cycle regu-

lation. Note that MaBoSS has been used for these three

examples, but Markov process can be computed directly

for the two first ones, without our BKMC algorithm

because these models are small enough (by computing

exponential of transition matrix, see Additional file 1,

“Basic information on Markov process”, section 1.1), as

proposed in [16]. BKMC is best suited for larger networks,

when the network state space is too large to be com-

puted with standard existing tools (>∼ 210). The first two

examples were chosen for their simplicity, and because

they illustrate how global characterizations (entropy and

transition entropy, see “Entropies” in “Methods”) can be

used. The third example shows the use of BKMC/MaBoSS

for a more consequent and complex model for which the

analysis is not obvious.

For the purpose of this article, we built the transition

graphs for the first two examples (with GINsim [8]) in

order to help the reasoning. However, it is important

to note that BKMC algorithm does not construct the

transition graph explicitly.

All input files and results are given in the web-

page of MaBoSS (https://maboss.curie.fr) with additional

examples.

Toymodel of a single cycle

We consider three species, A, B and C, where A is acti-

vated by C and inhibited by B, B is activated by A and C is

activated by A or B (Figure 2a).

The model is defined within the language of MaBoSS by

a set of logical rules associated to each node (Figure 2b)

and simulation parameters set for optimal performances

(Figure 2c). The associated transition graph, generated by

GINsim, is shown in Figure 3.

The only stationary distribution is the fixed point

[ABC]=[000]. We study two cases: when the rate of the

transition from state [001] to state [000] (corresponding

to the inactivation of C) is fast and when this rate is slow.

We will refer to this transition rate as the escape rate. For

both cases, we plot the time trajectories of the probabili-

ties of the fixed point [ABC]=[000] and of the probabilities

of A active [ABC]=[1∗∗] where ∗ can be either 1 or 0, along

with the trajectories of the entropy and the transition

entropy.

In the first case, when the escape rate is fast, we

set the parameter for the transition to a high value

(rate up = 10). In Figure 4, we notice that the probability

that [ABC] is equal to [000] converges to 1. We can con-

clude that [ABC]=[000] is a fixed point. In addition, the

entropy and the transition entropy converge to 0. With

BKMC, these properties confirm that [ABC]=[000] is a

https://maboss.curie.fr
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Figure 1 Comparison of tools for discrete modeling, biological implication. Comparison table of the following tools: MaBoSS, GINsim,

CellNetAnalyzer, BoolNet, GNA, SQUAD. Technical aspects are provided, along with the inputs/outputs relations between a model and data. The last

row illustrates graphically the typical outputs that can be obtained from each tool.

a b c

Figure 2 Toymodel. Toymodel of a single cycle. (a) Influence network. (b) Logical rules and transition rates of themodel. (c) Simulation parameters.
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Figure 3 Transition graph of the toy model. Transition graph for

the toy model (generated by GINsim). The node states should be read

as [ABC] = [∗∗∗]. [ABC]=[100] corresponds to a state in which only A is

active. The nodes in green belong to a cycle, the node in red is the

fixed point and the other nodes are in blue.

fixed point. The peak in the trajectory of the entropy

(between times 0 and 0.6) corresponds to a set of states

that are transiently activated before reaching the fixed

point.

In the second case, when the escape rate is slow,

we set the parameter for the transition to a low value

(rate down = 10−5). As illustrated in Figure 5, the tran-

sition entropy is and remains close to zero but the

entropy does not converge to zero, which is the signa-

ture of a cyclic stationary distribution (see “Entropies” in

“Methods”). This corresponds to the cycle [111] → [011]

→ [001] → [101] in the transition graph (Figure 3). How-

ever, as seen in the transition graph, one state in the cycle

has an outgoing edge that leads to the fixed point (through

the transition [001]→ [000] in Figure 3). If the trajectories

are plotted on a larger time scale (Figure 6), the entropy

eventually converges to 0 and the trajectory of the fixed

point converges to 1, which corresponds to the case of fast

escape rate. Since the value of the transition entropy of

Figure 5 is not exactly zero, but 10−4, it can be anticipated

that the cyclic behavior is not stable. We can conclude on

stable cyclic behaviors only when the transition entropy is

exactly 0.

By considering the spectrum of the transition matrix

(see Additional file 1, “Basic information on Markov pro-

cess”, section 1.1 and proof of theorem 4), it can be proven

that the model with a slow escape rate is a damped oscil-

latory process whereas the model with a large escape rate

is not. As mentioned previously, a cycle in the transition

graph may or may not lead to an oscillatory behavior.

Moreover, if the transition entropy seems to converge to

a small value on a small time scale, and the entropy does

not, this behavior illustrates the case of a transient cycle in

the transition graph.

Figure 4MaBoSS outputs of the toy model with fast escape rate. BKMC algorithm is applied to the toy model, with a fast escape rate. Trajectory

of the network state probabilities [ABC]=[000] and [ABC]=[1∗∗] (where ∗ can be either 0 or 1), the entropy (H) and the transition entropy (TH) are

plotted. Because the probability of [ABC]=[000] converges to 1, [ABC]=[000] is a fixed point. The asymptotic behavior of both the entropy and the

transition entropy is also the signature of a fixed point.
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Figure 5MaBoSS outputs of the toy model with slow escape rate. BKMC algorithm is applied to the toy model, with a slow escape rate.

Trajectory of the network state probabilities [ABC]=[000] and [ABC]=[1**], the entropy (H) and the transition entropy (TH) are plotted. The

asymptotic behavior of both the entropy and the transition entropy seems to be the signature of a cycle.

p53-Mdm2 signaling

We consider a model of p53 response to DNA dam-

age [18]. p53 interacts with Mdm2, which appears in

two forms, cytoplasmic and nuclear. On one hand, p53

upregulates the level of cytoplasmic Mdm2 (Mdm2c),

which is then transported into the nucleus, and inhibits

the export of nuclear Mdm2 (Mdm2n). On the other

hand, nuclear Mdm2 (Mdm2n) facilitates the degrada-

tion of p53 through ubiquitination. In the model, stress

regulates the level of DNA damage (Dam), which in

turn participates in the degradation process of Mdm2

in the nucleus. p53 inhibits DNA damage signal by pro-

moting DNA repair. Here, stress is not shown explicitly

(Figure 7a).

The model is written in MaBoSS, with two levels of p53

(Figure 7b), as it is done in Abou-Jaoudé et al. [18] with the

appropriate simulation parameters (Figure 7c). The asso-

ciated transition graph, also generated by GINsim, is given

in Figure 8. It shows the existence of two cycles and of a

fixed point [p53 Mdm2C Mdm2N Dam] = [0010] where

nuclear Mdm2 is on and the rest is off.

In order to represent the activity of p53, the trajectories

of the probabilities of all network states with p53 equal to 1

and with p53 equal to 2 are plotted (Figure 9, upper panel),

with the initial condition: [p53 Mdm2C Mdm2N Dam] =

[0∗11] and for the situation when p53 is set to its highest

value (2 equivalent to p53 h) and thus can promoteMdm2

cytoplasmic activity.

Figure 6MaBoSS outputs of toy model with slow escape rate, large time scale. BKMC algorithm is applied to the toy model, with a slow

escape rate, plotted on a larger time scale. Trajectory of probabilities ([ABC]=[000] and [ABC]=[1**]), the entropy (H) and the transition entropy (TH)

are plotted. On a large time scale, the asymptotic behavior of both the entropy and the transition entropy is similar to the case of the fast escape

rate (Figure 3).
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a b c

Figure 7Model of p53 response to DNA damage.Model of p53 response to DNA damage. (a) Influence network. (b) Logical rules and transition

rates of the model. (c) Simulation parameters.

Figure 8 Transition graph of the model of p53 response to DNA damage. Transition graph of the p53 model (generated by GINsim). The node

states should be read as [p53 Mdm2C Mdm2N Dam] = [∗∗∗∗] (where ∗ can be either 0 or 1). For instance, [p53 Mdm2C Mdm2N Dam]=[1000]

corresponds to a state in which only p53 (at its level 1) is active. The nodes in green and the nodes in light blue belong to two cycles, the node in

red is the fixed point and the other nodes are in dark blue.
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Figure 9MaBoSS outputs of the model of p53 response to DNA

damage. Trajectories of the network state probabilities of [p53

Mdm2C Mdm2N Dam] = [1∗∗∗] and of [p53 Mdm2C Mdm2N Dam] =

[2∗∗∗], the entropy (H) and the transition entropy (TH) are plotted.

The qualitative results obtained with MaBoSS are sim-

ilar to those of Abou-Jaoudé and colleagues. However, at

the level of cell population, some discrepancies appear: in

Figure 9, no damped oscillations can be seen as opposed to

Figure 8 of their article. The reason is that, in their compu-

tations, the noise imposed on time is defined by a square

distribution on a limited time frame, whereas in BKMC,

Markovian hypotheses imply that the noise distribution

is more spread out from 0 to infinity. The consequence

is that synchronization is lost very fast. Damped oscilla-

tions could be observed with BKMC with a particular set

of parameters: fast activation of p53 and slow degradation

of p53 (results not shown).

With MaBoSS, we clearly interpret the system as a

population and not as a single cell. In addition, we can

simulate different contexts, presented in the initial arti-

cle as different models, within one single model that

uses different simulation parameters to account for these

contexts.

Note that the existence of transient cycles, as shown in

the toy model, can be deduced from the trajectory of the

entropy that is significantly higher than the trajectory of

the transition entropy (which is non-zero, therefore the

transient cycles are not stable) (Figure 9, lower panel).

Mammalian cell cycle

For the last example, we propose a model of the mam-

malian cell cycle initially published as on ODE model by

Novák and Tyson [29] and translated into a Booleanmodel

by Fauré and colleagues [6]. The lattermodel encompasses

10 nodes, which describe the mechanisms controlling the

activity of the different CDK/cyclin complexes, the main

actors of cell cycle regulation and the dynamics of entry

into the cell cycle in presence of growth factors.

We implement the logical rules of the published model

in MaBoSS and define two parameter values for the

transition rates: a slow one (set to 1) and a fast one

(set to 10). The choice between slow and fast rates for

each transition is based on the choice made in the pub-

lished Boolean model: different priority classes were used

in mixed discrete a/synchronous simulation and corre-

sponded to the differences in speed of cellular processes

such as transcription, degradation and protein modifica-

tion. We could, of course, refine the analysis by setting

different rates for each transition. The network, the logi-

cal rules and the simulation parameters can be found on

the webpage.

As mentioned before, MaBoSS can provide two types of

outputs: the probabilities of different network states over

time (along with the entropy and transition entropy) and

the indecomposable stationary distributions.

We consider two biological cases, in the presence of

growth factors where the cell enters its division cycle and

in the absence of growth factors where the cell is stuck

in a G1-like state (state preceding replication of DNA).

In the model, the activity of CyclinD (CycD), a G1-cyclin,

illustrates the presence of growth factors. In our simula-

tions, we set an initial condition corresponding to a G1

state with two CDK/cyclin inhibitors, p27 and cdh1, on,

and with CyclinD on in order to account for the external

growth signal. We plot the trajectories of the probabili-

ties of all the cyclins A, B and E (Figure 10, upper panel).

The cyclins’ activities exhibit an oscillatory behavior. Each

oscillation can be interpreted as a cell division cycle. How-

ever, these oscillations are damped. This can be explained

by the fact that these probabilities should be interpreted

at the cell population level and after few cycles, the cells
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Figure 10MaBoSS outputs of the model of the mammalian cell

cycle: trajectories of probabilities. BKMC algorithm is applied to the

mammalian cell cycle model, with an initial condition corresponding

to a G1 state in the presence of growth factors (CyclinD is on).

Trajectories of the cyclins probabilities, the entropy (H), transition

entropy (TH) are plotted. The asymptotic behavior corresponds to the

first indecomposable stationary distribution identified in Figure 10.
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become desynchronized. Moreover the trajectories of the

entropy and the transition entropy exhibit the signature of

cyclic attractors (Figure 10, lower panel).

The indecomposable stationary distributions are iden-

tified by the clustering algorithm of MaBoSS and illus-

trated in Figure 11. The two clusters in Figure 11a show

the two types of solutions for random initial conditions:

one multi-cyclic solution when CyclinD is on, and which

corresponds to the distribution of network states of the

asymptotic solution of Figure 11b, and one fixed point cor-

responding to a G1 arrest when CyclinD is off (Figure 11c).

These two indecomposable stationary distributions cor-

respond to the two attractors identified by discrete time

modeling in Fauré et al. In the discrete time algorithm,

the asymptotic behavior is described in terms of attractors

(sub-parts of the transition graph); in our algorithm, the

asymptotic behavior is described in terms of network state

probability distributions.

Conclusions
We have presented a new algorithm, Boolean Kinetic

Monte-Carlo or BKMC, applicable to dynamical simula-

tion of signaling networks based on continuous time in the

Boolean framework. BKMC algorithm is a natural gener-

alization of the asynchronous Boolean dynamics [2], with

time trajectories that can be interpreted in terms of bio-

logical time. The variables of the Booleanmodel represent

biological species and the parameters represent rates of

activation or inactivation of these species that, ideally,

could be deduced from experimental data.

We applied this algorithm to three different models: a

toy model that illustrates a simple cyclic behavior, a pub-

lished model of p53 response to DNA damage, and a

published model of mammalian cell cycle dynamics.

This algorithm is provided within a freely available

software, MaBoSS, that can run BKMC algorithm on

networks up to 64 nodes in the present version. The

construction of a model uses a specific language that

introduces logical rules and transition rates of node acti-

vation/inactivation in a flexible manner. The software

provides global and semi-global outputs of the model

dynamics that can be interpreted as signatures of the

dynamical behaviors. These interpretations become par-

ticularly useful when the network state space is too large to

be handled. The convergence of BKMC algorithm can be

controlled by tuning some simulation parameters: max-

imum time of the simulation, number of trajectories,

length of a time window on which the average of probabil-

ities is performed, and the threshold for the definition of

stationary distribution clusters.

Prob[Cluster #1]

Prob[Cluster #2]

Prob[CycD--cdh1--CycA | Cluster #1]

Prob[CycD--Cdc20--UbcH10--cdh1 | Cluster #1]

Prob[CycD--E2F--CycE--cdh1 | Cluster #1]

Prob[CycD--cdh1 | Cluster #1]

Prob[CycD--Cdc20--UbcH10--cdh1--CycB | Cluster #1]

Prob[CycD--UbcH10--cdh1 | Cluster #1]

Prob[CycD--UbcH10--CycA | Cluster #1]

Prob[CycD--UbcH10--CycA--CycB | Cluster #1]

Prob[CycD--E2F--cdh1 | Cluster #1]

Prob[CycD--CycA | Cluster #1]

Prob[Rb--cdh1--p27 | Cluster #2]

a b c

Figure 11MaBoSS outputs of the model of the mammalian cell cycle: stationary distributions. BKMC algorithm is applied to the mammalian

cell cycle model, with random initial conditions. Results of the clustering algorithm that associates a cluster to each indecomposable stationary

distribution. (a) Probability of reaching each identified cluster; these probabilities are estimated by the proportion of trajectories that belong to each

cluster. (b) First estimated cluster that can be interpreted as a desynchronized population of cells that are dividing. (c) Second estimated cluster,

corresponding to a fixed point, that can be interpreted as a G1 cell cycle arrest with no growth factors.
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The next step is to apply BKMC algorithmwithMaBoSS

on other existing large signaling networks, e.g. EGFR path-

way [30], the apoptosis pathway [31], etc. The translation

of existing Boolean models in MaBoSS is straightfor-

ward but requires the addition of transition rates. In

these future works, we expect to illustrate the advantage

of BKMC on other simulation algorithms. Moreover, in

future developments of MaBoSS, we plan to introduce

methods for sensitivity analyses, refine approximation

methods used in BKMC, and generalize Markov property.

We also expect to implement MaBoSS in broadly used

software environments for Boolean modeling, like GIN-

sim [8] or CellNetAnalyzer [25].

Methods
BKMC generates stochastic trajectories. In this section,

we describe how we use and interpret these trajectories.

Network state probabilities on a timewindow

To relate continuous time probabilities to real processes,

an observable time window �t is defined. A discrete time

(τ ∈ N) stochastic process s(τ ) (that is not necessary

Markovian) can be extracted from the continuous time

Markov process:

P [s(τ ) = S] ≡
1

�t

∫ (τ+1)�t

τ�t
dt P [s(t) = S] (8)

BKMC is used for estimating P [s(τ ) = S] as follows:

1. Estimate for one trajectory. For each trajectory j,
compute the time for which the system is in state S,

in the window [ τ�t, (τ + 1)�t]. Divide this time by

�t. Obtain an estimate of P [s(τ ) = S] for trajectory

j, i.e. P̂j [s(τ ) = S].

2. Estimate for a set of trajectories. Compute the

average over j of all P̂j [s(τ ) = S] to obtain

P̂ [s(τ ) = S]. Compute the error of this average

(

√

Var(P̂ [s(τ ) = S])/# trajectories).

Entropies

Once P [s(τ ) = S] is computed, the entropy H(τ ) can be

estimated:

H(τ ) = −
∑

S

log2 (P [s(τ ) = S])P [s(τ ) = S] (9)

The entropy measures the disorder of the system. Maxi-

mum entropy means that all states have the same proba-

bility; a zero entropy means that one of the states has a

probability of one. The estimation of the entropy can be

seen as a global characterization of a full probability distri-

bution by a single real number. The choice of log2 allows

the interpretation of H(τ ) in an easier manner: 2H(τ ) is an

estimate of the number of states that have a non-negligible

probability in the time window [ τ�t, (τ + 1)�t]. A more

computer-like interpretation ofH(τ ) is the number of bits

that are necessary for describing states of non-negligible

probability.

The Transition Entropy TH is a finer measure that char-

acterizes the system at the level of a single trajectory. It

can be computed in the following way: for each state S,

there exists a set of possible transitions S → S′. For each

of these transitions, a probability is associated:

PS→S′ ≡
ρS→S′

∑

S′′ ρS→S′′
. (10)

By convention, PS→S′ = 0 if there is no transition from

S to any other state.

Therefore, the transition entropy TH can be associated

to each state S:

TH(S) = −
∑

S′

log2(PS→S′)PS→S′ (11)

Similarly, TH(S) = 0 if there is no transition from S to

any other state. The transition entropy on a time window
TH(τ ) is defined as:

TH(τ ) =
∑

S

P [s(τ ) = S]TH(S)

This transition entropy is estimated in the following

way:

1. Estimate for one trajectory. For each trajectory j,
compute the set � of visited states S in the time

window [ τ�t, (τ + 1)�t] and their respective

duration μS. The estimated transition entropy is:

ˆTH(τ )j =
∑

S∈�

TH(S)
μS

�t
(12)

2. Estimate for a set of trajectories. Compute the

average over j of all ˆTH(τ )j to obtain ˆTH(τ ).

Compute the error of this average

(

√

Var( ˆTH(τ ))/# trajectories).

This transition entropy is a way to measure how deter-

ministic the dynamics is. If the transition entropy is always

zero, the system can only make a transition to a given

state.

If probability distributions on a time window tend to

constant values (or tend to a stationary distribution), the

entropy and the transition entropy can help characterize

this stationary distribution such that:

• A fixed point has zero entropy and zero transition

entropy,
• A cyclic stationary distribution has non-zero entropy

and zero transition entropy.

Entropy and transition entropy can be considered as

“global characterizations” of the model: for a given time
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window, they always consist of two real numbers, what-

ever the size of the network is.

Hamming distance distribution

TheHamming Distance between two states S and S′ is the

number of nodes that have different node states between

S and S′:

HD(S, S′) ≡
∑

i

(1 − δSi,S′
i
) (13)

where δ is the Kronecker delta (δSi,S′
i
= 1 if Si = S′

i, δSi,S′
i
=

0 if Si �= S′
i). Given a reference state Sref, the Hamming

distance distribution (over time) is given by:

P(HD, t) =
∑

S

P [s(t) = S] δHD,HD(S,Sref) (14)

The estimation of the Hamming distance distribution

on a time window P(HD, τ) is similar to that of stochastic

probabilities on a time window.

The Hamming distance distribution is a useful charac-

terization when the set of instantaneous probabilities is

compared to a reference state (Sref). In that case, the Ham-

ming distance distribution describes how far this set is to

this reference state. The Hamming distance distribution

can be considered as a “semi-global” characterization of

time evolution: for a given time window, the size of this

characterization is the number of nodes (to be compared

with probabilities on a time window whose size is 2#nodes).

Input, internal, output and reference nodes

Input Nodes are defined as the nodes for which the ini-

tial condition is fixed. Therefore, each trajectory of BKMC

starts with fixed values of input nodes and random values

of other nodes.

Internal nodes are nodes that are not considered for

computing probability distributions, entropies and tran-

sition entropies. Output nodes are nodes that are not

internal. Technically, probabilities are summed up over

network states that differ only by the state of internal

nodes. These internal nodes are only used for gener-

ating time trajectories with BKMC algorithm. Usually,

nodes are chosen to be internal when the corresponding

species is not measured experimentally. Mathematically, it

is equivalent to transform the originalMarkov process to a

new stochastic process (that is not necessary Markovian)

defined on a new network state space. This new state space

is defined by the states of the output nodes. This raises

the question of the transition entropy TH : formally, this

notion has only a sense within Markovian processes, i.e.

when there are no internal nodes. Here, we generalize the

notion of transition entropy even in the case of internal

nodes. Suppose that the system is in state S:

• If the only possible transitions from state S to any

other state consist of flipping an internal node, the

transition entropy is zero.
• If there is, at least, one transition from state S to

another state that flips an output node, then only the

output nodes will be considered for computing

probabilities in equation 10. In particular,
∑

S′ ρS→S′

is computed only on output node flipping events.

Reference nodes are nodes for which a reference node

state is specified and for which the Hamming distance is

computed. In this framework, a reference state is com-

posed of reference nodes for which the node state is

known and non-reference nodes for which the node state

is unknown. Note that non-reference nodes may differ

from internal nodes.

Stationary distribution characterization

It can be shown (see Additional file 1, “Basic informa-

tion on Markov process”, corollary 2, section 1.2) that

instantaneous probabilities of a continuous time Markov

process converge to a stationary distribution. Fixed points

and cycles are two special cases of stationary distribu-

tions. They can be identified by the asymptotic behavior

of entropy and transition entropy (this works only if no

nodes are internal):

• If both the transition entropy and the entropy

converge to zero, then the process converges to a

fixed point.
• if the transition entropy converges to zero and the

entropy does not, then the process converges to a

cycle.

More generally, the complete description of the Markov

process asymptotic behavior can be expressed as a linear

combination of the indecomposable stationary distribu-

tions.

A set of finite trajectories, produced by BKMC, can

be used to estimate the set of indecomposable station-

ary distributions. Consider a trajectory Ŝ(t), t ∈[ 0,T] , i =

1, · · · , n. Let IS(t) ≡ δ
S,Ŝ(t)

. The estimation of the asso-

ciated indecomposable stationary probability distribution

(s0) is done by averaging over the whole trajectory:

P̂ [s0 = S] =
1

T

∫ T

0
dtIS(t) (15)

Therefore, a set of indecomposable stationary distribu-

tion estimates can be obtained by a set of trajectories.

These indecomposable stationary distribution estimates

should be clustered in groups, where each group con-

sists of estimates for the same indecomposable stationary

distribution. For that, we use the fact that two indecom-

posable stationary distributions are identical if they have

the same support, i.e. the same set of network states with
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non-zero probabilities (shown in Additional file 1, “Basic

information on Markov process”, theorem 2, section 1.2).

Therefore, it is possible to quantify how similar two inde-

composable stationary distribution estimates are. A sim-

ilarity coefficient D(s
(i)
0 , s

(j)
0 ) ∈[ 0, 1], given two stationary

distribution estimates s
(i)
0 and s

(j)
0 , is defined:

D(s
(i)
0 , s

(j)
0 ) ≡

⎛

⎜

⎝

∑

S∈support(s
(i)
0 ,s

(j)
0 )

P̂
[

s
(i)
0 = S

]

⎞

⎟

⎠

×

⎛

⎜

⎝

∑

S′∈support(s
(i)
0 ,s

(j)
0 )

P̂
[

s
(j)
0 = S′

]

⎞

⎟

⎠
(16)

where

support(s
(i)
0 , s

(j)
0 ) ≡

{

S such that P̂
[

s
(i)
0 = S

]

×P̂
[

s
(j)
0 = S

]

> 0
}

(17)

Clusters can be constructed when a similarity thresh-

old α is provided. A cluster of stationary distributions is

defined as follows:

C =
{

s0| ∃s′0 ∈ C s. t. D(s0, s
′
0) ≥ α

}

(18)

For each cluster C, a distribution estimate sC , associ-

ated to an indecomposable stationary distribution, can be

defined:

P [sC = S] =
1

|C|

∑

s∈C

P [s = S] (19)

Errors on this estimate can be computed by:

Err (P [sC = S]) =
√

Var(P [s = S] , s ∈ C)/|C| (20)

Notice that this clustering procedure has no sense if

the process is not Markovian; therefore, no nodes are

considered as internal.

Additional files

Additional file 1: Supplementary material. Basic information on Markov

process, abbreviations, definitions and algorithms.

Additional file 2: Model of the mammalian cell cycle with GINsim,

BoolNet and MaBoSS. The cell cycle presented in the “Examples” section

has been modeled using three tools: GINsim, BoolNet, and MaBoSS. The

results for each tool are presented: (1) GINsim provides steady state

solutions and transition graphs for two different initial conditions: when

CycD=0 and CycD=1. For the synchronous strategy, the transition graph

can be visualized whereas for the asynchronous strategy, it is not easy to

read or use; BoolNet constructs two graphical representations of the

trajectories based on synchronous update strategy, for the case of CycD=0

(steady state) and CycD=1 (cycle); (3) MaBoSS estimates indecomposable

stationary distributions for the case of CycD=0 (one fixed point, not shown)

and CycD=1 (distribution of probabilities of different network states), and

time-dependent activities of the cyclins showing damped oscillations. All

results are coherent but are presented differently with a different focus for

each tool.

Abbreviations

BKMC: Boolean Kinetic Monte-Carlo; AT: Asynchronous transition; ODEs:

Ordinary differential equations; MaBoSS: Markov Boolean Stochastic Simulator.
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