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Abstract

This paper presents an approach for implementing continuous-time adaptive recursive
filters. The resulting filters should be capable of operating on much higher signal frequen-
cies than their digital counterparts since no sampling is required. With respect to imple-
mentation problems, the effects of DC offsets is investigated and formulae derived so that
these effects can be estimated and reduced. As well, it is shown that the DC offset perfor-
mance is strongly affected by the choice of structure for the adaptive filter. Finally, experi-
mental results from a discrete prototype are given where accurate adaptation is observed
and DC offset effects are compared to theoretical predictions.

1. Introduction

Recently, the hardware efficient least-mean-squared (LMS) algorithm was applied to state-

space adaptive recursive filters in digital form [l]. It is of interest to modify this adaptive digital

approach for use with continuous-time adaptive filters since, in many applications, analog cir-

cuits have definite advantages over their digital counterparts. For example, analog circuits are

often used in applications requiring high-frequency signal-processing capability and/or ones that

require small integrated-circuit area. With this motivation, this paper presents a design metho-

dology for the realization of continuous-time adaptive recursive filters using the LMS algorithm.

(For an overview of adaptive recursive filters in the digital realm, the reader is referred to [2].)

With any adaptive filter, there is a requirement for a programmable filter. This requirement

is one of the reasons that digital-signal-processing has dominated adaptive filter implementations

since most digital filters are inherently programmable by modifying memory locations. In the
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analog realm, programmable filters can be created by making use of one of the many techniques

that have been proposed for realizing integrated continuous-time filters [3]. To account for pro-

cess and temperature variations, these integrated fZters have the ability to tune integrator time-

constants implying an inherent programminng method that adjusts filter coefficients. This

inherent programmability of integrated continuous-time filters was a strong motivation for

developing the work presented in this paper. As an additional benefit, a recent publication

shows that the work presented here can also be used as a basis for tuning integrated continuous-

time filters [4].

Previous work related to adapting poles in continuous-time filters can be traced back to

solving optimization problems with analog computers in the 1960’s [5,6]. By making use of gra-

dient signals together with the LMS algorithm, this analog computer approach results in identi-

cal block diagrams to those presented in this paper. However, one major problem with this pre-

vious approach is that it is only applicable to filters based on the direct-form structure. The

approach presented in this paper extends that basic method to filters with arbitrary structures. It

should be mentioned here that it has been shown that the choice of structures can significantly

affect the performance of the overall system in the digital realm [ 1] and it will be shown in this

paper that DC offset effects are also greatly affected by structure choice.

In more recent work on continuous-time adaptive recursive filters, experimental results

were given for a second-order adaptive filter using the sequential-linear-search (SLS) algorithm

[7,8]. The SLS algorithm is similar to the LMS algorithm in that a steepest-descent search is

performed to locate a minimum in the performance surface. However, rather than using gradient

signals, the gradient is estimated by changing a filter coefficient and then observing the direction

of change in the mean-squared value of the error signal. The problems with this technique arc
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that only one coefficient can be adjusted at a time and more importantly, it is difficult to obtain

an accurate measurement of a deviation in the mean-squared error signal.

The outline of this paper is as follows. A general approach for continuous-time LMS adap-

tive recursive filters applicable to arbitrary filter structures is presented in section 2. In section 3,

it is shown how this approach is applied to state-space systems and, in particular, a single-row

adaptive filter. In section 4, the effects of DC offsets are discussed and formulae developed to

predict these effects. As well, a simple method to reduce the DC offset effects is presented.

Finally, experimental results of a discrete single-row adaptive filter prototype are presented in

section 5 shotig the practicality of the approach and compares experimental and theoretical

results for DC offset effects.

2. LMS Adaptive Recursive Filters

A block diagram of an adaptive filter is shown in figure 1. The system has two inputs - the
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I

Fig. 1. Block diagram of an adaptive filter.
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filter input, u(t), and the reference signal, 6(?). As well, an error signal, e (t), is created as the

difference between the programmable filter’s output, y(f), and the reference signal. Describing

the LMS algorithm qualitatively, the goal of the adaptive filter is to minimize the mean-squared

value of the e r r o r  signal by slowly adjusting (in comparison to the signal frequency) the

transfer-function’ of the programmable filter through the adjustments of the filter coefficients, pi.

In other words, defining an error performance surface as the mean-squared error value for vary-

ing filter coefficients, the LMS algorithm results in a steepest descent search to find a minimum

in that surface.

By minimizing the mean-squared error value, adaptive filters can be used in a variety of

applications such as channel equalization, noise cancellation, and others [9]. However, one

application worth noting is the “model-matching” application as it is often used for testing pur-

poses. In this application, a sufficiently exciting input signal, u(f), is injected into the adaptive

filter as well as to an external reference filter. The reference signal, 8@), is then taken as the out-

put of the reference filter. With this set-up, after adaptation, the transfer-function of the pro-

grammable filter should match that of the reference filter or be some approximation of it. It

should be mentioned here that for the purposes of this paper, we assume the input signal and

reference filter to be stationary. Although non-stationary inputs are the usual case in most appli-

cations and their effects can sometimes dictate the performance of LMS filters, the performance

degradation for these types of inputs are beyond the scope of this paper.

To derive the LMS algorithm, we first look at the discrete-time case where a steepest-

descent algorithm in the mean-squared error performance surface can be implemented by realiz-

ing the following equation.

’ Although the use of linear transfer-functions does not strictly apply to adaptive systems since they are non-linear systems, this idea of
varying transfer-functims is essentially a linearizing assumpticn which is appropriate for the practical case of slow adaptation.
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Here, E[o] denotes expectation and p, is a small positive parameter which controls the rate of

convergence. Since the partial derivative of the mean-squared error signaI is not practical to

obtain, the instantaneous squared error is used as an approximation of the mean-squared error

resulting in the LMS algorithm. Making this substitution and using the fact that

e (n) = S(n) - y (n), the following LMS update equation is obtained [9].

Pi(~+l)=Pi(~)+2~(~)~i(~)
In the above equation, @i(n) is a gradient signal defined as

Note that although the instantaneous gradient may often indicate the wrong direction, the aver-

age value of the gradient will be correct.

This discrete-time algorithm can be extended into the analog domain quite naturally as [10]

where @i(T) is the equivalent analog gradient signal. Note that when pi(Z) becomes a constant

value at a minimum in the performance surface, the average value of the input to the integrator

must be zero. Since the average value of the input to the integrator is defined as the correlation

between the error and gradient signals, this simple observation explains the well-known fact that

the gradient signals must be uncorrelated with the error signal after adaptation is successfully

completed.

It is seen from the above adaptation equation that although

able, the gradient signal, @i(f) must be obtained. To obtain these

the signal e(t) is readily avail-

gradient signals, one can m&e
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use of a sensitivity formula which dates the change in the output signal to a change in a single

arm of a signal-flow-graph [ 11,121. Specifically consider the system represented by the signal-

flow-graph in figure 2 where f,,,,, is a filter coefficient in the linear system (shown separately)

and 7’ij(s) is the transfer-function from node i to node j. For this system, it can be shown that

ayw
afm = L,nM’&~

Since U(s) does not change as ?,, changes, we can also write

- = LWr-&YJW.afm
In the time domain, this sensitivity formula becomes

(7)

where the symbol @ denotes convolution and fij(f) is the impulse response of the transfer-

function Tij(s). This sensitivity equation states that the necessary gradient signals can be

(5)

(6)

obtained for arbitrary linear systems by applying the input signal to a cascade of systems with
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Fig. 2. Signal-flow-graph where the arm Tm is shown separately from the rest of the system.
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the proper transfer functions. This approach (also used in the digital domain [13]) leads to the

general block diagram shown in figure 3. It should be mentioned here that the choice of struc-

ture for the programmabIe filter determines the complexity of the gradient filter(s) as well as the

performance of the adaptive system [l]. Also of interest is the gain block, k, which as we shall

see, is introduced to reduce the effects of DC offsets. Finally, for simplicity, it is assumed that

the i’th filter coefficient is a linear function of the controlling voltage, pi, created at the output of

the coefficient update integrator in figure 3(b). In fact, for an analog programmable filter, the

l
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Filter states

Gradient LMS
:

Filter(s) :.
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Fig. 3. Block diagram of a LMS gradient adaptive filter.
(a) Overall system.
(b) Details of the LMS block.
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i’th coefficient will most likely he some monotonic non-linear function of the controlling input

voltage. However, it is not difficult to see that this non-linear function will not affect the

steady-state values of the coefficients.

3. State-Space Adaptive Filters

Although the above approach can be used for arbitrary programmable filters, it is not

always cIear how much extra circuitry will be required to obtain the necessary gradient signals

or which filter coefficients should be allowed to change in order to obtain arbitrary poles and

zeros while keeping the number of filter coefficients to a minimum. For these reasons, we

choose to implement the programmable filter as a linear system that has a one-to-one correspon-

dence with state-space systems for which these issues axe

should he emphasized here that most titer structures

simulation, etc.) are special cases of state-space filters2.

mathematically well understood. It

(eg. direct-form, cascade, ladder-

An N’th order state-space linear time-invariant system is described by the following equa-

tions:

xX(x) = AX(s)+bU (3)

Y(S) = CFX(.S)+&I (S)

where U(S) is the input siganl; X(S) is a vector of N states, which in fact are the integrator out-

puts; Y(S) is the output signal; and A, b, c, and d are coefficients relating these variables. The

transfer-function of the above system is easily shown to be

T(s) = ?@I-A)-lb + d (9)
From (9), we can see that the poles of the system are the eigenvalues of A whereas the zeros of

’ In some cases, it is necessary to use a generalized state-space description to maintain   one-to-one correspondence between the filter’s
signal-flow-graph coefficients and the state-space elements [14].
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the system are related to all four of the system coefficients. It should be mentioned here that not

all N2 coefficients of A should be adapted independently. In fact, the number of degrees of free-

dom in the coefficients of A should equal the filter order otherwise coefficient drift or improper

adaptation might occur.

To obtain the gradient signals, the approach described in [1] can be easily modified for

continuous-time use resulting in the following coefficient-update formulae for the state-space

coefficients.

where all the required gradient signals, CCij(t), pi(l), Xi(t), and u(f) can be obtained by realizing

the systems shown in figure 4. In figure 4, the programmable filter is shown as two separate

blocks corresponding to the state-space describing equations. Specifically, the feedback matrix,

A, and input summing vector, b, implement the first equation of a state-space system and create

the state signals, x(n), as the outputs of the first block. These state signals together with the sys-

tem input, u, are weighted using the output summing vector, c, and the output scalar, d, to obtain

the filter output, y, at the output of the second block. For the gradient filters, each of the blocks

with AT and c also implement the first equation of the state-space system and are part of the tran-

sposed system (also called the adjoint) of the programmable filter. The transposed filter with

u (h) as its input is used to obtain the gradients necessary to adapt the b vector while each of the
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Fig. 4. Generating the gradient signals for a general state-space adaptive filter.

other transposed filters is used to obtain gradients to adapt a single column of the A matrix. The

gradients required to adapt the c vector are the states, Xi(l), of the programmable filter.

As described in [1], rather than adapting elements occurring in arbitrary locations in a

state-space system, one can significantly reduce the number of computations involved by choos-

ing to adapt the c vector and a single column or row of the A matrix. It was shown that in appli-

cations where estimates of final pole locations are known (or equivalently, only the fine-tuning

of a transfer-function is required), these single column or row filters can significantly improve
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the dynamic range and adaptation performance over the traditional direct-form structure. It

should be mentioned here that these same filters can obtain arbitrary pole and zero locations

assuming an observability or controllability condition is met. In the case a single-column filter,

it is clear from figure 4 that only one transposed filter is required to obtain the necessary gradient

signals. The case of a single-row adaptive filter is shown in figure 5 where all the necessary gra-

dient signals are shown to adapt the N’th row and c vector. The b vector contains only one non-

zero element in the N’th row and is shown as the basis vector v~. Note that no transposed filters

are required since a single row rather than column is being adapted.

4. The Effects of DC Offsets

For analog adaptive filters, it is well known that DC offsets present in the LMS integrators

(shown in figure 3(b)) can affect system performance [15]. DC offsets at these locations cause

the filter coefficients to be incorrect resulting in an error in the programmable filter’s transfer-

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..*..................*......... ..... Programmable Filter i
. .. ... .. .. ..
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Fig. 5. Generating the gradient signals for a single-row adaptive filter.
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function at all frequencies (not just at DC). To account for the effects of these offsets, analytical

results have been derived for the LMS linear combiner case where only zeros are adjusted [lS-

171. The purpose of this section is to show that these same formula can be used to give approx-

imate results for the adaptive IIR case where both poles and zeros are adapted. In addition, the

analysis of DC offset effects will be extended to account for adaptive filters making use of the

sign-data LMS algorithm. The sign-data LMS algorithm is a variation on the standard LMS

algorithm and is often used in practice due to its low circuit complexity [ 181.

4.1. DC Offset for the LMS Algorithm

With a DC offset term present at the i’th coefficient-update integrator, the LMS update for-

mula (4) above becomes

Pi@) = ~Pj~dOM@+&J~~
0

where mi is the DC offset at the i‘th coefficient-update integrator.

At steady state, the coefficient signal pi is a constant value implying

E [AZ (l)$i(f)+t?2i] = 0

Since mi is a DC level, we can write

(14)

E [e (f)$i(l)] = T WI

Now making the assumption that only small coefficient changes occur due to DC offsets, at

a minimum the error signal can be written as

(17)

where y*(l) is defined as the optimum output which causes the minimum mean-squared error

and &i is defined to be the change in coefficients from their optimum values due to DC offsets.
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Making use of vector notation, we write
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3Y(f)the gradient signals, -
%i ’

as the vector e(f) and the

change in coefficients, &is as the vector q. Also, since we are interested in finding the excess

mean-squared error due to DC offsets (as opposed to overall mean-squared error), without loss

of generality, we make the assumption that the optimum filter output, y *(f), equals the reference

signal, S(t). Therefore the excess error signal can be written as

Writing the DC offsets as a vector m in (16) and combining it with (18) results in

Now defining a gradient correlation matrix, R, as

and solving (19) results in the following formula relating the change in coefficients, q, to the DC

offsets and the gradient correlation matrix.

z LR-rm
’ k

w

To obtain the excess mean-squared error, ]]e]]2, due to DC offsets, the definition of mean-squared

error is used with the following manipulations.

Ml2 = E k @k ~~~1

= E kbN04)TWd

= LE [mTR-TRR-lm]
k2

z LmTRmlm
k2

WI

Note from (22) that the value of the excess error due to DC offsets is proportional to the inverse

of the correlation matrix, R. This fact implies that the excess error will increase as the matrix R

becomes more ill-conditioned as a result of the gradient signals becoming more correlated. This
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increased excess error is one reason to look for adaptive recursive structures with near orthonor-

mal gradients. Also note that the level of the input signal affects the excess error through R.

Finally, note that the excess root-mean-squared error value is inversely proportional to the error

amplifier gain, AT, and therefore this amplifier can be used to reduce DC offset effects [16]. It

should be emphasized that the gain factor, k, has another effect; it increases the adaptation rate

which could cause the adaptive loop to go unstable. For this reason, it is usually necessary to

increase the time constant of the LMS integrator by the amount of k. In other words, the step

size, p., should be reduced by the same amount that k is increased.

It should be mentioned here that in the adaptive linear combiner case, the correlation matrix

is not a function of the coefficients, pi, and thus the offset-induced excess error does not depend

on the final transfer-function of the adaptive filter. However, in the adaptive recursive case, the

correlation matrix is a function of the adaptive filter's transfer-function and therefore one

requires a knowledge of the final transfer-function to apply the above offset-induced excess error

formual. Since this final transfer-function is usually not known, one can only hope to obtain

approximate results by estimating the correlation matrix assuming some estimate of the final

transfer-function. This further approximation should not bc a major hindrance for design pur-

poses since DC offset estimates themselves are rough approximations.

4.2. DC Offset for the Sign-data LMS Algorithm

In the sign-data algorithm, the following update equation is used for the coefficient pi:

where sgn [o] represents the Signum function. It is not difficult to show that when DC offsets are

present in a system using the sign-data algorithm, the following equation result for the change
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in coefficients and excess mean-squared error.

Z LR-lm
’ k

and

where R is defined as before and the elements of the signum correlation matrix, R are defined as

iij = Ersgn lI~i~~~l$j~~~l CW
To apply these formulae for the case of white-noise inputs, the matrix R can be easily

obtained using impulse responses, however, it is not clear how one can easily obtain the matrix

k. Fortunately, in the special case where the input has a Gaussian white-noise zero-mean

characteristic, one can find a closed form expression for the elements of R in terms of R.

Specifically, if the input signal has a zero-mean Gaussian distribution, the joint probability den-

sity function, @qx,(XiJj),  between the signals Xi and x; can be written as [19].

@qxjhJjl = XlX2

Using this joint probability function, the term Rij can be found

bability density function over both variables,

WC0

(27)

by integrating the weighted pro-

Performing this integration leads to the following closed form expression3 for the elements of R.

In summary, for the case of zero-mean Gaussian white-noise inputs, (29) can be used to obtain R

and (25) can be used to find the approximate offset-induced excess error for adaptive IIP filters

a It was pointed out by a reviewer that the same result can more easily be obtained through the use of Price's theorem [20] of which a ver-
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using the sign-data algorithm. Note that this same formula gives exact results for the adaptive

linear combiner case using the sign-data algorithm.

4.3. DC Offset Example

In this section, the advantages of choosing a good filter structure for DC offset effects will

be demonstrated by an example. The performance measure used to compare the DC offset effect

for different filter structures is denoted as rO. and is defined as follows.

Here, 2IV is the number of adjustable filter coefficients and vi is a basis vector where the unity

element is in the i’th row. Qualitatively, this performance measure, I’+ gives the value of the

excess mean-squared error averaged over all the different combinations of sign values for

coefficient-update integrator DC offsets having a magnitude value of one.

For the DC offset example, consider a model-matching application where the normalized

reference filter is a 4'th order bandpass filter with a pair of zeros at each of DC and = and poles

at -0.0533lkj 1.0106 and -0.04684~!1~0.8880 (each pole-Q is about 10). The companion form

filter which realizes this transfer-function can be described by the following state-space

coefficients.

0 1 0 0

A= 1 : :  1 b = (31)
-0.81 -0.18027 -l&O6

: 1
&IO3

i :
0.1989

1
cT=[O 0 1.2346 0 ] LI=O

Using the above system in an adaptive filter application would result in 8 variable coefficients

consisting of the bottom row of A matrix and the entire c vector. Calculating the necessary 8x8

R and R matrices and applying (30) results in the value of the performance measure, rOf, to be

sion more suited to our present weds is given in [21].
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3585.

Now consider realizing the same transfer-function using an orthonormal ladder structure

[22]. Such an adaptive filter implementation would result in the following state-space

coefficients.

A= AI.:357

L

0.9357

:
4.!561

0.1!61 : ii
0 a.:618 -%%t31 ib =

0.2;25 1 (321

cT=[-0.606 0 0.101 0 ] d=O

For this structure, the variable coefficients would be the entire c vector and each of the A matrix

elements with the constraint that the shown symmetry is maintained. The performance measure,

rOf, for this orthonormal structure is calculated to be only 66! This number implies that one

could allow approximately seven times the amount of DC offset in the orthonormal design as

compared to the companion form design and yet achieve the same DC offset performance.

Although these number are application specific, it is clear that the choice of filter structure

significantly affects the DC offset performance.

5. Discrete Prototype and Experimental Results

To verify many of the theoretical derivations and check the practicality of this analog adap-

tive filter approach, a third-order discrete prototype was constructed and tested. The prototype is

based on the single-row form shown in figure 5 and, for evaluation purposes, the poles of the

programmable filter are placed at low frequencies - in the 1 KHz range. The basic structure of

the feedback systems used in both the programmable and gradient filters is the orthonormal

ladder structure [22]. For further design details of the discrete prototype, the reader is referred to

i231.
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Fig. 6. Block diagram of a third-order single-row analog adaptive filter.

The block diagram of the prototype is shown in figure 6. There are six coefficients used to

adjust the transfer-function of the programmable filter; Asi ,i=l-3 and ci ,i=l-3. As shown,
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three pole coefficient update blocks arc used to adapt the Asi coefficients while the ci

coefficients are adapted using three zero coefficient update blocks. Note that these coefficient

update blocks use the sign-data LMS algorithm to simplify the multiplication between the gra-

dient and error signals. The gradient signals needed to adjust the ci coefficients are simply the

states, Xi(f), of the programmable filter whereas to adjust the ai coefficients, the gradient signals,

asi( are obtained as the outputs from a gradient filter. Note that the gradient filter is identical

to the feedback circuit used in the programmable filter.

Referring to figure 6, we see that the sign of the gradient signal is multiplied by kz (f) where

k is the amplification constant applied to the error signal to reduce the offset effects as discussed

above. Experimentation confirmed the reduction in offset-induced excess error when increasing

the gain factor, k. It should be pointed out that this gain factor was arbitrarily chosen to be 82

for the discrete prototype and will be difficult to realize for high-frequency circuits. This

difficulty in implementation is one of the major reasons for developing the DC offset formulae.

With these formulae available and a known tolerance on DC offsets, a designer can choose the

minimum error gain factor, k, necessary to meet specifications.

Referring again to figure 6, it is clear that multiplier/summer circuits are required for the

programmable and gradient filters. The circuits realizing these multiplier/summer stages are

based on a MOSFET linearization technique originally proposed for creating fixed continuous-

time integrated filters [24]. Of course, as discussed earlier, many different techniques could be

used to obtain these variable filter coefficients in an integrated version.

Since single-row adaptive filters require some estimate of final pole locations, it was

decided to choose component values so that the non-adapting coefficients corresponded to those

used in the reference filter of the first experiment discussed below. Thus, the following normal-
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ized state-space filter was implemented where the coefficients to be adapted are shown as vari-

ables.

A=
0.98361

-0.9:361 0 1.2!!07 b =
f431 A32 f433 1g z [Cl c2 c3] d=O

:
0.7737

(33)

This normalized state-space system and others to be described were all denormalized such that

time-constant values were placed around the 1 KHz range.

5.1. Model-matching experimental results

In order to test the adaptive filter, the model-matching application was employed where a

white-noise source was applied at both the inputs of the adaptive and reference filters. In the

first experimental example, the reference filter was a third-order lowpass filter with finite

transmission zeros and a pair of complex poles with natural frequency and pole-Q equal to 1.3

and 3.3, respectively. The normalized state-space system for the reference filter was

0.98361
A= -0.9?336 1

-1.z307 -i.:805] b= [ 0.7!37]
12307

(34)0

g= [ 1.5779 0 0.4563 ] d = 0

Note that, except for the coefficients which adapt, this system is the same as that in (33) and

therefore after adaptation, the coefficients A31, A32, and A33 should correspond to 0, -1.2307,

and -1.8805, respectively while c 1, ~2, and c3 should correspond to 1.5779, 0, and 0.4563,

respectively. Thus, this example corresponds to the case where a good structure (the orthonor-

ma1 structure) has been chosen and one knows the exact location of final poles. Although this is

not a realistic case, it is the first experimental result presented.
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Figure 7(a) shows the close matching of the spectra of the reference and adaptive filters

after approximately 1 second of adaptation. To determine the level of mismatch between the

two spectra, the spectra of the error and reference signal are plotted together in figure 7(b). Note

that the error signal is approximately 40 dB below the level of the reference signal indicating a

close level of matching.

In a more realistic experiment, the circuitry for the adaptive filter was left unchanged and

adaptation was performed to two different reference filters as shown in figure 8. In figure g(a),

the reference filter was a third-order notch filter with the complex poles having a natural fre-

quency and pole-Q of 1.6387 and 4.85, respectively. These poles are significantly different than

the previous example yet as seen in figure g(a), the adaptive filter successfully matched the refer-

Fig. 7. Experimental results for third-order lowpass filter.
Vertical scale = 10 dB/div, Horizontal scale = 500 Hz/div.
(a) Signal spectra for a(f) and y (f).
(b) Signal spectra for s(f) and e (l).
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ence filter.  Finally, as shown in figure 8(b), the third-order reference filter was modified to a

second-order bandpass gilter (with a pole-Q of 0.7) implying the adaptive filter must match a

lower order system. For this example, a zero and pole become coincident causing the adaptive

filter’s transfer-function to be reduced from third to second order. With this type of cancellation,

one could argue that the cancelled pole-zero pair might move about in the s-plane and possibly

go into the unstable region of the plane. However, this was not observed during experimentation

although the set-up was left running for well over an hour.

Fig. 8. Experimental results for notch and bandpass examples. In both cases, signal
spectra for s(l) and e (f) are shown.
Vertical scale = 10 dB/div, Horizontal scale = 500 Hz/div.
(a) Third-order notch filter.
(b) Second-order low-Q bandpass filter.
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5.2. DC Offset Experimental Results

In this section, predicted excess mean-squared error due to DC offsets is compared with

experimental results. As the discrete prototype makes use of the sign-data algorithm, the sign-

data excess error formula (25) will be used for predicting the offset effects.

Before proceeding with the comparison, note that (25) predicts the excess rms error that

would result from a known DC offset applied to an initially offset-f&e circuit. However,

unknown DC offsets always exist in the discrete prototype and therefore must be taken into

account as follows. First, measure the rms error, llWLI, due to the unknown DC offsets, ml,

always present in the circuit. Next, apply a known set of DC offsets, rns, to the circuit and

measure the rms error, INlIP, due to rnl+rnz. Then apply the opposite polarity of known offsets,

-mz, to measure Ilk&, due to offsets consisting of ml-rn2. Finally, the following relationship

can easily be derived to determine the rms error, ~~k~~~~~, due to a set of rn2 offsets alone.

llk&lz = w4l; + m4l~ - llWlilI (35)

Using the above approach, experimental vs. theoretical results for DC offsets are comparcd

in Table 1. For these results, the reference and adaptive filter correspond to (33) and (34)

respectively, and each row of Table 1 corresponds to a known DC offset vector of kO.122vi

where vi is a basis vector with a value of unity in the i’th row4.

To measure the rms voltages of the amplified error, IJkeli, a digital-readout true rms meter

was used where it was not a simple matter to obtain the rms value of the output error signal due

to the presence of low-frequency signal components. However, we see from table 1 that all

measurements agree within 20 percent of the theoretical predictions, a reasonable degree of

accuracy considering that all circuit non-idealities other than integrator DC offsets have been

’ The value of 0.122 corresponds to a resistor choice used to inject a current into the virtual-ground of the LMS integrator resulting in an
equivalent DC offset of 122mV.
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Table 1: A comparison of theoretical and experimental results for injected DC offsets. When no
DC offsets applied, ~J~z&,,~ equals 0.2 Vrms. The i’th row corresponds to DC offsets on the i’th
integrator.

ignored and that xms measurements involving noise signals are used.

6. Conclusions

A design approach for continuous-time LMS adaptive recursive filters was presented.

These analog adaptive filters should be capable of higher-frequency operation than their digital

counterparts. However, non-ideal effects such as DC offsets exist which are not present in digi-

tal realizations and so formulae were developed to predict the effects of these DC offsets for

both the LMS and the sign-data LMS algorithms. As well, it was shown that the choice of filter

structure and amplification of the error signal can reduce the DC offset effects. Finally, experi-

mental results with a discrete prototype verified operation of the adaptive technique and the DC

offset formulae derived.
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