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Abstract

This is a thesis about implementation of a ∆Σ modulator with continuous-time

techniques. A methodology to obtain proper continuous-time (s-domain) transfer

functions for a continuous-time ∆Σ modulator has been presented. Different classes of

continuous-time modulators based on the DAC waveform in the ∆Σ loop and the number

of digital delays in the feedback loop have been recognized and analyzed. A new

structure for the LC-based ∆Σ modulators has been proposed. A fourth-order

transconductor-C modulator has been implemented in a 0.8µm BiCMOS technology.

Advantages and drawbacks of continuous-time modulators particularly with

transconductor-C technique have been investigated. A new transconductor-C filter and

further work are recommended to improve the performance of the current modulator.
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âk

∆T



xvi

dc a scaler defining the state space parameter of a continuous-time
modulator

dd a scaler defining the state space parameter of a discrete-time modulator

∆Σ Delta-Sigma

e(k) Additive White noise modeling the ∆Σ quantization noise

Fi Noise figure of the ith stage amplifier

Implicit anti-alias filtering frequency response in a continuous-time
modulator

Phase frequency response of a transconductor circuit

f Frequency in Hz

fbp A frequency in a bandpass region (like ) in Hz

flp A frequency in a low pass region around DC in Hz

fs Sampling frequency in Hz

G Gain

Gi Gain of the ith stage amplifier

G(z) Transfer function of the feedforward filter in a discrete-time modulator

Frequency response of the feedforward filter in a continuous-time ∆Σ
modulator

Amplitude frequency response of a transconductor circuit

Transconductance representation of an OTA in its model

Gm-C Transconductor-capacitor circuit

Go Output conductance representation of an OTA in its model

gds Drain-source conductance

gm Transconductor element

gmb Body-effect transconductance

ith transconductance element in the feedforward path of a transconductor-
C filter used in the feedback loop of a ∆Σ modulator

ith transconductance element in the feedforward path of a transconductor-
C filter used in the feedforward path of a ∆Σ modulator

One of two transconductance elements in a resonator configuration

One of two transconductance elements in a resonator configuration

The output conductance of the transconductor called X

H(z) Open-loop transfer function of a ∆Σ modulator

Faa ω( )

ϕ i ω( )

f s 4⁄
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ĥ t( )

ID

IE

In x( )

IS

in
2

i t( ) i t( )

khz

knz

krz



xviii

Electron mobility in the induced n channel

NEF noise excess factor

NF Noise figure of entire circuit

Nq  In-band quantization noise

NRZ Non-return-to-zero pulse waveform

Nt Input referred thermal noise voltage integrated over a certain bandwidth

NTF(z) Noise transfer function of a ∆Σ modulator

Noise transfer function of a modulator as a function of loop gain K

Noise transfer function obtained from the modified z-transform of the
modulator loop

OSR Oversampling ratio

pdf probability density function

pi ith pole of a circuit

Q Quality factor of a filter

R Resistor

Sampling rate to the twice of the maximum input signal frequency ratio in
a bandpass modulator

RHP Right half plane in the S-plane

A RZ pulse waveform with a half delay

An arbitrary DAC pulse waveform

NRZ pulse waveform

A pulse waveform with p sec aperture

The resistive model for the NMOS transistor in series with Miller
capacitor

RZ pulse waveform

The resistor in series with Miller integrating capacitor

RZ Return-to-zero pulse waveform

rb Base region resistance in a bipolar transistor

MOS drain-to-source small signal output resistance

Sum over all parts from i to k

S(K) One-norm of a ∆Σ modulator’s noise transfer function as a function of
loop gain i.e. NTFK(z)

SFDR Spurious free dynamic range

µn

NT FK z( )

NT Fm z( )

R

RHZ t( )

Ri t( )

RNZ t( )

Rp t( )

Rph

RRZ t( )

Rz

rds

i

k

∑



xix

Signal-to-noise ratio at the input of an amplifier

Signal-to-noise ratio at the output of an amplifier

STF(z) Signal transfer function of a ∆Σ modulator

Signal frequency response in a continuous-time ∆Σ modulator

s Complex frequency in S-plane

A pole in a continuous-time ∆Σ loop filter

sgn(x) Sign function

T Absolute temperature

T A clock period

TC-amp Transconductor-capacitor-amplifier circuit

TIMD Total intermodulation distortion in dB

Voltage transfer function of a transconductor circuit

VBE Base-Emitter junction voltage drop in a bipolar transistor

VDS MOS drain-to-source voltage

VGS MOS gate-to-source voltage

Control voltage to tune the center frequency of a filter

Shorter form used for

The so-called on voltage in a MOSFET

Control voltage to cancel the excess phase and so the Q of a filter

Shorter form used for

Vth or Vt MOS threshold voltage

Thermal voltage in a bipolar transistor

Voltage noise spectral density in V2/Hz

W Width of a CMOS channel

 Frequency in rad/s

Center frequency of a bandpass filter in rad/s

 Unity bandwidth of an op-amp in rad/s

Sampling frequency in rad/s

Spectrum of an input signal to a continuous-time modulator

Input signal to a continuous-time modulator

Spectrum of an output signal in a continuous-time or discrete-time
modulator

Si N⁄
i

So N⁄
o

ST Fc ω( )

ŝk
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Chapter 1

Introduction

1.1 Analog-to-Digital Conversion

It is not exaggerating to say that data converters are key components of almost any

electronic system. Since the real world is inherently analog and the trend in

telecommunication, voice, video, instrument, computer and many other applications is

to get a digital form of the analog signal to make use of robust, flexible and reliable

signal processing, the analog-digital interfaces become critical paths. In terms of

complexity data converters are composed of many analog building blocks such as op-

amps, sample (track)-and-holds and comparators which makes their design very

challenging especially when a system is put on a chip. In a data converter designers

often have to mix analog and digital techniques and acquire a very good knowledge in

both analog and signal processing areas. Sometimes even dealing with some abstract

theories such as nonlinear phenomena and stability becomes unavoidable. In this sense,

perhaps the most interesting class of data converters is Delta-Sigma (∆Σ) analog-to-

digital (A/D) converters which are sometimes referred to as oversampling, interpolative

or noise-shaping converters. A ∆Σ A/D converter usually consists of an analog part

called a ∆Σ modulator producing an oversampled bit stream followed by a digital part

implementing decimation and digital filtering to complete the A/D conversion.

Depending on the application of an A/D converter the trade-off among speed, resolution

and power is made given the specifications and the process. In [Snel92] a comparison

among several analog-to-digital converters (ADC) has been made and the resultant plots

demonstrate very useful relations. Regarding speed and accuracy it was found that the

best converters had GHz, where N is the converter’s resolution in bits and2
N
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 the sampling frequency. For eight-bit converters a wide range of 1mW− mW/MHz

has been found as a relationship between power and sampling rate while the best 8-bit

part was consuming mW/MHz. This means that in a state-of-the art converter one

can expect to get an 8-bit ADC with MHz sampling frequency consuming mW.

A survey among some of the most recent ADCs in the literature verified the preceding

information. For example, an 8-bit MHz sampling ADC with mW power

consumption was reported in  [Mor95]. However, most ADCs were consuming

higher power in the order of 1W at high sampling rates [Kim93] or higher resolution (10

bits) [Col93].

As mentioned, Delta-Sigma (∆Σ) converters form a popular class of analog-to-digital

converters. However, they have been mostly developed for high precision voice

applications using switched-C techniques. For video applications such as digital-TV,

HDTV or direct satellite broadcast systems usually a moderate dynamic range between 7

to  bits is enough but a fairly high clock rate in order of MHz is required. So far,

flash [Rey94] or half-flash [Lon93], pipeline and/or sub-ranging [Con93], [Lin90],

[Nis95] A/D converters have been developed for the video applications.

This thesis studies the feasibility of a ∆Σ modulator for high-speed high-bandwidth

applications such as video. Since it is well known that continuous-time techniques such

as transconductor-C filters can be faster than their switched-C counterparts in the same

process, the motivation for this thesis was the development of a method for

implementing continuous-time ∆Σ modulators with special stress on transconductor-C

realization. Although one can not expect to achieve a very high dynamic range

performance from transconductor-C circuits due to their known non-linearity problems,

it seems that for the medium dynamic range applications such as video, these circuits are

suitable.

Another motivation for studying the transconductor-C approach for ∆Σ modulation was

the new trend for moving analog/digital interface closer to the signal source which

necessitates higher ADC sampling rates. Perhaps, talking about analog-to-digital

conversion for radio frequencies (RF) in GHz range seems to be a bit unrealistic today.

However, conversion of analog signals at an intermediate frequency (IF) is quite

f s 10
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achievable. A ∆Σ modulator for converting an IF signal at up to MHz [Sing94] has

been already reported using switched-C techniques. This thesis investigates the

possibility of analog-to-digital conversion of an analog signal at higher IF frequencies.

This thesis demonstrates a fourth-order ∆Σ transconductor-C circuit implementation. It

also shows some practical advantages and drawbacks of a continuous-time ∆Σ

implementation which have been supported by analysis and simulations and practically

verified by experiments. It studies the problems associated with the LC realizations

[Gail89], [Thu91], [Tro93] and introduces a new structure for an LC ∆Σ modulator.

1.2 Contributions

The contributions made in this thesis to the study and implementation of a continuous-

time ∆Σ modulator are as follows:

1) It gives a methodology to obtain a continuous-time loop filter transfer function from a

switched-C counterpart given the waveform(s) of the digital-to-analog converter(s)

(DAC) in the ∆Σ feedback loop. The loop filter transfer functions for some

important modulators have been explicitly presented.

2) It develops two different classes of equivalent continuous-time modulators for every

switched-C modulator which has at least two loop delays: i) a zero-delay modulator

and ii) a modulator with one or more digital loop delays.

3) It analyzes the effects of the extra loop delays or propagation delay times of the

components in a continuous-time ∆Σ modulator such as those in the comparator,

latch or D-flip flop, DAC and parasitic interconnects by the modified z-transform

method. It explicitly derives the modified noise transfer functions  for

two popular bandpass modulators as well.

4) It analytically proves the anti-alias filtering property of continuous-time modulators

which is then verified by simulations and real circuit experiments.

10.7

NT Fm z( )
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5) It introduces a novel architecture for LC type ∆Σ modulators which provides enough

degrees of freedom to produce an arbitrary ∆Σ loop impulse response.

6) It employes a master-slave tuning algorithm to control the notch center frequency and

the Q of noise-shaping in a second-order transconductor-C ∆Σ modulator. Such a

method has been already used for tuning of the transconductor-C filters but to the

author’s knowledge not for tuning of ∆Σ modulator parameters.

7) It demonstrates the design and implementation of a fully monolithic fourth-order

transconductor-C ∆Σ modulator along with a master biquadratic (biquad) filter in a

0.8µm BiCMOS process. It gives the experimental results of the realized chips. It

clearly explains the causes of the discrepancies between simulations and

experiments and suggests a new design for a future implementation.

1.3 Organization of the Thesis

Chapter 2 introduces the concepts of a continuous-time ∆Σ as well as a bandpass ∆Σ

modulator. Stability criteria in a ∆Σ modulator are critically reviewed and a mixture of

one-, two- and infinity-norm constraints given in [Risb94] are compared to some

previous stability criteria.

Chapter 3 proposes a systematic method to obtain a proper s-domain transfer function

for a continuous-time modulator from an original discrete-time (switched-C) equivalent.

It shows how different DACs in a modulator loop such as non-return-to-zero (NRZ),

return-to-zero (RZ) and so on would lead to different continuous-time loop filters. It

discusses the sensitivity of continuous-time modulators to the extra loop delays. It

culminates by proving the anti-alias filtering property of continuous-time modulators.

Chapter 4 introduces a new pulse-shaping architecture for LC continuous-time

modulators. It shows how the overall loop impulse response of an LC modulator can be

fixed to coincide with that of an ideal discrete-time equivalent by providing two degrees
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of freedom at the input of each LC resonator in DAC feedback paths.

Chapter 5 develops a BiCMOS transconductor-C-amplifier (TC-amp) filter for a fourth-

order ∆Σ modulator. It studies the sensitivity of a general transconductor-C modulator to

its loop filter parameters (Q and center frequency). It gives an analysis with simulation

support to show how the Q of a TC-amp filter can be adjusted using cancellation of

excess phase in each resonator (integrator) by tuning resistors in series with the Miller

integrating capacitors. It demonstrates a small-signal and non-linearity analysis for the

proposed TC-amp integrator. It concludes with the simulation results of the entire

transconductor-C-amplifier ∆Σ modulator circuit.

Chapter 6 shows the implementation of a second-order transconductor-C ∆Σ modulator

with a master-slave automatic tuning scheme. It discusses the linearity of the modulator

and the matching between the master and the slave parts. It proves the anti-alias filtering

property of transconductor-C modulators experimentally.

Chapter 7 investigates the speed, tunablity, noise and power trade-offs in the proposed

class of triode-mode BiCMOS transconductor-C modulators. It shows how the dynamic

range of a transconductor-C modulator can be improved by optimizing the

transconductor-C circuits with respect to their input-referred noise. It shows that this

improvement sacrifices the modulator’s speed and tunablity while the power

consumption is slightly lowered. It concludes with the introduction of a regular

transconductor-C modulator architecture as opposed to the designed TC-amp

modulators.

Chapter 8 demonstrates the experimental results of two fourth-order bandpass TC-amp

∆Σ modulators along with their master biquad filters implemented in a 0.8µm BiCMOS

process. It shows the experimental noise-shaping spectrums of both chips. It investigates

disagreements between the chips’ noise-shaping spectra and simulation results. It

diagnoses some important causes and proposes a complete new design for a future

implementation.
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Chapter 2

Overview of Delta-Sigma

Modulator

Delta-Sigma (∆Σ) modulation refers to a class of noise-shaping linear encoders

(typically one-bit) which transforms an analog (continuous-time) signal to an

oversampled bit stream. A general diagram of a ∆Σ modulator is shown in Fig. 2.1.

Oversampling of the continuous-time signal before quantization reduces the

quantization noise density by the factor of the oversampling ratio OSR which is defined

as the ratio of the sampling rate to twice the signal bandwidth (Nyquist rate). The in-

band quantization noise is reduced by 3 dB (0.5 bit) for every doubling of the

oversampling ratio. The linear system in the modulator loop shapes the quantization

noise by placing nulls in the quantization noise spectrum at the band of interest which in

turn enhances the output bit stream signal-to-quantization noise ratio further. Delta-

Sigma modulators have been of outstanding interest at low-speed high-resolution

applications. However, they have not been very successful in high-speed high-bandwidth

applications. The explanation is that the high performance of ∆Σ modulators can

typically be exploited at high oversampling ratios. For high bandwidth applications this

requires a very high sampling rate which makes the real implementation very difficult.

Switched-C techniques have been the dominant approach for implementing the ∆Σ loop

filters. One can achieve very good matching and linearity with a switched-C technique;

however, the clock speed is a limiting factor. The reasons are the opamp speed

(bandwidth) and non-ideal effects in the switches like nonzero “on”-resistance and clock

feedthrough. It is shown [Greg86] that in order to have a negligible error at a switched-C

integrator with a two-phase clock scheme, the unity-gain bandwidth of the opamp

should be (at least) five times as large as the clock frequency i.e. . Recently, a

ωo

f s f o 5 f s≈
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continuous-time technique [Gail89], [Thu91], [Tro93] for bandpass LC-based

modulators has been introduced as an alternative for the switched-C (discrete-time)

approach. The continuous-time modulators can also make use of some other continuous-

time techniques such as the transconductor-C (Gm-C) approach. Since a transconductor-

C integrator operates at its unity-gain frequency ωo, so one can estimate that within the

same technology a typical continuous-time filter can be five times faster than a typical

switched-C one.

The higher-order ∆Σ modulators can alleviate the high-speed clock requirement

somewhat. That’s why many researchers have developed some higher-order ∆Σ

topologies [Lee87b], [Ada91], [Cha90]. Unfortunately, modulator structures (order > 2)

are prone to instability. So, the stability analysis continue to be a central research issue

for these modulators [Risb94].

In this chapter an overview on continuous-time modulators will be given. Then,

bandpass ∆Σ modulators are reviewed. A survey of ∆Σ stability analyses will conclude

the chapter.

2.1 Continuous-time Delta-Sigma Modulator

Delta-Sigma modulation was proposed in 1962 [Ino62] by Inose et. al. as a modification

of Delta modulation, which couldn’t fulfill the requirements of digital transmission of

analog signals. The same authors in 1963 [Ino63] presented an analysis for signal-to-

noise characteristics of a ∆Σ modulator along with a real circuit implementation. Their

modulator loop filter was an integrator composed of the discrete-component continuous-

time circuits. Fig. 2.2 shows a block diagram of the lowpass filters used in [Ino63],

Figure 2.1 :  A general ∆Σ modulator.

x t( ) y t( )u t( )
Σ

A linear

system
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where G represents the loop DC-gain implemented by a transistor. Later on in [Bra69] it

was shown that since the modulator feedback signals are sampled, the loop behavior

including the continuous-time feedback loop filter can be described by a z-domain

transfer function. The general analysis given in [Bra69] was correct, however, the z-

domain transfer functions proposed for a simple integrator  and a double

integrator  were wrong. Candy [Can74] used the same idea to make an 8-bit

A/D converter intended for 1-MHz signal bandwidths. He used a continuous-time

single-stage integrator for the modulator loop similar to that in [Ino62]. His analysis

showed again despite the fact that the loop filter is continuous-time, because of the

presence of a sampler (quantizer) inside the modulator loop, the loop function can be

expressed by a z-domain transfer function. Ignoring aliasing effects he gave

representation for the baseband spectrum of the output signal for the first-order

modulator. In [Can85] an extended analysis of [Can74] was given which related a

modulator with a second-order continuous-time filter to its discrete-time equivalent.

This was a correct z-domain loop transfer function representing a loop including a

continuous-time double integrator and a D/A with a non-return to zero (NRZ) feedback

pulse:

( 2.1)

where T is the sampling period.

With the advent of switched-C filters most integrated-circuit ∆Σ A/D converters became
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Figure 2.2 :  The modulator loop filters used in [Ino63] with their transfer functions, (a) single-
integrator, and (b) double-integrator.
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switched-C based [Ada91], [AD92]. There have been some exceptions in which a mixed

continuous-time discrete-time scheme has been chosen. For example in [Sig90] the

fourth-order integrated circuit modulator loop filter consists of a continuous-time

chopper-stabilized front end integrator followed by a third-order switched-C circuit. The

primary reason for using a continuous-time front-end integrator instead of discrete-time

one in [Sig90] was noise. For a switched-C integrator, the noise is determined by

thermal noise sampled on the input capacitors: kT ⁄ C. To suppress the sampled noise in a

discrete-time loop for a very high resolution A/D like the one reported in [Sig90], an

input capacitor in order of several hundred picofarads is required. This large capacitor is

undesirable for integration and could cause some nonlinear settling of analog input and

nonlinear sampling in the input switches too. Since the input signal is not sampled in the

continuous-time integrator the above errors are eliminated. Besides, the continuous-time

integrator provided a sinc-shaped anti-alias filtering for the modulator [Can85].

Shortly after introduction of the bandpass ∆Σ modulator [Sch89], [Gail89] continuous-

time modulators attracted more attention [Thu91], [Tro93]. The main reason was the

higher speed capability of continuous-time filters compared to their switched-C

counterparts. Especially for bandpass modulators, the speed of the loop filter is the

major limitation on the center IF frequency of the modulator. The continuous-time

bandpass modulators used in [Gail89], [Thu91], [Tro93] were discrete-LC-type filters.

Unfortunately, as will be shown in Ch. 4 they didn’t produce a proper loop transfer

function, so their modulators were susceptible to instability and didn’t give the

maximum achievable SNR for the given order.

2.2 Bandpass Delta-Sigma Modulator

As mentioned the modulator loop filter puts nulls in the quantization noise across the

band of interest. In a lowpass ∆Σ modulator the zeros of the quantization noise are near

DC. One can extend this principle to bandpass by moving nulls into some non-DC

frequencies which produces a band-reject noise-shaping property instead. This can be

expressed by a linear model of the modulator shown in Fig. 2.3 in which the quantizer is

substituted by an additive white noise e(k). From this linear model one can define noise

transfer function NTF(z) and signal transfer function STF(z) as follows:
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( 2.2)

By using a linear model with given specifications such as SNR, bandwidth (BW) and

oversampling ratio (OSR) the required NTF(z) can be obtained, and consequently from

(2.2) the loop filter H(z) is derived. For a bandpass design one can first meet the SNR-

BW/OSR requirement for a given sampling frequency with a lowpass modulator

assuming that the input signal is centered at zero IF. The resulting lowpass modulator

would consist of a lowpass loop filter H(z) and produce a highpass NTF(z). Then the

NTF(z) can be transformed to a bandreject filter by a lowpass to bandpass transformation

[Opp75], say:

( 2.3)

which in turn produces a bandpass loop filter H(z). It is apparent from (2.3) that the

order of the obtained bandpass modulator is twice as high as that of the original lowpass

and one intuitively can expect to get the same SNR for a given bandwidth. Selecting the

sampling frequency fs, 2
n times faster than the modulator center frequency fo, where n is

an integer, reduces the complexity of the decimation filter [Sch89]. One good choice is

at fs = 4fo which corresponds to the  lowpass to bandpass transformation, the

special case in (2.3) when α = 0. In frequency domain this means

NTF z( ) Y z( )
E z( )
-----------

1
1 H z( )+
---------------------= =

STF z( ) Y z( )
X z( )
-----------

H z( )
1 H z( )+
---------------------= =

Figure 2.3 :   The general linear model for a ∆Σ modulator.
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( 2.4)

where fbp is the mapped bandpass and flp the original lowpass frequencies and as is

apparent from (2.4) the prototype lowpass NTF zeros at DC are mapped to . This

frequency band transformation is shown in Fig. 2.4. As shown in Fig. 2.4 the OSR and

the positive or negative bandwidths B in both bandpass and lowpass modulators are the

same; however, the distances between the spread zeros on the unit circle in the bandpass

are half those in the lowpass. The latter can be observed from (2.4) too. The

transformation  doesn’t change the dynamics of the lowpass prototype, so a

stable lowpass modulator produces a stable bandpass one.

The preservation of stability is not always true for a general transformation given in

(2.3). Therefore, one can use an optimization algorithm [Sch93], [Risb94] or some

computer filter approximator [Ous90] to design an arbitrary bandreject NTF(z) at a

desired center frequency considering some modulator stability constraints. It should be

noted that the optimized NTF(z) maximizes the SNR at a certain bandwidth or OSR. So,

usually these kind of modulators are application specific and don’t result in the optimum

performance as a general purpose A/D modulator say for different bandwidths and/or

variant OSRs.

The maximum sampling frequency is usually determined by the technology limit and the

bandwidth is known from the application, so the order and type of the modulator loop

filter and the band location have to be selected for achieving the required SNR. One
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Figure 2.4 :  The frequency mapping produced by the z-1 → −z-2 transformation, the NTF zeros
and the band of interest B in (a) lowpass and (b) bandpass modulators.

B

0π0π

(a)
(b)

B

OSR
f
s

2B
-------= OSR

f
s

2B
-------=

transition
band

transition
band



Chapter 2−Overview of Delta-Sigma Modulator 12

consideration for the band selection in a switched-C modulator is making the transition

band (shown in Fig. 2.4) wider, say by placing the center frequency closer to DC i.e.

having a higher . This relaxes the requirements on the anti-aliasing filter.

Therefore, the  center frequency might not always be a good choice. Consequently,

a lower center frequency like  may be required which makes the decimation process

a bit more complex than the simple  case too. For a continuous-time modulator,

however, due to its inherent anti-alias filtering property which will be shown in Sec. 3.2

this is not an issue. So, for a continuous-time modulator,  is probably the best

choice for the center frequency; it simplifies the decimation process and lets a designer

use the  transformation too.

2.3 Stability in a Delta-Sigma Modulator

The design of a ∆Σ modulator is not complete unless a robust stability condition is

achieved. Many investigators have tried to come up to a reliable criterion for the stability

of a ∆Σ modulator. Although several stability criteria exist, they either give no guarantee

whatsoever or are over conservative. The main reason for this problem is that a ∆Σ

modulator is a highly non-linear system because of the presence of a quantizer, usually

one bit, in the forward path. Analysis of a non-linear closed loop system has always been

a big problem for control engineers [Tha62]. They usually need to make a linear

approximation to reach a solution which can predict the response of the non-linear

system up to some extent. Furthermore, in a ∆Σ modulator the behavior of the signals at

the input of quantizer and quantization noise are stochastic. The latter fact even restricts

the use of the ordinary non-linear control theory in ∆Σ modulators and would require an

analysis of a non-linear system with a random process excitation.

Besides, the most often used linear model of a ∆Σ modulator shown in Fig. 2.3

substituting the quantizer with a gain of one and an additive independent white noise as

the quantization error can not explain some dynamic characteristics of the modulator

like noise spectrum dependency on the input signal.

2.3.1 Quasi-linear Loop Gain

Ardalan and Paulos [Ard87] proposed a comprehensive closed form quasi-linear
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solution which replaces the quantizer with two linearized gains based on a mean square

error criterion. They assumed that the input signal to the quantizer is composed of a part

related to the modulator input signal and a zero mean random component. A block

diagram of these interlocked linear systems are shown in Fig. 2.5. They assumed a

Gaussian distribution for the input signal to the quantizer. In order to obtain the

linearized loop gains one can run simulations for getting the variance and the mean

value (statistics) of the signal e(t) at the input of quantizer or solve a set of simultaneous

equations numerically.

Knowing the loop gain, one can write the noise transfer function from the block diagram

in Fig. 2.5 as:

( 2.5)

Clearly the shaping of the noise spectra by the loop gain Kn is apparent from (2.5) and

since the loop gain Kn is a function of the input amplitude the noise transfer function

dependency on the input signal is justified. It was shown that increase of the input

amplitude (DC in lowpass modulators) would reduce the loop gain and consequently

Figure 2.5 :   (a) Linearized system for the input signal to modulator, (b)
equivalent system for quantization noise.
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shape the noise spectrum, producing more in-band noise. This way one can use linear

control tools like root locus, Nyquist plot, etc. to investigate the modulator stability

against the loop gain (input amplitude). In [Ard87] it was shown that for DC input at

high input amplitude values Kn is much lower than Kx, so for a stability test the noise

equivalent system shown in Fig. 2.5b and represented in (2.5) should be used.

The excellent theoretical work in [Ard87] has not received much attention due to its

complexity and again not offering a certain stability guarantee for different class of

modulators. Later, in [Wol88], [Ada91] the stability of a ∆Σ modulator was analyzed by

replacing the quantizer with a linear gain which was defined by the ratio between the

mean values of the quantizer output and input.

2.3.2 BIBO or One-norm Criterion

In [Sch92] the bounded input bounded output (BIBO) criterion which is based on the

worst case assumption was improved by using modulator invariance behavior to positive

scaling of the feedback filter H(z). This is shown from Fig. 2.6 in which a positive gain K

> 0 is placed in front of the quantizer. Obviously since sgn(kx) = sgn(x) this won’t alter

the behavior of the modulator. However, it does change the noise and signal transfer

functions. One can show that for K = 1:  where

NTF(z) is the noise transfer function and H(z) the loop filter. Placing a gain factor K in

front of the quantizer in Fig. 2.6 is like scaling the loop filter H(z) in Fig. 2.3. In order to

get different F(z) in Fig. 2.6 resulting in exactly the same modulator with exactly the

same stability properties:

Figure 2.6 :   A ∆Σ modulator with a positive gain element in front of the
quantizer.

x k( ) y k( )u' k( )
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Σ
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( 2.6)

where NTFK(z) was given in (2.5).

For BIBO stability in one-bit quantizer (±1 output) in Fig. 2.6 we need to ensure

. With this assumption one can write the following inequality:

( 2.7)

where  and  are the infinity and one-norm of a sequence. Assuming

 guarantees that , so the BIBO condition for stability is

( 2.8)

The one-norm of NTFK(z) is defined as S(K) in [Risb94]:

( 2.9)

where . Since ntfK(0) = 1 to ensure causality, which

means the modulator loop is not delay free, from (2.6) and (2.9): .

Therefore the BIBO condition shown in (2.8) can be expressed as

( 2.10)

where Smin is the global minimum of S(K).

It has been shown [Sch89] that the one-norm condition is conservative for second order

lowpass modulators, for example the standard second-order modulator fails the one-

norm test.

2.3.3 Two-norm Criterion

Recently Risbo [Risb94] modified the mean square error criterion introduced in [Ard87]
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and came up with a very interesting stability criterion. This stability test uses a two-

norm of NTFK(z) which can be written from the general linearized model shown in Fig.

2.3 as:

( 2.11)

where recall .

Now since the transfer function between quantization noise e(k) and y(k) is known,

assuming e(k) a zero mean white stochastic noise, the output variance can be expressed

as:

( 2.12)

where my is the output DC (mean value). The second line in (2.12) is based on the fact

that ±1 y(n) sequence has fixed unity output power. Equation (2.12) shows why A(K) is

called noise amplification factor [Risb94].

From (2.12) making use of the result for Gaussian pdf of signal at input of the quantizer

[Ard87]:

A K( ) nt f K n( ) 2∑ nt f K 2

2
= =

NT FK e
j2πf( )

2
fd

0

1

∫=

NT FK z( ) 1
1 K H z( )⋅+
------------------------------=

Figure 2.7 :   A general ∆Σ modulator with linearized quantizer model.
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. ( 2.13)

Fig. 2.8 shows the modulator’s noise amplification A respect to the output mean value

with Gaussian pdf assumption. As shown the maximum value of A (Amin) is 2.75 for the

zero input case. Risbo [Risb94] distinguished A for chaotic1 and every high order

modulator (N > 2) which are convex with a global minimum somewhere in the middle of

the stable K-interval and A becomes infinite at the endpoints of the stable K-interval.

A(K) for a third-order multiple-pole lowpass modulator is shown in Fig. 2.9a. The

infinite values of A at endpoints of stable K-interval can be related to the root locus of

the NTFK of the modulator versus K variation. As shown in Fig. 2.9b, from the linear

analysis, the modulator can be stable only in K ∈  [0.5 1.15] interval.

It is shown [Risb94] that the Gaussian pdf assumption doesn’t hold for many

modulators. For example, in the preceding third-order multiple-pole Amin = 9.34 which

is much higher than 2.75 predicted by the Gaussian pdf assumption for zero input shown

1. So called chaotic modulator refers to one in which some of the loop filter’s poles are outside
unit circle.
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Figure 2.8 :   Noise amplification factor A against my.
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in Fig. 2.8.

Although the two norm criterion combined with root locus stability test (or any other

conventional method) is approximate, one can get enough information to improve

designs and compare them. For example, for a third-order design the following two

systems have been studied:

1) a modified multiple-pole third-order modulator with α1 = 0.35, α2 = 0.7and

α3 = 1[Bai94], where α coefficients are the gains of three integrators in third-

order loop.

2) a spread-pole third-order modulator in which the loop filter pole frequencies

obtained by a NTF optimization [Sch93]:

( 2.14)

and the loop filter zeros for OSR = 64 are given in [Risb94] to ensure a good

stability condition:

( 2.15)

The A and root locus of these systems are shown in Fig. 2.10. As shown in Fig. 2.10a the

f i 0
3
5
--- f b⋅±,

 
 
 

∈

z1 2, 0.7752 j 0.0663±=

Figure 2.9 :  (a) Noise amplification factor A versus K for a third-order multiple-pole lowpass
modulator, (b) NTFK(z) root locus versus K.
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modified multiple-pole third-order system has Amin = 4.04 which is lower than the one

shown in Fig. 2.9. The spread-pole system as shown in Fig. 2.10a produces an Amin =

2.31, lower than 2.75 for Gaussian pdf assumption. Its root locus i.e. the inner curve

shown in Fig. 2.10b exits the unit circle for lower K value (0.5 as opposed to 1.0 in the

multiple-pole system). The lower gain is more desirable since higher input signal levels

can be accommodated before reaching an unstable situation.

From the global minimum of A i.e. Amin which only depends on the loop filter the

maximum stable amplitude (MSA) can be achieved by making use of (2.13) [Risb94]:

AGauss(MSA) = Amin ( 2.16)

The empirical results have shown that the MSA derived on the assumption of Gaussian

pdf are very accurate [Risb94] for high-order modulators.

However, Risbo reported [Risb94] that the two-norm criterion by itself didn’t predict the

reliability of a high order modulator very well. He has proposed an optimization strategy

which is based on a mixture of one-, two- and infinity-norm constraints. The latter had

been mentioned before by Lee [Lee87a] which constraints the gain of the noise transfer

function at every frequency to be less than 2. Risbo made use of the poles of the loop

filter-prototypes presented in [Sch93] and optimized the loop filter zeros to achieve the

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3
1

2

3

4

5

6

7

8

-1.5 -1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 2.10 :  (a) Noise amplification factor A versus K for a modified third-order multiple-pole
lowpass modulator and a spread-pole design, (b) NTFK(z) root locus versus K, where Km stands for
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most reliable and stable condition.

The author believes the stability criteria presented to date would help a designer to come

up to a modulator as a good starting point. However, to ensure a robust stability giving

the desired SNR, simulations are the most reliable method.

2.4 Summary

The idea of continuous-time ∆Σ modulators and bandpass modulators have been

reviewed. The second part of the chapter was devoted to the stability issue in a ∆Σ

modulator as a major concern in any ∆Σ modulator design. One-norm, two-norm and

infinity-norm constraints as some interesting checks for a ∆Σ stability have been

reviewed. At the end a recent method which makes use of all mentioned stability

constraints was discussed.
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Chapter 3

Continuous-Time Delta-Sigma

Modulator Transfer Function

Design

Early designs of continuous-time ∆Σ modulators were approximate, guided by the

intuition that the general continuous-time integrators i.e.  should work for lowpass

modulators and correspondingly the continuous-time resonators  for

bandpass modulators. However, this simple assumption leads to implementation of an

incorrect loop transfer function for a ∆Σ modulator. In this chapter it is shown that a

continuous-time ∆Σ loop filter has to be designed according to the digital-to-analog

converter (DAC) output waveform in the feedback path of the modulator. A simple

explanation is that the continuous-time filters respond to an input signal continuously,

unlike the switched-C filters in which an analog charge is supplied to the filter at a clock

phase φ and the output analog voltage is ready at a clock phase φ. So, a switched-C filter

doesn’t see the variations of the input signal during the clock period φ and φ. On the

other hand, from the linear system theory the output of a continuous-time filter is the

result of convolution of the filter response with the input signal in the time interval t ∈  [−

∞, ∞]. Several continuous-time ∆Σ loop filters associated with different DAC pulse

waveforms have been studied in this chapter.

3.1 Transformation of a Discrete-Time Delta-Sigma Modulator to a

Continuous-Time Delta-Sigma Modulator

A block diagram of a continuous-time ∆Σ modulator is shown in Fig. 3.1. Because of the

ωo s⁄

ωos s2 ωo
2+( )⁄
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presence of a sampler inside the loop (the quantizer is clocked, making for implicit

sampling) the overall loop transfer function in a continuous-time modulator is really a

discrete-time transfer function! In other words as shown in Fig. 3.2 the loop transfer

function from the output of quantizer back to its input has an exact equivalent z-domain

transfer function H(z). This doesn’t mean that the waveforms inside the loop are

sampled-data like the ones in a switched-C (discrete-time) modulator. However, the

sample values of the continuous-time waveform at the input of the quantizer at the

sample times define an exact discrete-time impulse response for the continuous-time

loop. In order to clarify this statement two examples of a second-order lowpass and a

second-order bandpass ∆Σ modulators with loop transfer functions of

and  are given here briefly. The loop impulse

responses of these discrete-time systems and their corresponding continuous-time

Figure 3.1 :   A continuous-time ∆Σ modulator.
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Figure 3.2 : ∆Σ open loop block diagram.
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counterparts are shown in Fig. 3.3 and Fig. 3.4 respectively. As shown in these figures

Figure 3.3 :  Open-loop impulse response of the second-order lowpass modulator.
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Figure 3.4 :  Open-loop impulse response of the second-order bandpass modulator.
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the open-loop impulse responses of the discrete-time loop filters match the samples of

the impulse response of the continuous-time modulator loops. The continuous-time

waveforms shown in Fig. 3.3 and Fig. 3.4 are actually the pulse responses of the

continuous-time ∆Σ loop filter as depicted in Fig. 3.2. Detailed analysis of these

examples is given in Sec. 3.1.1 and Sec. 3.1.4.

The loop behavior is completely determined by what the sampler inside the loop sees at

its sample times, and that can be written as a difference equation. So, if a designer wants

to analyze the performance of a continuous-time ∆Σ modulator (SNR and stability), he/

she should first derive the equivalent z-domain transfer function for the ∆Σ loop. Then

further analysis can be done in the z-domain as for traditional discrete-time modulators.

Therefore the noise-shaping behavior of “continuous-time” ∆Σ loops can be designed

entirely in the “discrete-time” domain and the exact same noise-shaping behavior

obtained for either continuous-time or discrete-time systems.

Different DAC pulse shaping result in different transformations between continuous-

time and discrete-time modulators. By choosing different filters, any of them can be

made to match the desired z-domain behavior. We will see there are practical advantages

to some over others. Three important possible DAC feedback pulses are non-return to-

zero (NRZ), return to-zero (RZ), and half-delay return to-zero (HZ). Their impulse

responses represented by RNZ(t), RRZ(t) and RHZ(t) are shown in Fig. 3.5.

Figure 3.5 :  NRZ, RZ, and HZ DAC feedback impulse responses.
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3.1.1 NRZ Transformation

The ∆Σ modulator of Fig. 3.1 is shown again in Fig. 3.6 in more detail. The loop filter is

represented by  and the DAC transfer function by a zero-order-hold (ZOH) in

which p is the opening aperture. For a return-to-zero (RZ) DAC normally p=T⁄2, and for

a non-return-to-zero (NRZ) DAC p=T, where T is a sampling period. A RZ DAC reduces

the nonlinearity that is caused by the fact that the area under a practical pulse depends on

the levels of the preceding and following pulses [Sig90]. Fig. 3.2 shows the ∆Σ signal

path from the output of quantizer back to its input for a NRZ DAC. As can be seen from

Fig. 3.2 the overall ∆Σ loop gain is a discrete-time function, so one can derive the exact

discrete-time transfer function, H(z), of the loop given the transfer functions of the

continuous-time loop filter, , and the ZOH as follows:

( 3.1)

Equation (3.1) can be expressed in the time domain by

( 3.2)
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Figure 3.6 :  A continuous-time ∆Σ modulator.
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where Rp(t), the impulse response of ZOH, is a pulse with width of p as shown in Fig.

3.6,  is the impulse response of the continuous-time loop filter, h(n) is the overall

discrete-time impulse response of the loop, and ∗  denotes time convolution. Since Rp(t)

has a pulse waveform, (3.1) and (3.2) are known as the pulse invariant transformation.

Consider the case where p=T corresponding to NRZ feedback pulse, RNZ(t) in Fig. 3.5.

Then the loop filter NRZ pulse response from (3.2) can be described as following:

( 3.3)

For a continuous-time loop filter with single-poles described in residue form by

( 3.4)

the impulse response would be

. ( 3.5)

Substituting  into (3.3), we have

( 3.6)

Looking at samples of loop impulse response, h(t), at sampling times i.e. t=nT gives the

discrete-time loop impulse response equivalent

( 3.7)
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â
k
esk t τ–( )

k 1=

N

∑
 
 
 

τd

0

t

∫ â
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( 3.8)

There are some interesting properties in the pulse invariant transformation given in

(3.6)-(3.8) which have to be addressed:

1) The first sample of the loop filter pulse response is zero (3.7). This is described by a

delay factor which always exists in the numerator of the pulse invariant

transformation function (3.8). This delay is related to the causality property

associated with convolution of two ordinary signals which don’t contain any

impulse function δ(t) component. That’s why, as will be seen in the transformation

of any discrete-time ∆Σ loop filter to a continuous-time equivalent, one delay is

always absorbed in pulse transformation.

2) The overall continuous-time loop response (3.6) is described by different functions in

the regions of 0 ≤ t < T and t ≥ T, where T is the sampling period. This has already

been shown in Fig. 3.3 and Fig. 3.4 for second-order lowpass and bandpass

modulators respectively. It should be noted that, however, the overall loop response

has continuity at T.

The equivalent discrete-time loop filter (3.8) can be written as

( 3.9)
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âk

sk–
--------esknT e s– kT 1–( )

k 1=

N

∑
 
 
 

z
n–

n 1=

∞

∑==

âk
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Note that (3.9) is the NRZ pulse transformation of (3.4) rewritten here

( 3.11)

This has the properties one would expect: a pole at s = 0 transforms to one at z = 1, and a

pole at s = j2π(fs ⁄ 4) transforms to one at z = j.

As a simple example, look at the first-order lowpass modulator shown in Fig. 3.7, where

continuous-time signals are distinguished with “hats” and the “zero-order hold” function

converts a sample stream to a non-return to-zero (NRZ pulse) waveform. Its equations

can be written by inspection:

( 3.12)

and

which is a difference equation as far as u(k) is concerned:

( 3.13)

Equations (3.12) and (3.13) describe (exactly!) a first-order ∆Σ loop with a feedback

gain  and an input signal that is prefiltered by a boxcar integration (hence the

comment later in Sec. 3.2 that there is an “implicit anti-alias filtering” in a continuous-
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Figure 3.7 :  A first-order continuous-time ∆Σ modulator.
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time ∆Σ modulator). It should be noted that a first-order discrete-time ∆Σ modulator

with a loop filter z−1 ⁄ (1−z−1) gives the difference equation:

.

This first-order continuous-time system is generalized [Thu91] using an impulse-

invariant transformation, which converts term-by-term between the partial-fraction

expansion of a discrete-time response H(z) and a continuous-time .

Working with the partial-fraction expansion (the first step of inverting the Laplace

transform) is the way to guarantee that the impulse responses are equal at sample times

, and the  term accounts for the zero-order hold at the DAC feedback to

the continuous-time filter.

Applying (3.10) to the first-order case with  gives an unfortunate

cancellation: , but the ambiguity is easily resolved either

by using L’Hôpital’s rule or by taking a limit of (3.10) as . Looking at an

expansion of :

shows that for poles at DC

( 3.14)

which gives the form that we found in the special case that derived (3.13). Recall from

Fig. 3.7 that .

Equations (3.9)-(3.11) give a simple translation that allows a designer to take an

arbitrary H(z), rewrite it in the form of (3.9), and get an  that gives an exact

equivalent continuous-time loop. That’s enough to design continuous-time bandpass (or

lowpass, for that matter) ∆Σ converters, except for a couple of “fine points” that need to

be addressed: (3.9) and (3.11) can’t handle multiple poles such as those found in a

conventional second-order ∆Σ modulator or its bandpass version; and high-linearity

feedback DACs use RZ waveforms rather than NRZ. We’ll give the corresponding

equations for double-pole transfer functions in this section and the RZ and HZ

transformations are given in Sec. 3.1.2.

Repeated poles in a rational function produce additional terms (besides those in (3.9)) in
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the partial fraction expansion, which have the form

( 3.15)

The transformation for this double-pole transfer functions is given in Appendix A. The

poles are moved to points  with , just as before, and the corresponding term

in the continuous-time equivalent becomes

( 3.16)

which has repeated poles, just as in the z-domain, but has a numerator with both

bandpass ( ) and lowpass (constant) terms.

From single-pole equations given in (3.9)-(3.11) and double-pole given in (3.15)-(3.16)

it can easily be shown that a conventional second-order ∆Σ modulator with

 has a continuous-time equivalent

 which has already been derived by a different method in

[Can85]. This is the example which was given in Sec. 3.1. Its filter transfer function

 has the associated impulse response of

 where u(t) is the step function. By substituting this  into

(3.3) the waveforms shown in Fig. 3.3 can be easily verified.

For a complex pole the numerator in (3.16) has complex coefficients, but a conjugate

term  produces a conjugate numerator term. The transfer function of a

second-order bandpass ∆Σ modulator with sampling frequency four-times of the in-band

signal frequency is

. ( 3.17)

This resonator has a pair of complex conjugate poles at  giving rise to resonance

at , where  is sampling rate. The loop impulse response of this system is a cosine

waveform which has an unusual feature that its two first samples are zero:
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( 3.18)

This feature agrees with a  factor in the transfer function given in (3.17). As was

mentioned before, the pulse invariant transformation absorbs one delay in the discrete-

time transfer function. The remaining delays (for example one delay in the second-order

bandpass example) can be implemented digitally. So, for (3.17) first one needs again to

make the partial fraction for .

( 3.19)

Applying (3.10) to (3.19) gives the second-order continuous-time equivalent

( 3.20)

This represents the continuous-time loop filter of the one-delay scheme implementing

the second-order modulator given in (3.17). It should be noted that in Sec. 3.1.4 it is

shown that there is a zero-delay continuous-time loop transfer function solution for this

example in which the loop filter’s first two samples are zero. Actually Fig. 3.4 represents

the continuous-time impulse response of the zero-delay second-order solution. In a zero-

delay modulator there is no requirement for any digital delay inside the loop.

The overall continuous-time loop impulse response for the modulator employing the

loop filter shown in (3.20) (one-delay scheme) can be obtained by substituting the

impulse response of (3.20) i.e.  where  into (3.3)

( 3.21)

It should be noted that because of a  discrete delay factor inside the loop the overall

continuous-time loop impulse response is shifted by i.e.  which is shown in

Fig. 3.8. The discrete-time loop impulse response (3.18) represented by ‘ovals’ matches

the continuous-time loop response (3.21) at the sampling times as shown in Fig. 3.8.
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ĥ t( ) π
4
---

π
2
---tcos

π
2
---tsin+ 

 = T 1=

h t( )

h0 t( ) 1
2
--- 1

π
2
---tcos–

π
2
---tsin+ 

  0 t T≤<=

h1 t( ) 1
2
---

π
2
--- t 1–( ) π

2
---t

π
2
--- t 1–( ) π

2
---tsin+sin–cos–cos 

  t T≥=











=

z 1–

T h t T–( )



Chapter 3−Continuous-Time Delta-Sigma Modulator… 32

Another particularly important case [Thu91], [Lon93], [Sch94] is a fourth-order

multiple-pole bandpass converter

( 3.22)

Taking out a  delay factor from (3.22), using (3.9)-(3.11) and (3.15), (3.16) one can

derive the s-domain loop filter of the one-delay modulator scheme. This produces a

fourth-order continuous-time filter with a third-order numerator and a double pole at

( 3.23)

The discrete-time loop impulse response of this system (3.22) is

H z( ) z 2– 2 z 2–+( )
1 z 2–+( )2

------------------------------=

Figure 3.8 :  Open-loop impulse response of the one-delay scheme second-order bandpass modulator.
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( 3.24)

It can be shown that the NRZ pulse response of the continuous-time multiple-pole

fourth-order loop filter given in (3.23) results in the overall continuous-time loop

impulse response, . For normalized :

( 3.25)

It should be noted that because of a  discrete-delay factor inside the loop the overall

continuous-time loop impulse response is shifted by . The continuous-time loop

impulse response (3.25) matches the discrete-time loop response (3.24) at sampling

times as shown in Fig. 3.9.

The simple way to build a double pole, in continuous time, is with a pair of bandpass

resonators [Thu91], [Gail89], [Tro93] but that approach gives a numerator with only an
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Figure 3.9 :  Open-loop impulse response of the one-delay scheme fourth-order bandpass modulator.
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 term, which doesn’t give the right . We will show an appropriate structure in

Ch. 4 and Ch. 5 to realize the preceding transfer function.

3.1.2 RZ and HZ Transformation

A second generalization of (3.9)-(3.11) is needed to allow the use of return-to-zero (RZ)

and half-delay return to-zero DAC waveforms like the ones shown in Fig. 3.5. The effect

this has is to change the integration (convolution) boundary in (3.3) from  (for

NRZ DAC) to  and  for RZ and HZ DACs respectively.

In an RZ DAC the zero-order hold, , is replaced with a half-sample hold,

, which would just make a straightforward change in (3.10) for

the single pole case

( 3.26)

Correspondingly in an HZ DAC the zero-order hold, , is replaced with a

half delayed half-sample hold, , which would just

need another straightforward change in (3.10) for the single pole case

( 3.27)

It can be shown that the RZ pulse transformation of the double-pole function given in

(3.15) is

( 3.28)

and its HZ pulse transformation is

( 3.29)

The multiple-pole transformation is actually an extension of the single-pole

transformation. A multiple-pole function can be considered as a function with distinct

s2 Ĥ s( )

0 T,[ ]

0
T

2
---, T

2
--- T,

1 e sT––( ) s⁄

1 exp sT 2⁄–( )–( ) s⁄

ak

âk
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poles in which the poles are hypothetically deviated slightly from each other. Then the

single pole transformation (3.9)-(3.11) for NRZ and (3.26), (3.27) for RZ and HZ

respectively can easily be applied on the partial fraction expansion form of the new

hypothetically single-pole functions. In the second step in order to obtain the original

multiple-pole function in the other domain (say s-domain) one may use L’Hôpital’s rule

as many times as necessary (n−1 times for a multiple-pole function of order n). In the

last step the deviated poles should approach to their original places in order to obtain the

limit function value. The example of RZ and HZ double-pole transformations for z-

domain to s-domain (z2s) is given in Appendix A.

These programs have been written in “Mathematica” [WM88]. From (3.26) and (3.28) it

can be shown that the multiple-pole fourth-order system given in (3.22) has the RZ

continuous-time filter (one-delay scheme) as following:

( 3.30)

In Table 3.1, the corresponding NRZ and RZ continuous-time loop transfer functions for

some conventional ∆Σ modulators have been shown.
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*. The given loop functions are for a modulator with a “summer” as opposed to subtracter in front like Fig.
3.1.

Table 3.1: Examples of s- and z-domain ∆Σ Modulator Loop Transfer Functions*.
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3.1.3 NRZ and RZ Transformations in State Space Form

Any linear system can be expressed by a set of state space equations. In this subsection

the discrete-time and continuous-time state space equivalent equations corresponding to

the NRZ and RZ transformations given in Sec. 3.1.1 and Sec. 3.1.2 are presented.

A continuous-time and a discrete-time equivalent modulator loop filters represented by

their state-space parameters are shown in Fig. 3.10. The continuous-time system is

described respectively as the following:

( 3.31)

where uc(t) is a vector of N states,  the time derivative of uc(t),  the input,

 the output as shown in Fig. 3.10a, and Ac, bc, cc and dc the coefficients relating

these variables. Ac is a N × N matrix, bc and cc are N × 1 vectors and dc is a scalar.

Correspondingly the discrete-time equivalent filter shown in Fig. 3.10b can be expressed

as

. ( 3.32)

It can be shown [Sch94] that for a continuous-time filter with a zero-order held input

signal i.e.  for  where T is the sampling period, the

discrete-time equivalent parameters can be obtained as the following
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û t( ) cc

T
uc t( ) dc ŷ t( )+=
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ŷ t( )

Ad, bd, cd, dd

(a) (b)

Figure 3.10 :  (a) A continuous-time loop filter and (b) a discrete-time loop filter equivalent shown
by their state-space parameters.
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( 3.33)

or conversely the continuous-time system can be explained from its discrete-time

equivalent

. ( 3.34)

This state space transformation which actually demonstrates the NRZ transformation

given in Sec. 3.1.1 has already been shown in [Fra90] for state space equations and can

be accomplished readily, using the MATLAB function “d2c” [MWI92].

The same transformation can be obtained for a RZ hold input too. An analysis for RZ is

given in Appendix D whose final result is as the following:

( 3.35)

For example, the parameters of the second-order continuous-time and discrete-time

lowpass modulators can be shown as the following:

( 3.36)

It should be noted Bd and Bc are both 2 × 2 matrices here, each representing a two-input

system. One input is the comparator’s output signal and the other is the modulator’s

input signal. The Fig. 3.11 shows the state space diagrams of these modulators.
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inherently discrete-time. This is due to the presence of a sampler inside the loop as

shown in Fig. 3.1. Therefore, one can implement different equivalent continuous-time

modulators depending on the number of delays chosen in the digital side of the loop

preceding the DAC and following the comparator. For instance, as shown in Table 3.1,

the open loop transfer function of a second-order bandpass modulator is

. One way to implement the continuous-time loop is to apply

the pulse invariant transformation on  (having no digital delay inside the loop)

which gives a continuous-time loop filter with a RHP zero (a maximum phase filter) as

shown in column 4 of Table 3.1 and graphically in Fig. 3.12a:

( 3.37)

The overall loop continuous-time impulse response with zero discrete-time delay is

already shown in Fig. 3.4. As shown in Fig. 3.4 the first two samples of the pulse

response of the maximum phase continuous-time filter (3.37) is zero which removes the

necessity of a discrete-time delay in the ∆Σ loop. The other way is to have one delay in

H z( ) z 2– 1 z 2–+( )⁄=

Figure 3.11 :  State-space diagram of (a) a discrete-time and (b) a continuous-time second-
order lowpass modulators.
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the digital side of the loop and to apply the pulse invariant transformation on the

remaining part of , i.e. , which gives a continuous-time loop filter

with a LHP zero (a minimum phase filter) as shown in column 5 of Table 3.1, and

graphically in Fig. 3.12a:

( 3.38)

The overall loop continuous-time impulse response with one discrete-time delay is

already shown in Fig. 3.8. It should be noted that in the pulse invariant transformation a

 is present in the numerator of each partial fraction as shown in (3.9). Thus in order

to derive a continuous-time loop filter it is required to keep at least one delay ( ) in

the numerator to ensure causality. This determines the number of possible ways to

implement the equivalent continuous-time modulators from a discrete-time modulator.

Obviously, for the second and multiple-pole fourth-order bandpass modulators in (3.17)

and (3.22) there are two different ways to implement the continuous-time loop: the zero-

delay and one-delay schemes. Both transformation schemes for this fourth-order

modulator are graphically illustrated in Fig. 3.12b. The fourth-order continuous-time

filter defined by (3.23) is based on the one-delay scheme. As shown in Fig. 3.12b the

loop filter for one-delay scheme of multiple-pole fourth-order modulator has a real LHP

zero and two complex conjugate LHP zeros. One can derive the continuous-time fourth-

order loop filter for the zero-delay scheme modulator by applying the pulse

transformation on the whole discrete-time loop filter (3.22) i.e.

. This produces a multiple-pole fourth-order filter with one

real RHP zero and two complex conjugate LHP zeros as shown in Fig. 3.12:

( 3.39)

The zero-delay scheme results in the same discrete-time loop impulse response as the

one (or higher)-delay scheme with a lower cost. The loop filter complexity in the zero-

delay scheme is the same as that in the one-delay scheme but the one (or higher)-delay
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second-order loop, (b) multiple-pole fourth-order loop.
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scheme requires extra flip-flop(s).

In the following section an analysis on the effect of any extra loop delay on a

continuous-time ∆Σ modulator is given. Here a simple explanation for the zero-delay

and one-delay second-order bandpass examples defined in (3.37) and (3.38) respectively

will be given. As shown in Fig. 3.13 an extra loop delay (d) causes the samples to move

from their original values represented by ‘ovals’ to some incorrect values represented by

‘x’. The sampling times are assumed fixed (no clock jitter) but the loop impulse response

is shifted by d. In the one-delay scheme Fig. 3.13a the first and second samples are

correct (zeros as they should be) but the remaining samples become incorrect. In the

zero-delay scheme as shown in Fig. 3.13b on the other hand, the incorrect1 values start

Figure 3.13 :  The effect of an extra loop delay on the loop samples in the a) one-delay b) zero-
delay schemes of the second-order bandpass modulators.
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from the second sample. However, it should be noted that in the zero-delay scheme

 coincides with the ideal loop response for  whereas in the one-delay scheme

this happens for . Therefore, although with an extra loop delay the second sample

in the one-delay scheme is still correct (zero), the third sample is a bit more off from the

ideal value than that of the zero-delay scheme as can be noticed from Fig. 3.13. The

remaining samples (from the fourth sample) are affected similarly in both zero-delay

and one-delay schemes. So, from this simple observation it is not very clear that which

scheme (zero-delay or one-delay) is more sensitive to extra loop delays. Although

ignoring those slight differences in the second and third samples one can expect that

both modulators have almost identical sensitivity to extra loop delays. However, since

the zero-delay scheme has one less D-flip flop (no D-flip flop for the mentioned second-

and/or fourth-order modulators), the zero-delay scheme might be preferred not only

because of its lower cost but because it has less propagation delay time in digital side of

the modulator. In the next section the extra loop delay difficulty for some continuous-

time ∆Σ examples will be analyzed. It will give some insight how the modulator’s poles

and zeros are affected by extra loop delays. But as will be seen it doesn’t provide a

general closed form formula for every modulator. Therefore, simulation remains the

most trustworthy tool to illustrate the maximum tolerable extra loop delay in a

continuous-time modulator.

In terms of stability, since the second-order modulator is a robust system, it can afford

more non-ideal loop delay. However, in higher order modulators like the fourth-order

system any extra loop delay will cost some SNR loss or even could result in instability in

the modulator.

3.1.5 The Sensitivity of a Continuous-time ∆Σ Modulator to Unwanted Extra

Loop Delays

The ideal open-loop block diagram of a continuous-time modulator was shown back in

Fig. 3.2. In Sec. 3.1.4 it was explained that any extra delay in the modulator loop such as

1. It can be noticed that the sample values form the fourth sample in the zero-delay and the one-
delay schemes are the same. This is because it can be shown that h1(t-1) in the one-delay scheme
given in (3.21) (shown in Fig. 3.8 too) is identical to h(t) for  shown in Fig. 3.4 in the zero-
delay scheme.

T 1≥

h t( ) t T≥

t 2T≥
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propagation delay time in comparator, latch, flip-flop, DAC, etc. changes the modulator

open-loop response at sampling moments . This was graphically shown

in Fig. 3.13. In this section a more detailed analysis is given.

Any extra loop delay in a ∆Σ modulator loop can be modeled by a  term as shown

in Fig. 3.14 where . Notice that the hat signs for the signals in Fig. 3.2 are

removed in Fig. 3.14 for simplicity. As shown in Fig. 3.14 the z-transform of the output

signal  is represented by . Since the continuous-time signal

is delayed by  which can be anywhere in the  interval, the new z-transform

 has to convey the information of the continuous-time signal between sampling

instants. This powerful tool is the well-known modified z-transform [Kuo63], [Hou85].

The block diagram shown in Fig. 3.14 including any loop delay can be analyzed by the

modified z-transform method. The method is essentially a modification of the ordinary z-

transform technique obtained by inserting non-integer time delays in the sampled-data

system (including continuous-time modulator and/or a switched-C system). It should be

noted that in a switched-C modulator the opamp output voltage is sampled after a safe

margin of settling which includes the delays caused by comparator and so on. Therefore,

in a switched-C modulator only the voltage levels at the sampling moments are

important. In comparison in a continuous-time modulator the information contained in

the continuous-time signal at comparator between sampling instants is crucial because

of the presence of loop delay.

From Fig. 3.14 the modified z-transform of  which is sometimes referred to as the

delayed z-transform and denoted by  is expressed as

0, T 2T, …,

e
s∆T–

0 ∆T T≤≤

u kT ∆T–( ) U z ∆,( ) u t( )

∆T 0 T,[ ]

U z ∆,( )

Figure 3.14 :  A continuous-time ∆Σ open loop block diagram with an
extra loop delay.

Ĥ s( )DAC
y k( ) y t( ) u t( ) u kT ∆T–( )

f s
1
T
---=

t t t T+

11

e
s∆T–

u t ∆T–( )

U z ∆,( )

u t( )

U z ∆,( )



Chapter 3−Continuous-Time Delta-Sigma Modulator… 45

( 3.40)

and for  it can be written as [Kuo63]

( 3.41)

It can be noticed that if the response  does not have any jump discontinuity at

 when :

( 3.42)

and when

. ( 3.43)

Here the manner of obtaining the modified z-transform is presented without proof

[Kuo63]. The modified z-transform of  is given by

( 3.44)

evaluated only at poles of

where  is the Laplace transform of the original continuous-time signal .

For our purpose since most of the transfer functions that we are interested in are rational

functions, one may use tables [Hou85]. Some frequently used functions for bandpass ∆Σ

modulators are given in Table 3.2.

Now we return to our problem i.e. obtaining the z-transfer function of a delayed

continuous-time ∆Σ open-loop system. From Fig. 3.14 first one needs to obtain the pulse

response of the loop filter i.e. the impulse response of  followed by DAC. This has

been explained in Sec. 3.1.1. For example, recall that the loop response denoted by

for second-order and fourth-order systems were given in (3.21) and (3.25) respectively.

The open-loop responses of these systems were shown back in Fig. 3.8 and Fig. 3.9. The

open-loop response of the second-order system is represented again in Fig. 3.15. As

shown in Fig. 3.15 and already given in (3.3) for an NRZ DAC, due to convolution of a

U z ∆,( ) Z u t ∆–( )[ ] u nT ∆T–( )
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pulse with the loop filter response  the beginning of the overall open-loop response

 in  interval is always different from that in , where  is the DAC

aperture. This slight difference in the first sample can be neglected i.e. assuming

( 3.45)

to simplify the calculation of the modified z-transform of a delayed continuous-time ∆Σ

open-loop system.

With this approximation, for example, for the preceding given second-order system with

the ordinary z-transform and discrete-time impulse response given in (3.17) and (3.18)

respectively we can write:

( 3.46)

where  denotes to modified z-transform. From the second row in Table 3.2 when

 it can be concluded that

Table 3.2: Some transform examples
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. ( 3.47)

From (3.47) it can be noticed that when  (no extra delay) .

The noise transfer function (NTF) for the new loop transfer function then is

. ( 3.48)

From (3.48) it can be noticed that the two poles previously (with no extra delay) both at

 now have moved from origin because of the extra loop delay represented by

. The root locus of this second-order system respect to variations of , where

H z m,( ) z
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π

2T
-------t 

 sin⋅ z
1– z mπ 2⁄( ) 1 m–( )π 2⁄[ ]sin+sin

z
2

1+
------------------------------------------------------------------------------⋅= =

Figure 3.15 :  Open-loop impulse response of the one-delay scheme second-order bandpass
modulator.
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, is shown in Fig. 3.16. Fig. 3.16 shows the poles’ movement from origin

towards the unit circle with increment of loop delay by  steps ( ).

The same calculation is done for the fourth-order multiple-pole bandpass ∆Σ modulator

given in (3.22). The open-loop modified z-transform for this fourth-order system is:

( 3.49)

Taking out a  delay element from the open-loop system as shown in (3.49) is

equivalent to  substitution in the time domain response in (3.24) which results

in

0 m 1≤ ≤

Figure 3.16 :  The root-locus of the continuous-time second-order bandpass modulator with loop
delay respect to m.
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. ( 3.50)

The final result, using the transforms given in Table 3.2, is

( 3.51)

where the numerator coefficients are:

.

Again from (3.51) it can easily be verified that when  (no extra delay)

. One interesting observation from the open-loop system represented

by (3.51) is that it is no longer a fourth-order system as it was for . The order of

the modulator has increased to five. For  there is a pole-zero cancellation in

(3.51) at , so producing a fourth-order system as expected. However, in reality the

continuous-time open-loop modulator is never delay free, so the noise transfer function

 would always have a higher order i.e. five poles as opposed to four poles. Now

the question is that how this affects the modulator performance. To answer this question

the pole-zero root-locus of  in this fourth-order modulator has been obtained

from (3.51) and plotted in Fig. 3.17. Fig. 3.17 shows the poles moving from the origin,

with an increment of loop delay by  steps ( ). The poles move in

three different paths. First one single positive real pole has been created which moves

outside the unit circle with approximately  extra delay. The two complex

conjugate LHP poles move more quickly outside the unit circle at approximately

extra loop delay. The RHP complex conjugate poles stay inside the unit circle for

.

It should be noted that from (3.46) and (3.49) a  was taken out and the modified z-

transform in (3.47) and (3.50) was applied to the remaining parts. This may be

interpreted to show that the obtained results in (3.47) and (3.51) only represent the

modified z-transform of the one-delay scheme. This is not exactly true. Recall from
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(3.45) that the preceding analysis was made assuming that  for

(NRZ DAC). It should be mentioned too that in the one delay scheme, for example as

shown in Fig. 3.13 for the second-order modulator,  for  whereas

in the zero-delay  for . Therefore with the preceding approximation

as can be noticed from Fig. 3.13, a smaller error is assumed for the third sample in the

one-delay scheme and the second sample error in the zero-delay scheme is completely

ignored. Therefore, accepting these slight errors in fact the modified z-transforms

obtained for both second and fourth-order systems are applicable for both zero-delay

and one-delay schemes.

From the analysis made in this section for the second and fourth-order examples some

conclusions can be drawn as follows:

1) The NTF zeros are still on the unit circle at the desired locations. Therefore, one can

expect to get normal noise-shaping inside the band with extra loop delay (to some

h t( ) h1 t( )= t T≥

h t( ) h1 t( )= t 2T≥

h t( ) h1 t( )= t T≥

Figure 3.17 :  The root-locus of the continuous-time fourth-order multiple-pole bandpass modulator
with loop delay respect to m.
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extent). Therefore, SNR should not degenerate significantly up to some extra loop

delay extent too (in the next section it is shown that in a fourth-order modulator a

% extra loop delay produces about 6dB SNR loss).

2) The major problem that arises from an extra loop delay is seemed to be associated

with the modulator stability as the loop poles move towards the unit circle. So, it is

believed that for a real implementation some special considerations should be taken

to keep the modulator’s extra loop delay by a safe margin. More details for a real

implementation and extra loop delays are given in Sec. 8.3.2.

3.1.6 Simulation of ∆Σ Extra Loop Delay

A fourth-order multiple-pole one-delay modulator with macromodel transconductors,

comparator and flip-flops has been simulated. The loop filter center frequency was at

50MHz and clock rate at 200MHz. Fig. 3.18 shows the SNR loss versus the percentage

10

Figure 3.18 : SNR loss in a 2MHz bandwidth respect with extra loop delay percentage (d ⁄ T), where
T is a clock period.
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of extra loop delay (compared to a clock period) at 2MHz BW for the mentioned

modulator in above. The input signal levels for the extra loop delay simulations shown in

Fig. 3.18 were at the maximum input amplitude (MSA) obtained from the zero excess

delay simulation. As can be noticed from the data shown in Fig. 3.18, at 10% extra loop

delay SNR drops by almost 6dB (for this OSR). Degradation of SNR is much sharper for

extra loop delays higher than 15%. A 20% extra loop delay makes the ∆Σ modulator

completely unstable. It should be noted that since the linear model with the root locus

shown in Fig. 3.17 matches the simulation results, for the lower input levels (than MSA)

similar responses with extra loop delay are expected.

As it was shown in Fig. 3.17 that the NTF poles move toward the unit circle it is

reasonable to expect that some spikes to be generated in the bit-stream spectrum.

Especially, the high frequency spike due to the high frequency poles shown in Fig. 3.17

should be noticeable. This was verified by the preceding simulations. For example, the

spectrum of the fourth-order one-delay modulator with a 19% extra loop delay is shown

in Fig. 3.19 presenting a high frequency spike.

It should be noted that similar simulations were done for the zero-delay scheme fourth-

Figure 3.19 :   The noise-shaping spectrum for a 19% extra loop delay.
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order modulator too. The SNRs for both zero-delay and one delay schemes versus extra

loop delay are plotted in Fig. 3.20. For the zero-delay scheme the modulator became

completely unstable at 25% extra loop delay however, as shown in Fig. 3.20 its SNR

drops rapidly with loop delays higher than 20%.

3.1.7 The Signal Transfer Function

A discrete-time modulator could be expressed with a configuration shown in Fig. 3.21

[Jant93] in which G(z) and H(z) represent feedforward and loop transfer function

respectively. The noise transfer function (NTF) and the input signal transfer function

(STF) can be found from G(z) and H(z):

( 3.52)

Equation (3.52) shows that STF and NTF are shaped differently. In a bandpass

Figure 3.20 : SNR in both one-delay and zero-delay schemes for a 2MHz bandwidth respect with
extra loop delay percentage (d ⁄ T), where T is a clock period.
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modulator H(z) is normally a bandpass filter. Consequently, NTF becomes a bandstop

filter (having a deep notch at the center frequency). In a lowpass ∆Σ modulator, in

contrast, H(z) is a lowpass filter making NTF a high pass filter. H(z) is usually selected

among the conventional ∆Σ transfer functions or is optimized by any optimization tool

to achieve the required noise transfer function (NTF). However, generally STF can be

chosen independently of NTF. Normally, G(z) is obtained based on H(z) to meet the

signal transfer function (STF) specifications, usually 0dB gain and linear phase in-band

and high attenuation out-of-band [Jant91]. It should be noted that, however, in most

conventional ∆Σ modulators G(z) = H(z) in which the loop filters are in the feedforward

path (Fig. 3.1) and no special consideration is required for extra filtering on the input

signal.

So, questions regarding signal transfer function in a continuous-time modulator

compared to a discrete-time equivalent are “whether an equivalent STF can be found

when their NTF are made equivalent” and even “whether this is necessary”. To answer

these questions a continuous-time modulator corresponding to the discrete-time

modulator given in Fig. 3.21 is shown in Fig. 3.22. As explained in Sec. 3.1 the

continuous-time loop transfer function  is obtained by a pulse invariant

transformation of H(z). This is dictated by the DAC pulse shaping utilized in the

continuous-time modulator. As shown in Fig. 3.22 there is no pulse shaping device (like

Figure 3.21 :  Discrete-time delta-sigma modulator with linearized quantizer
model (G and H transfer functions share poles).
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a DAC or ZOH) preceding . Therefore in order to obtain , there is no

necessity to apply a pulse invariant transformation on . As shown in Fig. 3.22 the

STF in a continuous-time modulator is a system whose input signal is continuous-time

 and its output is discrete-time y(k). In contrast, in a discrete-time modulator the

STF is defined completely in z-domain in which input and output are discrete-time

signals represented by x(k) and y(k) in Fig. 3.21. Therefore, it is not possible to define a

straight z- or s-domain transfer function for STF in a continuous-time modulator.

However, in a continuous-time modulator assuming that the prefilter  attenuates

the high frequency components significantly and so neglecting the aliasing effect the

STF frequency response can be approximated by

. ( 3.53)

The proof for this is given in Appendix B. As mentioned in Appendix B, the

 term associated with the pulse-shape sampled signals is present

in both discrete-time and continuous-time modulators and applies on both systems after

aliasing has effected. Therefore, for the purpose of comparison of the STF in a

continuous-time modulator with its discrete-time counterpart, this term will be

neglected:

( 3.54)
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Figure 3.22 :  Continuous-time ∆Σ modulator, equivalent to the discrete-time
modulator shown in Fig. 3.21.
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Ĝ s( )
x̂ t( ) y k( )u k( )û t( )
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So, using a continuous-time prefilter  it is not possible to mimic exactly the STF in

an equivalent discrete-time modulator. However, this is not a shortcoming for a

continuous-time modulator because the optimization constraints such as unity-gain and

linear phase in-band and high attenuation out-of-band which are frequency response

requirements can be applied on prefilter  directly in s-domain.

It was shown in (3.9)-(3.11) that the relationship between continuous-time filter poles

and discrete-time filter poles is given by

. ( 3.55)

This implies that to simplify the implementation of the feedforward filter, , by

sharing its resonators with those of , one needs to make the poles of

identical to the poles of . The STF constraints then show how the zeros

(numerator) of  should be selected. The zeros of the continuous-time prefilter,

, for low order systems can be selected by simple inspection. For instance, for the

second-order bandpass system given in (3.37) or (3.38) a bandpass prefilter could be

proposed as follows

( 3.56)

where k defines the ∆Σ modulator gain (to be explained more in Sec. 3.2) and α is the

prefilter’s zero. In the bandpass modulator one good choice for the prefilter’s zero

location is at DC i.e. α = 0.

For higher order modulators, however, the selection of the prefilter’s zeros may not be

that straightforward. In higher order systems a designer may use any optimization

package to meet the requirements of the continuous-time prefilter, . For example,

for the double-pole fourth-order systems given in (3.23) or (3.39). There are four

unknown parameters (gain2 and three zeros):

( 3.57)

2. In Ch. 2 it was shown that a ∆Σ modulator response is loop gain-invariant. However, the effect
of prefilter or STF gain is to change the MSA. So k can simply be normalized to 1.

Ĝ s( )

Ĝ s( )

zk eskT=
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Ĥ s( ) Ĝ s( )
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As we mentioned for a bandpass modulator it is always desirable to have a zero at DC or

some other real zero on the real (σ) axis close to DC. This guarantees a sharper roll off

for frequency selectivity of the bandpass prefilter. Although in the pulse invariant

transformation, generally a closed-form mapping cannot be found between zeros in s-

domain and z-domain transfer functions [Gar86], a zero at DC in the s-domain is

mapped to a zero at DC in the z-domain and vice versa. This feature of the pulse

invariant transformation will be shown in the double-pole fourth-order example. The

discrete-time loop filter for the double-pole fourth-order is . It

can easily be shown that in order to provide a flat response inside the band and to put

zeros at DC and  for the discrete-time STF shown in Fig. 3.21 it is required that:

. ( 3.58)

The corresponding continuous-time feedforward transfer function  obtained from

(3.58) by a NRZ pulse transformation would be

( 3.59)

which provides a zero at  corresponding to the zero at  in (3.58). The STFs

for these two systems are shown in Sec. 3.2.

As another example the NTF and STF for a fourth-order bandpass spread-pole

modulator (with center frequency at 20MHz and bandwidth of 1MHz) have been

optimized by “filtorX” [Ous90]. The NTF zeros turn out to be at

and poles at

.

The STF poles are identical to the NTF poles and the STF zeros which determine the

zeros of G(z) too are at

The corresponding s-domain loop transfer function, , and feedforward transfer
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function, , obtained by the pulse invariant transformation given in (3.9)-(3.11) are

( 3.60)

and

( 3.61)

where fs = 1/T = 4fo = 80MHz, (b3, b2, b1, b0) = (0.8276, 1.6396, 2.7885, 2.8722), (a3, a2,

a1, a0) = (0.0867, 0.4770, 0.9630, 0.0) and ( , ) = ( ,

). As shown in  the zero at  in the z-domain is mapped to

 in the s-domain in  too.

3.2 Implicit Anti-alias (Image) Filtering

In [Can85] it was shown that a lowpass continuous-time ∆Σ modulator provides an

inherent anti-alias filtering on the input signal path. In the continuous-time lowpass case,

the signal transfer function contains a “sinc” term. This will later on be shown for a

second-order lowpass example in this section. Since the “sinc” zeros are located at

integer multiples of the sampling frequency ( ), clock-image signals are attenuated

significantly which otherwise would be aliased into the desired frequency band. We will

generalize this observation to the higher order modulators as well as bandpass ∆Σ

modulators in this section.

Fig. 3.23a shows another representation of a continuous-time modulator shown in Fig.

3.22. As explained in Sec. 3.1, the loop transfer function is

. Therefore, the noise transfer function ( ) in Fig. 3.23a

is

( 3.62)

We know from (3.52) that the STF in an equivalent discrete-time modulator (Fig. 3.21) is

Ĝ s( )
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given by . The corresponding STF frequency response in the continuous-time

modulator shown in Fig. 3.22 and redrawn in Fig. 3.23a was given in (3.54). So as

shown in Fig. 3.23b and Fig. 3.23c the frequency response of the filter represented by

 in Fig. 3.23c that should be placed in cascade with the input of the discrete-

time modulator in order to make its response identical to that of the continuous-time

version is

G z( )
1 H– z( )
------------------

Ĥ s( ) ZOH

f s

f s
H z( )

x̂ t( ) y k( )

e k( )
u k( )u1 k( )

u2 k( )

Ĝ s( )

f s
x̂ t( ) x k( )

G
1–

z( )

(a)

(b)

Ĝ s( )

f s
x̂ t( )

G z( )
1 H– z( )
------------------

y k( )

Faa jω( )

Faa jω( ) G z( )
1 H– z( )
------------------

x k( ) y k( )

(c)

Figure 3.23 :  (a) One representation of a continuous-time modulator (b) another arrangement of Fig.
3.23a, and (c) the equivalent discrete-time modulator with an extra input filter shown by Faa(jω).

u1 t( )

Faa ω( )
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. ( 3.63)

Recall from Sec. 3.1.7 that  for the traditional modulators. The

frequency response of the implicit anti-alias filter in those continuous-time modulators

would be

( 3.64)

The discrete- and continuous-time STFs for three different modulators are shown in Fig.

3.24a and Fig. 3.24b respectively: the second-order bandpass system given in (3.17),

(3.38); the fourth-order with  [Lon93] and  given in

(3.23); and finally the fourth-order with its feedforward filter,  arranged to be as

(3.59). The latter provides a zero at  [Sch94]. As shown in Fig. 3.24 modulators

are operating at one quarter the sampling frequency i.e. . The discrete-time

modulators Fig. 3.24a show the aliasing effect as expected. Any signal at

frequencies are aliased directly into the in-band frequency . However, serendipitously,

the continuous-time modulators provide nulls exactly at aliasing frequencies

as shown in Fig. 3.24b. Before proceeding to further details the implicit anti-aliasing

property of a continuous-time modulator can be illustrated by an interpretation of (3.54):

( 3.65)

It is interesting to note that the continuous-time signal transfer function  zeros like

the NTF zeros are at  except for i.e. the in-band frequency  as

shown in Fig. 3.24b. This happens because the prefilter3  is a resonator

(integrator in a lowpass modulator) with the resonance frequency of  (for integrator

). Therefore, mathematically there is an ambiguity at  in (3.65) i.e. a

3. Or  for  cases.
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product or a  division. It will be shown that this is just a mathematical artifact and

(3.65) always gives a finite in-band gain for the signal transfer function of the

continuous-time modulators as shown in Fig. 3.24b. Besides, equation (3.65) explains a

physical property of a continuous-time modulator. It shows what the input signal sees

after being filtered by a prefilter , which is the modulator noise transfer function

frequency response . This is actually a translation of having the sampling

action inside the loop Fig. 3.22. In other words because the sampling happens after the

0 0⁄
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Figure 3.24 :  (a) Discrete-time and (b) continuous-time STFs for the three examples.
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dashed line: fourth-order with G(z) = H(z)
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given in (3.58)
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loop filter and preceding the quantizer the aliased signals produced by the sampler are

noise shaped (like the quantization noise represented by  in Fig. 3.22). Since the

NTF nulls are at  frequencies (for both bandpass and lowpass modulators) it

turns out that aliasing signals which are in band are attenuated significantly (ideally,

rejected).

Previously it was mentioned that the null frequencies of NTF are at .

Technically, discrete-time filters like NTF(z) are not analyzed in this way. The frequency

response of a discrete-time filter is normally defined between  or in terms of

real frequencies  where  is the sampling frequency. Beyond the

spectrum area of  the discrete-time filter frequency response is replicated.

This originates in sampling theory. The signals in the out-of-band spectrum are first

aliased into the in-band spectrum  and then are treated by a discrete-time

filter the same way that the originally in-band signals are treated. So keeping in mind

that out-of-band signals always produce in-band components we could use the periodic

discrete-time frequency response extended to  frequency band as shown in Fig.

3.24a. Table 3.3 which gives the STF response of the third example shown in Fig. 3.24

describes this idea as well as the continuous-time anti-alias filtering performance.

As shown in Table 3.3 the aliasing signals at , , ,  and

are attenuated significantly in the continuous-time modulator. In the discrete-time

counterpart they appear at the in-band region with almost no loss.

The anti-aliasing feature of a continuous-time modulator is illustrated by deriving the

STF of the examples shown in Fig. 3.24. For the second-order modulator (3.17), (3.38)

(note that ) from (3.65) we get:

( 3.66)

The zeros of the STF given in (3.66) are the same as zeros of  at
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 or at  where,  and . These are

“image frequencies” at which, in a pure discrete-time system, input signals would alias

into the band of interest. In Ch. 6 experimental results for a second-order Gm-C

modulator verify that the  nulls are at . The numerator of (3.66) also

has a zero at  ( ), which is in the desired band, but this is cancelled by a

denominator zero ( ). L’Hôpital’s rule can be used to resolve the

ambiguity. It shows that . This cancellation of

zeros at  is a mathematical artifact, and doesn’t affect stability.

For the fourth-order system with  given in (3.23):

( 3.67)

Again the STF zeros are determined by . Resolving the  ambiguity at

shows that the in-band gain is i.e. the same as

the in-band gain (3.66) of the second-order modulator. The last example is the fourth-

order modulator having an optimized  given in (3.59) which puts a zero at DC.

The STF for this case would be:

( 3.68)

which provides the same in-band gain as the other two examples i.e.

. Note that this in-band gain at

is not the maximum in this case; the maximum gain of this transfer function happens at

 as shown in Fig. 3.24b.

It was shown that in a continuous-time modulator (Fig. 3.22), like a discrete-time

modulator (Fig. 3.21), because of the presence of a sampler on the signal path the input

signals beyond the  spectrum region are aliased into the in-band area.

However, out-of-band signals, particularly the images of the passband frequency are
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attenuated significantly by the implicit anti-alias filter associated with the continuous-

time modulator. As shown in Fig. 3.23c a continuous-time ∆Σ modulator can be

modeled by a system including an anti-alias filter  with a frequency response

given in (3.63) or (3.64) followed by a sampler and its equivalent discrete-time

modulator. The attenuation  provided at image frequencies is desirable for the

overall system (recall that  zeros are at image frequencies).

For the three given examples the implicit anti-alias filter frequency response are plotted

in Fig. 3.25. It should be noted that in the optimized (third example) discrete-time

fourth-order STF there is a zero at  as well as DC as shown graphically in Fig. 3.24a

and given in Table 3.3. In the corresponding continuous-time modulator, however, there

is no zero at  as shown in Fig. 3.24b. The continuous-time STF gain is dB as

indicated in Table 3.3. Although it is desirable to have a zero at , it is not crucial

because as was mentioned the critical frequencies are at  neighborhood

which produce the aliased in-band components. Since (3.63) produces a division by zero

*. Note that the in-band signal is at .

Table 3.3: Gains of the third example modulators given in Fig.

3.24*.

Input frequency,

( )

Aliased in-band

frequency

( )

Gain in

continuous-time

modulator dB

Gain in discrete-

time modulator

dB

0.0 
0.01  -41.01 -41.41

0.25  -0.91 0

0.5 0.5 -21.83

0.74 0.26 -62.32 -0.0172

0.75 0.25 0

0.76 0.24 -62.80 -0.0172

1.24 0.24 -69.67 -0.0172

1.26 0.26 -69.85 -0.0172

Faa ω( )

Faa ω( )

Faa ω( )

f s 2⁄

f s 2⁄ 21.83–

f s 2⁄

f o 0.25 f s=

f o

f s× f s×
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at  frequency in  at the third example, the

( 3.69)

frequency response instead is plotted in Fig. 3.25.

As the last example we present the implicit anti-alias filter frequency response of a

second-order lowpass modulator with  given

in Table 3.1. For this system it can be shown that

( 3.70)

Recall the comment in the beginning of Sec. 3.2 that a lowpass STF contains a “sinc”

term as shown in (3.70).

For three bandpass modulators and a lowpass modulator, we showed that the zeros of the

implicit anti-alias frequency response of the continuous-time ∆Σ modulator are at

; however, this conclusion could be easily generalized to any continuous-

time ∆Σ modulator (bandpass or lowpass) derived by the pulse invariant transformation

explained in Sec. 3.1. As (3.64) and (3.69) show, the anti-alias frequency response is the

product of the feedforward frequency response represented by  (in Fig. 3.22) and

the inverse of the discrete-time loop frequency response i.e. . The

resonance (pole) frequency of  is at  and the first notch of the noise

transfer function at  too, so the value of signal frequency response at  is

which after resolving the ambiguity yields a finite value (like  for the

three bandpass examples).

The feedforward frequency response,  doesn’t have zero on the  axis (except

in a bandpass modulator which could have a zero at DC as shown in Fig. 3.25c and

[Sch94]). Thus, the zeros of the signal frequency response are determined by the

remaining zeros of the noise transfer function, which obviously are at ,

 as obtained for the bandpass examples. It should be noted that for a

lowpass continuous time modulator the resonance frequency is at  (integrator

instead of resonator), so according to the preceding derivation the zeros of signal

frequency response are at ,  which is consistent with

[Can85].
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Ĝ jω( ) f f o=

f f o= f o 0 0⁄

π 2 2⁄ 1.11≈
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Therefore a continuous-time ∆Σ modulator compared to a discrete-time (switched-C)

modulator has the advantage that it provides free anti-alias filtering to reduce the

spurious images of the passband significantly. This is advantageous particularly in

bandpass modulators where the ratio of in-band frequency to the clock frequency is

normally on the order of  (or ) as opposed to  (or ) in lowpass

modulators. So, the complexity of anti-alias filters for switched-C bandpass modulators

is much higher than those required for audio base-band ∆Σ modulators. The continuous-

time bandpass modulators, however, provide an implicit anti-alias filtering which relaxes

(or even removes) the requirement of an extra anti-alias filter. The only price, as will be

shown in Ch. 6, is the requirement of a tuning scheme for the continuous-time loop filter

used in the ∆Σ modulator.
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Figure 3.25 :  The implicit anti-alias filter frequency response in the three continuous-
time examples.
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− dashed line: fourth-order with
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3.3 Simulation Results

3.3.1 Signal-to-Noise Ratio

To verify the equivalence of the ∆Σ loop behavior in the discrete-time and continuous-

time modulators related by the transformations given in Sec. 3.1 extensive simulations

have been done. Here some examples have been given:

1) For NRZ transformation simulation results for the discrete and continuous-time

second-order bandpass modulator given in (3.17), (3.20) respectively and the discrete

and continuous-time multiple-pole fourth-order bandpass modulator given in (3.22),

(3.23) respectively are shown in Fig. 3.26. In these simulations the input signal is a

20MHz sinusoidal signal and the clock frequency is 80MHz. The SNRs shown in Fig.

3.26 have been collected for a 1MHz bandwidth.

The simulated SNRs shown in Fig. 3.26 for discrete and continuous-time modulators are

quite close. For example, the SNRs of the fourth-order bandpass discrete (3.22) and the

continuous-time (3.23) modulators were dB and dB respectively and

Figure 3.26 :   (a) Simulation results of discrete-time and continuous-time modulators
derived by the NRZ pulse invariant transformation for a fourth and a second order

modulators (fin=20 MHz and BW=1 MHz).
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dB and dB for the second-order systems given in (3.17), (3.20)

respectively. It should be noted that because the in-band signal gain is  ( dB) for the

discrete-time modulators but almost  ( dB) for the second- and fourth-order

continuous-time modulators (explained in Sec. 3.2), the input levels were chosen

accordingly (for example dB in discrete-time and dB in continuous-time for the

maximum input levels), as shown in Fig. 3.26. This gain difference, combined with

numerical errors in simulation, is enough to explain the minor differences in SNRs

observed in simulations.

2) The same simulation has been performed for the RZ multiple-pole fourth-order

system given in (3.30). The SNR for this continuous-time modulator in a 1MHz

bandwidth with 20MHz sinusoidal input and 80MHz clock was 56.7 which happened at

−12.3 dB input level4.

3.3.2 Anti-alias Filtering Simulation

In order to verify the anti-alias filtering performance of the continuous-time modulators

discussed in Sec. 3.2 two-tone simulations have been performed. An in-band sinusoidal

input in conjunction with an out-of-band sinusoidal signal in the neighborhood of the

first aliasing frequency have been applied to the continuous-time ∆Σ modulator. The

multiple-pole fourth-order system given in (3.23) with ∆Σ noise shaping notch

frequency at 50MHz and the clock frequency at 200MHz was selected. In the first

simulation the in-band signal frequency was at 49.95MHz and the out-of-band signal

frequency at 149.02MHz both with amplitude dB (0.45) relative to the quantizer ∆

level. Fig. 3.27 shows the anti-alias filtering characteristic of the multiple-pole fourth-

order modulator obtained by taking an FFT on the modulator output bit stream.The

149.02MHz out-of -band tone produces a component close to the in-band aliasing

frequency at 50.98MHz. As shown in Fig. 3.27 the aliased component i.e. 50.98MHz

tone is attenuated by dB compared to the in-band signal level. It can be noticed

that 149.02MHz input frequency for this modulator appears at  in Fig. 3.24b

4. It can be shown that the in-band signal transfer function gain for a RZ continuous-time modu-
lator with the loop filter given in (3.30) is about −12.3 dB relative to the quantization ∆.

41.68 40.48

1 0

1.11 0.9

6– 6.9–

6.9–

59.60–

0.745 f s×
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and Fig. 3.25. The signal gain at  calculated from (3.67) for this

modulator shows dB attenuation and the signal gain for the in-band 49.95MHz

tone i.e.  is 0.91dB (or 1.11 as shown earlier). So, from (3.67) analysis the

total loss should be dB which is very close to the simulation result. In the

discrete-time system, however, from the multiple-pole fourth-order signal transfer

function plotted in Fig. 3.24a it can be found that the 149.02 MHz out-of-band tone

produces an in-band 50.98MHz tone with 0.034dB (1.004) gain.

In a switched-C equivalent modulator in order to achieve the same amount of attenuation

(−59.6 dB) at 149 MHz (close to fs − fo) one may use a lowpass anti-alias filter preceding

the modulator. Note that the ratio of fs − fo to fo is 3 at the bandpass modulators with the

sampling frequency four times as high as the passband. It can be shown [Hue80] with a

f in 0.745 f s×=

57.61–

0.25 f s×∼

58.52–
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Figure 3.27 :  Anti-alias filtering simulation of the multiple-pole fourth-order system (3.23). fin =
49.95MHz and a single tone aliasing signal at f = 149.02MHz.
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0.5 dB passband ripple and a 60 dB stop-band attenuation at the normalized frequency 3

at least a fourth-order lowpass elliptic filter is required. Therefore, for a bandpass

switched-C filter the expense of the anti-alias filter is the same as the modulator loop

filter in the equivalent continuous-time modulator!

In the final simulation example the input in-band signal frequency was chosen at

49.51MHz and the out-of-band signal frequency at 149.90MHz both with amplitude

dB (0.45) relative to the quantizer ∆ level. The latter should produce the in-band

signal at 50.10MHz. The noise shaping FFT plot of this simulation is shown in Fig. 3.28.

As shown in Fig. 3.28 the aliased in-band component is recognizable above the noise

floor with a dB loss compared to the in-band tone.
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Figure 3.28 :  Anti-alias filtering simulation of the multiple-pole fourth-order system (3.23). fin =
49.51MHz and a single tone aliasing signal at f = 149.90MHz.
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It can be shown in order to achieve the same attenuation −86.6 dB at fs − fo with an anti-

alias filter preceding a switched-C equivalent modulator, at least a fifth-order elliptic

filter (with 0.5 dB passband ripple) is required.

3.4 Summary

A comprehensive study of different transformations to design a continuous-time loop

filter from a discrete-time equivalent has been presented. A class of zero-digital-delay

loop filter scheme for equivalent continuous-time ∆Σ modulators with the same order

has been distinguished. The sensitivity of continuous-time ∆Σ modulators to undesired

extra loop delays has been discussed. It was shown that one can make a continuous-time

∆Σ loop filter such that the behavior of both discrete-time equivalent and continuous-

time ∆Σ loops be exactly identical. However, their signal transfer functions would be

different. The continuous-time modulators produce extra filtering resulting in better STF

specification. It was proven that the continuous-time modulators provide free anti-alias

filtering suppressing the passband image signals at nfs ± fo frequencies. Particularly this

feature is favorable for a bandpass modulator in which fs ⁄ fo ratio is usually 4 or so. This

means that the stop band frequency (fs − fo) to the passband frequency (fo) ratio is

usually 3 which requires an expensive anti-aliasing filter in a switched-C modulator

otherwise. However, it should be mentioned that for a narrow band bandpass system

probably a filter with 3:1 frequency transition is easy enough to get. For example, a

narrow band ceramic resonator can be considered.
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Chapter 4

Multi-Feedback (Pulse

Shaping) Design for LC

Bandpass Delta-Sigma

Modulator

A new technique for designing an LC bandpass Delta-Sigma modulator is presented in

this chapter which is an extension of the work presented in [Sho95]. This method is

based on pulse shaping of a DAC output signal such that one can realize a desired

(arbitrary) loop transfer function. Especially for higher-order modulators where extra

LC sections are added, sufficient parameters provided in the feedback loop. It is shown

that by creating more degrees of freedom one can achieve the maximum SNR in a given

modulator order without constraining the noise transfer function of the modulator.

4.1 An LC Delta-Sigma Modulator

As was mentioned in Ch. 3 it is intuitively obvious that a bandpass ∆Σ modulator

requires a bandpass filter (resonator) inside the ∆Σ loop to provide a bandstop noise

shaping for quantization noise as shown in Fig. 4.1. Therefore designers [Gail89],

[Thu91], [Tro93] generally selected a bandpass loop filter with center frequency at  to

determine the desired noise shaping notch frequency. This approximate design was

based on the assumption that if the ∆Σ loop filter poles are selected properly (close

enough to the  axis) then one could expect to have the desired bandstop noise shaping

at a frequency band close to the loop filter pole frequencies. However, as shown in Sec.

3.1 the ∆Σ modulator dynamics are determined by the overall ∆Σ loop impulse response

f o

jω
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which corresponds to a well defined z-domain transfer function. Given the number of

discrete-time delays and the shape of feedback DAC pulse in a continuous-time ∆Σ loop

there is only one loop s-domain transfer function which produces the desired loop

impulse response (recall from Sec. 3.1). It is not just the loop filter poles (or

denominator) that are crucial, but the loop transfer function zeros (or numerator) are an

important part of the exact continuous-time modulator loop design too. Otherwise the

desired loop impulse response will not be achieved. Consequently the effectiveness of

the ∆Σ modulator noise shaping is reduced and in high order loops (greater than fourth-

order) modulator instability becomes an inevitable problem. In order to make the

(fourth-order) loop stable the designers had to spoil the Q of their resonators. In

[Gail89], [Tro93] for example, a damping resistor is placed in parallel with the LC

circuit(s) to stabilize the ∆Σ loop, but causes the fourth-order ∆Σ modulator to behave

more or less as a second-order system.

The proper s-domain loop transfer functions for implementing a continuous-time

equivalent from a given discrete-time (Switched-C) modulator have been recently

reported [Sch94] (more detail was presented in Sec. 3.1). A new architecture for a

transconductor-C ∆Σ modulator has been given too [Sch94]. The transconductor-C

architectures are discussed in Ch. 5 in more detail. For implementing a bandpass

continuous-time ∆Σ modulator loop filter, however, a cascade of LC resonators as shown

in Fig. 4.2 with

A bandpass filter

Figure 4.1 :  A generic bandpass continuous-time ∆Σ modulator.

Quantizer

x̂ t( ) û t( )

y k( )u k( )

ŷ t( )

f s
1
T
---=

DAC
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( 4.1)

(where  is the transistor transconductance) is attractive:

1) its architecture is simple,

2) a passive LC resonator has much less nonlinearity than an active resonator

such as transconductor-C, and

3) LC type filters can present higher frequency capability than active filters.

It is, however, difficult to construct linear high-Q LC resonators on-chip, so these

converters have generally relied on off-chip inductors [Gail89], [Thu91], [Tro93]. Since

for a bandpass continuous-time ∆Σ modulator, a high-Q1 resonator is required [Sch94],

for on-chip inductance implementation some Q enhancement technique [Dun93],

[Pipi94] is necessary. The other problem is that the cascade of LC resonators shown in

Fig. 4.2 provides a transfer function with a numerator having only bandpass terms like

the transfer functions implemented in [Gail89], [Thu91], [Tro93].

1. In [Sch94] and Ch. 5 it is shown that in a fourth-order multiple-pole bandpass ∆Σ modulator
for getting the maximum achievable SNR, the typical Q required is at least 50.

HLC s( )
Vo s( )
V i s( )
--------------

gm C⁄( )s

s2 1 LC⁄+
--------------------------= =

gm Io 2⁄( ) V T⁄=

Q2

V i +
Q1

V o –

V i –

V o +

Figure 4.2 :  A differential LC resonator.

LL C C

Io



Chapter 4−Multi-Feedback (Pulse Shaping) Design… 75

( 4.2)

where  is the number of cascade stages,  is the resonant frequency, and  is the

overall filter gain. As shown in [Sch94] and explained in Sec. 3.1, in a bandpass

continuous-time modulator with order 2N the proper s-domain loop transfer function

numerator is a th-order polynomial with non-zero coefficients having

distinct zeros, while (4.2) has  zeros at . For example recall from (3.23) that in a

multiple-pole fourth-order system the loop filter [Sch94] is

( 4.3)

In this chapter we will address the transfer function implementation problem in LC ∆Σ

modulators. We will show how we can reproduce those missing coefficients in the

numerator of (4.2) by introducing new DAC pulse shaping coefficients in a ∆Σ loop.

This is based on the assumption that the simple LC structure shown in Fig. 4.2

(differential or single-ended) has been utilized. One may add some extra L and C

components particularly in a discrete-component implementation to realize arbitrary

loop transfer functions or a mixed architecture of LC sections and transconductor-C

resonators may be considered. However, because of the poor Q performance of on-chip

inductances especially at lower 1GHz frequencies we prefer to fix the ∆Σ loop impulse

response while keeping the simple LC resonator sections shown in Fig. 4.2.

4.2 Multi-Feedback Design

The idea is that because one feedback ∆Σ loop supplied to a simple LC section does not

give the proper loop impulse response, one might add other parallel loop(s) to fix the

overall ∆Σ loop impulse response. A multi-feedback structure for a simple LC

modulator shown in Fig. 4.1 is presented in Fig. 4.3. The loop impulse response

equations of the multi-feedback system in Fig. 4.3 are:

Ĥ s( ) ksN

s2 ω2+( )N
---------------------------=

N ω k
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N s 0=
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( 4.4)

Since the system is linear we can write

( 4.5)

where  is the desired loop impulse response associated with the ideal loop transfer

function  being excited by a straight NRZ, RZ or HZ pulse. Equation (4.5) can be

expressed directly by the discrete-time loop impulse response equivalent :

. ( 4.6)

If all pulse waveforms given in (4.5) or (4.6) have the same shape, for example

rectangular between , then their summation just provides a gain for the ∆Σ loop

which is not enough for implementing . Therefore, it is required that individual

R1 t( )∗ hLC t( ) h1 t( )
R2 t( )∗ hLC t( ) h2 t( )
…………………………
RN t( )∗ hLC t( )

=

hn t( )

=

=

R1 t( ) R2 t( ) … RN t( )+ + +[ ] ∗ hLC t( ) h t( )=

h t( )

Ĥ s( )

h n( )

R1 t( ) R2 t( ) … RN t( )+ + +[ ] ∗ hLC t( )
t nT=

h n( )≡

DAC2

R2 t( )

Quantizer
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ŷ1 t( )

f s
1
T
---=

DAC1
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RN t( )ŷN t( )

Figure 4.3 :  A multi-feedback representation of a LC modulator.
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pulses  have different waveforms. One simple arrangement is that  pulses

don’t overlap. For example  can be defined as following

. ( 4.7)

Since each feedback loop encloses a DAC producing a distinct pulse signal shape, the

proposed multi-feedback structure is called a system with pulse shaping feedback.

4.2.1 DAC Pulse Shaping

We begin with a second-order bandpass case. The discrete-time loop transfer function

[Sch94], [Sing94] is

. ( 4.8)

Recall from Sec. 3.1.1 that the loop impulse response of this system is a cosine

waveform (3.18) with first two samples zero:

( 4.9)

In a continuous-time modulator the overall loop impulse response is obtained by

convolution of the s-domain loop filter with the DAC impulse response. Three different

possible DAC feedbacks — non-return to-zero (NRZ), return to-zero (RZ), and half-

delay return to-zero (HZ) — were introduced in Sec. 3.1. Their impulse responses

represented by ,  and  were shown in Fig. 3.5 too. The overall

discrete-time loop transfer functions in a continuous-time modulator employing a simple

LC filter i.e.

( 4.10)

where  and , for NRZ, RZ, and HZ feedback pulses

respectively are
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( 4.11)

As (4.11) shows the loop impulse response of a system including any feedback: NRZ,

RZ, or HZ by itself can not implement the required cosine loop impulse response given

in (4.9). In particular, none of them provides a pure  term to make the second sample

zero. However, with a linear combination of any of two preceding feedback pulses given

in (4.11), for example, RZ and HZ as shown in Fig. 4.4, it is possible to produce the

desired second-order loop function . As Fig. 4.4 shows the quantized

signal is fed back to a RZ DAC and a HZ DAC. The HZ DAC can be modeled by a half

delay block  followed by a RZ DAC as shown in Fig. 4.4. The DAC output pulses

are then scaled by  and  coefficients accordingly in such a way that the overall

loop transfer function implements the desired second-order system (4.8). This requires

finding two unknown coefficients from two simple linear equations. For example, for

 and  from (4.8) and (4.11) the equality

( 4.12)

implies that

( 4.13)

which results in  and .

As shown in Fig. 4.4 there is no digital delay in the ∆Σ loop preceding the DACs. This

represents a zero-delay continuous-time scheme. Recall from Sec. 3.1.1 and (3.20) that

it is possible to have a second-order continuous-time system in which one delay is

realized digitally [Sho]. In that case the loop coefficients need to satisfy
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( 4.14)

which implies

( 4.15)

This set of equations results in  and .
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Figure 4.4 :  A second-order multi-feedback (RZ and HZ) ∆Σ modulator with a LC resonator
loop filter.
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The coefficients of the zero-delay second-order system (shown in Fig. 4.4) for three

different combinations of NRZ, RZ and HZ pulses are given in Table 4.1.  The

corresponding coefficients for one-delay scheme is given in Table 4.1 too.

For implementing the fourth-order bandpass system from a cascade of two simple LC

resonators, , as shown in Fig. 4.5 four coefficients are required. In Fig.

4.5 the shorter loops (the paths with  coefficients) each contains a resonator whose

convolution with the corresponding feedback pulse results in the transfer functions given

in (4.11). The longer loops (the paths with  coefficients) each include a cascade of

two resonators

( 4.16)

where  and . The transfer

function on these paths for NRZ, RZ, and HZ feedback pulses respectively are

Table 4.1: Second-order LC modulator parameters.

Coefficients
Combinations

RZ−HZ NRZ−RZ NRZ−HZ

Zero-
delay
coeffi-
cients

One-
delay
coeffi-
cients

knz 1 2⁄ 1 1 2⁄+( )–

krz 1 1 2⁄+( )– 1– 2 1–( )⁄

khz 1 2⁄ 1 2 1–( )⁄

knz 1 1 2⁄+ 1 2⁄( )–

krz 1 2⁄( )– 1– 2 1–( )⁄

khz 1 1 2⁄+ 1 2 1–( )⁄

ωs s2 ω2+( )⁄

k2

k4

ω2
s2

s2 ω2+( )2
-------------------------- L h4 t( )[ ]=

h4 t( ) 0.5ω2 t ωt ωtsin( ) ω⁄+cos[ ]= ω π 2T( )⁄=
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( 4.17)

The required multiple-pole loop transfer function for a fourth-order system as shown in

[Lon93], [Sch94] and (3.22) is . The discrete-time and

continuous-time (one-delay scheme) loop impulse response of this system are given in

(3.24) and (3.25) respectively and graphically shown in Fig. 3.9. It should be noted that

because of a  discrete delay factor inside the loop (Fig. 4.5) the overall continuous-

time loop impulse response is shifted by  in Fig. 3.9.

The continuous-time loop filter shown in (4.3) for an NRZ pulse can be implemented by

a transconductor-C architecture directly [Sch94]. For the fourth-order LC modulator, it

is obvious from (4.17) that none of the simple NRZ, RZ or HZ modulators can

implement this transfer function directly. However, from (4.11) and (4.17), it can be

shown that with any combination of two pulses like RZ and HZ it is possible to build an

ideal fourth-order loop transfer function. Fig. 4.5 depicts a system with RZ DAC and HZ

DAC feedback pulses and four loop coefficients , ,  and  which

provide four degrees of freedom for implementing a desired fourth-order loop transfer

function. This requires solving four linear equations — two from (4.11) and two from

(4.17) — to obtain the four unknown coefficients. As shown in Fig. 4.5 in this algorithm

by adding each extra LC section two new coefficients are added too. The new

coefficients guarantee a sufficient number of parameters for implementing any arbitrary

loop transfer function.

The coefficients of the fourth-order multiple-pole system (with one digital delay inside

the loop like the one shown in Fig. 4.5) for three different combinations of NRZ, RZ and

HZ pulses are given in Table 4.2. For instance, the four RZ and HZ coefficients shown in

Fig. 4.5 are , ,  and

. Recall from Sec. 3.1.4 that there is a zero-delay solution [Sho] for a
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multiple-pole fourth-order continuous-time modulator too for which the proper

coefficients can be found.

4.2.2 Signal Transfer Function

Although the loop transfer function of the given LC systems and their discrete-time

counterparts are made equal, their input signal transfer functions are different [Sho]

(shown in Sec. 3.1.4 for different continuous-time modulators). Recall from (3.54) that

the signal transfer function in a continuous-time modulator is defined as

. For example for the second order and fourth-

order LC systems shown in Fig. 4.4 and Fig. 4.5 the STFs respectively are:

 and ( 4.18)

Figure 4.5 :  A fourth-order multi-feedback (RZ and HZ) ∆Σ modulator with cascade of
two LC resonator loop filters.
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( 4.19)

where . It can be shown that the in-band signal gain (at ) in the second-

order and the fourth-order LC modulators shown in Fig. 4.4 and Fig. 4.5 are  and

 respectively. This signal gain difference causes a given SNR in the different LC

systems to happen at different input signal levels.

4.3 Simulation Results

The maximum SNRs in a 2 MHz bandwidth, with a sinusoidal input at 50 MHz, for the

second-order discrete-time system and the second-order LC modulator shown in Fig. 4.4

were 47.9 dB and 46.4 dB which occurred at input amplitude 0.49 and 0.39 respectively.

For the fourth-order discrete-time and LC systems, the maximum SNRs in the same

bandwidth and frequency were 65.4 dB and 64.27 dB which happened at input

amplitude 0.49 and 0.31 respectively. The bit stream spectrum of the multiple-pole

fourth-order LC modulator for a 0.31 input sine wave at 50 MHz is shown in Fig. 4.6

Table 4.2:  Multiple-pole fourth-order LC modulator parameters.

Coefficients
Combinations

RZ−HZ NRZ−RZ NRZ−HZ

Fourth-
Order
coeffi-
cients

Second-
Order
coeffi-
cients

ST Fc ω( )
4ωo

2 ω2 ωTcos( )2

ωo
2 ω2

–( )
2

21 24 2ωT 4 4ωTcos+cos+( )1 2⁄
-----------------------------------------------------------------------------------------------------------------=

ωo
π

2T
-------= ωo

π 2⁄

π 2⁄( )2

k4nz 1.08678 0.450158–

k4rz 0.450158– 1.53694–

k4hz 1.08678 1.53694

k2nz 2.98744 0.633883–

k2rz 0.633883– 3.62132–

k2hz 2.98744 3.62132
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(the clock rate is 200 MHz).

4.4 Summary

The design of a continuous-time LC bandpass ∆Σ modulator has been discussed. It has

been shown that by employing a DAC pulse shaping technique it is possible to force the

time domain response of a cascaded LC ∆Σ modulator loop to match that of the discrete-

time ∆Σ modulator loop equivalent. The general architecture for a LC ∆Σ modulator

with DAC pulse shaping is given. Adding two degrees of freedom at the input of each

simple bandpass LC resonator section by means of pulse shaping allows complete

control of noise shaping for an arbitrary ∆Σ modulator order. At any LC bandpass ∆Σ

modulator with order of 2N, the new 2N unknown coefficients can easily be found by

Figure 4.6 :  The bit stream spectrum of simulated 4th-order LC modulator (input frequency is at
50MHz).
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solving a set of 2N linear equations. A second-order and a multiple-pole fourth-order

modulator, the two most common bandpass examples, have been shown. The simulation

results for these examples verified the theory.



86

Chapter 5

Transconductor-C Filter

Design for Continuous-Time

Delta-Sigma Modulator

In Ch. 3 an exact method for designing the s-domain transfer functions for continuous-

time ∆Σ loop filters was given. An th-order modulator requires a loop filter whose

denominator has an order  and generally its numerator has an order . Note that in

a bandpass modulator, since the poles of the loop filter are complex conjugate pairs, the

denominator order is always even. The problem of transfer function implementation

with LC sections was discussed in Ch. 4. The techniques of transconductor-C filter

design for ∆Σ loop filters along with a practical transconductor-C ∆Σ modulator design

are studied in this chapter.

5.1 Transconductor-C Filters

The transconductor-capacitor (TC) or Gm-C technique is a well-known approach for

implementing high-speed continuous-time filters. They were commercially used quite

early [Mou80] with bipolar technology. They have been developed in different

technologies such as CMOS [Gop90], [Kru88], [Kho91], [Snel92], bipolar [Veir92] and

BiCMOS [Gro92], [Lab93], [Wil93], [Shov92]. They have been chosen for many

industrial applications including the read channel of disk drives [Kho91], [Lab93],

[Veir92], high-speed data links [Shov92], digital TV [Gop90], HDTV [Wil93], etc.

In this chapter a new application for TC filters working as ∆Σ modulator loop filters is

introduced. Although discrete-component off-chip LC bandpass continuous-time filters

n

n n 1–

n
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for ∆Σ modulator application have been employed [Gail89], [Thu91], [Tro93], the

practical BiCMOS TC ∆Σ modulator given in this chapter is the first fully monolithic

continuous-time bandpass modulator1 implemented.

5.1.1 A Generic Transconductor-C Biquad (second-order) Filter

The basic building block of a TC filter is a transconductor-C integrator which is

composed of a transconductor element represented by gm and a pair of capacitors C as

shown in Fig. 5.1. A transconductor is a two port voltage controlled source device (or a

voltage-to-current converter) with finite output impedance which ideally should be

linear handling large swing signals i.e.  where . So

for  it easily can be shown that the TC integrator transfer function

is

( 5.1)

where Go is the output conductance of the transconductor which limits the integrator’s

gain to a finite value gm ⁄ go and moves the unity-gain frequency from  to

1. A fourth-order continuous-time lowpass modulator using integrated passive R-C opamp inte-
grators has been implemented [Red91] and a Gm-C lowpass continuous-time modulator has been
developed in a Ph.D program [Bre95].

+
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C

Io
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C
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Gm·2vi

(a) (b)

Figure 5.1 :   (a) A simple Transconductor-C Integrator, (b) a model for the TC integrator in (a).
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.

To design a second-order system (resonator), two transconductors, one with positive

gain and the other negative, can be connected back to back in a loop as shown in Fig.

5.2a. Implementation of a transconductor with a negative sign is performed by cross-

coupling in the balanced differential transconductors as shown in Fig. 5.2b. It can be

shown that the two transfer functions for this second-order system are

( 5.2)

and

2Gm 1 Go Gm⁄( )2
– C⁄

v2 +

v2 –

Figure 5.2 :  A transconductor-C resonator (a) single-ended (b) differential.
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. ( 5.3)

As can be noticed from (5.2) and (5.3) the transconductors represented by gmb0 and gmb1

control the zero of resonator’s transfer function and those shown by gmx and gmf

implement the transfer function poles.

5.1.2 Resonator with Infinite Q

Recall from Ch. 3 that in a bandpass ∆Σ modulator the loop filter is ideally a perfect

resonator (e.g. see Table 3.1). This means that the loop filter Q is infinite so the poles are

exactly on  axis. On the other hand (5.2) and (5.3) imply that because of the finite

output impedance of transconductors the second-order transfer functions provide a

finite-Q filter. The second problem is that the resonant frequency is influenced by the

transconductors’ output resistances too.

In order to compensate for the transconductors’ finite resistances and control the filter’s

Q, particularly for high-Q filters, one may employ an extra transconductor in the

resonator loop which is configured as a negative resistor (self-connected transconductor

[Shov92], [Nau92]2), a controlled damping resistor [Snel92], or a negative impedance

circuit (NIC) [Veir92], [Tak91]. A second-order system with a negative self-connected

transconductor in the loop for Q enhancement is shown in Fig. 5.3. The transfer function

(5.2) now becomes

( 5.4)

For some gmQ the s coefficient of the denominator in (5.4) would be zero which

consequently produces the desired infinite Q.

2. For setting a finite Q it is usual to employ a positive self-connected transconductor as a resistor
in the loop [Alin92], [Kwa91].
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A second method for remedying the non-ideal effects (such as the transconductor’s finite

impedance and/or parasitic elements) which deteriorate the Q of a TC filter is the phase

compensation or excess phase cancellation [Gop90], [Kho91], [Wys94]. A third method

for controlling the Q of a TC filter or integrator phase can be distinguished in TC-amp

integrators (Miller integrator). This is explained in more detail in Sec. 5.4.

In an ideal integrator the amplitude rolls off by dB and phase is  for all

frequencies. However, because of the finite output impedance in a transconductor (5.1)

there is a low frequency pole which shifts the phase from zero toward  over almost

a frequency decade. The  (i.e. perfect integration) condition only occurs at infinite

frequency. Accepting some trivial phase error, however, the one-pole system may meet a

filter design requirement at very high frequencies (e.g.  in (5.1)).

Furthermore, in a practical circuit the second parasitic pole and/or RHP zero in a Miller

integrator (see Sec. 5.4) contribute more phase lag. This is the so called excess phase in

an integrator. The effect the parasitic elements have is then to disturb the ideal unity-gain

frequency. This effect can be compensated by reducing the excess phase in a circuit.

This is usually performed by creating a phase lead through an extra LHP zero [Gop90].

5.2 Filter Architecture

In Table 3.1 it was shown that a general second order bandpass filter is needed for a

second-order continuous-time bandpass ∆Σ modulator. In Sec. 3.1.1 and Sec. 3.1.2 for

higher order loops, it was shown that the filter’s loop denominator is composed of a

product of resonators (multiple or spread for that matter). For example a fourth-order

system includes two resonators. That’s why the cascade of the resonators shown in Fig.

5.2 and/or Fig. 5.3 intuitively seems to be a good candidate for a bandpass ∆Σ

modulator’s filter. For example a fourth-order ∆Σ TC modulator using cascade of two

resonators is shown in Fig. 5.4. It corresponds to the architecture shown back in Fig.

3.22. Recall from Sec. 3.1.7 that it is preferred to have control on the signal transfer

function as well as the loop transfer function. This is possible by choosing appropriate

feedforward and loop transfer functions represented by  and  in Fig. 3.22.

As will be shown the structure shown in Fig. 5.4 provides enough degrees of freedom to

20– 90°–

90°–

90°–

ω
go

C 2⁄( )
---------------»

Ĝ s( ) Ĥ s( )
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implement an arbitrary pole-zero combination for both loop and feedforward transfer

functions.

As indicated in (5.2) and (5.3) for a single stage resonator it can easily be verified that in

Fig. 5.4 the transconductors represented by (gma0, gma1, gma2, gma3) and (gmb0, gmb1,

Figure 5.3 :  A transconductor-C resonator with Q enhancement.
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Figure 5.4 :  A 4th-order ∆Σ TC modulator single-ended schematic (including cascade of two
resonators).

g
ma0

D A⁄

g
ma1 g

ma2 g
ma3

C1 C2
C3 C4

gm
x1

gm
x21

g
mf 1– g

mf 2–

gm
x2

z 1–

CLK

x̂ t( )

y k( )

g
mb0 g

mb1 g
mb2 g

mb3



Chapter 5−Transconductor-C Filter Design… 92

gmb2, gmb3) implement the zeros of  and  respectively, while the

transconductors represented by (gmx1, gmf1) and (gmx2, gmf2) implement the common

poles. The transconductor represented by gmx21 is for coupling of the first resonator to

the second which appears to have influence on both loop and feedforward transfer

function’s zeros.

It can be shown that the loop transfer function from the DAC output to the quantizer

input neglecting the transconductor’s output impedances is

( 5.5)

For the feedforward transfer function, , the gmb’s in (5.5) should be replaced with

the corresponding node gma’s. The denominators of the feedforward and the loop

transfer functions are identical as they share (gmx1, gmf1, C1, C2) and (gmx2, gmf2, C3, C4)

loop circuitry.

By comparing the TC transfer functions with the ideal  and  explained in

Ch. 3 the ∆Σ TC modulator component values can be obtained. For example, to

implement the fourth-order multiple pole loop filter  given in (3.23) and the

feedforward filter  in (3.59), it can be shown that the transconductor values shown

in Fig. 5.4 should be as follows:

. ( 5.6)

where ωo = π⁄2T = gm ⁄ C, T=1⁄fs is the sampling period and C1 = C2 = C3 = C4 = C.
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5.3 Sensitivity to the Loop Filter Parameters (Q and Resonant Fre-

quency)

Recall from Sec. 3.3.1 that the signal-to-noise ratios of the ideal discrete-time and

continuous-time ∆Σ modulators connected by a pulse invariant transformation given in

Ch. 3 were very close. For example, the maximum SNRs of the multiple-pole fourth-

order bandpass discrete-time (3.22) and the continuous-time (3.23) modulators were

55.25 dB and 55.93 dB respectively. The SNRs were obtained from simulations at 1

MHz bandwidth with a 20 MHz sinusoidal input having a 80 MHz clock. The input

signal amplitude at discrete-time and continuous-time modulators were −6 dB and −6.9

dB (relative to the quantizer level) respectively which accounts for different signal

transfer function (or in-band gain) explained in Sec. 3.2.

The ideal TC ∆Σ architecture shown in Fig. 5.4 with the loop filter given in (5.5) was

simulated too. The values of the transconductors and the capacitors of the loop filter

were selected in such a way that the transfer function given in (5.5) implemented exactly

the ideal fourth-order ∆Σ loop transfer function given in (3.23). The resonance

frequency was chosen again at 20 MHz i.e.

.

Again the SNR for the fourth-order TC modulator was simulated with a 20 MHz

sinusoidal input and −6.9 dB amplitude level for 1 MHz bandwidth having a 80 MHz

clock. The resulting SNR was 55.11 dB, very close to the 55.93 dB obtained from the

ideal continuous-time and 55.25 dB from the ideal discrete-time modulator simulations.

The same simulations for a spread-pole fourth-order ∆Σ modulator with the loop filter

given in (3.60) have been performed. The corresponding SNRs for the discrete-time and

continuous-time modulators with the ideal transfer functions were 62.58 dB and 60.51

dB respectively and 59.87 dB for the transconductor-C architectural simulation.

This implies that the architecture introduced in Fig. 5.4 is a good candidate for

implementation of a desired TC ∆Σ loop filter. However, as is well known the

transconductor-C filters are subject to fabrication tolerances, temperature variations and

parasitic effects. Hence, some tuning circuitry is often required to keep the TC filter

parameters like its Q and the resonance frequency within the desired specifications.

gmx1gmf 1( ) C1C2⁄ gmx2gmf 2( ) C3C4⁄ 2π 20 MHz⋅( )2
= =
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Sometimes, particularly in low Q filters, designers may choose some careful designs to

reduce the sensitivity of a TC filter to parasitic components instead of using automatic

tuning. Despite these considerations there is always some error in filter specifications in

real life. Therefore, the sensitivity of the fourth-order ∆Σ modulator shown in Fig. 5.4 to

its loop filter’s parameters, Q and resonance frequency, has been studied as an example.

A plot of SNR loss at a BW of 1MHz against the resonators’ Qs (the Q of both

resonators were changed equally) for the one-delay fourth-order modulator with 12%

excess loop delay is shown in Fig. 5.5. For Q of less than 30 idle channel tones started to

appear and for Q of less than 20 the noise shaping degraded significantly. From Q=30 to

Q=50 the SNR improved by 3 dB for each Q increment of 10. From Q=50 to Q=60, the

SNR improvement was just 0.4dB and the SNR loss at Q=60 was 2 dB. Obviously, at Q

of infinity the SNR loss is 0 dB.

The same simulations were performed for the fourth-order modulator with negative Q

resonators. It should be noted that in a master-slave tuning scheme for tuning the Q of a

slave bandpass ∆Σ modulator the master resonator is actually an open-loop oscillator.

Therefore, the non-linear behavior of the master oscillator may cause the poles of the

slave or modulator’s resonators to move into the RHP. This will result in a ∆Σ modulator
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Figure 5.5 : SNR loss versus Q of resonators for a modulator with 12% excess loop delay.
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with the NTF zeros outside the unit circle. A modulator with the NTF zeros outside the

unit circle is the so called chaotic ∆Σ modulator [Risb94]. For low order modulators (for

example the fourth-order bandpass) this shouldn’t affect the modulator’s stability and in

fact it is known to be beneficial to reduce the tonal behavior significantly. Fig. 5.6 shows

the simulation SNR loss (at BW=1MHz) against negative and positive resonators’ Qs for

the same fourth-order modulator without any extra loop delay. Although as shown in

Fig. 5.6 the SNR losses were bigger in the modulator with negative Q, the tonal behavior

was significantly lower. Moreover, the modulator was still stable with resonators with

Q=−25. However, it became unstable for positive Qs lower than 35.

For positive Q as shown in Fig. 5.6, SNR is increased for a particular Q (Q=45 here). The

reason for this was the tonal behavior observed for this particular Q simulation. Tonal

behavior for a specific input level in a ∆Σ modulator can push quantization noise outside

the band which as a result deepens the noise-shaping notch and increases the SNR (as

long as there are not big in-band tones). This tonal behavior is not predictable and can

not be looked as a robust way to increase the SNR of a modulator.

The SNR is much more sensitive to the resonance frequencies. For the spread-pole

example, the simulations show that shifting both resonance frequencies ω1 and ω2 where
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Figure 5.6 : SNR loss versus negative and positive Q of resonators for a modulator with
zero excess loop delay.
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ω1 < 2πfo < ω2 to out-of-band by 1% i.e. (ω1−0.01ω1)←ω1 and ω2→(ω2+0.01ω2)

causes a 10 dB SNR loss but when ω1 and ω2 are shifted both symmetrically inside the

band, the SNR loss is much less. For example, when ω1 and ω2 are interchanged i.e.

ω1→ω2 and ω1←ω2 (3.3% frequency change, in this example), the SNR loss is around

4.5dB. This may imply that because of inaccuracy of tuning algorithms it may be better

to deliberately shift the resonance frequencies slightly inward to the in-band frequency

in a spread-pole design. In this example this is around 0.8% i.e. ω1→(ω1+0.008ω1) and

(ω2−0.008ω2)←ω2, which causes 4 dB SNR loss, but makes the system less sensitive to

resonance frequency changes. However, because most of the conventional ∆Σ

modulators usually rely on the multiple-pole loop filters and secondly the fo error

(standard deviation) of the tuning algorithms is on the order of 1-5% [Gop90], [Mar92],

[Kho91], [Kwa91] relocating the resonance frequencies of a ∆Σ loop filter from their

original places is not very beneficial. The only real solution is to employ an accurate

tuning scheme and to include some overhead margin for the loop filter’s parameter

deviations in the initial design.

5.4 Transconductor−C−Amplifier Devices

For many high-speed transconductor-C filters a simple single-stage transconductor

(sometimes just an inverter structure [Nau92]) is used. However, the DC gain of this

kind of transconductor is very low and usually parasitic capacitances are high.

Therefore, normally a very wide range of tuning is required to compensate the non-ideal

effects such as parasitic capacitances and poor output impedance. Another class of

transconductors with the general structure shown in Fig. 5.7 can be recognized as

transconductor-Miller-integrator (TMI) or transconductor-C-amplifier (transconductor-

C-opamp). Basically it consists of two stages. The first stage is a conventional

transconductor and the second stage is a high gain amplifier or opamp with feedback

from a Miller capacitor usually in series with a resistor (triode mode NMOS device as

shown in Fig. 5.7). Since “Op amp” (operational amplifier) usually refers to a multiple-

stage amplifier with a low-impedance output stage, the more general term “TC-amp”

(for transconductor-C-amplifier) is used in this dissertation.
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Some important features for this class of transconductors are:

1) Since the gain of second-stage amplifier is high the voltage swing at the input of the

second-stage amplifier is low (behaving as a virtual ground). Thus a very small

portion of the first stage transconductor’s output current flows to the parasitic

capacitances connected between the amplifier inputs and ground. The low input

voltage swing at the second-stage amplifier input lowers its non-linearity

contribution in the entire circuit as opposed to ordinary open-loop multi-stage

amplifiers in which the very last stage is responsible for producing a major non-

linearity. The non-linearity issue is discussed in more detail in Sec. 5.4.6.

2) The unity-gain frequency of a TC-amp integrator shown in Fig. 5.7 is given by

 like a single-stage transconductor shown in Fig. 5.1. Therefore, the unity

gain frequency of a TC-amp can be tuned through adjusting the input stage

transconductance, Gm, for example with a frequency control voltage Vfreq as shown

in Fig. 5.7.
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Figure 5.7 :  Simplified schematic of a differential TC-amp integrator where Mz1 and Mz2 perform
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3) The entire TC-amp DC gain is the product of the DC gain of the input transconductor

and the second-stage amplifier. Thus, producing a very high DC gain for a TC-amp

is easier. The high DC gain with use of a feedback Miller capacitance moves the

dominant pole frequency to . A proof for this is given in Appendix C.

Creating a very low dominant pole is always desirable for making a good quality

integrator. The reason is that if the second pole (and/or other parasitic poles and

zeros) are located at a high frequency far from the operating frequency an almost

flat −90° phase and a −20 dB/decade gain frequency response in a very wide

frequency range could be achieved.

4) The undesired excess phase of a TC-amp produced by higher parasitic poles and zeros

can be compensated through adjusting the (Miller) resistors placed in series with

the Miller capacitors. For example, with a voltage controlled MOSFET resistor

which is tuned by a gate voltage Vphase as shown in Fig. 5.7. This is explained in

more detail in Sec. 5.4.4 and Sec. 5.4.5.

The trade off between a TC-amp and a simple structure transconductor is speed. Of

course a simpler transconductor can afford faster operation compared to a two-stage TC-

amp when both are implemented in a same technology. However, as will be shown in a

0.8µm BiCMOS process3 it is possible to achieve a TC-amp bandpass filter for a ∆Σ

modulator working at IF frequencies up to 100MHz which has been the primary

objective of this work and to enjoy the advantages mentioned above.

5.4.1 Transconductor-C-Amplifier Biquad

To design a second-order system (resonator), two TC-amp integrators, one with positive

gain and the other negative, can be connected back to back in a loop as shown in Fig.

5.8. Implementation of an integrator with a negative sign is performed by cross-coupling

in a balanced differential transconductor as shown in Fig. 5.8. In order to supply the

input signal a multi (two)-input transconductor has been used as shown in Fig. 5.8. The

3. Northern Telecom 0.8µm BiCMOS process.

ωo Adc⁄
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transconductors are tuned by Vfreq and the overall phase of each TC-amp integrator by

Vph. Assuming that all the current of the transconductor stages shown in Fig. 5.8

completely flows into the Miller branches across the amplifier stages (the real virtual

ground assumption at the input of amplifiers), it can be shown that the bandpass transfer

function for this second-order system is as the following:

( 5.7)

where the  represents the input transconductance and the  and  terms

represent the loop transconductances. The NMOS transistors in the Miller branches are

represented by  i.e. a linear resistor which can be varied by Vph. From (5.7) it can be

noticed that the variation of  changes the  coefficient in the denominator and

consequently the Q of the filter. It should be noted that the  term

in (5.7) is negligible in our design: for example at 50MHz center frequency it varies

between 1 to 0.96. So, the variation of Q by  almost doesn’t affect the center

Figure 5.8 :   A simplified second-order TC-amp based biquad loop
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frequency . Taking into account the exact effect of the amplifier stages with finite gain

and parasitics makes (5.7) very complicated. However, one can simply notice that the

Vph voltage only adjusts the phase of each TC-amp integrator inside the loop which in

turn tunes the Q of the overall filter.

5.4.2 A BiCMOS Differential Transconductor

A BiCMOS transconductor circuit has been designed to work as the input

transconductor Gm of the TC-amp integrator shown in Fig. 5.7. A schematic diagram of

a differential BiCMOS transconductor is shown in Fig. 5.9. The input devices are

NMOS transistors working in triode mode. In these transistors the following inequality

is satisfied VDS ≤ VGS−Vth such that they are biased deeply in triode. The input NMOS

drain-source voltage VDS is in order of 100 mV and VGS is biased at analog ground (2.5

V here). The drain-source voltage VDS is set by the base voltage of Q1 and Q2 labelled

Vfreq in Fig. 5.9. The transconductance of an NMOS transistor in triode regime can

simply be expressed by . So, in order to control the gm of the input

transistors one can change their VDS through changing the BJT Q1 and Q2 base voltage

Vfreq and consequently change the resonance frequency.

One major problem in the circuit shown in Fig. 5.9 is that its half-circuit common-mode

f o

gm µnCox

W

L
-----V DS=

V freq

vi +
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M1

i

I

vi –
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M2

i–
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Figure 5.9 :  A differential BiCMOS transconductor.

M5

M3

M6

M4
Vb1

Vb2



Chapter 5−Transconductor-C Filter Design… 101

gain is high, equal to its differential gain. For example for the practical circuit which will

be discussed shortly the half-circuit DC common-mode gain was 12 dB. As shown in

Fig. 5.7 there is a common-mode feedback for the second-stage amplifier. In order to

avoid the necessity of another strong individual common-mode feedback for the first

stage circuit it is required that the common-mode gain in the input transconductor be

very small.

The high common-mode gain problem for the input transconductor can be solved by

modifying the circuit shown in Fig. 5.9 to a fully differential cross-coupled

transconductor shown in Fig. 5.10. The output cross-coupling connection reduces the

common-mode gain of the BiCMOS transconductor significantly. The simulated half-

circuit DC common-mode gain of a practical circuit shown in Fig. 5.10 was −26.04 dB

i.e. 38.0 dB (80 times) smaller than the common-gain of the circuit shown in Fig. 5.9.

The inter-stage common-mode voltage should properly be set by an additional common-

mode feedback circuit, but that was not included. This level is therefore defined by the

output impedance of the first stage, and may be biasing the second stage devices at the

4. The half-circuit DC CMRR of this circuit is about 44 dB.
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Figure 5.10 :  A practical differential cross-coupled BiCMOS transconductor.
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edge of saturation, increasing distortion. This effect on the practical circuit especially

the implemented ∆Σ modulator is discussed in Chapter 8.

5.4.3 The Second-Stage Amplifier

Since the two stage TC-amp integrator is insensitive to parasitics the design of the

second stage amplifier is not very crucial. However, in order to achieve high gain and to

have high speed capability a differential bipolar circuit with cascode PMOS load has

been designed. The amplifier circuit with its continuous-time common-mode feedback is

shown in Fig. 5.11. The second-stage amplifier by itself provides a DC gain greater than

57 dB and its unity-gain bandwidth with the output Cload = 2.5 pF was 820 MHz, with a

77° phase margin. This backs up the comment earlier about achieving a high speed

performance using a TC-amp. The gain and phase frequency responses of the second

stage amplifier with Cload = 2.5 pF are shown in Fig. 5.12. A more detailed analysis for

the first stage transconductor and the second stage amplifier is given in Sec. 5.4.5 and
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Figure 5.11 :   Schematic diagram of the practical differential amplifier with continuous-time CMFB
used for the TC-amp integrator.
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Sec. 5.4.6.

5.4.4 Excess Phase Cancellation

Before proceeding to a detailed small-signal analysis for explaining the effect of a Miller

resistor on a TC-amp integrator performance a simple intuitive expression with a

practical simulation is given in this section. A non-ideal integrator can be modelled by

an s-domain polynomial transfer function . Consider two integrators

in a closed loop system as shown in Fig. 5.13. One can find the closed loop frequency

response
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Figure 5.12 :  Frequency response of the second-stage amplifier (with 2.5 pF capacitive load).
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( 5.8)

where ,  are the integrators’ gain and ,  their phase

frequency response (gain and phase are real functions). It is evident from (5.8) that for

identical integrators with −π/2phase we have . So

if the −π/2 phase condition happens at the unity-gain frequency i.e.  the perfect

integration at each individual integrators and consequently the resonance requirement

(and/or infinite-Q condition) for the closed-loop system is met at that frequency. For

nonidentical loop integrators the infinite-Q condition occurs at a loop phase of −180°

and loop gain of unity5 i.e. at some frequency where

( 5.9)

It is interesting to note that at the resonance frequency, , neither loop integrator

necessarily has unity gain. This is important when the resonator loop integrators are

different. Recall from (5.6) that the resonator loop transconductor sizes are nominally

5. The Q of infinity for a resonator system produces an oscillation condition. This analysis is
valid only for a linear system. In a non-linear system in order to sustain the oscillation the loop
gain is required to be greater than one [Cla71]. However an amplitude-limiting mechanism is
performed by the non-linearity of an active device to fix the oscillation level [Cla71].

F jω( )
G1 ω( )e
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Figure 5.13 :  A resonator implemented by two integrators in a closed loop system.
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identical gm, however, the sizes of the feedback transconductors from DAC and the

feedforward transconductors represented by gmb’s and gma’s respectively in Fig. 5.4 are

different. In the real circuit the resonator loop, DAC feedback and feedforward

transconductors are implemented by a multi-input circuit which will be discussed in Sec.

5.5. This makes a small difference between the transconductors’ gain and phase

responses.

This is explained by an example. A second-order system including two different TC-

amp integrators (Fig. 5.7) with practical circuits shown in Fig. 5.10 and Fig. 5.11 was

simulated. By adjusting the Miller resistors i.e. Rz (for this simulation resistors were

placed in series with the Miller capacitors instead of NMOS transistors in triode mode

shown in Fig. 5.7) the maximum Q was achieved. Fig. 5.14 shows the Q of the second-

order system for some different Miller resistor values. Note that the cases “b” and “c”

are stable meaning that the loop poles in Fig. 5.13 are in LHP, case “a” shows poles on

the jω axis and cases “b′”and “c′” are unstable. The explanation is that assuming unity-
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Figure 5.14 :  Tuning of the Q of the filter by adjusting the loop integrators’ phases. (a) shows −
180° loop phase, (b) and (c) leading, and (b’) and (c’) lagging phase conditions. The expanded

frequency axis exaggerates Q sensitivity.
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gain for the loop gain at the resonant frequency i.e. G(ωo) = 1, the sufficient stability

condition is,

. ( 5.10)

Higher Rz values correspond to bigger phase lead which according to (5.10) makes the

system more stable, or in the other word moves the loop poles further into the LHP. As

Rz is decreased the desired poles on the jω axis is attained and with lower Rz values the

loop phase won’t satisfy (5.10) any more which shows that the loop poles have moved

into the RHP. Recall from Sec. 5.3 and Fig. 5.5 that the minimum required Q for the

fourth-order bandpass modulator was 30 and at Q=50 the modulator operates almost like

the ideal condition when its Q is infinity. The simulated Rz values of the resonator for Q

of 30 and 50 were 826Ω and 806Ω respectively. This means to achieve a satisfactory

noise-shaping a matching in order of 4-6% between the Miller resistors (or NMOS

transistors used as controllable resistors) is required.

The frequency responses of the individual integrators including the loading effect of the

second integrator in the loop are plotted in Fig. 5.15. As shown the unity-gain

frequencies of the loop integrators are different: ≈85.41MHz for T1 and ≈57.94MHz for

T2. The resonance condition given in (5.9) (at 70MHz) happens at a particular value of

Miller resistors, i.e. . Changing the Miller resistors has no (or a very

small) effect on the gain of integrators; however, it does influence the phase response of

the integrators and consequently the Q of the resonator significantly. Therefore, one can

obtain the required Q value by adjusting the Miller resistors.

The gain and phase plots of the T1 integrator for two Miller resistor Rz values at the band

of interest are shown in Fig. 5.16. At the resonance frequency 70MHz, by changing Rz

form  to  the phase is changed by ≈−1.384° ( )

while the gain is changed only by ≈−0.053dB (1.603dB →1.550dB). With the same Rz

values the phase and gain changes for the second integrator T2 were ≈−1.386° and ≈−

0.065dB respectively. This provides enough range for tuning the Q of a filter as

manifested in Fig. 5.16c.

The integrators used for the preceding simulations were a realization of the BiCMOS

TC-amp opamp configuration introduced in Sec. 5.4.2. The effect of the phase

compensation on a second-order filter was generally explained and verified by HSPICE

ϕ ω( ) 180°–>

Rz 766.2Ω=

776.2Ω 700Ω 89.167° 90.551– °→–
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simulations. Now a small signal analysis of the practical circuits used will be given

which explains how the excess phase of integrators is adjusted in a TC-amp topology.
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5.4.5 Small Signal Analysis

The basic topology of the BiCMOS transconductor back in Fig. 5.10 followed by the

second-stage bipolar amplifier (Fig. 5.11) is shown in Fig. 5.17 with the Miller capacitor

and resistor. The current from the first stage BiCMOS transconductor is supplied to the

second stage amplifier which is configured as a Miller integrator. The second stage

amplifier is a common emitter (CE) bipolar amplifier with a very high gain (60 dB and

57 dB in T1 and T2 i.e. the first and second integrators in the resonator loop as was

represented in Fig. 5.13). One may consider a CE common-base (CB) cascode

configuration at the second stage for increasing the output impedance of the integrator

and reducing the effect of the collector-base (CB) capacitance of CE transistors on the

total integrating time constant [Lab93]. In our design this was not needed, because firstly

the output impedance is dominated by the PMOS current source devices, not the bipolar

transistor. The cascode PMOS transistors in Fig. 5.11 provide high enough impedance

for the required overall high gain (66 dB in T1 and 63 dB in T2). Secondly the bipolar

collector-base capacitance is fairly low compared to the Miller capacitance, (10 fF / 1

pF) = 0.01 in this design. Besides, excess phase cancellation is required for the ∆Σ

V freq

vi +

Q1

M1

i

I1

vo +

I2Cm

Q2

Figure 5.17 :  A simplified half circuit schematic of TC-amp.
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application which compensates the effect of the collector-base parasitic capacitance.

The very high gain of the second stage CE bipolar amplifier produces a fairly good

virtual ground for the transconductor output current at the Miller input node v1 (Fig.

5.17). This has the following advantage mentioned earlier: a very low signal excursion

(about 1.4 mV for a 1 V output swing) at the input of the second stage even at resonance

and as a result substantially reduced nonlinearity from the second stage amplifier at high

frequencies. Simulations showed that having only a common-mode feedback at the

second stage is enough and there is no requirement for an extra common-mode feedback

for the first stage transconductors individually. Recall from Sec. 5.4.2 that the common-

gain of the practical cross-coupled transconductor shown in Fig. 5.10 is −26 dB.

However, because a device mismatching can happen in the fabrication and besides the

interstage impedance for common-mode signal is high determined by the PMOS active

loads in the first stage transconductors, it is required to implement an individual

common-mode circuit for the first stage transconductor. This will be discussed in detail

in Sec. 7.2.

In Sec. 5.4.4 the effect of the Miller resistor Rz in series with the Miller capacitor on the

Q of a second-order system was demonstrated with the simulation results. In order to get

more insight into the TC-amp integrator circuit behavior including the effect of Rz

throughout small signal analysis has been presented in Appendix C.

The overall zeros and poles of the two-stage TC-amp integrator for the maximum-Q

case (Rz = 776.2 Ω) are shown in Fig. 5.18a. The pole and the zero associated with the

first stage amplifier are

p11 = − 853.5 MHz and z11 = + 608.8 MHz. ( 5.11)

and those of the second stage amplifier are

. ( 5.12)

z1 280.6 MHz–=

p1 45.88049 KHz–=

p2 3, 0.95
9×10– j– 1.91

9×10 Hz=
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Fig. 5.18b shows the frequency response comparison (gain and phase) of the real circuit

simulation (Rz = 776.2 Ω) with that obtained from the analyzed poles and zeros of the

two stage TC-amp integrator shown in Fig. 5.18a. As Fig. 5.18b shows the proposed
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Figure 5.18 :  (a) Poles and zeros of the whole TC-amp integrator, (b) frequency response of a system
with the given poles and zeros along with that of the practical circuit simulation.
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pole-zero model from the foregoing analysis matches well with the simulation result for

the frequency band of interest (lower than 100 MHz). For example the gain and phase

differences at 50 MHz are 1.70 dB and 0.92°. This difference (particularly the phase) is

not trivial for an integrator; however, the gross matching of the phase and gain between

simulation and analysis implies that the given small signal analysis provides a fairly

good insight into the frequency performance of the proposed two-stage TC-amp

integrator. As was mentioned using Rz variation in the pole-zero model one should be

able to mimic the simulation frequency response more closely. Fig. 5.19 shows the

simulation frequency response of the TC-amp integrator circuit for Rz = 776.2 Ω (same

as in Fig. 5.18b) and the frequency response of the pole-zero model for Rz = 752.4 Ω.

This Rz variation causes the poles and the RHP zero of the second stage amplifier to

move from the location given in (5.12) to
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Figure 5.19 :  The model matches to simulation at different Rz value (Rz = 752.4 Ω).
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. ( 5.13)

At the new poles and zeros configuration given in (5.13) and (5.11) the gain and phase

differences at 50 MHz (shown in Fig. 5.19) are 1.53 dB and  respectively.

As is apparent from (5.12) and (5.13) the change of the LHP zero is much larger than the

poles. More importantly, the simulation showed that the frequency response of the

model is not very sensitive to the poles variation (keeping the LHP zero unchanged). For

example with the same zero given in (5.12) and the poles

which are associated with Rz = 9.85 kΩ the gain and phase differences at 50 MHz are

1.30 dB and  respectively. However, the LHP zero movement has

significant effect on the excess phase cancellation as shown in Fig. 5.19.

The proposed pole-zero model didn’t match perfectly the simulation results with the

same circuit parameter values particularly with the identical Rz resistances. This is due

to neglecting of some parasitic effects resulted from many simplifications made in the

small signal analysis. However this model presents a root and zero locus for the entire

TC-amp circuit (shown in Appendix C) in which one can study the effects of the poles

and zeros variation individually in order to understand the ideas behind the excess phase

cancellation for the filter’s Q tuning.

5.4.6 Non-linearity Analysis

One important feature of a transconductor is its linearity performance. Particularly when

used for a ∆Σ loop filter any major circuit non-linearity could result in the in-band

intermodulation and/or signal-to-noise degradation. In this section a non-linearity

analysis for the BiCMOS transconductor opamp circuit shown back in Fig. 5.10 and Fig.

5.11 is presented.

z1 289.8 MHz–=

p1 45.88074 KHz–=

p2 3, 0.97
9×10– j± 1.93

9×10 Hz=

1.96
3°–×10–

p1 45.78599– KHz=

p2 3, 2.32
8×10– j± 5.51

8×10 Hz=

3.54
6°–×10–
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5.4.6.1 Input-stage BiCMOS Transconductor Non-linearity

Fig. 5.17 shows a simplified differential version of this transconductor. The input NMOS

transistors M1 and M2 operate in the triode or linear region having gate−source voltage

VGS and drain−source voltage VDS. One fairly accurate formula to define the transistors’

characteristics in the triode region is

( 5.14)

VGS in this circuit is defined by input DC common-mode voltage superimposed on an

input AC signal. VDS is a base−emitter voltage drop VBE below the frequency control

voltage Vf applied to the BJT cascode transistors Q1 and Q2. At the same time the BJT

emitter current which is identical to the input NMOS drain current is equal to

 or ( 5.15)

where IS is a constant (dependent on technology) describing the transfer characteristic of

BJT transistor in the forward-active region.  is the thermal voltage in a bipolar

transistor (26 mV at room temperature) which is defined by  where q is the

electron charge, k Boltzmann constant and T the absolute temperature. From (5.14) and

(5.15) one can conclude that

V f

vi +

Q1

M1

i
I

Figure 5.20 :  A simplified differential circuit schematic of the BiCMOS transconductor
shown in Fig. 5.10.
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( 5.16)

Obviously as (5.16) and (5.15) indicate the modulation of VBE and subsequently VDS

with ID is a cause of non-linearity in the circuit. From (5.16) one can obtain the small

signal transconductance of the input NMOS devices as follows:

( 5.17)

where . Since the second and third term of the denominator in (5.17) is

small compared to the first term ID

( 5.18)

which is like ignoring the squared term in (5.16).

For a differential input signal shown in Fig. 5.17 after expanding the ‘ln’ function in

(5.16) into a Taylor series with  where I and i are DC and AC currents

respectively

( 5.19)

Subtracting equations in (5.19) and neglecting the terms with the orders higher than

four, one can derive
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( 5.20)

where ,  is the input differential voltage,

 the quiescent drain-source voltage and

 the input common-mode (bias) voltage minus

NMOS threshold voltage. Moreover, Im is the peak amplitude of the drain current swing

in the input NMOS devices and I is the drain quiescent current. At first glance it seems

that since the first bracket in the right side of (5.20) comprises the even-order terms this

analysis will predict even-order harmonics. However, with using the power series

(5.20) can be simplified to

( 5.21)

It is apparent from (5.21) that only odd-order harmonic distortions can be predicted from

this analysis. Finally ignoring the terms with power of four and higher in the first bracket

in the right side of (5.21) we obtain

( 5.22)

where  are the coefficients of the second bracket in the right side of (5.21).

Equation (5.22) represents the input voltage Vi as a function of the output current while

in reality the input voltage is considered as an independent variable. One can reverse the
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dependency of variables in (5.20) by a power series [Car94]:

( 5.23)

where the “b” coefficients in (5.23) can be obtained from the “a” coefficients in (5.22)

( 5.24)

From (5.23) it is apparent that the lower  the more linear a transconductor can

be achieved. In the BiCMOS transconductor shown in Fig. 5.17 and Fig. 5.10 VDS = 77

mV. Ignoring higher terms from (5.23) an approximate linearized effective

transconductor can be defined:

( 5.25)

where . In Appendix C it is shown that gm1 = 271.6 µS and the

effective transconductance is 211 µS at VDS = 77 mV.

The second and third harmonic distortions can be obtained from (5.23) and (5.24):

( 5.26)

As (5.26) show the harmonic distortions are function of the input signal amplitude Vi.

5.4.6.2 Open-Loop Transconductor Simulations

For the input stage transconductor shown back in Fig. 5.10 disconnected from the

second stage amplifier (loaded with two grounded 0.8pF capacitances) with the

numerical parameters given in Sec. 5.4.5 computer simulations were performed. The

i

I
-- b1 V i

V DS

V T

----------
 
 
 

b2 V i

V DS

V T

----------
 
 
  2

b3 V i

V DS

V T

----------
 
 
  3

b4 V i

V DS

V T

----------
 
 
  4

…+ + + +=

b1
1
a1
-----;= b2

a2

a1( )3
------------- 0=–= ; b3

2a2 a1a3–

a1( )5
--------------------------= ; b4

5a1a2a3 a1
2
a4– 5a2

3
–

a1( )7
------------------------------------------------------ 0==

V DS V T⁄

gmeff

gm1

1
V T

V DS

----------+

--------------------=

gm1 µnCox

W

L
-----V DS=

HD2 0;=

HD3

b3

4b1
--------- V i

V DS

V T

----------
 
 
  2

1
4
---

a3

a1( )3
------------- V i

V DS

V T

----------
 
 
  2

===

1
4
---

2
3
--- Von V DS–( ) VT–

VT

2V DS

-------------- I K V T⋅( )⁄ 2 V on V DS–( )+[ ]–

I K V T⋅( )⁄ 2 V on V DS–( )+[ ] 3
------------------------------------------------------------------------------------------------------------------------------------------------- V i

V DS

V T

----------
 
 
  2

⋅



Chapter 5−Transconductor-C Filter Design… 118

harmonic distortions were obtained by taking the FFT of the signals from the circuit

time domain simulations. The harmonic distortion terms of the transconductor’s

differential output current for a 0.13 V sinusoidal input at 78.125 MHz6 were

HD2 = −55.8 dB, HD3 = −82.7 dB, HD4 = −117.1 dB and HD5 = −121.3 dB. ( 5.27)

While from (5.26) the second and third harmonic distortion terms are

HD2 = 0 (in linear scale) and HD3 = −97.4 dB. ( 5.28)

The single stage transconductor’s output voltage harmonic distortions from simulation

were

HD2 = −121.9 dB, HD3 = −92.0 dB, HD4 = −121.1 dB and HD5 = −122.0 dB. ( 5.29)

which shows the effect of filtering on the output current.

It should be noted that Im and I for an AC input voltage of 0.13 V (Vi) and a DC input

bias of 2.5 V (Vcmi) were 20 µA and 869.1 µA respectively.

The simulation (5.29) and analysis (5.28) results show that the third-order harmonic

distortion predicted by (5.26) are a bit optimistic. Moreover, a large second-order

harmonic distortion component was observed at the output current (5.27) which is zero

from analysis. There are some reasons for this difference. One reason is that (5.14)

presents a simple approximation for a MOS transistor characteristic at triode regime. A

more advanced approximation may be presented [Kla94] by

( 5.30)

where , ,  and  have to be considered as parameters;  relates

to the effective L (length) and W (width) compared to the drawn Land W in the layout

and  is the substrate voltage. Obviously the presence of VDS in denominator in (5.30)

would dramatically affect the derivations made from (5.16) to (5.26) and consequently

the harmonic distortions.

6. In the transient analysis an input frequency (close to the unity gain frequency) is chosen such
that after taking FFT it would appear exactly at one FFT bin. The unity gain frequency of the sin-
gle stage input transconductor (just loaded with two grounded 0.8pF capacitance) is 61 MHz.
Recall from Sec. 5.4.4 that the unity gain frequency of the entire TC-amp is 85.41 MHz.
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5.4.6.3 The Second-stage Amplifier Non-linearity

Before proceeding to a non-linearity analysis for the second-stage amplifier the entire

two-stage integrator simulation results are presented here. The simulated harmonic

distortions for the differential output voltage of the entire TC-amp circuit with the same

input frequency 78.125 MHz (as the single-stage transconductor) but 0.1 V peak

amplitude which produces the same Im swing in the first stage transconductor as in the

single stage transconductor were

HD2 = −100.8 dB, HD3 = −92.9 dB, HD4 = −111.8 dB and HD5 = −106.6 dB ( 5.31)

By comparing (5.29) with (5.31) one can notice that in the two-stage integrator the

harmonic distortions have not deteriorated noticeably. Particularly the third-order

harmonic distortions are almost identical.

The second stage differential amplifier is shown in Fig. 5.21 to which the currents ip and

in are supplied from the first stage transconductor. Equation (5.19) gave an estimate for

the non-linearity incurred on the first stage transconductor output current. The non-

linear currents ‘ip’ and ‘in’ are then supplied to the second stage amplifier shown in Fig.

5.21. The differential output voltage of the second-stage amplifier can be written as

vop1
von1

vo –
vo +

I

Cm

Q1

Rz

I

Cm

Q2

Rz

ip in

2I

Ro Roimp imn

ibp ibn

Figure 5.21 :  A simplified model for the second stage amplifier.



Chapter 5−Transconductor-C Filter Design… 120

follows

( 5.32)

For a sinusoidal input current where  and

simulations have shown that . This is the rationale for the approximation made in

(5.32) i.e. . As mentioned this current has been

distorted by the first stage transconductor, so it contains higher order harmonics as well

as the fundamental frequency:

( 5.33)

Substituting (5.33) into (5.32) the contribution of the second stage amplifier in the

overall non-linearity can be understood

( 5.34)

As shown in the sigma term in (5.34) the higher order harmonics are multiplied by

 term. Ignoring vo1(t) term, one can calculate the output

voltage harmonic distortions:

( 5.35)
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where HDn−i is the n-th order harmonic distortion of the input current to the second

stage amplifier. So, the effect of the Miller capacitance in series with a resistor is

reducing the input current harmonic distortion as shown in (5.35) i.e. filtering action.

It should be noted that in our real circuit the NMOS devices working in triode regime

have been used as voltage-controlled resistors in series with Miller capacitors. These

devices are not quite linear [Tsiv94] as passive resistors used in the preceding analysis.

There are some recommended schemes to alleviate their non-linearity in the context of

MOSFET-C filters [Tsiv86], [Cza86] which are not discussed here because as will be

shown shortly they are not a major source of non-linearity in this circuit.

The second term in (5.34) vo1(t) although very small could contribute significantly in

nonlinearity of the second stage amplifier output voltage. The input differential voltage

can be defined by BJT equation

( 5.36)

where  and  are the collector currents in the BJT transistors Q1 and Q2. Assuming

very high impedance active load for the second stage amplifier i.e. very high Ro shown

in Fig. 5.21 one can simply assume  and . Then (5.19) can be

substituted to (5.36) to analyze the effect of the second stage amplifier on the overall

TC-amp non-linearity.

However, since the input signal of the second stage amplifier is usually operating at very

low voltage levels, for example 2.3 mV and 9.5 mV for the input voltage levels of 0.1 V

and 0.3 V respectively, the second stage amplifier can be analyzed individually. A

simplified half circuit schematic of the second stage differential BJT amplifier shown in

vo1 V T

icp

icn

------ln⋅=

icp icn

icp ip= icn in=
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Fig. 5.21 is shown in Fig. 5.22. Considering a single tone7 input for the BJT amplifier

and removing the + and − signs for the symbols shown in Fig. 5.22:

( 5.37)

where  is the normalized peak amplitude voltage of the half circuit input

signal. It is well known from Fourier series expansion [Cla71] and Bessel function

theory [Trat68], [Gra52] that

( 5.38)

where  is a modified Bessel function of the first kind, of order n and argument x.

The modified Bessel functions are all monotonic and positive for x ≥ 0and n ≥ 0; I0(0) is

unity, whereas all higher order functions start at zero. As x → 0,

( 5.39)

when n is a positive integer.

So owing to the closed form exponential equation for a bipolar transistor characteristic,

substituting (5.38) into (5.37) we obtain

7. The intermodulation effects of the higher order components supplied to the second-stage
amplifier are neglected here. However, the intermodulation for the entire TC-amp integrator is
shown in Sec. 5.4.6.5.

vo –Q1 Roib +
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Figure 5.22 :  A simplified half circuit schematic of second stage amplifier.
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( 5.40)

It is apparent from (5.40) that the average (or DC) value of ic(t) is affected by the input

voltage x

( 5.41)

In the differential circuit Fig. 5.21 the input signals have −180° phase difference. So

from (5.38) one can obtain

( 5.42)

Consequently, the differential voltage is deduced from (5.40) and (5.42)

( 5.43)

where Ro is the amplifier’s output impedance. As is apparent from (5.43) the even order

harmonics are zero in the assumed pure differential circuit. The harmonic distortion

contribution of the second stage amplifier can simply be discovered from (5.43)

( 5.44)

where ‘b’ superscript stands for the distortion in BJT transistors.

For example at 0.1 V and 0.3 V input voltage levels which respectively produce 2.3 mV

and 9.5 mV peak (in each half circuit) at the input of the second stage amplifier from
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(5.44) we get

( 5.45)

Fig. 5.23 shows the third and fifth harmonic distortions of a differential BJT amplifier

obtained from (5.45) superimposed on the analysis results obtained from Taylor series

which are not given here to save space. As shown in Fig. 5.23 the results obtained by

Bessel functions are so close to those from Taylor series expansion as to be almost

indistinguishable. The ‘*’ points in Fig. 5.23 indicate the second stage amplifier

harmonic distortions at BJT input levels of 2.3 mV and 9.5 mV. For example the third

and fifth order harmonic distortions with an input signal amplitude 2.3 mV are HD3 = −

69.7 dB and HD5 = −149.9 dB. This implies that for low amplitude levels like 2.3 mV

the second-stage amplifier almost doesn’t contribute in the non-linearity of the circuit.
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Figure 5.23 :  The third and fifth harmonic distortion of a differential BJT amplifier vs. the
normalized input amplitude.
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However, as shown in Fig. 5.23 at high amplitude levels the non-linearity contribution of

the second stage BJT amplifier could be significant.

5.4.6.4 Closed-loop Transconductor Simulations

In an open-loop simulation of a transconductor especially in a two-stage circuit since

there is no output-input feedback for the entire TC-amp system, there is usually a

transient response in the beginning of a simulation (and/or in a practical situation). This

produces unbalanced signals at differential nodes which consequently could result in

some error in simulation results. For example due to unsymmetric signals at a

differential stage even-order harmonic distortions could appear. Therefore for simulation

a TC-amp integrator was placed in a closed loop to make a simple single-pole lowpass

filter. Fig. 5.24 shows a schematic diagram of this closed-loop TC-amp integrator

configured as a lowpass filter.

The harmonic distortions of the lowpass filter shown in Fig. 5.24 with the NMOS phase

Figure 5.24 :   The TC-amp integrator configured as a simple single-pole lowpass filter.
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controlling transistors Mz1 and Mz2 in triode regime for a sinusoidal input at 50 MHz and

0.1 V amplitude were

HD2 = −100.7 dB, HD3 = −84.6 dB, HD4 = −105.9 dB and HD5 = −99.8 dB. ( 5.46)

The same simulation but with NMOS transistors Mz1 and Mz2 replaced by passive

resistors giving the same phase-frequency response as with NMOS devices resulted in

HD2 = −101.5 dB, HD3 = −89.8 dB, HD4 = −106.4 dB and HD5 = −102.2 dB. ( 5.47)

Hence the comment earlier that the NMOS triode-mode devices in series with the Miller

capacitors don’t contribute too much in the non-linearity of the TC-amp integrator.

A closed-loop simulation comprising a single stage BiCMOS transconductor shown

back in Fig. 5.10 has been performed. With sinusoidal input at 37 MHz and 0.1 V

amplitude the results were as following

HD2 = −102.9 dB, HD3 = −95.1 dB, HD4 = −107.0 dB and HD5 = −102.4 dB. ( 5.48)

Again as the closed-loop simulation show the two-stage TC-amp integrator (5.47) and

the single-stage transconductor (5.48) produce very close harmonic distortion

components.

5.4.6.5 Two-tone Intermodulation Simulation

Two input sinusoidal signals both with 0.1 V amplitude levels and frequencies at 51.27

MHz and 56.15 MHz were supplied to the closed-loop integrator configured as a simple

lowpass filter shown in Fig. 5.24. The in-band signal spectrum is shown in Fig. 5.25. The

third-order intermodulation distortions as shown in Fig. 5.25 appear at 46.39 MHz and

61.03 MHz with respectively −85.5 dB and −83.8 dB attenuations.

5.5 A Practical Fourth-order ∆Σ Modulator

A single-ended schematic diagram of a 4th-order ∆Σ TC modulator was shown back in

Fig. 5.4. A practical fully differential modulator using the TC-amp integrators described

in Sec. 5.4 is implemented which is shown in Fig. 5.26.
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5.5.1 Loop Filter Center Frequency Control

The transconductor values, therefore the size of the input NMOS transistors of the

fourth-order ∆Σ modulator loop filter are ratioed as the requirement given in (5.6). In

Sec. 5.4.4 and Sec. 5.4.5 it was explained how the Q of each second-order resonator

shown in Fig. 5.26 can be controlled through changing the Miller resistor Rz. In the

practical circuit this was done by the control voltage labeled Vphase in Fig. 5.7 which

changes the resistance of the NMOS devices working in the triode mode (not shown in

Fig. 5.26). As explained in Sec. 5.4.2 and shown back in Fig. 5.10 the control voltage

Vfreq supplied to the base of the BJT transistors in the input cross-coupled

transconductor determines the bias VDS voltages and the transconductor values. From

(5.18) it is evident that Vfreq (Vf) determines the transconductance gm value for the input

devices and so that for the entire TC-amp integrator as given in (5.25). Fig. 5.27 shows

the change of the fourth-order loop filter’s center frequency with respect to Vfreq

variation. Note that Vphase is identical in all simulations. As shown in Fig. 5.27 for this

Figure 5.25 :   The simulated spectrum of the output signal of Fig. 5.24 when supplied by two
tones with 0.1 V amplitude levels and frequencies at 51.27 MHz and 56.15 MHz.
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Vphase the maximum Q occurs at 50 MHz.

Figure 5.26 :   A 4th-order TC-amp ∆Σ modulator.
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5.5.2 ∆Σ Modulator Loop Components

A description of the modulator loop components shown in Fig. 5.26 is as follows:

5.5.2.1 Multi-input Transconductors

The multi-input transconductors shown in Fig. 5.26 have been implemented by adding

extra input NMOS devices in parallel. A simplified three-input transconductor is shown

in Fig. 5.28. This way one can add the input signal “u” with the ∆Σ DAC output signal

and an internal loop filter node signal represented by “y” and “f” respectively in Fig.

5.28 and Fig. 5.26. Having selected the input NMOS device dimensions an arbitrary

feedforward and loop ∆Σ loop filter can be designed.
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5.5.2.2 Two-level DAC

A two-level high speed current steering DAC shown in Fig. 5.29 is designed to reduce an

extra loop delay produced by the DAC’s propagation delay time. From simulation the

DAC’s propagation delay time loaded with 0.75 pF at each its differential output nodes

(the total capacitance load of the loop filter) was about 100 ps. With off-chip Vdac

voltage and Idac current shown in Fig. 5.29 the DAC output common-mode voltage and

swing amplitude can be controlled independently.

5.5.2.3 Latched Comparator and D-flip flop

For ∆Σ quantizer a latched clocked comparator [Long92], [Bre95] has been used. The

comparator comprises a preamplifier followed by a latch as shown in Fig. 5.30. For D-

flip flop shown in Fig. 5.26, two latches like the one shown in Fig. 5.30 have been

cascaded. The overall simulated propagation delay time of the comparator and the D-flip

flop followed by the DAC loaded with a 0.75 pF at each DAC’s differential output node

was about 0.8 ns.

Figure 5.29 :  A schematic of two-level current steering DAC.

Q1 Q2

Q3

in +

vo – vo +

Q4

R R

in –

Vdac

Vss

Idac

4x 8x

8x 8x

R = 150 Ω



Chapter 5−Transconductor-C Filter Design… 131

5.5.3 The TC-amp ∆Σ Modulator Simulated SNR

The one-delay multiple-pole fourth-order modulator with the loop filter given in (3.23)

has been simulated. The input signal was a sinusoidal signal at 50 MHz with −6 dB

amplitude (relative to the quantization ∆ level). First the modulator with all ideal

components including the ideal fourth-order loop filter given in (3.23) was simulated. In

the second simulation, the ideal loop filter was substituted by a fourth-order TC-amp

filter with the architecture shown in Fig. 5.26. The open loop TC-amp filter’s Q was set

at infinity and its center frequency at 50 MHz. However, in the second simulation the

other modulator’s components such as the comparator, the loop delay (D-flip flop) and

DAC were ideal while 100 ps extra loop delay was deliberately introduced. In the third

(last) simulation everything used real circuits with the schematic diagram shown from

Fig. 5.26 to Fig. 5.30. As was mentioned in Sec. 5.5.2 the extra loop delay produced by

the comparator, D-flip flop and DAC loaded with the loop filter was around 0.8 ns. A

bandpass noise-shaping spectrum obtained from a simulation of the real circuits is

Figure 5.30 :  A pseudo-ECL latched comparator.
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shown in Fig. 5.31.

*. Always −6 dB relative to the DAC output signal.

Table 5.1: The SNR simulation results for fourth-order modulators

Simulations

input peak

amplitude*

(mV)

SNR (dB) at given bandwidth

2 MHz 4 MHz 6 MHz

ideal loop components 490 63.4 47.8 41.0

real circuit loop filter; ideal
digital loop components;
100 ps extra loop delay

75 59.4 44.8 38.6

real circuit modulator (0.8
ns extra loop delay)

50 56.3 41.4 35.1

Figure 5.31 :  A bandpass noise-shaping spectrum of the fourth-order modulator obtained from
simulation of real circuits.
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The maximum simulation SNR results for the three preceding cases and some different

bandwidths are given in Table 5.1. From the simulation results given in the second and

first rows of Table 5.1 it can be inferred that the effect of non-idealities in the real circuit

filter is almost 3 dB SNR loss at every oversampling ratio (bandwidth). Another 3 dB

SNR loss is produced by the extra loop delay which is apparent from comparison of the

third and second rows in Table 5.1.

5.6 Summary

A transconductor-C filter architecture to implement the continuous-time bandpass or

lowpass modulator loop filters has been introduced. A practical transconductor-amp

(TC) integrator has been designed and developed for use as a very high-Q (infinite-Q)

∆Σ loop filter. The simulated third order intermodulation products of the practical ∆Σ

loop filter with V two-tone in-band ( MHz) signals were lower than dB. The

simulated maximum signal amplitude (MSA) of the practical ∆Σ modulator at MHz

was mVp (with a V DAC signal swing) which resulted in  dB (  bits)

maximum SNR at 2 MHz bandwidth and dB (6 bits) at 6MHz bandwidth.

A two level current steering DAC circuit was designed. Its propagation delay time

including the effect of the loop filter capacitive load (almost pF single-ended) was

about ps. The overall ∆Σ extra loop delay including the propagation delay times of

the comparator, D-flip flop and the DAC at MHz clock rate was about ns. It was

shown that the effect of this extra loop delay was to reduce the MSA and so the

maximum SNR by about dB at a MHz input signal.
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Chapter 6

Testing of a Prototype Second-

Order Bandpass Delta-Sigma

Modulator

A transconductor-C biquad filter chip [Shov92] tuned at fo = 50 MHz with a built-in

latched comparator has been used to make an experimental ∆Σ loop nominally clocked

at fs = 200 MHz. A second filter chip was utilized as the voltage-controlled oscillator

(VCO) in a PLL to implement a master-slave tuning scheme. The biquad filters were

implemented in a 0.8 µm BiCMOS process.

6.1 Modulator Implementation

A block diagram of the modulator including the tuning circuitry is shown in Fig. 6.1a.

The tuning scheme is discussed later in Sec. 6.2. The dashed lines in Fig. 6.1a enclose

the chips used, while the additional blocks in the figure are off-chip components. The

biquad filter chip was fully differential and consisted of five transconductor blocks. For

simplicity the single-ended block level schematic of the filter is shown in Fig. 6.1b

where the gm terms represent the biquad transconductors. Further details on the biquad

can be found in [Shov92]. The comparator output is fed to a variable attenuator

(represented by k in Fig. 6.1a) whose output is added to the input signal by a passive

combiner network. The attenuator is used to adjust the sensitivity of the ∆Σ A/D and to

increase its linearity while keeping the dynamic range unchanged (within limits).

It can be shown that the transfer function of the filter in Fig. 6.1b is
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( 6.1)

where the go terms represent the transconductor output conductances. The

transconductor terms represented by gmx and −gmf in Fig. 6.1b are used to tune the poles

of the filters as can be inferred from the constant term in the denominator of (6.1) which

in our example was ωo=2π(50) Mrad/s. The transconductor represented by −gmQ is set

negative, cancelling out the effect of the transconductors’ output conductances in the s

coefficient in the denominator of (6.1). This way one can achieve an infinite Q filter as
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Figure 6.1 :  Single ended diagram of (a) the second-order Sigma-Delta modulator with tuning
circuitry, (b) Gm-C biquad filter.
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required for the second-order transfer function in (3.37). The transconductor terms in the

branches represented by gmb0 and gmb1 in Fig. 6.1b should be tuned to set the required

zero for the loop transfer function. It can be shown that if gmx = gmf = gm then it is

required to have gmb0 = −gmb1 = 0.5gm in order to make the filter’s zero given in (6.1) the

same as the ideal transfer function’s zero given in (3.37). However, as (6.1) shows, there

would be some errors in zero location due to the finite transconductors’ output resistance

(1/go values). This error doesn’t lead to a modulator instability as the second-order

bandpass ∆Σ modulator is a robust system; however, it reduces the maximum achievable

SNR.

6.2 Automatic Tuning

As mentioned in Sec. 5.3 continuous-time filters are subject to fabrication tolerances,

temperature variations and parasitic effects, hence a tuning scheme is required especially

with high speed circuits. To correct the transfer function of the second-order ∆Σ loop

filter, a master-slave tuning circuit was implemented. The master-slave tuning scheme is

commonly used for the frequency and Q-tuning of a main filter (slave). The resonance

frequency of the master voltage-controlled filter (VCF) [Gop90], or the master voltage-

controlled oscillator (VCO) [Nau92], [Kho91] is locked to an external accurate

frequency by a PLL system. The Q of the master VCF or VCO can be controlled by

comparing the amplitude of the master output signal to a reference voltage. The main

filter (slave) is tuned by the same frequency and Q control voltages of the master.

For tuning the ∆Σ modulator loop filter, a practical master-slave scheme was

implemented which is shown in Fig. 6.1a. The ideal second order bandpass ∆Σ loop

transfer function in (3.37) represents an infinite Q filter with two poles on the jω axis as

shown in Fig. 3.12a. Notice that this transfer function can be regarded as a typical

oscillator. Therefore, the VCO master-slave tuning scheme is naturally suited for this

purpose. It should be noted that unlike traditional master-slave schemes which tune an

open-loop slave filter, the slave filter in our continuous-time ∆Σ modulator is working in

a closed-loop system. As will be shown in Section Sec. 6.3, tuning of the open loop

master resonance frequency (VCO) will result in the tuning of the ∆Σ loop resonance

frequency and therefore the tuning of the bandpass ∆Σ noise transfer function (NTF)
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notch frequency. The Q of the filters (master and slave) were tuned by comparing the

amplitude of the VCO output signal with a reference voltage. The amplitude of the VCO

output signal was detected by a Schottky diode peak-detector as shown in Fig. 6.1a.

The tunablity of a continuous-time bandpass ∆Σ converter center frequency with its

inherent anti-alias filtering can be advantageous over a bandpass switched-C ∆Σ

converter and could provide a new approach for channel selection in digital radio

receivers. The idea is shown in Fig. 6.2. Having a tunable bandpass ∆Σ converter at the

IF stage removes the necessity of channel selection at the RF. So, as illustrated in Fig.

6.2, one may use a fixed local oscillator (presumably a SAW or crystal oscillator) and

move the synthesizer to the IF stage which would consume less power as it would

operate at lower frequency. Moreover, since the ∆Σ master-slave tuning scheme shown

in Fig. 6.1a uses a PLL (it is already in IF), the only requirement for channel selection at

the IF is a frequency controller as shown in Fig. 6.2.

It should be noted that because the ∆Σ modulator center frequency in this example is one

quarter of the clock frequency (∆Σ NTF zeros are at  as shown in Fig. 3.12a), by
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Figure 6.2 :  Block diagram showing the possible channel selection at the IF stage by a tunable
bandpass ∆Σ modulator.
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changing the reference frequency the clock frequency should be changed accordingly.

This relationship is shown in Fig. 6.1a by the dotted line connection between the clock

and the external reference signal and by the frequency divider (by 4) as shown in Fig.

6.2.

6.3 Experimental Results

With the second-order bandpass TC filter [Shov92], although not optimized for a ∆Σ

modulator application, it became possible to make a prototype modulator in order to

perform some experimental tests. The noise-shaping response, intermodulation and

particularly the anti-alias filtering measurements along with the master-slave tuning

were the important parts of these experiments.

6.3.1 Signal-to-Noise Ratio (SNR)

The measured SNR is plotted against the input signal power in Fig. 6.3 for two different

loop gain (k) values. The input signal was a 50 MHz sinusoid and the clock frequency

was 200 MHz. The output digital data was supplied to a logic analyzer. The plots shown

in Fig. 6.3 were obtained by taking a 218−point Hanning windowed FFT of the ∆Σ bit
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Figure 6.3 :  Measured SNR versus input signal level for different gain values (k1 = k2-10 dB), for
BW = 200 KHz.
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stream for each input signal level. As can be seen from Fig. 6.3 the maximum SNR in a

200 KHz bandwidth is 46 dB, and occurs for input level of Pin = −17 dBm with k = k1.

By increasing the gain the same SNR was achieved at Pin = −6 dBm (for k = k2), where k2

− k1 = 10 dB.

The noise shaping spectrum obtained by taking an FFT (using a Hanning window) of the

200 MHz ∆Σ modulator output bit stream for a sinusoidal input signal of Pin = −17 dBm

with k = k1 is plotted in Fig. 6.4. It should be noted that the signal transfer function from

input to output provides 13 dB and 0 dB gain for k = k1 and k = k2 respectively, which is

not shown in Fig. 6.3 and Fig. 6.4.

6.3.2 Linearity

Analog-to-digital conversion at the IF (or RF) stage for digital radio receivers puts

linearity constraints on the bandpass A/D converter. The linearity of the ∆Σ modulator is

limited by the linearity of the filter inside the loop which in our case is a transconductor-

C filter. Fig. 6.3 shows that for higher loop gain (higher loop gain, k = k2), the second-

order ∆Σ modulator presents higher integral and differential nonlinearity. Although ∆Σ

A/D converters are considered to be highly linear A/Ds, in low order ∆Σ modulators
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Figure 6.4 :  Experimental output spectrum of the second-order modulator.
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(first-order lowpass and second-order bandpass), the noise and distortion depend on the

signal level [Can92] and also on signal frequency in the second-order bandpass ∆Σ

modulator, so causing more nonlinearity. As the SNR plot for lower loop gain (k = k1) in

Fig. 6.3 shows this non-linearity (noise dependency on signal level) was overcome

significantly by reducing the loop gain.

Another important linearity measure in A/D converters is the third-order

intermodulation product (IM3). Fig. 6.5 shows a plot of IM3 level against the input

signal level (for k = k1). Two in-band tones at equal power levels with a 50 KHz

separation were applied to the modulator and the IM3 products were obtained again by

taking a 218−point FFT of the ∆Σ bit stream. Although IM3 products for each tone at −3

dB input signal level (relative to the input overload point) are fairly high i.e. 21 dB

below the output tone levels, for tones at −5 dB relative input level the IM3 products

drop to 40 dB below the output tone level, giving 1% distortion. Fig. 6.6 shows the

performance of the ∆Σ modulator intermodulation when two input tones at a −5 dB level

(relative to overload) are supplied. For signal levels lower than −15 dB, IM3 levels are

buried in the noise floor, so no in-band intermodulation was observed. Third-order
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Figure 6.5 :  Measured output signal and IM3 level v.s. the input signal level.
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intermodulation here is bigger than what was reported in [Thu91]. The reason is

attributed to the fact that the on-chip transconductor-C resonators used here are more

non-linear than the discrete off-chip LC components used in [Thu91].

6.3.3 Anti-alias (Image) Performance

Table 6.1 lists the attenuation of the signals aliased into the in-band region (50 MHz) for

various frequencies in the first (150 MHz) and second image frequency (250 MHz)

bands. The level of aliased in-band signals at the higher and lower frequencies of images

increase which verifies that the zeros of signal frequency response are at the image

frequencies ( , n = 1, 2, 3,…) as was shown theoretically in Sec. 3.2.
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Figure 6.6 :  Intermodulation (linearity) performance of ∆Σ modulator with two in-band input tones
having −5 dB power relative to overload point.
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6.3.4 ∆Σ NTF Notch Frequency Control

As explained in Sec. 6.2 and illustrated in Fig. 6.1a, by changing the external reference

frequency it was possible to change the bandpass ∆Σ NTF notch frequency using the

master-slave tuning scheme.

Fig. 6.7 shows the experimental results of the ∆Σ NTF zeros (notches) tuned to three

different frequencies (45 MHz, 55 MHz and 65 MHz) while the clock frequency in each

case was changed accordingly i.e. fs = 4fo. The ∆Σ NTF notch frequency has been tuned

between 40 MHz and 67.5 MHz providing a practical 50% tuning range. The

transconductor-C bandpass filter is tunable over the range of 10 MHz to 100 MHz

[Shov92], however, at low frequencies its high-Q performance degrades. As shown in

Fig. 5.5 for getting the maximum achievable SNR, the typical Q required for a bandpass

∆Σ modulator is at least 50. Therefore, the low frequency limit of the ∆Σ tuning range is

due to the low Q performance of the transconductor-C filter (at frequencies lower than

40 MHz).The high frequency limit of the ∆Σ tuning range is due to the frequency

Table 6.1: The measured implicit anti-alias filter frequency

response.

fin (MHz)

aliased

frequency

 (MHz)

attenuation

 (dB)

149.6 50.4 34

149.8 50.2 39

150 50 42

150.2 49.8 39

150.4 49.6 34

249.6 49.6 39

250 50 49

250.4 50.4 45
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limitation of the off-chip phase-frequency detector used (Fig. 6.1a).

As expected a frequency mismatch was observed between the master VCO (external

reference) and the slave ∆Σ. The frequency offset between the external reference (master

VCO frequency) and the ∆Σ NTF notch frequency (slave resonance frequency) over the

entire tuning band was almost fixed at 6.5 MHz. For example, for ∆Σ center frequencies

at 45 MHz, 55 MHz and 65 MHz shown in Fig. 6.7 the corresponding external reference

frequencies were 38.5 MHz, 48.5 MHz and 58.5 MHz respectively. Although the

master-slave tuning scheme is prone to mismatch between the master and the slave

filters, this offset can be reduced significantly using careful design and layout techniques

and by placing both the master and slave filters on a single chip.

6.4 Summary

A second-order transconductor-C ∆Σ modulator prototype along with a master-slave

tuning scheme has been constructed with two separate transconductor-C filters. The

notch center frequency of the ∆Σ modulator was tuned from MHz to MHz. It

Figure 6.7 :  Experimental result for tuning of the ∆Σ modulator noise-shaping center frequency.
The three different tuned ∆Σ NTF notch frequencies are at 45 MHz, 55 MHz and 65 MHz,

respectively.

40 67.5
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was observed that since the master and slave filters were on two separate chips from

different batches the matching between the master and slave was not very good (on the

order of %). This suggested that to achieve a better matching in a master-slave tuning

scheme for a ∆Σ modulator implementation it is imperative to place both master biquad

and slave ∆Σ loop filter on the same die which as will be explained in Chapter 8 is done

for the fully monolithic fourth-order modulator. The anti-alias filtering property of a

continuous-time ∆Σ modulator proven analytically in Sec. 3.2 was verified here with

experiments.

10
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Chapter 7

Circuit Noise and Power

Considerations

In design of the continuous-time filters the dynamic range which is defined as the ratio

of the maximum input signal to the minimum input signal that the circuit can handle

linearly is a very important parameter. It can be defined more exactly by spurious-free

dynamic range (SFDR). The maximum input signal in the SFDR is the input level which

just starts to create some distortion products above the noise floor. The minimum signal

level is obtained from the input-referred noise in the band of interest. Both measures are

obtained by integrating the noise power spectral density at a certain bandwidth.

This chapter studies how the dynamic range of the transconductor-C filter used can be

improved. It shows the trade-offs which have to be considered for this purpose.

7.1 Noise Analysis for the Transconductor-amp-C Integrator

The input stage cross-coupled differential transconductor was shown in Fig. 5.28. From

simulations it was found that the devices in this stage are the major noise contributor in

the overall circuit. Actually this is true when the first stage has enough high gain. Since

it is known that:

( 7.1)

where F the noise factor of the overall circuit, is the amount of the noise that the whole

circuit adds to the input signal i.e.  and F1, F2, …, G1, G2, …

are the noise factors and gains of the first stage, second stage and so on, respectively.

Fig. 7.1a and Fig. 7.1b show a half circuit of a simple input differential transconductor

F F1 F2 1–( ) G1 F2 1–( ) F3 1–( ) G1⁄+⁄ G2 …+ +=

F Si N⁄
i

( ) So N⁄
o

( )⁄=



Chapter 7−Circuit Noise and Power Considerations 146

and its equivalent noise sources, from which the noise performance of input stage

devices can be analyzed.

7.1.1 Cascode Active Load

The noise produced by PMOS active load devices i.e. M3 and M5 is shown in Fig. 7.1. A

simple model for MOS mean square noise voltage and current is given in [Gray84] and

[Greg86]:

( 7.2)

where k is Boltzmann’s constant, T absolute temperature, gm the MOS transconductance

and  the bandwidth in which noise is measured. The  noise power spectral

density unit is (V2/Hz).

A more general model has been introduced [Nic87], [Alin92], [ANA93] which can

express more closely the noise performance of the MOS devices in the saturation region

as well as triode region:

( 7.3)

V freq

vi +

Q1

M1

i

I

I+i

Figure 7.1 :  (a) A half circuit schematic of the differential BiCMOS transconductor
shown in Fig. 5.28, (b) device equivalent noise sources are added.
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where gm is the input transconductance, gmb the body-effect transconductance and gds

the drain or output conductance. It should be noted that (7.3) may not be very accurate

for a deep triode region, however it is close enough to give a good understanding of the

excess noise in the triode-mode transconductor shown in Fig. 7.1. The NEF in (7.3) is a

factor, the so called noise excess factor, which depends on the actual realization and

transistor operating mode. For instance from (7.3) for a MOS operating in triode mode

and neglecting gmb it can easily be shown [Alin92] that:

( 7.4)

For instance, for the NMOS transistor operating in triode mode (M1 shown in Fig. 7.1),

the NEF for VGS=2.5 V, VDS=0.2 V and Vt=0.7 V is 9 i.e. 19 dB. This number is big

mainly because the gds term is a dominant factor in a MOS transistor in triode mode

which could be even bigger than the gm.

Since the PMOS active load devices shown in Fig. 7.1 are biased in the saturation

region, the gmb and gds terms are negligible compared to the gm term (both total about

20% of gm in this circuit). So, the simple formula given in (7.2) is used here. The

equivalent output noise current produced by M5 is simply given by:

( 7.5)

which passes through the M3 cascode transistor with almost unity current gain.

However, the output noise produced by M3 is attenuated significantly due to the high

drain impedance of M5. A small signal model for the PMOS cascode active load is

shown in Fig. 7.2 from which it can be shown that:

( 7.6)

For the same size M3 and M5 transistors it can be shown from (7.5) and (7.6) that

( 7.7)

which with the numerical values in this example i.e. mS and

NEF
V GS V t–
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----------------------=
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mA/V would be 24 dB. Therefore, the noise effect of M3 can be

neglected.

The noise of M5 may also be forced arbitrarily low by biasing it at a low  (using a

small  device), at the cost of signal swing.

7.1.2 Bipolar Cascode Transistor

Another major noise source in the transconductor circuit shown in Fig. 5.28 and Fig. 7.1

is the bipolar cascode transistor. Actually simulations show that they are the dominant

noise sources in this circuit. The equivalent base referred noise of Q1 shown in Fig. 7.1b

is [Gray84]:

( 7.8)

which produces an output current noise as the following

( 7.9)

From (7.5) and (7.9) given rb=92Ω, rds1=62Ω and gmQ=53mS one can show that

 which is in agreement with the simulation results.

7.1.3 Input NMOS Triode-Mode Devices

The noise expression for the input NMOS devices operating in triode mode was given in

gds5 0.334=

Figure 7.2 :  A small signal model of the PMOS devices of Fig. 7.1.
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(7.3) and (7.4) which show that

( 7.10)

It can be shown that for gm1=230 µS and NEF=9: . Unfortunately, this

is contrary to good design principles of low noise amplifier circuits in which the very

first input device should be the dominant noise source. From (7.9) and (7.10) it can be

shown that  can be lowered by increasing rds1 which for a MOS device in triode

mode is given by:

. ( 7.11)

This can be accomplished by reducing the  coefficient or/and reducing (VGS −

Vt − VDS). Reducing  decreases the gm1 value which in turn increases the input

referred noise voltage of the input NMOS devices; however, since the

coefficient is almost inversely proportional to  and so directly proportional to

, overall it would reduce the  coefficient. However, too much

reduction of the gm1 value may increase the net input referred noise voltage. This is

because of two effects: Firstly reduction of the input device transconductor directly

increases the input referred noise voltage due to the input device (7.2). Secondly it

lowers the input stage voltage gain which as a result highlights the second stage

amplifier noise as given in (7.1). This effect is shown later in Table 7.1. It should be

noted that in a high-Q bandpass filter since the out-of-band gain of the first stage

transconductor is usually very low, the input referred noise at a very wide bandwidth

(e.g. 100MHz as shown in Table 7.1) can be determined by the second stage amplifier.

But for the passband (e.g. 10MHz as shown in Table 7.1), as mentioned, the first stage

transconductor is the major source for the input referred noise.

Another factor to control the noise in this circuit is to increase the integrating capacitor

values. This happens because in order to achieve the same center passband frequency the

VDS voltage then has to be increased which results in a higher gm1 and higher rds1. This

is beneficial for lowering the  coefficient (7.10), the  absolute value (7.9)

and the noise contribution of the input device M1 (7.2) as well.
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So far the noise produced in the half circuit was analyzed. The noise in the differential

circuit is higher by a factor of 2 compared to the half circuit. Another factor of 2 is

applicable because of the cross-coupled configuration shown back in Fig. 5.28.

There is another aspect of compromise in this transconductor design which is between

excess noise and linearity. Recall from (5.23)-(5.26) that the lower  the more

linear a transconductor can be achieved where  is the thermal voltage in a bipolar

transistor (about 26 mV at room temperature). However, as shown in (5.25) lower

 or basically lower  means lower input transconductance  which as can

be noticed from (7.2) and (7.3) increases the input-referred noise of the transconductor.

Therefore, the excess noise of the transconductor from the input NMOS devices can be

reduced at the cost of linearity.

7.2 Power Minimization and CM feedback

One way to reduce the power consumption of the circuit is to lower the supply voltage.

However, in order to maintain a wide output voltage swing the number of transistors

should then be reduced between the rail supplies. The cascode PMOS active load shown

in Fig. 7.1 can hardly be afforded for a 3V or lower supply design. A simple active

PMOS load doesn’t improve the noise performance of the circuit too much since its

noise contribution, for the same size devices, is equal to that of the top PMOS device in

the cascode configuration shown in Fig. 7.1 i.e. M5. Recall from Sec. 7.1.1 that the noise

contribution of M3 in the cascode load was negligible.

A low-voltage input stage transconductor has been designed which is shown in Fig. 7.3.

The new transconductor compared to the old one shown back in Fig. 5.28 has three main

differences:

1) As mentioned it only includes a simple PMOS active load compared to a cascode

PMOS load, thus increasing swing.

2) Unlike the cross-coupled configuration in the old one it has only a simple differential

V DS V T⁄

V T

V DS V T⁄ V DS gm
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structure, improving noise by 3dB at the cost of CMRR.

3) To provide an extra common-mode feedback at the first stage transconductor four

NMOS transistors i.e. M5, M6, M7 and M8 operating in triode mode have been

added. This topology was chosen because these devices are biased similarly to the

Figure 7.3 :  A low-voltage design for the first stage transconductor.
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Figure 7.4 :  Bias circuitry for the transconductor shown in Fig. 7.3.
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input devices. The gates of these devices are biased at the output common-mode

voltage (analog ground) and their VDS are identical to that of the input devices.

Therefore, with the same size transistors as the input NMOS devices the common-

mode transistors sink the same amount of current as the input devices. This

increases the input transconductor’s power consumption. So, in this structure the

power consumption and noise, as will be shown later, are traded off for CMRR

performance.

It should be mentioned that the CM currents in transistors M5, M6, M7 and M8 shown in

Fig. 7.3 are referenced to the bias CM current  produced by Mb5 and Mb6 in the bias

circuit shown in Fig. 7.4. Recently a very similar common-mode feedback circuit for

this kind of BiCMOS triode-mode transconductors has been presented [Yang95],

[Yan95]. A version of the circuit in [Yang95], [Yan95] is shown in Fig. 7.5. The

principle of the CM feedback circuits in Fig. 7.3-Fig. 7.4 and Fig. 7.5 are the same. As

can be noticed from Fig. 7.5 the CM feedback current  (the total current of M5 and

M6) is referenced to the bias current  produced by M7.

Icm

Icmfb

I1

Figure 7.5 :  Another approach for CM feedback.
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In order to operate the whole ∆Σ loop filter at a 3V voltage supply or lower, it is required

to replace the PMOS cascode load of the second stage amplifier shown back in Fig. 5.11

with a simple PMOS load too.

7.3 Comparison of Different Designs

Table 7.1 demonstrates a comparison of the power and noise specifications of the fourth-

*. VGS in every case is set to analog ground: 2.5V and 1.5V for 5V and 3V single supplies respectively.
**. Over the given tuning range the minimum Q of 30 was guaranteed which happens at lower limit. At

lower frequencies the high Q performance of the filter is degraded.

Table 7.1: Noise and Power Comparison among Different Designs

No.
∆Σ Loop

Filter

Input

Device

Width

(µm)

Caps.

 (pF)

Extra

CMFB

M5−

M8

(W⁄L)

VDS
*

(mV)

Tuning

Range

(MHz)

**

Power

 (mw)

 Integrated Input and Output Referred Noise

Voltage (mV) at Certain BW

100MHZ 10MHZ 1MHz

I/P O/P I/P O/P I/P O/P

1 5V
Design
(cross-

coupled)

25 0.8 Non 37 10−150 114 4.8 75 2.38 74.5 0.805 60.3

2  5V
Design

1.59 0.4 41⁄0.8 271 1−110 177 4.5 45.1 1.81 45.06 0.607 37.1

3 New 3V
Design

5 2.0 41⁄0.8 269 5−55 87 1.23 10.8 0.383 10.77 0.129 8.59

4 New 3V
Design

2.5 2.0 20⁄0.8 588 5-27 73 1.30 10.0 0.421 10.00 0.140 8.04

5 New 3V
Design

10 2.0 41⁄0.8 150 3-35 75 1.27 10.5 0.370 10.53 0.124 8.60

6 New 3V
Design

15 2.0 50⁄0.8 110 2.5-38 78 1.41 13.0 0.443 12.98 0.148 10.5

7 New 3V
Design

5 3.2 41⁄0.8 407 3−36 98 0.93 7.06 0.278 7.047 0.093 5.32

8 New 3V
Design

5 3.2 20⁄0.8 407 2−28 77 0.95 5.55 0.227 5.533 0.075 4.08

9 New 3V
Design

10 3.2 41⁄0.8 220 3-27 88 0.94 7.14 0.241 7.129 0.080 5.78
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order ∆Σ bandpass loop filters among several designs whose center frequencies are

tuned at 25MHz and their Q at 25.

A summary of the filter specifications is as follows:

① The first row describes a 5V cross-coupled active cascode-load design shown

back in Fig. 5.28. As shown by the figures in Table 7.1 unfortunately this

design is neither optimized for noise nor for power. However, since the input

NMOS devices are strongly biased in the linear mode (with a low VDS=37

mV) a very wideband tuning range of the center frequency can be achieved

by a small change of the frequency control voltage (and so VDS) represented

by Vfreq in Fig. 7.1a. As shown in Table 7.1 a tuning range greater than a

decade can be achieved (10MHz−150MHz). Besides, since the NMOS input

devices are fairly large it provides a better transconductor matching compared

to the other designs given in Table 7.1. This would result in a more accurate

realization of the filter’s poles and zeros and so a better ∆Σ loop transfer

function implementation. This design also lacks a proper common-mode

feedback.

②  In the second design the minimum size input transistors have been chosen.

The input stage transconductor is similar to that shown in Fig. 7.3 except that

the cascode PMOS active load is used here. Recall from Sec. 7.1.2 and Sec.

7.1.3 that the smaller input transconductance gm1 tends to reduce the

equivalent noise of the cascode bipolar transistor Q1 which was the dominant

part in the first example. Simulations showed that the equivalent output noise

of the cascode bipolar transistor Q1 was reduced by a factor of 3 in a 100MHz

bandwidth. The overall noise of this design is a bit better than that of the first

one as shown in Table 7.1, however, the power consumption is bigger despite
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the smaller input transistors. This is because of the large extra common-mode

feedback transistors (41⁄ 0.8) added here.

③  The design no. 3 and the rest given in Table 7.1 are based on the schematic

shown in Fig. 7.3. Another basic difference between previous designs (no. 1

and no. 2) and the new designs is that in the previous designs dummy

transistors biased at analog ground were placed in parallel with the input

devices to make a very close matching between the two resonators in the

fourth-order ∆Σ loop filter shown back in Fig. 5.26. Again this costs more

power consumption which can be noticed from the higher power dissipation

of the no. 2 example compared to the no. 3.

The input transistor size, integrating capacitor value and the extra common-

mode transistors’ sizes have been examined in these examples in order to find

an optimum case for the filter’s noise and power consumption. As can be

found from Table 7.1, the input referred noise and so the dynamic range (DR)

of the filter1 in a 10MHz bandwidth (from 20MHz to 30MHz) is improved in

example no. 3 by 16dB compared to that in the example no. 1. In the

meantime the power consumption is improved by a factor of 0.76.

④  Lower size input devices i.e. W=2.5µm here, as mentioned in Sec. 7.1.3, don’t

reduce the circuit noise even with smaller extra common-mode transistors.

⑤  Larger input devices compared to the no. 3 example i.e. W=10µm as shown in

Table 7.1 don’t influence the filter’s noise performance very much. On one

1. Recall that every filter in Table 7.1 is tuned at 25MHz center frequency with a Q=25.
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hand larger input devices tend to keep the input referred noise lower. On the

other hand, as shown by (7.9) and explained in Sec. 7.1.2, larger input NMOS

devices results in some smaller output impedance in the input devices, rds1,

and so larger output current noise from the cascode bipolar transistors. As a

result the overall noise performance of this example is similar to that of the

no. 3 one while consuming less power and giving better matching due to the

larger input devices.

⑥  From larger input devices (compared to example 5) i.e. W=15µm as shown in

Table 7.1 deteriorates the filter’s noise performance. This is because the noise

terms produced by the cascode bipolar devices dominate when the output

impedance of the large input devices, rds1, is reduced significantly.

⑦ ,⑧ The no. 7 and no. 8 examples show how the integrating capacitor would

affect the circuit noise. As can be noticed from Table 7.1 higher integrating

capacitors (compared to the no. 3 example) require higher VDS voltage to

produce the same center frequency (25MHz here). This as mentioned in Sec.

7.1.2 reduces the bipolar noise a lot. The trade off here is as the following:

at some high VDS voltage the input NMOS devices move to the saturation

region which then limits the upper frequency tuning range of the filter. So,

considering the fabrication tolerance, operating center frequency and the

noise budget the VDS voltage and consequently the integrating capacitors can

be chosen. By comparison of the no. 8 and no. 3 examples it can be observed

that a larger capacitor (by a factor of 3.2 ⁄ 2.0) in conjunction with a smaller

CM transistor sizes reduces the input referred noise in a 10MHz bandwidth
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by 4.5dB.

In conclusion from the comparison of the no. 8 and no. 1 examples one can

see that the input referred noise and so the DR in the new design is improved

by 20dB (in a 10MHz bandwidth) at a cost of a factor of 5 in maximum

operating frequency.

One other important feature of a continuous-time ∆Σ loop filter design is its common-

mode feedback performance which unfortunately requires a compromise with the filter’s

noise performance and its tuning range. The noise degradation due to a stronger

common-mode feedback circuit can be readily noticed from Table 7.1. Higher common-

mode feedback results in higher thermal noise. In the meantime, the relationship

between the first stage CMFB, maximum allowable frequency control voltage  to

maintain devices in linear operation and/or the frequency tuning range of the loop filters

given in Table 7.1 can be explained as follows:

The upper frequency limit of the designs given in Table 7.1 are obtained very

conservatively. The highest possible Vfreq voltage associated with a maximum tunable

frequency given in Table 7.1 is that which still results in an almost constant output CM

voltage (analog ground) over the entire power supply DC swing of the input CM voltage

(from negative to positive supply voltage) and more importantly the bipolar transistors

Q1 and Q2 in Fig. 7.3 are still in active region. This can be described with numerical

values for the transconductor shown in Fig. 7.3 and parameters given in the seventh row

of Table 7.1. With VGS of the input NMOS devices M1 and M2 sitting at analog ground

V and ,  satisfies that the input devices are still in the triode-

mode region. This sets the maximum voltage for  and so

the maximum frequency, MHz to which the center frequency of the filter can be

tuned linearly. Increasing  shouldn’t ideally change the center frequency any more

since in saturation transconductances  of the input NMOS devices are not a function

of . However, a very slight frequency increment to MHz was obtained by

increasing  to 2V. It should be noted that since we don’t want that the bipolar

transistors to operate in saturation mode, considering a minimum V for , then

V f req

1.5 V on 0.75= V DS 0.75≥

V f V DS max( ) V BE 1.65≈+=

36.2

V f

gm

V DS 38

V f

0.5 VCE
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the maximum allowable  is V at which the filter’s center frequency is at

MHz. It should be noted that the maximum frequencies reported in Table 7.1 are

those due to the maximum  voltages at which devices still are operating in triode

mode region.

It should also be noted that it is desirable to keep the filter’s output CM voltage constant

over the entire linear mode operation of the input NMOS devices too (simulations

verified that this can simply be achieved if the output CM voltage stays at its nominal

value i.e. analog ground for the high end of the devices’ linear mode operation i.e. at the

maximum VDS in which the input devices are still in linear mode operation). This

guarantees that the full linear range of the transconductance tuning (therefore the center

frequency) versus VDS has been used:

( 7.1)

without disruption of the CMFB operation. From Table 7.1 only the no. ② , ③ , ④  and ⑦

examples satisfy the preceding characteristic meaning that CMFB is strong enough over

the entire linear mode operation of the input devices. It should be noted that the

preceding characteristic is desirable for a very wide frequency tuning range. In a

practical application it is only required to compensate nonidealities from a real

implementation such as fabrication tolerance, temperature drift and so on which differ

among different technologies but are normally not larger than 50%. So, in order to

preserve the noise and power performance of a continuous-time filter one may limit the

filter’s frequency tuning range as much as possible. For instance, the no. ⑧  and no. ③

examples in Table 7.1 can be compared for this purpose.

The MSA (maximum signal amplitude), the input dynamic range, i.e.

 where Nt is the input referred thermal noise voltage

integrated over a 1MHz bandwidth centered at 25MHz for this example and Nq the in-

band quantization noise obtained from the transient simulation neglecting the device

thermal noise sources. The simulated SNR of the modulators employing some of the

loop filters given back in Table 7.1, neglecting the device thermal noise sources, for a

1MHz bandwidth are shown in Table 7.2. It should be noted that the loop center

frequency is again at 25MHz. The input and output referred noise figures given in Table

7.2 are obtained from the filters set to their maximum Q as expected for a normal

V f 1.85

37.6

V DS

gm1 µnCox

W

L
-----V DS=

20 MSA Nt Nq+( )⁄[ ]log
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bandpass ∆Σ modulator loop filter.

As shown in Table 7.2 the quantization noise and the MSA (so the signal-to-quantization

noise) in different designs are very close. However, the input referred thermal noise

voltage has improved substantially from the first design. This in turn has improved the

dynamic range of the modulator by 13.9dB from the first design to the last one (for a

1MHz bandwidth) as can be observed from Table 7.2. It should be noted that in a design

with a good noise figure for a low bandwidth (high OSR) (assuming that the noise

shaping notch Q is high enough) the thermal noise and quantization noise are in the

same order; however, for a high bandwidth (low OSR) the quantization noise becomes

the dominant factor. By contrast in a design with a bad noise figure for a low bandwidth

the thermal noise is much bigger than the quantization noise and for a high bandwidth

usually the thermal and quantization noise are comparable. This can be readily verified

for a low bandwidth (BW=1MHz) from the first and last rows in Table 7.2. For a larger

*. Quantization noise integrated at 1MHz bandwidth.
**. This is the simulated S ⁄ Nq of the ∆Σ modulator (at 1MHz BW) employing the corresponding loop
filter.
***. Dynamic range is defined by 20log10(MSA/Noise) where noise is the integrated input-referred

noise at a certain bandwidth (1MHz here) when Q is set the maximum.

Table 7.2: MSA, DR and SNR of the ∆Σ modulators with some of the loop

filters given in Table 7.1.

No.

from

Table

 7.1

∆Σ Loop

Filter

Input

Device

Width

(µm)

Caps.

 (pF)

Extra

CMFB

M5−

M8

(W⁄L)

VDS

(mV)

Power

(mW)

Integrated

Input and

Output

Referred

Noise

Nq
*

(mV)

MSA

(mV)

**

 (dB)

DR***

 (dB)

1 5V
Design
(cross-

coupled)

25 0.8 Non 37 114 0.935 0.110 75 63 38.1

3 New 3V
Design

5 2.0 41⁄0.8 269 87 0.149 0.075 87 61 50.5

7 New 3V
Design

5 3.2 41⁄0.8 407 98 0.109 0.070 62 59 50.8

8 New 3V
Design

5 3.2 20⁄0.8 407 77 0.089 0.070 62 59 52.0

S N⁄
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bandwidth (BW=5MHz) the quantization noise in the last row example in Table 7.2 is

2.5mV but its input referred thermal noise is only 0.195mV which result in a 27dB DR.

However, these numbers in 5MHz bandwidth for the first example of Table 7.2 are

3.9mV, 2.0mV and 15dB respectively which shows a comparable thermal noise

compared to the quantization noise.

7.4 Regular Transconductor-C Design

By removing every amplifier (opamp) stage followed by the transconductor-amp-C

sections shown back in Fig. 5.26 a regular transconductor-C (TC) design can be

implemented which would be a multi-input version of the loop filter shown back in Fig.

5.4. The obtained TC filter shown in Fig. 7.6 should ideally behave the same way as the

original TC-amp loop filter. The only difference between the architectures shown in Fig.

7.6 and the TC-amp one back in Fig. 5.26 is in the sign of their integrators. It can easily

be verified that the new TC integrators have a negative sign whereas the original TC-

amp integrators have a positive sign. This influences the numerator polynomial given in

(5.5). However, this can easily be resolved by changing the sign of gmb2 and gmb0

transconductors. The NMOS transistors which are placed in series with the integrating

capacitors work in triode mode acting as variable resistors. By controlling the Vph one

can simply tune the phase of the integrators and hence the Q of the loop filter. Of course,

this structure implemented by regular transconductors is more sensitive to parasitic

Figure 7.6 :  The regular TC version of the loop filter shown in Fig. 5.26.
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components than the TC-amp structure. Besides, it is more sensitive to the loading

effects such as the comparator’s input impedance than the TC-amp loop filter. So, using

a buffer stage preceding the comparator or an adaptive tuning scheme may be necessary.

7.5 Summary

A thermal noise analysis for the implemented triode-mode BiCMOS transconductor was

presented. It was found that the cross-coupled transconductor-C filter explained in

Chapter 5 with the first stage transconductor building block shown in Fig. 5.28 is not

optimized in terms of the input-referred noise. Nevertheless, its tunablity and speed was

twice as high as those of the other low noise circuits introduced in the chapter. In the

new low-noise low-voltage (3V) designs an individual common-mode feedback was

placed for the first stage transconductors. Therefore, the new low-noise 3V-supply

transconductor-C circuits didn’t enjoy a significant power consumption reduction

compared to the previous cross-coupled transconductor. But the power consumption of

the new designs were still slightly lower than that in the previous one. In conclusion it

was shown that in the studied triode-mode transconductor-C ∆Σ modulator speed,

tunablity and linearity should be compromised for a higher dynamic range and lower

input-referred noise.
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Chapter 8

Testing Results of the

Monolithic Modulators and

Filters with Future Suggestions

Two chips have been implemented in an NT BiCMOS technology in two different

fabrication runs. The first parts, called ZA09, included a fourth-order continuous-time

transconductor-C modulator with a second-order (biquad) filter on the same chip. The

one-delay fourth-order chip with a schematic shown back in Fig. 5.26 composed of a

fourth-order transconductor-C filter (as explained in Chapter 5) to implement the

transfer function given in (3.23). The biquad filter with the structure shown back in Fig.

5.8 and shown again here in Fig. 8.1 was actually a replica of the fourth-order modulator

loop filter’s biquads shown back in Fig. 5.26. It was implemented for the master-slave

tuning scheme explained in Sec. 6.2. The second parts, called ZA14, basically realized

the same fourth-order continuous-time modulator implemented in ZA09 except with

some slight layout differences to improve the matching in some devices.

Extensive measurements have been done on the preceding chips. In this chapter the

measurement results will be given. Finally the chapter will be concluded with some

explanations and suggestions to improve the performance of continuous-time

transconductor-C ∆Σ modulators for future implementations.

8.1 ZA09 Results

In this section first the measurement results from the biquad filters and then those of the

∆Σ modulators from ZA09 will be given. The following is the performance achieved in a

ZA09 chip.
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8.1.1 Layout Plot

Fig. 8.2 shows a layout plot of the fourth-order modulator and the biquad bandpass filter.

The active area of the fourth-order ∆Σ modulator and biquad filter is approximately

 (  active area). The master bias cell may be

recognized at the upper left corner of the plot. The four op-amps of the fourth-order

modulator and the two op-amps of the biquad filter are the six distinct squares

surrounding the main analog section of the chip including the transconductors and the

poly-poly capacitors. Integrating poly-poly capacitors appear in the middle of the analog

section. The CMOS ∆Σ loop transconductors and those of the biquad filter are inter-

digitated transistors placed at upper and lower sides of the capacitors. The stand-alone

bipolar pseudo ECL parts including comparator, D-flip flop, DAC and the  chain

bipolar buffer can be recognized on the right most side of the plot. The  chain

bipolar buffer is a three-stage emitter-follower configuration in series with sizes of 1x,

4x and x respectively which can handle enough current for a  output load like a

spectrum analyzer. There is another  chain bipolar buffer for the biquad filter which

appears at the upper right of the plot.

Figure 8.1 :  A simplified second-order TC-amp based biquad loop
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The ∆Σ modulator and biquad filter dissipate power approximately proportional to the

center frequencies. For example, the modulator’s power consumptions at MHz and

MHz are mW and mW respectively.

8.1.2 Biquad Filter Results

The center frequency of the bandpass filter has been varied by the control voltage

represented with Vfreq in Fig. 8.1. A wide range of frequency tuning from 25MHz to

110MHz has been achieved. Fig. 8.3 shows a plot of the filter’s frequency response

operating at three different center frequencies i.e. MHz, MHz and MHz. The

Q of the filter was adjusted by the control voltage Vph (Fig. 8.1) almost without changing

its center frequency as expected. Fig. 8.4 shows a plot of the filter Q adjustment with

fo= MHz. The other experimental results including the intermodulation linearity

performance and the filter’s dynamic range are summarized in Table 8.1. All of the

figures in Table 8.1 (unless mentioned) have been obtained from the measurements of

Table 8.1: Experimental Results Obtained From The Filter at Q=3

and 50MHz

Parameters Measured Values

Frequency Tuning Range 25MHz-110MHz

IM3, 71mVrms (-10dBm) at 50MHz center frequency −52dBc

IM3, 71mVrms (-10dBm) at 70MHz center frequency −47dBc

 Input Referred IIP3 (Intermodulation Intercept Point) 11dBm

SFDR (Spurious Free Dynamic Range) in 200KHz band-
width (at 50MHz)

41dB

SNR @ 1% TIMD (Total Intermodulation Distortion) in
200KHz (at 50MHz)

48dB

Peak Output Passband Noise Density (at 50MHz) −112dBm/Hz

1dB Compression Input Level 180mVrms (−1.9dBm)

Power Dissipation (at 50MHz) 90mW

Active Area 0.35mm2

50

25 218 114

30 70 110

50
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the filter with Q of 3 and MHz.f o 50=

Figure 8.3 :  The center frequency of the bandpass filter is tuned at three different frequencies: 30MHz,
70MHz and 100MHz.

Figure 8.4 :  Three different Q adjustments for the bandpass filter centered at 50.5MHz: Q=8, Q=18,
Q=170.
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A short explanation of the measurements and parameters given in Table 8.1 are as

follows:

− The IM3 figures given in Table 8.1 show the third order intermodulation product levels

respect to the total input power in the two-tone measurement at the given frequencies

(the tones are KHz apart closely spaced from the filter’s center frequency):

IM3 = either tone power + 3dB − third order intermodulation product power.

Of course, as expected the level of both input tones should be identical. The figures

given in the second and third rows of Table 8.1 are for dBm ( mVrms) total input

signal level; the level of each input tone was at dBm. The Fig. 8.5 shows the third-

order intermodulation spurious-free spectrum for input tones each at dBm or

dBm ( mVrms) total input level. It should be noted that the gain at dBm input

signal level was about dB so, giving a dBm output signal for each tone as shown

in Fig. 8.5.

− The Input referred third-order intermodulation intercept point IIP3 given in the fourth

row in Table 8.1 was obtained from a two-tone measurement with each input tone at

dBm giving the fundamental output level at dBm ( dB gain) and the third-

order intermodulation level at dBm:

IIP3 = + input signal level, where ∆ is the difference between the output

fundamental level and the third-order intermodulation level.

− SFDR or spurious free dynamic range in Table 8.1 was obtained from the two-tone

experiment shown in Fig. 8.5 in which the third-order intermodulation products are at

noise floor (for the spectrum analyzer resolution bandwidth at 1KHz):

SFDR = each output tone power + 3dB − integrated output noise over the band

of interest

It should be noted that the noise power density as shown in Table 8.1 was

.
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− Another interesting parameter shown in Table 8.1 is the SNR at 1% total

intermodulation distortion (1% TIMD). The measurement is similar to the two-tone

SFDR measurement except that the inputs are increased to a level that the third-order

intermodulation products become dB lower than the fundamental signal power.

8.1.3 ∆Σ Modulator Results

A noise-shaping response of the ZA09 fourth-order ∆Σ modulator was achieved at a

MHz center frequency with MHz clock rate. A spectrum of the bandpass noise

shaping at MHz is shown in Fig. 8.6. Fig. 8.7 shows the in-band spectrum of the same

noise-shaping shown in Fig. 8.6. From Fig. 8.7 it can be noticed that the notch is not as

deep as expected from the full circuit simulations like the one shown in Fig. 5.31. A

discussion is given in Sec. 8.3 to explain the problems associated with ZA09 and ZA14

chips. However, one of the most important reasons why the notch shown in Fig. 8.7 is

not very deep is the low Q performance of the loop filter at 25MHz. The maximum

achievable Q at 25MHz in ZA09 part was about 4 which is not a desirable figure at all.

40–

Figure 8.5 :  Two-tone intermodulation spurious-free output level.

25 100

25
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Recall from Sec. 5.3 that the minimum recommended Q was 30.

The measured SNR in a 2MHz, 1MHz and KHz bandwidths were dB, dB

and dB respectively. This is a 3dB/octave improvement with oversampling,

characteristic of a flat noise floor. From Fig. 8.6 two out-of-band peaks at MHz and

MHz can be noticed. This could be a sign showing that the modulator’s noise transfer

function poles are near unit circle which for example could have been caused by extra

loop delay. However, in Sec. 8.3.2 it will be shown that at 100MHz the actual extra loop

delay should not be a big problem. Therefore, those peaks may have been caused by

other sources. For example, the low-Q performance of the loop filter at 25MHz can

result in a tonal behavior. Recall that this was verified from the simulations of finite-Q

ideal transconductor-C filters in Sec. 5.3. Another source of problem could be lack of

individual common-mode feedback in the first-stage transconductors which could cause

a big non-linearity. Sec. 8.3 explains in more detail some possible reasons for this

problem and why the modulators didn’t work at higher frequencies.

200 25 28.5

34.5

19

31
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Figure 8.6 :  A bandpass noise-shaping spectrum of the fourth-order ZA09 chip at 25MHz.

Figure 8.7 :  In-band spectrum of the fourth-order ZA09 chip at 25MHz.
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8.2 ZA14 Results

The same kind of measurements explained in Sec. 8.1 have been performed on the ZA14

parts which are as follows.

8.2.1 Biquad Filter Results

The same filter measurements explained in Sec. 8.1.2 were performed for the biquad

filters in ZA14 parts.  Table 8.1 summarizes a typical measurement results obtained from

the ZA14 biquad filters.

8.2.2 ∆Σ Modulator Results

Unfortunately the noise-shaping obtained from ZA14 modulators didn’t give the high

frequency and high SNR performances achieved in simulations.

Table 8.2: Experimental Results Obtained From The Filter at Q=3

and 50MHz

Parameters Measured Values

Frequency Tuning Range 8MHz-80MHz

IM3, 71mVrms at 50MHz center frequency −47dBc

IM3, 71mVrms at 70MHz center frequency −43dBc

 Input Referred IIP3 (Intermodulation Intercept Point) 10.5dBm

SFDR (Spurious Free Dynamic Range) in 200KHz band-
width (at 50MHz)

40dB

SNR @ 1% TIMD (Total Intermodulation Distortion) in
200KHz (at 50MHz)

47dB

Peak Output Passband Noise Density (at 50MHz) −112dBm/Hz

1dB Compression Input Level 180mVrms (−1.9dBm)

Power Dissipation (at 50MHz) 90mW

Active Area 0.35mm2
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Bandpass noise-shaping was obtained from the fourth-order chip for frequencies lower

than 10MHz i.e. 8MHz-10MHz (note that the lower frequency limit of the filters was

8MHz as given in Table 8.1). Fig. 8.8 shows a noise-shaping spectrum of a fourth-order

ZA14 chip at MHz center frequency with MHz clock rate. The SNR for 4MHz,

1MHz and KHz bandwidths were dB, dB and dB respectively. As can be

noticed the SNR is only increased by 3dB from 4MHz bandwidth to 200KHz bandwidth.

This is because of the unwanted sideband noises produced around the output signal tone

which can be more clearly observed from Fig. 8.9. Again it should be mentioned that the

Q of the filter at 10MHz was 2.5 even lower than the ZA14 part at 25MHz. Therefore, it

can not be expected that a very good notch depth will be achieved.

10 40

200 21 23 24
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Figure 8.8 :  A bandpass noise-shaping spectrum of the fourth-order ZA14 chip at 10MHz.
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Figure 8.9 :   In-band region of the spectrum shown in Fig. 8.8.
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8.3 Problems in ZA09 and ZA14 Parts

This section summarizes an extensive investigation done on the problems observed in

the implemented chips. At the same time suggestions and conclusions have been

inferred for the transconductor-C ∆Σ implementations in the future.

8.3.1 Low-Q at Working Speed

In Sec. 8.1.3 and Sec. 8.2.2 it was mentioned that the Q of the loop filters at 25MHz

(ZA09) and 10MHz (ZA09) were 4 and 2.5 respectively. This low Q, of course, can not

provide a deep noise-shaping spectrum. Besides from the simulations given in Sec. 5.3

the SNR loss would be significant. Furthermore, the tonal behavior in the ∆Σ spectrum

becomes inevitable as can be observed from Fig. 8.6 and Fig. 8.8. This was verified by

simulations in Sec. 5.3 too. Much higher Q was achieved at higher frequencies, for

example, Fig. 8.4 shows a biquad filter in ZA09 with Q of  at 50MHz. Basically in

both parts it was noticed that higher Q could be obtained at higher frequencies. However,

as will be explained in the following sections because of some other difficulties such as

the loop propagation delay times, common-mode feedback problem, etc. the ∆Σ parts

couldn’t operate at frequencies higher than 25MHz.

8.3.2 High Loop Propagation Delay Time

In Sec. 5.5.2.3 it was explained that the overall loop delay including that of comparator,

D-flip flop and DAC was about 800ps. There are some other delays due to the parasitic

elements of the metal interconnections too. In the layouts of ZA09 and ZA14 there are

two main sources of delays in interconnects. An extra delay comes from the

interconnects between the output of DAC and the loop filter connections, the metal

length between DAC and the loop filter is 1200µ (1000 square) with about a

distributed resistor which produces a ps delay for charging the filter’s input capacitive

load. It should be mentioned that the total single-ended input capacitance of the loop

filter was about pF. Another source of extra loop delay is the metal interconnections

within the loop filter i.e. connections between op-amps and transconductors. The

170
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interconnections inside the loop filter can be modeled with three simple RC circuit in

series as shown in Fig. 8.10 where R, the metal resistance, is about  and C, the

input capacitances of the transconductors inside the resonator loops, is about pF. The

propagation delay time due to this interconnection parasitic elements is about ps.

Therefore in total the extra loop delay of this chip can increase to 1ns from the 800ps

observed in full circuit simulations.

In Sec. 3.1.6 it was shown that a fourth-order multiple-pole modulator became unstable

for approximately a % extra loop delay. However, a modulator on the verge of

instability or even with the loop poles close to the unit circle as shown in Fig. 3.17 can

not be considered as a reliable modulator. A robust proof is not presented to set a safe

upper extra loop delay limit for a ∆Σ modulator here. However, for each modulator

extensive simulations should be performed which along with the modulator’s pole-zero

map on the z-plane provide a good understanding of the modulator’s behavior with extra

loop delays. Besides, it should be noted that, as explained in Sec. 2.3.3, due to the

comparator’s step nonlinearity the loop gain is not a simple linear constant. So, even

with no extra loop delay the ∆Σ loop poles as shown back in Fig. 2.9 and Fig. 2.10 are

not quite fixed and move on a certain trajectory in normal ∆Σ operation. This means that

in practice extra caution should be taken for setting an upper limit for the extra loop

delay. Moreover, even neglecting the essence of nonlinear operation of a ∆Σ modulator,

one should notice that the SNR deteriorates with extra loop delay as presented in Fig.

3.18. For example, from Fig. 3.18 it can be noticed that at % extra loop delay the SNR

loss (for OSR = 50) is about 6dB. This reduces the usefulness of the modulator for a

given order in presence of extra loop delay.

With the preceding observations and the results given in Sec. 3.1.5 and Sec. 3.1.6 the

author believes that, for example, in a multiple-pole fourth-order modulator with the

100Ω

0.3
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Figure 8.10 :  A simple lumped RC model for interconnect parasitic elements inside the loop filter.
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pole-zero map and SNR loss plot shown back in Fig. 3.17 and Fig. 3.18 respectively, the

maximum tolerable extra loop delay is perhaps not higher than %. For instance, at a

MHz center frequency with a MHz clock rate the maximum allowable extra loop

delay is ps. In other words, with the mentioned total 1ns propagation delay time in

the practical circuit including comparator, D-flip flop, DAC and interconnection

parasitic elements the maximum clock speed is MHz. This is the maximum clock

rate achieved in ZA09. Considering a % extra loop delay as a maximum limit might

be argued to be a bit conservative since firstly in Sec. 3.1.6 it was shown that the fourth-

order bandpass modulator was stable up to a % extra loop delay, secondly in Sec.

5.5.3 it was shown that the full circuit simulation showed good results at 200MHz clock

rate even with ps propagation delay time i.e. 16% extra loop delay. The answer is

that the % extra loop delay for the multiple-pole fourth-order modulator was

suggested for a good reliability, besides a 10% extra loop delay doesn’t degenerate the

modulator’s SNR too much (5dB loss as shown in Fig. 3.18). Regarding the reliability in

a ∆Σ modulator it is discussed [Risb94] that in some high-order modulators or a

modulator with a chaotic behavior the unstable characteristic of the modulator may be

discovered only with very long simulations. It is known that an ideal fourth-order

bandpass modulator is behaving like its second-order lowpass counterpart which is

proved to be reliable. However, with extra loop delays which cause the modulator’s

poles to move near the unit circle and even may increase the order of noise transfer

function as was shown in Fig. 3.17 and (3.51), the reliability of the modulator can be

questioned.

Apart from the 10% extra loop delay suggestion, the question for ZA09 and ZA14 parts

still remains why the modulators didn’t work at higher clock rates than 100MHz. This

might be related to the common-mode problem in the first stage transconductors too

which is explained in the next section.

8.3.3 Common-Mode Problem in the First Stage Transconductors

In Sec. 5.4.2 it was mentioned that no individual common-mode feedback was

implemented for the first stage transconductors. A strong common-mode feedback

shown back in Fig. 5.11 keeps the output voltage of the op-amps and therefore the input
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voltage of the transconductors fixed at analog ground. However, the inter-stage (the

transconductors’ outputs or the op-amps’ inputs) common-mode voltages are defined by

the output impedance of the transconductor which can vary for example by fabrication

tolerances and mismatching between load and bias (or current mirror) devices. Besides,

the transconductors’ output common-mode voltages are disturbed by any glitch in the

feedback high-speed DAC pulses supplied to the transconductors’ inputs which in turn

may change the transconductors’ output common-mode voltages when no common-

mode feedback exists for the transconductors. This could force the input bipolar devices

of the second stage amplifiers shown back in Fig. 5.11 into saturation if the inter-stage

voltages raise from a certain level, for example V with a 1Vp-p output voltage swing

assumption for the second stage amplifier. It should be noted that the output common-

mode voltage of the first stage circuit in ZA09 and ZA14 parts (without introducing any

mismatching condition) was biased at V.

In order to investigate the effect of the common-mode inter-stage voltage drifts the width

(W) of the main output PMOS active load devices have been increased compared to

those of the current mirror devices. This is just a way to simplify the simulation of the

common-mode voltage drift which in practice can originate from many other sources

associated with fabrication tolerances and any device parameter mismatching such as

threshold voltage  and drain-source saturation current . For the 5V cross-coupled

design with the parameters given in the first row in Table 7.2 and the schematic shown in

Fig. 8.11, for example, the widths of M3-M6 have been increased compared to those of

M13-M15. The ∆Σ simulations showed that the maximum tolerable mismatch between

the active load and the current mirror PMOS device sizes to keep the modulator stable at

the maximum input level (MSA) and still produce a good noise-shaping is only %. It

should be mentioned that with the 0.1% mismatching the SNR loss for the 5V cross-

coupled design, for instance at a 1MHz bandwidth with a 200MHz clock was 6dB. With

% width mismatching the noise-shaping performance deteriorates significantly and

many undesired tones appear inside the band. Simulation showed that with the

mentioned % mismatch the transconductor’s output CM voltages rise almost by

 from V and V to V and V in the first and the second biquads

respectively. As mentioned this biases the second stage amplifiers into saturation region
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V T Ids
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and so produces a large amount of distortion. Recall from Sec. 5.4.5 that since a second

stage amplifier has a very high gain dB the inter-stage differential signal swing is

in order of mV. So, a distortion in the first stage transconductor could only come

form a common-mode voltage drift and not a large differential swing. Fig. 8.12 shows

the poor noise-shaping spectrum of the simulated modulator with a % width

mismatching in the PMOS devices.

The same simulations have been performed to test the inter-stage CM voltage drifts in

the 3V design presented in Sec. 7.2 with the transconductor schematic shown in Fig. 7.3

and the parameters given in the third row of Table 7.2. Recall that the NMOS transistors

M5-M8 shown in Fig. 7.3 are the common-mode feedback devices for the first stage

transconductor. It was observed that even with % mismatching between PMOS bias

and active load devices the modulator was still stable. Of course, since with a mismatch

the Q of the loop filter may be slightly reduced the noise-shaping spectra can be slightly

degraded too. For example, with % mismatching the SNR at 1MHz bandwidth was

about dB lower (from dB as given in the third row of Table 7.2 to dB).

However, this can be resolved with tuning of the Q. Fig. 8.13 shows the simulated

spectrum of the new modulator with % mismatching between PMOS bias and active

load devices. As can be noticed from Fig. 8.13 the noise-shaping spectra for %
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Figure 8.11 :  Simulating a CM voltage drift by changing of load device widths.
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mismatching is still very satisfactory. The SNR for 1MHz bandwidth has just dropped by

dB (from dB to dB).1.5 59 57.5

Figure 8.12 :  The simulated spectrum of the ZA09 / ZA14 fourth-order modulators with 0.2%
mismatching between PMOS current mirror and active load devices.
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Figure 8.13 :  The simulated spectrum of the new 3V fourth-order modulator with 5% mismatching
between PMOS bias and active load devices.
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8.4 Clock Jitter Effects

For conventional analog-to-digital converters usually the peak timing error  is limited

by  or

( 7.1)

where N is the ADC resolution and T is the clock rate. It should be noted that (7.1) is

derived for a Nyquist-rate converter. It can be easily shown that for an oversampling ∆Σ

modulator the permitted peak timing error can be increased by the ratio of the sampling

rate to twice the maximum input signal frequency . For example, for a bandpass ∆Σ

modulator with  (clocking four times faster than the input frequency) one can

find that roughly a maximum 3ps clock jitter can be allowed for a MHz clock rate in

order to achieve a 10 bit converter. This is believed to be very conservative and

restrictive for oversampling switched-C converters [Snel]. In this section the effect of the

clock jitter on a continuous-time modulator is studied.

In Sec. 3.1.5 the effects of the extra loop delay on a continuous-time modulator were

analytically studied and demonstrated by simulation as well. From that discussion it can

be generally deduced that any change in a feedback DAC pulse waveform including

straight delay, a trapezoidal waveform as opposed to the rectangular (which comes from

finite rise and fall transition times), glitches due to high speed effects, and finally a clock

timing error (jitter) would change the overall loop impulse response and therefore the

modulator’s noise-shaping spectrum. Unlike a continuous-time modulator, in a

switched-C modulator the clock jitter only produces errors in the sampling moments of

the input signal. This is because the feedback signal only depends on the final settled

voltage of the op-amps and not on the feedback pulse waveforms during the entire clock

cycle. So, a small clock jitter doesn’t change the final settled voltage of the op-amps

associated with the feedback values.

For the implemented ZA09 / ZA14 fourth-order transconductor-C modulators many

simulations have been performed to study clock jitter effects. Clock sources with

random Gaussian distribution jitters and assigned standard deviations σ have been

generated in MATLAB and then have been used for ELDO [ANA93] simulations. Of
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course, for a clock with a random Gaussian jitter the peak timing error can not exactly be

defined but from the jitter standard deviation one can figure out the probability of

occurrence of a certain peak timing error (jitter). For example, for a random Gaussian

clock with a 1ps standard deviation jitter the probability that the peak jitter be less than

3ps and ps are  and % respectively. In the meantime, in order to relate

the clock jitter in the time domain with the phase noise in the frequency domain a single

tone signal is supplied to an ideal sample-and-hold and a FFT of the output signal has

been taken. Fig. 8.14 shows the spectrum of a sample-and-held sinusoidal signal when

the input sinusoid is sampled with a random Gaussian clock having 1ps standard

deviation. The result was obtained by taking a  point FFT of the output waveform.

The input sinusoidal frequency was MHz and the clock rate MHz. The phase

noise of the output spectrum shown in Fig. 8.14 at KHz offset frequency from the

50MHz carrier is about dBc/Hz which has been calculated as following:

Phase noise = Noise power level @ 200KHz offset relative to the signal level −

10log(FFT resolution bin bandwidth) ( 7.2)

The same  point FFT was taken from the output bit stream of the simulated ZA09 /

1.65 99.73 90.11

2
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Figure 8.14 :  Spectrum of a sinusoidal signal after passing through a sample-and-hold which is clocked
with a random Gaussian clock; jitter standard deviation = 1ps.
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ZA14 fourth-order bandpass ∆Σ modulator with the characteristics given in the first row

of Table 7.2 when it was clocked with the same random Gaussian pulse (with 1ps

standard deviation). The simulated spectrum results with a 1ps standard deviation

MHz clock is shown in Fig. 8.15. The phase noise at KHz offset frequency from

the carrier was dBc/Hz i.e. almost identical to that of the clock. It shows that the

effect of the clock jitter appears almost directly at the spectrum of the continuous-time

modulator output bit stream. It should be mentioned that the simulated power spectral

density of the output bit stream at KHz offset frequency from the carrier in a

simulation with no clock jitter was dBc/Hz. The modulator’s SNR with the clock

with 1ps jitter standard deviation was reduced from dB to dB i.e. a dB loss for

a bandwidth of 2MHz. The preceding results along with the results of some other

200 200
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Figure 8.15 :  The simulated spectrum of the ZA09 / ZA14 fourth-order modulators clocked with
a 200MHz clock having a 1ps standard deviation jitter.
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simulations are summarized in Table 8.3 and Table 8.4. It should be noted that the phase

noise figures given in the second columns of Table 8.3 and Table 8.4 have been

calculated from (7.2). The third column figures were obtained similarly too. But the

latter doesn’t represent the phase noise information directly because at the output ∆Σ bit

stream spectrum the phase noise is superimposed on top of shaped quantization noise.

However, as can be noticed from Table 8.3 for low bandwidths the output spectral

*. Ideally this values should be dBc/Hz. The given value shows our FFT
accuracy.

*. Ideally this values should be dBc/Hz. The given value shows our FFT
accuracy.

Table 8.3: Clock Jitter simulation result summary.

Clock jitter

standard deviation

Phase noise of S/H

sinusoidal signal

(200KHz from

carrier)

Noise power

spectral density of

the bit stream

(200KHz from

carrier)

SNR at

400KHz

BW

SNR loss

due to jitter

(2MHz BW)

0ps −172dBc/Hz* −137dBc/Hz 75dB 0dB

1ps −102dBc/Hz −101dBc/Hz 43dB 32dB

3ps −92dBc/Hz −92dBc/Hz 34dB 41dB

5ps −88dBc/Hz −88dBc/Hz 29dB 46dB

Table 8.4: Clock Jitter simulation result summary.

Clock jitter

standard deviation

Phase noise of S/H

sinusoidal signal

(1MHz from

carrier)

Noise power

spectral density of

the bit stream

(1MHz from

carrier)

SNR at

2MHz BW

SNR loss

due to jitter

(2MHz BW)

0ps −202dBc/Hz* −113dBc/Hz 56dB 0dB

1ps −118dBc/Hz −108dBc/Hz 42dB 14dB

3ps −107dBc/Hz −102dBc/Hz 33dB 23dB

5ps −103dBc/Hz −105dBc/Hz 28dB 28dB

∞–

∞–
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density of the ∆Σ modulator is almost identical to that of clock jitter. In other words as

mentioned, the phase noise property of the sampling clock is almost directly transferred

to the spectrum of the continuous-time modulator output bit stream. As shown in Table

8.3 the signal-to-noise ratio of a continuous-time ∆Σ modulator could rapidly be

degraded with the sampling clock jitter increment. For example, with a 3ps standard

deviation in which the peak timing error is less than 5ps for almost % of occasions,

the fourth-order modulator resolution is dropped by 7 bits to  bits which is a

significant loss. By comparison of Table 8.3 and Table 8.4, one can notice that the effect

of clock jitter is much more highlighted at high oversampling ratios (lower bandwidths).

For example, as shown in the fourth columns of Table 8.3 and Table 8.4 the SNRs at

KHz and MHz bandwidths are almost the same in the presence of clock jitter.

Again as can be noticed from comparison of the second and third columns in Table 8.3,

at low bandwidths (200KHz here) the phase noise at the output of a simple sample-and-

hold is almost identical to the noise density at the output bit stream spectrum of the

continuous-time ∆Σ modulator. Therefore, it can be concluded that clock jitter is no

bigger a problem for a transconductor-C ∆Σ modulator than for a switched-C one. The

effect of clock jitter on a ∆Σ modulator SNR should be estimated for a given clock jitter

in a system in order to test whether the required specifications can be met before any

realization.

8.5 Future Work

Many possibilities for future work have been presented in Ch. 7 and in this chapter.

These included the methods to design a better transconductor-C loop filter for a ∆Σ

modulator to improve its noise factor, dynamic-range, linearity, power consumption,

reliability and higher frequency operation. It was shown that unfortunately none of the

mentioned features in above can be improved without compromising some other one(s).

This makes the design of a continuous-time ∆Σ modulator in general and

transconductor-C modulator in particular very challenging and exciting. More work still

needs to be done before a continuous-time modulator can be applied reliably to a

system.

The following aspects of research and work in this area can be done to develop the use of

90

5
1
2
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continuous-time techniques such as transconductor-C for implementing the analog-to-

digital converters for high intermediate frequencies:

1) Simpler structures of transconductor-C filters can be considered for a ∆Σ modulator

loop filter implementation to improve its frequency capability without trading-off

the other features of the modulator.

2) An adaptive tuning for a transconductor-C modulator other than the master-slave

scheme approach used in Ch. 6 can be studied. This adaptive tuning should be able

not only to tune the loop filter’s parameters (such as its Q and center frequency)

which are altered by fabrication tolerances, etc. but also to compensate for some

new difficulties that arise from the new structures such as sensitivity to extra loop

delay, etc.

3) A new continuous-time filter transfer function for the practical non-zero extra loop

delay modulator can be obtained from the modified z-transform. It should be

mentioned that the fourth-order modulator was implemented based on the zero

excess loop delay assumption. From simulation the actual excess loop delay can be

easily estimated from the propagation delay times in the loop components. Recall

from Sec. 5.5.2.3 and Sec. 8.3.2 that the extra loop delay for the fabricated chips

was about 1ns i.e. 20% for 200MHz clock rate. Having known the actual extra loop

delay a new continuous-time loop filter can be obtained from the modified z-

transform such that the resulting entire loop transfer function matches the ideal

discrete-time transfer function.

4) The zero-delay scheme can be fabricated. This may reduce the difficulty of extra loop

delay since there is no requirement to have any D-flip flop (a full digital delay) in
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the loop. With the same comparator and DAC used in ZA09 / ZA14 this means that

the loop delay can be reduced by 7% for a 200MHz clock.

5) A more systematic and perhaps automated technique for diagnosis of problems in a

fabricated continuous-time modulator can be studied.

6) A 3-level DAC can be used as opposed to single-bit DAC in the continuous-time

modulator which can avoid a possible instability in the system caused by non-

idealities such as extra loop delay. It should be noted that a 3-level DAC (unlike the

multi-level DACs) can be designed to have a desirable linearity.

7) A mixed continuous-time discrete-time (such as transconductor-C switched-C)

modulator may be looked at as a way to benefit from the good features of each type.

This may result in better linearity and higher resolution at the cost of speed in a

straight transconductor-C technique.
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Appendix A: Multiple-pole transformation

I. NZ pulse transformation of a double-pole function.

If we consider

(A-1)

where  then:

( A-2)

So from single-pole transformation (3.9)-(3.11):

( A-3)

Obviously if we let  there would be a  ambiguity at the coefficient of

i.e. . However, applying the L’Hôpital’s rule on that coefficient

( A-4)
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( A-5)

II. RZ and HZ pulse transformation of a double-pole function.

II-1. RZ:

(*This program provides the RZ transformation for a double-pole discrete-time transfer

function in the form of ck/(z-z0)^2 s-domain*)

Adouble = ck/((z - Exp[sk1 T])(z - Exp[sk2 T]));

k1 = -ck/(Exp[sk2 T] - Exp[sk1 T]);

k2 = -k1;

z1 = Exp[sk1 T];

z2 = Exp[sk2 T];

(* having known the RTZ transformation for single-pole transfer functions*)

Ah1 = -k1 sk1/((z1^0.5 - z1)(s - sk1));

Ah2 = -k2 sk2/((z2^0.5 - z2)(s - sk2));

Ah = Together[Ah1 + Ah2];

(* Finding Num and Den of Ah *)

Aah = Simplify[Ah (s-sk1)(s-sk2)];

numAh = Numerator[Aah];

denAh = Denominator[Aah];

(* using L’Hôpital’s rule*)

numAh1 = D[numAh, {sk1,1}];

denAh1 = D[denAh, {sk1,1}];

LimitnumAh1 = numAh1 /. sk1 -> sk2;

LimitdenAh1 = denAh1 /. sk1 -> sk2;

LimitAh1 = Simplify[LimitnumAh1/(LimitdenAh1 (s - sk2)(s - sk2))];

LimitAh = LimitAh1 /. sk2 -> sk

num = Numerator[LimitAh];
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1 e skT– skT––( )

1 eskT–( )2
---------------------------------------

s

T
---

sk
2

1 eskT–( )2
--------------------------+

s sk–( )2
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num = Collect[num, s];

den = Denominator[LimitAh];

b0=Coefficient[num,s,0];

b1=Coefficient[num,s,1];

II-2. HZ:

(* This program provides the HZ transformation for a double-pole discrete-time transfer

function in the form of ck/(z-z0)^2 s-domain*)

Adouble = ck/((z - Exp[sk1 T])(z - Exp[sk2 T]));

k1 = -ck/(Exp[sk2 T] - Exp[sk1 T]);

k2 = -k1;

z1 = Exp[sk1 T];

z2 = Exp[sk2 T];

(* having known the HZ transformation for single-pole transfer functions *)

Ah1 = -k1 sk1/((1 - z1^0.5)(s - sk1));

Ah2 = -k2 sk2/((1 - z2^0.5)(s - sk2));

Ah = Together[Ah1 + Ah2];

(* Finding Num and Den of Ah *)

Aah = Simplify[Ah (s-sk1)(s-sk2)];

numAh = Numerator[Aah];

denAh = Denominator[Aah];

(* using L’Hôpital’s rule*)

numAh1 = D[numAh, {sk1,1}];

denAh1 = D[denAh, {sk1,1}];

LimitnumAh1 = numAh1 /. sk1 -> sk2;

LimitdenAh1 = denAh1 /. sk1 -> sk2;

LimitAh1 = SLimitAh = LimitAh1 /. sk2 -> sk

num = Numerator[LimitAh];

num = Collect[num, s];

den = Denominator[LimitAh];
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b0=Coefficient[num,s,0];

b1=Coefficient[num,s,1];

Simplify[LimitnumAh1/(LimitdenAh1 (s - sk2)(s - sk2))];
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Appendix B: Signal transfer function

From Fig. B.1 for an ideal sampler , then from Fourier transform

theory the spectrum of the discrete-time signal  can be related

to the spectrum of the continuous-time signal  []:

(B-1)

However, since in practice there is no zero-width sample (usually pulse shape), then in

Fig. B.1 u1(k) should be substituted by u1
*(t) where,

(B-2)

Therefore, from Laplace Transform theory

(B-3)

and so the sampled signal spectrum would be

Ĥ s( ) ZOH

f s

f s
H z( )

x̂ t( ) y k( )

e k( )
u k( )u1 k( )

u2 k( )
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Figure B.1 :  Another representation of a continuous-time modulator shown back in Fig. 3.22.
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. (B-4)

Note the linear phase factor followed by a “sinc” function which comes from the

characteristic of the sampled-and-hold signal spectrum.

So the spectrum of the output signal y(k) can be obtained from (B-4) as follows:

(B-5)

As shown in (B-5) the input signal  is first filtered by the continuous-time prefilter

 then the output is sampled which, of course, aliases the spectrum. The aliasing

signals which would be folded exactly into the in-band are located at

frequencies where fs is the sampling frequency and fo the center frequency of ∆Σ

modulator. However, since the frequency response of prefilter  usually attenuates

the signals at these frequency bands, one may neglect the higher replicated spectrum

terms in (B-5) and come up to an approximate signal frequency response for a

continuous-time modulator:

(B-6)

where S/H stands for sampled-and-hold. It should be noted that in an equivalent

switched-C modulator as shown in Fig. 3.21 the sampler is in front of modulator,

therefore

. (B-7)
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the “sinc” function. However, there is no inherent continuous-time prefiltering as in a

continuous-time modulator. So, the aliasing signals at  frequencies are folded

into the in-band without any attenuation and since  amplitude is

almost unity at in-band frequency fo, the undesired aliasing signals appear in the output

spectrum with no loss.

In fact by comparing (B-5) and (B-7) in a continuous-time and discrete-time modulators,

it is evident that the “sinc” term associated with the pulse-shape sampled signals applies

on both systems after aliasing has effected. So, it should not be misinterpreted as an anti-

alias filtering in either modulator. For the purpose of comparison of the STF in a

continuous-time modulator with its discrete-time counterpart, this term is neglected in

this work:

. (B-8)
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Appendix C: The TC-amp circuit small signal analysis

C.1 Second-Order Amplifier

A simplified small signal model for the second stage amplifier of the TC-amp integrator

is shown in Fig. C.1. First ignoring collector-base capacitance  and assuming

 one can write the nodal equations:

(C-1)

where the poles can be found from the determinant of A i.e.

With gπ» go approximation

(C-2)
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(C-3)

The numerical values of the parameters in the foregoing equations obtained from

HSPICE simulations of a realized BiCMOS TC-amp integrator are as following:

gm: The transconductance of the second stage bipolar transistor. For a collector current

of 400µA, gm = 15.06 mS.

rπ: Base-emitter resistance of BJT transistor, .

Cµ: Collector-Base capacitance of BJT transistor, Cµ = 9.34fF.

Cπ: The BJT’s Cπ, Cπ = 0.21pF.
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Figure C.1 :  Simplified small signal model of the Miller stage in Fig. 5.17.

i

v2

rb

rπ 5355Ω=



Appendix… 202

Ro: The output resistance of the second stage. Parallel of the output resistance of the BJT

and PMOS cascode active load, Ro = 52KΩ.

Co: The loading capacitance of the second stage. Primarily determined by the input

capacitance of the next stage transconductor, Co = 0.506pF.

Cm: The Miller capacitance, .

Rz: The Miller resistance at the maximum Q, Rz = 776.2 Ω.

The open loop amplifier frequency response i.e. when Rz → ∞ (no external Miller

feedback) can easily be obtained by substituting Cm with  in (C-3). The Poles and

RHP zero with no Miller capacitance are

p1 = − 2.41 MHz, p2 = − 331.5 MHz and z1 = + 258.0 GHz. (C-4)

and with Miller capacitance are when Rz = 0

p1 = − 46.48 KHz, p2 = − 2.86 GHz and z1 = + 3.0 GHz. (C-5)

As these numerical values show the effect the Miller capacitance Cm is to reduce p1

significantly (producing a dominant pole) and to increase p2. Hence, the Miller capacitor

is sometimes called a pole-splitting capacitor [], [] too. As will be shown p1 is the entire

TC-amp dominant pole which can be expressed in terms of the input transconductance

and the overall TC-amp DC gain parameters. Assuming gπ» go and Cm ≥ Co from (3)

one can show

. (C-6)

The differential DC gain of the TC-amp shown in Fig. 5.17 is equal to

(C-7)

where  is the input stage transconductance1 in Fig. 5.17 and Ro1 the output

impedance of the first stage including the effect of the input impedance of the second

stage amplifier. The latter is approximated with rπ of the second stage amplifier. Recall

1. Since the input NMOS transistors are working in the triode regime and usually the small signal
parameters given in the HSPICE output file are not calculated very accurately for these devices,
the gm1 was directly measured from simulation.
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from Sec. 5.1.1 that the differential transconductance is defined as Gm = i ⁄ (vi+ − vi−) =

gm1 ⁄ 2. So from (C-6) and (C-7) it is straight forward to show that

(C-8)

It should be noted because of the cross coupling in the transconductor shown in Fig. 5.10

the total differential transconductor and DC gain of the entire cross-coupled circuit

represented by G′m and A′dc are twice as large as Gm and Adc respectively. So one may

write the dominant pole versus the cross-coupled parameters

(C-9)

This is what was explained earlier as an important feature of a TC-amp which produces

a very dominant pole due to its high DC gain. For example, for the simulated TC-amp

with a differential DC gain of 66.3 dB and unity-gain frequency 85.41 MHz it turns out

that p1 = 41.35 KHz which is close to the result given in (C-5).

As mentioned a high DC gain with a low frequency dominant pole provides an almost

flat −90° phase and a −20 dB/decade gain frequency response in a very wide frequency

range as shown in Fig. 5.15. However, the second pole p2 (at −2.86 GHz) in (C-5)

produces another  phase shift and the RHP zero z1 (at +3.0 GHz) in (C-5)

contributes more in the integrator phase lead which deteriorates the integrator

performance at the desired high frequencies further.

C.2 Effect of Miller Resistor (RHP zero to LHP)

It is well known that a resistor in series with Miller capacitance moves the RHP zero to

the LHP, and can be used to overcome the excess phase produced by the second pole p2

[]. Taking into account  and  effects shown in Fig. C.1. The A, v and i in (C-1)

become
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(C-10)

This is a third order system producing three poles and two zeros. The transmission zeros

can be found by applying Cramer’s rule to (C-10) or by inspection from Fig. C.1. We

find

which implies

(C-11)

From (C-11) it can be shown that

(C-12)

where one can calculate the numerical values for the zeros of TC-amp integrator:

z1 = − 280.6 MHz and z2 = + 235.0 GHz.

Both zeros are real where one is in the LHP another in the RHP. However, the effect of

the very high frequency RHP zero is negligible. The effect of Rz on a TC-amp integrator

is then creating a new LHP zero and moving the RHP zero from its previous location (C-

5) to a much higher RHP frequency (recall that without Rz the RHP zero was at +3.0

GHz). Therefore, one may simply say that the Miller resistor moves the RHP zero

(having just a Miller capacitance) to the LHP, as mentioned in this section’s title.

This way one may exploit the new LHP zero phase lead to adjust the required phase

A

s Cπ Cm+( ) gπ gz+ + gz– sCµ–

gz– gz sCm+ sCm–

sCµgm– sCm– s Cm Co Cµ+ +( ) go+

v V1 V 2 V o
,

=

= i I 0 0=

Im Iµ+ gm V 1 V 1 sCµ
1

Rz 1 sCm( )⁄+
----------------------------------+ 

 ⇒⋅ gm V 1⋅= =

s
2 1 CµCm gmRz–+

RzCµ
--------------------------------------------s

gm

RzCmCµ
---------------------–+ 0=

z1

gm

Cm gmRz 1 Cµ Cm⁄+( )–( )
-----------------------------------------------------------------–=

z2

gmRz 1 Cµ Cm⁄+( )–

RzCµ
----------------------------------------------------=



Appendix… 205

characteristic of a TC-amp integrator to produce a desired Q performance for a

resonator.

Another effect of Rz as shown in (C-10) is increasing the order of system, creating a

third pole. For low values of Rz, (C-5) can still be used for the first and second poles and

the third pole can be approximated by a high frequency LHP real pole at

. (C-13)

The root locus of the this system (the second stage Miller amplifier) with respect to Rz

variation is shown in Fig. C.2. Two poles of the amplifier without the Miller capacitor

p3
1
Rz

-----
1

Cm

-------
1

Cπ
-------

1
Co

------+ + 
 –=

Figure C.2 :  Root locus of the second stage amplifier with respect to Rz variation.
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(Rz = ∞) are shown by p1a and p2a respectively represented by “×” in Fig. C.2. The root

locus shown in Fig. C.2 is obtained from the solution of the third-order system given in

(C-10) for finite Rz values. The equations (C-1) and (C-3) demonstrate a second-order

system for Rz = ∞ which is a special case of the third-order system.

At Rz = ∞ (gz = 0) as shown in Fig. C.2 the equation (C-10) results in a pole at DC (s = 0)

which is cancelled out by a zero at s = 0. From (C-12) it can be observed that at Rz = ∞,

z1 would be zero. This pole-zero cancellation in the third-order equation (C-10) refers to

the second-order response with no Miller capacitor case given in (C-1) when Cm is

replaced by Cµ.

As Rz decreases from some high finite values the real pole moves from s = 0 towards

some negative real LHP pole represented by p1b (for Rz = 0). At the same time the real

poles represented by p1a and p2a first merge at some point in the real axis then depart to

a complex conjugate pair on the trajectory shown in Fig. C.2. Finally they approach real

poles represented by p2b and p3b at Rz = 0. Again it should be noted that at Rz = 0 the

third pole given in (C-13) and the zero shown by z2 in (C-12) both would be infinity at

LHP. This indicates another pole-zero cancellation when Rz → 0 which is shown in Fig.

C.2 too. Therefore there are only two poles at Rz = 0 obtained from (C-3) and calculated

in (C-5) represented by p1b and p2b in Fig. C.2. It should be noted that the three poles for

the maximum Q (Rz = 776.2Ω shown in Fig. 5.14) are represented by ‘∗ ’ in Fig. C.2.

The zero locus of the second stage circuit respect to Rz variation is shown in Fig. C.3. As

shown in the figure the second stage zeros are always real. At two limits i.e. Rz → ∞ and

Rz → 0 as shown in Fig. C.2 and Fig. C.3 there are pole-zero cancellation at s → 0 and s

→ −∞ respectively which leaves the second stage with one zero:  at Rz = ∞ and

 at Rz = 0. As Rz decreases from infinity the LHP zero moves from s = 0

towards −∞ and the RHP zero moves from  to a final destination

 when Rz = 0. The two zeros for the maximum Q (Rz = 776.2Ω shown

in Fig. 5.14) are represented by ‘z∗ ’ in Fig. C.3. As shown the RHP zero (RHP z∗ ) has

not moved too much from its initial place (258 GHz → 235 GHz) while the LHP zero

(LHP z∗ ) has made a significant move from origin to −280.6 MHz. As will be shown

shortly this is the major effect of Rz for the excess phase adjustment in a TC-amp

gm Cµ⁄

gm Cm Cµ+( )⁄

gm Cµ⁄

gm Cm Cµ+( )⁄
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integrator.

C.3 First Stage Transconductor

So far we have presented a small signal analysis for the second stage amplifier. To get a

complete understanding of the high frequency performance of the circuit we need to

analyze the first stage transconductor too. A small signal model for the first stage

transconductor shown back in Fig. 5.10 and Fig. 5.17 is shown in Fig. C.4. This small

signal model shows the input NMOS−BJT cascode stage ignoring the BJT base

resistance rb. The current source gmQ1·vbe can be replaced by a resistance  to

simplify the circuit further. This resistance combined with the parallel resistance rπ1

determines the resistance to ground from node “e” (in Fig. C.4):

.

It can be shown that the small signal transfer function of the first stage transconductor

shown in Fig. C.4 is:
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(C-14)

where C2 is the total capacitance to ground in node “e” emitter of the cascode BJT. If the

input NMOS transistor gain is defined as  from Miller’s theorem one can

obtain that

.

Therefore the dominant pole and zero of the first stage transconductor are:

(C-15)

The numerical values of the parameters in this model obtained from HSPICE

simulations of the realized BiCMOS transconductor are as follows:

gmQ1: The transconductance of the cascode bipolar transistor. For a collector current of

1.58 mA, gmQ1 = 56.31 mS.

rπ1: Base-emitter resistance of BJT cascode transistor, rπ1= 1336 Ω.

Cµ1: Collector-Base capacitance of cascode BJT transistor, Cµ1 = 10.6 fF.

Cπ1: The cascode BJT’s Cπ, Cπ = 0.664 pF.

V o1

V i
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sC2 1 re1⁄+
------------------------------=

Figure C.4 :  Simplified small signal model of the first stage transconductor.
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gm1: The transconductance of the input NMOS transistor. For a DC operating point of

Vds of 77 mV, gm1 = 271.6 µS.

Cgd1: The drain to gate feedback capacitance of the input NMOS transistor, Cgd1 = 71 fF.

Cgs1: The input gate capacitance of the input NMOS transistor, Cgs1 = 72 fF.

gds1: The NMOS transistor drain to source admittance, gds1 = 10.8 mA/V.

Av1: The voltage gain from the gate of the NMOS transistor to its drain. Av1 = −44.5dB.

From the given numerical parameter values the zero and pole of the first stage

transconductor defined in (C-15) would be

p11 = − 853.5 MHz and z11 = + 608.8 MHz. (C-16)
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Appendix D: Discrete-time to continuous-time state space

transformation

Recall 3.1.3 that a continuous-time sate space can be expressed as

. (D-1)

From the linear differential equation theory one can find a solution for (D-1) as the

following:

(D-2)

For a RZ hold input

. (D-3)

Substituting (D-3) into (D-2):

(D-4)

By comparing (D-4) to the state space equations of the discrete-time equivalent system:

(D-5)

quite easily for RZ hold input it can be shown that

. (D-6)
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