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Abstract

This paper presents an approach for implementing continuous-time adaptive recursive

filters. Theresulting filters should be capable of operating on much higher signal frequen-

ciesthan their digital counterparts since no sampling isrequired. With respect to imple-
mentation problems, the effects of DC offsetsisinvestigated and formulae derived so that
these effects can be estimated and reduced. Aswell, it is shown that the DC offset perfor-

mance is strongly affected by the choice of structure for the adaptive filter. Finally, experi-

mental results from a discrete prototype are given wher e accur ate adaptation is observed
and DC offset effects are compared to theoretical predictions.

1. Introduction

Recently, the hardware efficient least-mean-squared (LMS) algorithm was applied to state-
space adaptive recursive filtersin digital form [l]. It is of interest to modify this adaptive digital
approach for use with continuous-time adaptive filters since, in many applications, analog cir-
cuitshave definite advantagesover their digital counterparts. For example, analog circuitsare
often used in applications requiring high-frequency signal-processing capability and/or ones that
require small integrated-circuit area. With thismotivation, thispaper presents adesign metho-
dology for the realization of continuous-time adaptive recursive filters using the LM S agorithm.

(For an overview of adaptive recursivefiltersin the digital realm, the reader isreferred to[2].)

With any adaptive filter, there is a requirement for a programmable filter. This requirement
is one of the reasons that digital-signal-processing has dominated adaptive filter implementations

sincemost digital filtersareinherently programmable by modifying memory locations. Inthe
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analog realm, programmable filters can be created by making use of one of the many techniques
that have been prapased for realizing integrated continuous-time filters [3]. To account for pro-
cess and temperature variations, theseintegrated filters have the ability to tuneintegrator time-
constants implying an inherent programming method that adjusts filter coefficients. This
inherent programmability of integrated continuous-time filters was a strong motivation for
developing the work presented in this paper. As an additional benefit, a recent publication
shows that the work presented here can also be used as a basis for tuning integrated continuous-
timefilters [4].

Previous wor k related to adapting polesin continuous-timefilters can be traced back to
solving optimization problems with analog computers in the 1960’ s[5,6]. By making use of gra-
dient signals together with the LM S algorithm, this analog computer approach resultsin identi-
cal block diagrams to those presented in this paper. However, one mgjor problem with this pre-
vious approach isthat it is only applicable to filters based on the direct-form structure. The
approach presented in this paper extends that basic method to filters with arbitrary structures. It
should be mentioned herethat it has been shown that the choice of structures can significantly
affect the performance of the overall system in the digital realm [ 1] and it will be shown in this

paper that DC offset effects are also greatly affected by structure choice.

In more recent work on continuous-time adaptive recursive filters, experimental results
were given for a second-order adaptive filter using the sequentia-linear-search (SLS) algorithm
[7,8]. The SLS algorithm issimilar to the LM S algorithm in that a steepest-descent search is
performed to locate a minimum in the performance surface. However, rather than using gradient
signals, the gradient is estimated by changing a filter coefficient and then observing the direction

of changein the mean-squared value of the error signal. The problemswith thistechnique arc
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that only one coefficient can be adjusted at atime and moreimportantly, itisdifficultto obtain

an accurate measurement of a deviation in the mean-squared error signal.

The outline of this paper isasfollows. A general approach for continuous-time LM S adap-
tive recursivefilters applicable to arbitrary filter structures is presented in section 2. In section 3,
it isshown how this approach is applied to state-space systems and, in particular, a single-row
adaptive filter. In section 4, the effects of DC offsets are discussed and formulae devel oped to
predict these effects. As well, a simple method to reduce the DC offset effects is presented.
Finally, experimental resultsof adiscrete single-row adaptivefilter prototypeare presentedin
section 5 shotig the practicality of the approach and compares experimental and theoretical

results for DC offset effects.

2. LM S Adaptive Recursive Filters

A block diagram of an adaptive filter is shown in figure 1. The system has two inputs - the
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Fig. 1. Block diagram of an adaptive filter.
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filter input, u(¢), and the reference signal, 8(z). Aswell, an error signal, e (¢), is created asthe
difference between the programmable filter’ s output, y(f), and the reference signal. Describing
the LM S algorithm qualitatively, the goa of the adaptive filter isto minimize the mean-squared
value of the error signal by slowly adjusting (in comparison to the signal frequency) the
transfer-function’ of the programmable filter through the adjustments of the filter coefficientsp;.
In other words, defining an error performance surface as the mean-squared error value for vary-
ing filter coefficients, the LMS algorithm results in a steepest descent search to find a minimum

in that surface.

By minimizing the mean-squared error value, adaptive filterscan be used in avariety of
applications such as channel equalization, noise cancellation, and others [9]. However, one
application worth noting is the “model-matching” application asit is often used for testing pur-
poses. Inthisapplication, asufficiently excitinginput signal, u(f), isinjectedinto the adaptive
filter as well as to an external reference filter. The reference signal ,8(z), is then taken as the out-
put of the reference filter. With this set-up, after adaptation, the transfer-function of the pro-
grammable filter should match that of the reference filter or be some approximation of it. It
should be mentioned here that for the purposes of this paper, we assume the input signal and
reference filter to be stationary. Although non-stationary inputs are the usual case in most appli-
cations and their effects can sometimes dictate the performance of LM Sfilters, the performance

degradation for these types of inputs are beyond the scope of this paper.
To derive the LMS agorithm, we first look at the discrete-time case where a steepest-
descent algorithm in the mean-squared error performance surface can be implemented by realiz-

ing the following equation.

" Although theuse of linear transfer-functions does not strictly apply to adaptive systems since they are non-linear systems, thisidea of
varyingtransfer-functimsis essentially a linearizing assumpticn which is appropriatefor the practical case of slow adaptation.



February 11, 1991 Trans. on CAS

a[E[ez(n)]}
op;
Here, E[e] denotes expectation and p isasmall positive parameter which controlsthe rate of

pi(n+l)=pi(n)— 1)

convergence. Since the partial derivative of the mean-sguared error signal is not practical to
obtain, theinstantaneous squared error is used as an approximation of the mean-squared error
resulting in the LMS algorithm. Making this substitution and using the fact that
e(n)=98(n) -y (n), thefollowing LMS update equation is obtained[9].

pi(n+1)=p;(n) + 2pe (n)p;(n) 2)
In the above equation, ¢;(#) is a gradient signal defined as

¢i(n) = %y)g_) | pepin) 3)

Note that although the instantaneous gradient may often indicate the wrong direction, the aver-

age value of the gradient will be correct.

This discrete-time a gorithm can be extended into the analog domain quite naturally as[10]

pi()= 2#(];8 (M9;(1)d 4
where ¢;(t) is the equivalent analog gradient signal. Note that when p;(¢) becomes a constant
value at a minimum in the performance surface, the average value of the input to the integrator
must be zero. Since the average value of the input to the integrator is defined as the correlation
between the error and gradient signals, this simple observation explains the well-known fact that
the gradient signals must be uncorrelated with the error signal after adaptation is successfully
compl eted.

It is seen from the above adaptation equation that although the signal e(t) isreadily avail-

able, the gradient signal, ¢;(¢) must be obtained. To obtain these gradient signals, one can m&e
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use of a sensitivity formulawhich datesthe changein the output signal to achangein asingle
arm of a signal-flow-graph [ 11,121. Specifically consider the system represented by the signal-
flow-graph in figure 2 where T,., isafilter coefficient in the linear system (shown separately)

and T;;(s) is the transfer-function from node i to nodej. For this system, it can be shown that

oT,
D) o o) Toy(5) ©)

Tinn

Since U (s) does not change as f',,,,, changes, we can also write

AY (<
ai' = Tum(s )Tny (U s). ©6)

mn

In the time domain, this sensitivity formula becomes

_gy?(ﬂ = Ly (Bl (OB (1) (7)

mn
where the symbol ® denotes convolution and #;(¢) is the impulse response of the transfer-

function T;;(s). This sensitivity equation states that the necessary gradient signals can be

obtained for arbitrary linear systems by applying theinput signal to acascade of systemswith

m  Ton n
Tunls) o . To(s)
u o__ Linear System ——O y
.°..........> ......... -
Tyy(s)

Fig. 2. Signal-flow-graph where the armT,,,, is shown separately from the rest of the system.
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the proper transfer functions. Thisapproach (also used in thedigital domain [13]) leadsto the
general block diagram shown in figure 3. It should be mentioned here that the choice of struc-
ture for the programmabl e filter determines the complexity of the gradient filter(s) aswell asthe
performance of the adaptive system[I]. Also of interest isthegain block, Kk, which aswe shall
see, isintroduced to reducethe efectsof DC offsets. Finally, for simplicity, it is assumed that
thei’thfilter coefficient is alinear function of the controlling voltage,p;, created at the output of

the coefficient update integrator in figure 3(b). In fact, for an analog programmable filter, the

o(t)
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N‘th Order y@) - +
u(t)——o0 Programmable 2 —— e(t)
Filter
p1@® [~ pan@®
Filter states
$,1(0)
Gradient LMS
Filter(s)
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~
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0;(2)
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(b)

Fig. 3.  Block diagram of a LMS gradient adaptive filter.
(@) Overdl system.
(b) Details of the LMS block.
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i’th coefficient will most likely he some monotonic non-linear function of the controlling input
voltage. However, it is not difficult to see that this non-linear function will not affect the

steady-state values of the coefficients.

3. State-Space Adaptive Filters

Although the above approach can be used for arbitrary programmable filters, it is not
always clear how much extra circuitry will be required to obtain the necessary gradient signals
or which filter coefficients should be allowed to change in order to obtain arbitrary polesand
zeros while keeping the number of filter coefficients to a minimum. For these reasons, we
choose to implement the programmable filter as alinear system that has a one-to-one correspon-
dence with state-space systems for which these issues axe mathematically well understood. It

should he emphasized here that most titer structures (eg. direct-form, cascade, ladder-
simulation, etc.) are special cases of state-space filtersZ.

An N’th order state-space linear time-invariant system is described by the following equa-

tions:;

sX(s) = AX(s HbU (5) ®)
Y (S) = ' X(s)+dU (s)

whereU (s) istheinput siganl; X(s) isavector of N states, whichinfact aretheintegrator out-
puts; Y (s) isthe output signal; and A, b, ¢, and d are coefficientsrelating these variables. The

transfer-function of the above system is easily shown to be

T(s)=c(sI-A)'b+d 9)
From (9), we can see that the poles of the system are the eigenvalues of A whereas the zeros of

2 In some cases, it is necessary to use a generalized state-space description to maintain one-to-one correspondence between the filter’s
signal-flow-graph coefficients and the state-space elements [14].
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the system are related to all four of the system coefficients. It should be mentioned here that not
all N2 coefficients of A should be adapted independently. In fact, the number of degrees of free-
dom in the coefficients of A should equal the filter order otherwise coefficient drift or improper
adaptation might occur.

To obtain the gradient signals, the approach described in [1] can be easily modified for

continuous-time use resulting inthefollowing coefficient-update formulaefor the state-space

coefficients.

t

Aij®) = 2ufe(D)ay;(t)dr (10)
0
t

bi(e) = 2ufe(V)Bi(0)dt (11)
0
t

ci(t) = 2ufe(mx;i(vdt (12)
0
i

d(t) = 2ufe(Mu(t)dr (13)
0

where all therequired gradient signals, o;(r), Bi(®), x;(¥), and u(r) can beobtained by realizing
the systems shown in figure 4. In figure 4, the programmabl e filter is shown as two separate
blocks corresponding to the state-space describing equations. Specifically, the feedback matrix,
A, and input summing vector, b, implement the firs equation of a state-space system and create
the state signals, x(n), as the outputs of the first block. These state signals together with the sys-
tem input, u, are weighted using the output summing vector, ¢, and the output scalar, d, to obtain
the filter output, y, at the output of the second block. For the gradient filters, each of the blocks
with AT and ¢ also implement the first equation of the state-space system and are part of the tran-
sposed system (aso called the adjoint) of the programmable filter. The transposed filter with

u(n) asitsinput is used to obtain the gradients necessary to adapt the b vector while each of the



February 11, 1991 Trans. on CAS 10

‘I_) x1(2) l

; > :

u(r) —= Ab : ¢d +—— y@®
: B :

...........................................................

: Gradient Filters:
—  B1()
u(r) ——> Alc
: — By ()
—>  0y;(7)
0@ —-—=f Alc ‘
: —> oy (D)
——> ()
w) ——{ Al :
—>  onN ()

Fig. 4. Generating the gradient signals for a general state-space adaptive filter.

other transposed filters is used to obtain gradients to adapt a single column of theA matrix. The

gradients required to adapt the ¢ vector are the statesx;(t), of the programmable filter.

As described in [1], rather than adapting elements occurring in arbitrary locations in a
state-space system, one can significantly reduce the number of computations involved by choos-
ing to adapt the c vector and a single column or row of the A matrix. It was shown that in appli-
cations where estimates of final pole locations are known (or equivalently, only the fine-tuning

of atransfer-function is required), these single column or row filters can significantly improve
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the dynamic range and adaptation performance over the traditional direct-form structure. It
should be mentioned here that these same filters can obtain arbitrary pole and zero locations
assuming an observability or controllability condition is met. In the case a single-column filter,
it is clear from figure 4 that only one transposed filter is required to obtain the necessary gradient
signas. The case of a single-row adaptive filter is shown in figure5 where al the necessary gra-
dient signals are shown to adapt the N’th row and c vector. The b vector contains only one non-
zero element in the N’ th row and is shown as the basis vector vy. Note that no transposed filters

are required since a single row rather than column is being adapted.

4. The Effects of DC Offsets

For analog adaptive filters, it iswell known that DC offsets present in the LM S integrators
(shown infigure 3(b)) can affect system performance [15]. DC offsets at these |ocations cause

the filter coefficientsto beincorrect resulting in an error in the programmablefilter’s transfer-

...........................................................

u(t) —-—> A,vy . c,d —> y(@®)

Gradient Filter

—— o1 (r)

Fig. 5. Generating the gradient signals for a single-row adaptive filter.
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function at all frequencies (not just at DC). To account for the effects of these offsets, analytica
results have been derived for the LM S linear combiner case where only zeros are adjusted[15-
171 The purpose of this section is to show that these same formula can be used to give approx-
imate results for the adaptive IR case where both poles and zeros are adapted. In addition, the
analysis of DC offset effects will be extended to account for adaptive filters making use of the
sign-data LM S algorithm. The sign-data LM S algorithm is a variation on the standard LM S

agorithm and is often used in practicedue to its low circuit complexity| 181.

4.1. DC Offset for theLMS Algorithm
With a DC offset term present at the i’ th coefficient-update integrator, the LMS update for-

mula (4) above becomes

t
i) = 2uf[ke@icaytm]dr (1)
]
wherem; isthe DC offset at the i‘th coefficient-updateintegrator.

At steady state, the coefficient signal p; is a constant value implying
E [ke (£)0;(£)+m;] =0 (15)
Sincem; isaDC level, we can write
E[e®4:(®]= - (16)
Now making the assumption that only small coefficient changes occur due to DC offsets, at

aminimum the error signa can be written as

2N
e =811y ()-3 .ay_a___:) Ap; (17)
i=1 i

where y* (¢) is defined as the optimum output which causes the minimum mean-squared error

and Ap; is defined to be the change in coefficients from their optimum values due to DC offsets.



February 11,199l Trans. on CAS 13

. . . . t
Making use Of vector notation, wewrite the gradient signals, ag;) , asthe vector ¢(r) and the
[

changein coefficients, Ap;, asthe vector g. Also, sincewe are interested in finding the excess
mean-squared error due to DC offsets (as opposed to overall mean-squared error), without loss
of generality, we make the assumption that the optimum filter output, y*(t), equals the reference
signal, &(r). Therefore the excess error signal can be written as

e()=—4"(0)q (18)
Writing the DC offsets as a vector m in (16) and combining it with (18) resultsin

E[6e0" ()a] =~ 19)

Now defining a gradient correlation matrix, R, as
R = E[6(t)¢” ()] (20)
and solving (19) resultsin the following formula relating the change in coefficients, g, to theDC

offsets and the gradient correlation matrix.

q=-R'm 1)
To obtain the excess mean-squared error, Jlei2, due to DC offsets, the definition of mean-squared

error is used with the following manipulations.

lleli = E [e (t)e ()]
= E [q7 o) (r)q]
=1g m'RTRR ' m]
k2

1 -
= —k7mTR 'm (22)

Note from (22) that the value of the excess error due toDC offsets is proportional to the inverse

of the correlation matrix, R. Thisfact implies that the excess error will increase as the matrix R

becomes more ill-conditioned as aresult of the gradient signals becoming more correlated. This
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increased excess error is one reason tolook for adaptive recursive structures with near orthonor-

mal gradients. Also note that the level of the input signal affects the excess error through R.

Finally, note that the excess root-mean-squared error value is inversely proportional to the error
amplifier gain, k, and therefore this amplifier can be used to reduce DC offset effects [16]. It

should be emphasized that the gain factor, &, has another effect; it increases the adaptation rate
which could cause the adaptive loop to go unstable. For thisreason, it isusually necessary to

increase the time constant of the LM Sintegrator by the amount of k. In other words, the step

size, p, should be reduced by the same amount that k is increased.

It should be mentioned here that in the adaptive linear combiner case, the correlation matrix
is not afunction of the coefficients, p;, and thus the offset-induced excess error does not depend
on the final transfer-function of the adaptive filter. However, in the adaptive recursive case, the
correlation matrix is a function of the adaptive filter's transfer-function and therefore one
requires a knowledge of the final transfer-function to apply the above offset-induced excess error
formual. Since thisfinal transfer-function is usually not known, one can only hope to obtain
approximate results by estimating the correlation matrix assuming some estimate of the final
transfer-function. Thisfurther approximation should not bc amajor hindrance for design pur-

poses since DC offset estimates themselves are rough approximations.

4.2. DC Offset for the Sign-data LM S Algorithm

In the sign-data algorithm, the following update equation is used for the coefficientp;:

t
pi0)=20f[e sgnio(o | @3)
0
where sgn [¢] represents the Signum function. It is not difficult to show that when DC offsets are

present in asystem using the sign-dataal gorithm, thefollowing equation result for the change
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in coefficients and excess mean-squared error.

q=—R" 24)

1
k
and
1 ~ T -

llel® = FmTR TRR'm 25)

where R is defined as before and the elements of the signum correlation matrixR are defined as
Rij=Elsgn [¢:(0)10;(0)] 26)

To apply these formulae for the case of white-noise inputs, the matrix R can be easily
obtained using impul se responses, however, it is not clear how one can easily obtain the matrix
R. Fortunately, in the special case where the input has a Gaussian white-noise zero-mean
characteristic, one can find a closed form expression for the elements of R in terms of R.
Specificaly, if the input signal has a zero-mean Gaussian distribution, the joint probability den-

sity function, @y, (x;,x;), between the signals x; and x; can be written as [19].

1 % -1 Ry Ry
<I)’“"i(""’x")=[41:2[RR R2]] XP[ —2—["‘"2][1?; Rz] sz (27)

Using thisjoint probability function, the term R,-j can be found by integrating theweighted pro-

bability density function over both variables,

—50—00

Performing this integration leads to the following closed form expression’for the elements of R

- 2R% |
R;j= [ ——J'] (29)
In summary, for the case of zero-mean Gaussian white-noise inputs, (29) can beused to obtain R

and (25) can be used to find the approximate offset-induced excesserror for adaptiveIIR filters

3|t was pointed OUt by a reviewer that the same result can more easily be obtained through the use of price'¢heorem [20] of which a ver-
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using the sign-data algorithm. Note that this same formulagives exact resultsfor the adaptive

linear combiner case using the sign-data algorithm.

4.3. DC Offset Example

In this section, the advantages of choosing a good filter structure for DC offset effects will

be demonstrated by an example. The performance measure used to compare the DC offset effect

for different filter structuresis denoted asI'oy and is defined as follows.

Top= 2viTﬁ'Tﬁ'lvi (30)
i=
Here, 2N isthe number of adjustablefilter coefficientsand v; isabasisvector where the unity
element isinthei’th row. Qualitatively, this performance measure, I, givesthe value of the
excess mean-squared error averaged over all the different combinations of sign values for

coefficient-update integrator DC offsets having a magnitude value of one.

For the DC offset example, consider a model-matching application where the normalized
reference filter is a4'th order bandpass filter with a pair of zeros at each of DC and = and poles
at —0.05331+; 1.0106 and —0.04684+,0.8880 (each pole-Q is about 10). The companion form

filter which realizes this transfer-function can be described by the following state-space

0 ! 0 0

0 0 0 1. 0 1

A=l o o o 1 -1 o 31)
-0.81 -0.18027 —1.82506 ~0.2003 0.19

¢f'=[0012346 0 1d=0
Using the above system in an adaptive filter application would result in 8 variable coefficients

coefficients.

consisting of the bottom row of A matrix and the entire c vector. Calculating the necessary 8x8

R and R matrices and applying (30) resultsin the value of the performance measure, T4, to be

sion more suited to our presentneeds is given in{21].
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3585.

Now consider realizing the same transfer-function using an orthonormal ladder structure

[22]. Such an adaptive filter implementation would result in the following state-space

coefficients.
0 09357 0 0 0
_|09357 "0 01561 0 1 o
A= 70" 01561 0 09618 [°=!| o (32)
0 0 —0.9618 —0.2003 0.2525

¢ =[-0.606 0 0.101 0 ]d=0
For this structure, the variable coefficients would be the entire ¢ vector and each of theA matrix

elements with the constraint that the shown symmetry is maintained. The performance measure,
[,g, for this orthonormal structure is calculated to be only 66! This number implies that one
could alow approximately seven times the amount of DC offset in the orthonormal design as

compared to the companion form design and yet achieve the same DC offset performance.
Although these number are application specific, it is clear that the choice of filter structure

significantly affects the DC offset performance.

5. Discrete Prototype and Experimental Results

To verify many of the theoretical derivations and check the practicality of this analog adap-
tive filter approach, a third-order discrete prototype was constructed and tested. The prototype is
based on the single-row form shown in figure 5 and, for evaluation purposes, the poles of the
programmable filter are placed at low frequencies- inthe 1 KHz range. The basic structure of
the feedback systems used in both the programmable and gradient filters is the orthonormal

ladder structure [22]. For further design details of the discrete prototype, the reader is referred to

1231.
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Fig. 6. Block diagram of a third-order single-row analog adaptive filter.

The block diagram of the prototype is shown in figure 6. There are six coefficients used to

adjust the transfer-function of the programmable filter; As;,i=1-3 and ¢;,i=1-3. As shown,
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three pole coefficient update blocks arc used to adapt the Aj; coefficients while the ¢;
coefficients are adapted using three zero coefficient update blocks. Note that these coefficient

update blocks use the sign-data LM S algorithm to simplify the multiplication between the gra-
dient and error signals. The gradient signals needed to adjust the ¢; coefficientsare ssmply the
states, x;(t), of the programmable filter whereas to adjust thea; coefficients, the gradient signals,
os;(2), are obtained as the outputs from a gradient filter. Note that the gradient filter isidentical

to the fesdback circuit used in the programmable filter.

Referring to figure 6, we see that the sign of the gradient signal is multiplied bye (r) where
k is the amplification constant applied to theerror signal to reduce the offset effects as discussed
above. Experimentation confirmed the reduction in offset-induced excess error when increasing
thegainfactor, k. It should be pointed out that this gain factor was arbitrarily chosen to be 82
for the discrete prototype and will be difficult to realize for high-frequency circuits. This
difficulty in implementation is one of the major reasons for developing the DC offset formul ae.
With these formulae available and a known tolerance on DC offsets, a designer can choose the

minimum error gain factor, k, necessary to meet specifications.

Referring againto figure 6, it isclear that multiplier/summer circuitsarerequired for the
programmable and gradient filters. The circuits realizing these multiplier/summer stages are
based on a MOSFET linearization technique originally proposed for creating fixedcontinuous-
time integrated filters [24]. Of course, asdiscussed earlier, many different techniques could be

used to obtain these variable filter coefficients in anintegrated version.

Since single-row adaptive filters require some estimate of final pole locations, it was
decided to choose component values so that the non-adapting coefficients corresponded to those

used in the reference filter of the firgt experiment discussed below. Thus, the following normal-
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ized state-space filter was implemented where the coefficients to be adapted are shown as vari-

ables.
0 0.98361 0 0
A= | -0.98361 0 1.2307 b= 0 (33)
Az Az Az 0.7737

¢ =[c; cac31d=0
This normalized state-space system and others to be described were all denormalized such that

time-constant values were placed around the 1 KHz range.

5.1. Model-matching experimental results

In order to test the adaptive filter, the model-matching application was employed where a
white-noise source was applied at both the inputs of the adaptive and referencefilters. In the
first experimental example, the reference filter was a third-order lowpass filter with finite
transmission zeros and a pair of complex poles with natural frequency and pole-Q equal to 1.3
and 3.3, respectively. The normalized state-space system for the reference filter was

0 0.98361 0 0
A=1] -09836 1 0 12307 | b= 0 (34)
0 -1.2307 -1.8805 0.7737

¢ =[ 157790 04563] d=0
Note that, except for the coefficients which adapt, this system is the same as that in (33) and

therefore after adaptation, the coefficients A3y, A3y, and A33 should correspond to 0O, -1.2307,
and -1.8805, respectively while ¢y, ¢4, and ¢3 should correspond to 1.5779, O, and 0.4563,
respectively. Thus, this example corresponds to the case where agood structure (the orthonor-
mal structure) has been chosen and one knows the exact location of final poles. Although thisis

not arealistic case, it is thefirst experimental result presented.
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Figure 7(a) showsthe close matching of the spectra of the reference and adaptive filters
after approximately 1 second of adaptation. To determinethe level of mismatch between the
two spectra, the spectra of the error and reference signal are plotted together in figure7(b) Note
that the error signal is approximately 40 dB below the level of the reference signal indicating a
close level of matching.

In amore realistic experiment, the circuitry for the adaptive filter was left unchanged and
adaptation was performed to two different reference filters as shown in figure 8. In figure 8(a),
the reference filter was a third-order notch filter with the complex poles having anatural fre-
guency and pole-Q of 1.6387 and 4.85, respectively. These poles are significantly different than

the previous example yet as seen in figure 8(a), the adaptive filter successfully matched therefer-

(a) (b)

Fig. 7. Experimental results for third-orderlowpass filter.
Vertical scale= 10dB/div, Horizontal scale= 500 Hz/div.
(a) Signal spectraford(t) andy (z).
(b) Signal spectrafor &(r) and e (z).
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ence filter. Finally, as shown in figure 8(b), the third-order reference filter was modified to a
second-order bandpass gilter (with a pole-Q of 0.7) implying the adaptive filter must match a
lower order system. For this example, a zero and pole become coincident causing the adaptive
filter's transfer-function to be reduced from third to second order. With this type of cancellation,
one could argue that the cancelled pole-zero pair might move about in the s-plane and possibly

go into the unstable region of the plane. However, this was not observed during experimentation

athough the set-up was left running for well over an hour.

(@) (®)

Fig. 8. Experimental results for notch and bandpass examples. In both cases, signa
spectrafor 8(r) and e (¢) are shown.
Vertica scale= 10 dB/div, Horizontal scale = 500 Hz/div.
(a) Third-order notch filter.
(b) Second-order low-Q bandpass filter.
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5.2. DC Offset Experimental Results

In this section, predicted excess mean-squared error dueto DC offsetsis compared with
experimental results. Asthe discrete prototype makes use of the sign-dataalgorithm, the  sign-

data excess error formula (25) will be used for predicting the offset effects.

Before proceeding with the comparison, note that (25) predicts the excess rms error that
would result from a known DC offset applied to an initially offset-f&e circuit. However,
unknown DC offsetsalwaysexist in the discrete prototype and therefore must be taken into
account asfollows. First, measure the rmserror, llkellm,,» dueto the unknown DC offsets, my,
always present in the circuit. Next, apply a known set of DC offsets, my, to the circuit and
measure the rms error, [kel|,, due to m;+my. Then apply the opposite polarity of known offsets,
—my,, to measure |lke|l,, due to offsets consisting of m;—m,. Finally, thefollowing relationship

can easily be derived to determine the rms error, |lkelln,, due to a set of m; offsets alone.

lkellZ, = Yalikell3 + Yalikell2 — likellZ, (35)
Using the above approach, experimental vs. theoretical results for DC offsetsare comparcd
in Table 1. For these results, the reference and adaptive filter correspond to (33) and (34)

respectively, and each row of Table 1 corresponds to a known DC offset vector of 10.122v;
where; isabasis vector with avalue of unity in the i’ th row®.

To measure the rmsvoltages of theamplified error, [lke]], adigital-readout true rms meter
was used where it was not a simple matter to obtain the rms value of the output error signal due
to the presence of low-frequency signal components. However, we see from table 1 that all
measurements agree within 20 percent of the theoretical predictions, a reasonable degree of

accuracy considering that all circuit non-idealities other than integrator DC offsets have been

¢ The value of 0.122 corresponds toa resistor choice used to inject a current into the virtual-ground of theLMS integrator resulting in an
equivalent DC offset oft22mV.
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i | Corresponding Experimental | Theoretical | Percentage
Coefficient likell, | likelln %€ llm, [k llm, Error
1 cy 1.1 0.7 0.9 0.77 17
2 (P 0.31 0.36 0.27 0.281 -4
3 c3 0.33 0.26 0.22 0.22 0
4 A3 04 0.34 0.31 0.275 13
5 A3 0.7 0.51 0.58 0.575 1
6 As3 0.7 0.46 0.56 0.538 4

Table 1. A comparison of theoretical and experimental results for injected DC offsets. When no
DC offsets applied, Jikelln, €quals 0.2 Vrms. Thei’th row correspondsto DC offsets on thei’th

integrator.

ignored and that rms measurements involving noise signals areused.

6. Conclusions

A design approach for continuous-time LM S adaptive recursive filters was presented.
These analog adaptive filters should be capable of higher-frequency operation than their digital
counterparts. However, non-ideal effects such as DC offsets exist which are not present in digi-
tal realizations and so formulae were devel oped to predict the effects of these DC offsets for
both the LM S and thesgn-data LM S algorithms. As well, it was shown that the choice of filter
structure and amplification of the error signal can reduce the DC offset effects. Finally, experi-
mental results with a discrete prototype verified operation of the adaptive technique and the DC

offset formulae derived.
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