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Abstract— The continuous-time errors-in-variables system
identification problem is studied. The proposed solution is to
use a covariance matching approach in which the input signal
is not modeled, allowing for general types of input signals. As a
consequence, no input signal parameters have to be estimated.

I. INTRODUCTION

Consider the system

y0(t) =
B(p)
A(p)

u0(t), (1)

where A(p) = pn+a1p
n−1+. . .+an and B(p) = b1p

m−1+
. . . + bm, with p denoting the differentiation operator. The
discrete-time measurements u(kh) = u0(kh) + ũ(kh) and
y(kh) = y0(kh) + ỹ(kh), where h is the sampling interval
and where ũ(kh) and ỹ(kh) are discrete-time white noise
sources, are available for k = 1, . . . , N . The problem
considered here is the one of estimating the parameters

θ =
[
a1 · · · an b1 · · · bm

]T
(2)

from these measurements. This is the so called continuous-
time errors-in-variables (EIV) problem, see for example [1]–
[3], that appears in several engineering applications [4]. A
survey of the discrete-time EIV problem is given in [5].

In [3] a covariance matching approach for solving the
continuous-time EIV problem was considered. It was as-
sumed that u0(t) could be described as a continuous-time
ARMA process, and its parameters were estimated. The
approach taken here is more general in the sense that u0(t)
is only assumed to be a stationary process.

II. PRELIMINARIES

For the stochastic process s(t), let rs(τ) be its covariance
function and φs(ω) denote the spectrum. Then [6]

rs(τ) =
∫ ∞
−∞

eiωτφs(ω)dω (3)

and

E{pjs(t)pks(t)} =
∫ ∞
−∞

(iω)j(−iω)kφs(ω)dω

= ij+k(−1)k
∫ ∞
−∞

ωj+kφs(ω)dω. (4)
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Apparently, ij+k is purely imaginary when j + k is an odd
integer. However, in that case the integral is zero, as the
integrand becomes an odd function. Differentiation of (3)
gives

pµrs(τ)|τ=0 =
∫ ∞
−∞

(iω)µeiωτφs(ω)dω|τ=0

= iµ
∫ ∞
−∞

ωµφs(ω)dω (5)

and therefore

E{pjs(t)pks(t)} = (−1)kpj+krs(0). (6)

In (5) it is assumed that the spectrum φs(ω) decreases for
large ω at least as 1/ω2µ+2, and similarly for (4).

III. COVARIANCE MATCHING

Define z0(t) as

z0(t) =
1

A(p)
u0(t) (7)

which means that

y0(t) =
m∑
j=1

bjp
m−jz0(t), u0(t) =

n∑
j=0

ajp
n−jz0(t), (8)

with a0 = 1. From the material in Section II, we have

E{pµy0(t)pνy0(t)} = (−1)νpµ+νry0(0)

= (−1)ν
m∑
j=1

m∑
k=1

(−1)m−kbjbkp2m−j−k+µ+νrz0(0), (9)

E{pµu0(t)pνu0(t)} = (−1)νpµ+νru0(0)

= (−1)ν
n∑
j=0

n∑
k=0

(−1)n−kajakp2n−j−k+µ+νrz0(0), (10)

and

E{pµy0(t)pνu0(t)} = (−1)νpµ+νry0u0(0)

= (−1)ν
m∑
j=1

n∑
k=0

(−1)n−kbjakpm+n−j−k+µ+νrz0(0) (11)

for µ, ν = 0, 1, . . . .
Now, (9)–(11) can be used to get a number of covari-

ance matching equations, where {aj}nj=1, {bk}mk=1, and
{p`rz0(0)}`∈L, with L = {2, 4, ...} , are regarded as un-
knowns. The covariance matching equations can be written
as

A(θ)x = c, (12)
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where the elements of the matrix

A(θ) ,


Ay0(θ)
Au0(θ)

Aeven
y0u0

(θ)
Aodd
y0u0

(θ)

 (13)

depend on θ, and where

x =
[
p2rz0(0) p4rz0(0) · · · pαrz0(0)

]T
, (14)

c ,
[
cTy0 cTu0

(ceven
y0u0

)T (codd
y0u0

)T
]T
, (15)

with

cy0 =
[
p2ry0(0) p4ry0(0) · · · pβry0(0)

]T
, (16)

cu0 =
[
p2ru0(0) p4ru0(0) · · · pγru0(0)

]T
, (17)

ceven
y0u0

=
[
p2ry0u0(0) p4ry0u0(0) · · · pδry0u0(0)

]T
,

(18)

codd
y0u0

=
[
p1ry0u0(0) p3ry0u0(0) · · · pεry0u0(0)

]T
.

(19)

The odd order derivatives of ry0(0) and ru0(0) are not
interesting to consider in the system of equations since
they are zero and carry no information. The number ξ of
unknowns to be estimated is ξ = dim{θ}+ dim{x}, where
dim stands for dimension, and the number of equations
κ = dim{c}. This means that the inequality ξ 6 κ can be
seen as a necessary identifiability condition. The structure of
A(θ) as well as the fulfillment of the identifiability condition
are illustrated in the following example.

Example. Consider the second order case with n = m = 2,
where the choices β = 4, γ = 2, δ = 4, and ε = 3 are made
in (16)–(19). This means that α = 6 in (14) and that

Ay0(θ) =
[
b22 −b21 0
0 b22 −b21

]
, (20)

Au0(θ) =
[
a2
2 −a2

1 + 2a2 1
]
, (21)

Aeven
y0u0

(θ) =
[
b2a2 b2 − b1a1 0

0 b2a2 b2 − b1a1

]
, (22)

Aodd
y0u0

(θ) =
[
b1a2 − b2a1 b1 0

0 b1a2 − b2a1 b1

]
(23)

in (13). In this case, the number of unknowns ξ equals the
number of equations κ, so the identifiability condition is
fulfilled. �

The values of pµ+νry0(0), pµ+νru0(0), and pµ+νry0u0(0)
are to be estimated from the measured data, giving the vector

ĉ =
[
ĉTy0 ĉTu0

(ĉeven
y0u0

)T (ĉodd
y0u0

)T
]T
. (24)

Note that the estimate ĉ is consistent in the case with noisy
data as long as it is not based on ry(0) and ru(0). The
estimation can be done in at least two ways as described
next for pµ+νry(0).

1) Estimate in a natural way the covariance function ry(τ)
as

r̂y(`h) =
1
N

N∑
k=1

y(kh)y(kh+ `h). (25)

From these estimates for ` = 1, 2, . . . , make some nu-
merical differentiation to get estimates of the derivative
of ry(τ) at τ = 0. Avoid using ` = 0 in order to avoid
bias due to the measurement noise.

2) Make a numerical differentiation of the measured sig-
nal and use the so computed estimates to determine
the derivative of ry(τ) at τ = 0. For example,

ˆ̇y(kh) =
1
h

(
y(kh+ h)− y(kh)

)
, (26)

p̂2ry(0) = − 1
N

N∑
k=1

ˆ̇y2(kh). (27)

The first alternative is most likely preferable in situations
when the variance of the measurement noise is high.

Note that ry0u0(0) could be included in (18) since it
is possible to estimate with high accuracy in spite of the
measurement noises. This would give an extra equation but
also an additional unknown since rz0(0) would appear in
(14).

Based on the system of equations (12), the estimator

{θ̂, x̂} = arg min
θ,x

J(θ,x), (28)

where

J(θ,x) = ||ĉ−A(θ)x||2Q, (29)

for θ and x is suggested. Here, Q is a symmetric and positive
definite weighting matrix. From the separable least squares
problem (28),

x̂ =
(
AT (θ)QA(θ)

)−1
AT (θ)Qĉ (30)

and

θ̂ = arg min
θ

V (θ), (31)

where

V (θ) = ĉTQĉ− ĉTQA(θ)
(
AT (θ)QA(θ)

)−1
AT (θ)Qĉ.

(32)

Future work includes numerical and statistical investigations
of the proposed method.
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