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Abstract

Continuous time Markov chain (CTMC) models are frequently employed in medical research to
study disease progression, but are rarely applied to the transtheoretical model (TTM), a
psychosocial model widely used in studies of health-related outcomes. The TTM often includes
more than three states and conceptually allows for all possible instantaneous transitions (referred
to as general CTMC). This complicates the likelihood function because it involves calculating a
matrix exponential that may not be simplified for general CTMC models. We undertook a
Bayesian approach wherein we numerically evaluated the likelihood using ordinary differential
equation solvers available from the GNU scientific library. We compared our Bayesian approach
with the maximum likelihood (ML) method implemented with the R package MSM. Our
simulation study showed that the Bayesian approach provided more accurate point and interval
estimates than the ML method, especially in complex CTMC models with five states. When
applied to data from a four-state TTM collected from a nutrition intervention study in the Next
Step Trial, we observed results consistent with the results of the simulation study. Specifically, the
two approaches provided comparable point estimates and standard errors for most parameters, but
the ML offered substantially smaller standard errors for some parameters. Comparable estimates
of the standard errors are obtainable from package MSM, which works only when the model
estimation algorithm converges.

Keywords

Bayesian data analysis; Longitudinal categorical data; Markov chain models; Metropolis Hastings
algorithm; Transtheoretical model

1 Introduction

Continuous time Markov chain (CTMC) models (also known as multi-state Markov models)
have a wide range of applications in medical research. They are very useful when the
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research interest is the progression or control of a chronic disease, for instance, HIV

2, or asthma>. These models have also been applied in health

infection!, breast cancer
promotion, including cancer screening® and nutrition interventions>. However, application of
CTMC modelling is limited in the transtheoretical model (TTM), a psychosocial model
widely used to study health-related outcomes®. The TTM often has more than three states
and conceptually allows for all possible instantaneous transitions (referred to as a general
CTMC). Throughout this article, we use the term “instantaneous transition” to denote a
direct one-step transition from one state to another without requiring an intermediate
transition. In other words, an individual may make “spontaneous” jumps from the current
state to any other state without experiencing the intervening states’-3. Conventionally, data
from longitudinal TTMs have been analyzed using discrete time Markov chain models® or
generalized multinomial logit models>. These approaches require a balanced data structure
(in terms of the time points at which the measurements were taken). When the data are not
balanced, neither of these approaches are suitable, and complex statistical models might be
necessary 0. There is a large body of literature that supports the TTM; however,
mathematical approaches to quantify these transitions between states have not been
sufficiently studied®-11.

In CTMC models, the transition probabilities are calculated as P(#) = e where Q is the
intensity/infinitesimal matrix and #is the time between two observed states. The likelihood
function of a general CTMC model is complex and the calculation of the probabilities of
P(?) involve solving a matrix exponential, which can be mathematically difficult!2. The exact
analytical forms of the likelihood functions are available for two-state and three-state
general CTMC models!3-14, where the transition probabilities are obtained by solving
ordinary differential equations. Moreover, eigensystem decomposition techniques are often
employed to obtain an analytical expression of the likelihood!-15:16_ In principle, this
approach is applicable to any general CTMC model, but it fails when repeated eigenvalues
exist. In contrast, the analytical form of the likelihood function is not required for Bayesian
approaches, and the likelihood can be numerically calculated, for example, by solving
ordinal differential equations!!-17:18:19 Though both the maximum likelihood (ML) method
and the Bayesian approach have been widely applied to address different biological
questions, their relative performances for general CTMC models have not been empirically
examined.

We undertook a Bayesian approach to analyse longitudinally measured categorical data from
a TTM of health behavioural change, for which the transitions of the outcome variables over
time for each individual were assumed to follow a CTMC model. In this approach, the
likelihood is numerically evaluated using ordinary differential equation solvers available
from the GNU scientific library (http://www.gnu.org/software/gsl/), and posterior samples
are generated with the Metropolis Hastings (MH) algorithm. Welton and Ades!” described
how to implement Bayesian CTMC models by solving P(f) = e?! with the WinBUGS
differential interface of WBDiff. Though this approach can be used for general CTMC
models in principle, their focus was on models with some restrictions (e.g., forward 4-state
models with state 4 being an absorbing state). An R package, MSM, has been developed to
handle CTMC models using standard optimization algorithms within the ML framework!6.
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The analytical expression of the likelihood, if it exists, is obtained from symbolic algebraic
software, and otherwise, eigen decomposition or Pade approximates (repeated eigenvalues)
are used. We conducted simulation studies to evaluate the validity of the proposed method,
as well as to compare it with the ML method implemented with the R package MSM.

We organise this article as follows: In Section 2, we introduce and formulate the CTMC
model and discuss Bayesian implementation of the model and its goodness of fit. In Section
3, we report the results of a simulation study conducted for general four-state and five-state
Markov chain models. In Section 4, we apply our method to the Next Step Trial data. In
Section 5, we discuss our conclusions, and in Section 6, we report limitations of this study.

In medical research, models that incorporate death as the absorbing state are normally
referred to as “illness-death” models or “forward” models if backward transitions are not
allowed. In contrast, for a general (or recurrent) model, which is of interest in this study, a
subject can move from one state to any other state without restriction. In this study, we treat
the TTM model as a four-state recurrent model and represent its four states/stages by
precontemplation (P), contemplation (C), action (A) and maintenance (M). (We use state and
stage synonymously in this article.) An example of a forward model is one in which state M
represents death, in which case transitions from state M to any other state would not be
biologically possible. Though the proposed method can be applied to such models that
include restrictions, in this study, we focus on models with unrestricted movement among
multiple states.

2.1 The Likelihood

Consider a longitudinal study in which individuals can move among .S stages. Assume that
the subject is measured repeatedly at times #,1, {2, -.., lknk With outcomes denoted by
yktk,1)s Yk(Lg ) and recorded as 1,2,...,.5, where k=1, 2, ... m is the number of subjects in
the study and 1z is the number of observations on subject &. Let P(f) denote the $'x .S
transition probability matrix, with entries pij=p[yk(s + 0 = j|yi(s) = 1] for 4, =1, 2,...,s. The
stochastic process can be fully described by the infinitesimal transition matrix Q = g;; such
that qj/(t) >0 and —g;;=X i 9if for 7, j=1,2,...,s. Under these assumptions, the time that a
subject spends in state 7is exponentially distributed with the mean of 1/g;; and when that
subject’s state is about to change in the next instant, he or she will move from state 7 to state
J with the probability of g;/g;;for i # 21 Let @denote the S(S— 1) dimensional parameter
vector, which consists of all entries of g;;in @ for 7 #/. The transition probability matrix P(¢)

~a .If.'I’ 3

n
Q !

is determined by the infinitesimal matrix, which is given as P {t):ch:I +Z
with P(0) = I?V. The likelihood function is given as

n=I

we T

L(0ly)=TT11 pue Fraer) sy (trg) (bt — iy — ol — 1)]
f—11=2 (1
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where y = (y1.y2,- ..y m)- Note that equation (1) is indeed a function of the model parameters
of Q. If there are restrictions on the instantaneous transition, we can specify the model by
setting the corresponding rate g;;= 0. For example, we can specify the model as gg;= 0 for 7
=1, 2,..., sfor a model with an absorbing state. In addition, after estimating the model
parameters, we can calculate the transition probabilities within a given time interval.

2.2 Priors and Posterior Distributions

In general CTMC models, the parameters in 8= {q,-j: Lj=1,2,..., Sand 7 #/} are
restricted, (i.e., greater than or equal to 0); thus, independent gamma distributions that have
the same support as the restrictions of @ are chosen as priors. Let

denote the joint prior distribution for g;; where 7 j=1, 2,...,85and 7 #/. The hyper-
parameters a;= 0.001 and b;;= 100 were chosen, so that the priors in 2 have a mean of 0.1
and a variance of 10 and are considered as flat priors. For restricted parameters, log
transformations are often recommended to improve the performance of the samplingZ2. In
this research, we adopt the log transformation on all parameters, i.e., A;;= log(g;), A j; €
(—00,00) for 7, j=1, 2,...,5 and 7 #j. The logarithm of the transformed posterior distribution

is given by
c Y m 2k 5 s {.3)?-3
log (p (Aly)) = [ZZEUQ‘{P e (trer 1 )own (et (tes — tﬁ:.x—ﬂ}]-l'z Z (@ijAij — TJ-.
k=11=2 i=1j=1,j#i i3)

where A is the parameter vector of A i for i, j=1, 2,...,5and 7 #/. Then the parameter @is

transformed back as 7= {QJZj:e/\l"" d,7=1,2,...,Sand i # }} in the sampling process during
the implementation of the Bayesian estimation procedures.

In the Bayesian framework, previous information/knowledge, which may be derived from
data in similar historical studies, can be integrated as informative priors to improve model
estimation. For example, we can use priors of gamma distributions for which the means are
around the point estimates of the model parameters. These point estimates can be
approximately estimated!*. Sensitivity studies are often conducted by comparing posterior
inferences with different magnitudes of the variance, e.g., strong informative (small
variance) or weak informative (large variance)23-2% In this article, we employ flat priors in
both the simulation and case studies. These priors perform satisfactorily; hence, we do not
explore other priors.

2.3 Bayesian Implementations

This research takes advantage of time efficiency in the C programming language and
effectiveness in the fourth-order Runge-Kutta method for solving differential
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equations(GSL-GNU Scientific library; http://www.gnu.org/software/gsl/). The combination
of these approaches can help to overcome the difficulty of solving the equation of P(?),
which is essential when implementing the Bayesian method. In addition, we use the generic
MH algorithm to sample the posterior distributions on the proposed density of MAS™!, ¢X).
This multivariate normal distribution is centered at the current sample of AC‘I, where X is
the variance-covariance matrix. The constant c is adjustable so as to maintain an optimal
acceptance rate around 23%, or around 20% when there are no standard forms for the
conditional distributions?3. Note that the acceptance rate is defined as the percentage of
samples that are accepted via the MH algorithm.

Drawing multivariate normal values in C'language is not immediately available; thus, we
draw independent standard normal variables and use the Cholesky decomposition technique
to generate the desired multivariate normal distributions. Let X be a vector of independent
identically distributed variables of the standard normal distribution, and ¥ = LLT where L
and L7 are the upper and lower triangular matrices, respectively. Then we have Var(LX) =

LV ar(X) LT = X. The multivariate normal distribution can be obtained with this algorithm
using random sample X and pre-specified matrix L. Note that if L is a diagonal matrix, we
will have independent variables for the components of X. In all simulation studies and in the
analysis of real data, we apply independent proposal densities. Given the initial values A°,
the sampling procedure goes as follows:

1. Draw a sample of A* from the proposal density of MAS™!,cE).
Compute the value of p = log{ (A*)} — log{p(AS™1)}.

2
3. Draw a random uniform variable z € (0,1), and calculate n = log(u).
4 If n <p, set AG = A*; otherwise, set AG = AG-T,

5

Repeat steps 1—4 until a desired set of samplings is obtained.

After generating the desired number of samples from the MH algorithm, we transform the
parameters back as g;;= eM, for ij=1,2,3 ....Sand i #j. We run three parallel chains with
over-dispersed initial values for both the case and simulation studies, and calculate the
Brooks-Gelman statistic ;. The results we report in this article are calculated using samples
with 7z < 1.1, which are considered to be converged?3. For Bayesian inference, we compute
the sample means as the point estimates and use the 2.5% and 97.5% quantiles to construct
the 95% credible intervals.

2.4 AIC, DIC, and Goodness-of-fit tests

In a frequentist framework, Akaike’s information criterion (AIC) has been widely applied
for model selection. The deviance information criterion (DIC) is a hierarchical modelling
generalization of the AIC23. A smaller value of AIC or DIC indicates a better fitting model.
Since instantaneous transitions are generally not observable in CTMC models, it is
important to check how well the model fits the datal-15:10-25_ A Pearson-type goodness-of-fit
statistic has been proposed; however, it does not have a X2 distribution, and the bootstrap
technique was used to describe the whole distributionZ®. In the Bayesian framework, model
checking is often conducted by using posterior predictive values, which is analogous to the
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aforementioned bootstrap technique. Letting 7{y, ) be the test quantity (i.e., number of
transitions in this study) that measures the discrepancy between the fitted model and the
data, the Bayesian predictive p-value is then defined as PB = Pr{ T(y"*P, 6) > Ty, 6)}, where
y™eP represents the predicted values of the data?3. Extreme values of PB greater than 0.95 or
less than 0.05 are normally considered to indicate a significant discrepancy between the data
and the model. We calculate AIC/DIC and perform a goodness-of-fit test only for the
analysis of real data.

3 Simulation Studies

In this section, we describe the simulation studies we conducted to examine the proposed
methods for analysing general recurrent four-state and five-state CTMC models. For each
setting, we first selected a  matrix, and then simulated data sets under the Markov
assumption. That is, the sojourn time of the process in any state has an exponential
distribution with parameters of the diagonal entries of Q. When the process is about to
change its state, the probability of moving to one of the next possible states (other than the
current state) is q,/q,;, j=1,2,3,..., S, and j #i Readers are referred to?” for more details
of how to simulate CTMC data.

3.1 Interval Time of 1

In all settings, we simulated 1000 duplicate data sets and set the observation time intervals
equal to one for all subjects. For each duplicate data set, we generated 400 subjects and
associated each subject with 13 visits to measure the outcomes. We do not include the results
from some data sets as they failed to meet the convergence criteria. To fully examine the
proposed method, we report the percentage of bias (PB) for each parameter, along with its
bias, standard deviation (SD), square root of the mean of the estimated variance, or standard
error (SE), mean of the squared error (MSE), and nominal coverage probability (CP). Note
that we calculated the percentage of bias as the bias divided by the true value times 100. In
addition, all results are based on data sets that meet the convergence criteria. For the

Bayesian method, the criterion is < 1.1 while for the ML method, the criterion is that the
Hessian approximation of the log-likelihood at the reported solution is positive definite.

Table 1 presents the results for a recurrent five-stage model and is based on 851 and 715 data
sets (out of 1000) for the respective Bayesian approach and ML method implemented in the
MSM package with the default settings (version 1.1.4). We generated 100 000 samples for
each chain and dropped the first half, leaving the second half for inferences. The acceptance
rate was about 16%. For the Bayesian approach, the point estimates were all accurate, the
SDs and SEs were very close, and the CPs were all approximately 95%. The performance of
the ML method was poor in comparison. We observed large biases (e.g., 21.1% for ¢3,) and
low coverage probabilities (e.g., 16 of 20 were less than 90%, 6 of 20 were less than 80%,
and the lowest one was merely about 27%). Many parameters had noticeably smaller
estimated SEs compared to the corresponding SDs (e.g., for q13, the SD was 0.04, and the
SE was 0.029); and some had dramatically underestimated SEs (e.g., for g53, the SD was
0.041, and the SE was 0.006). To further examine the performances of these methods, we
conducted simulation studies for the five-stage models with two extra sets of parameters. We
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found consistent performances for the proposed Bayesian approach and the ML method
implemented in the MSM package (Tables 7 and 8, Appendix A).

Table 2 shows the results for a general, recurrent four-state model, and is based on 966 and
908 data sets for the respective Bayesian approach and ML method implemented in the
MSM package. We again generated 100 000 samples for each chain and dropped the first
half, leaving the second half for inferences. The acceptance rate was about 20%. The point
estimates were all accurate and comparable for the two approaches, while the ML method
again provided underestimated SEs for some parameters, particularly g3, and g43.

3.2 Increased Interval Time of 1.5

As a final comparison of the proposed Bayesian model and the ML method, we conducted
simulation studies for the five-state general CTMC model, as shown in Table 1, but with the
observational time intervals set at 1.5. Our purpose was to investigate the results achieved
when the intervals used to monitor transitions between states were increased. We noticed
convergence issues for both the Bayesian and the ML methods, e.g., only 493 and 112
respective data sets had results that met the convergence criteria. The mean sojourn times
(MSTs) for this five-state model were 1.23, 2.63, 1.22, 1.16, and 1.16 for the respective
states of 1, 2, 3, 4, and 5. The observational time intervals (1.5) were longer than most of the
MSTs, which may explain the poor convergence rates (493/1000, 112/1000) for both
methods. Moreover, the Bayesian method offered similar results compared to those obtained
when the observational time interval was 1; whereas the ML method performed worse with
noticeably larger biases (Table 9, Appendix A). Similar results were obtained for a general
four-state model, except that the convergence rates were 344/1000 and 497/1000 for the
Bayesian and ML methods, respectively (Table 10, Appendix A).

From these results, we conclude that the proposed Bayesian approach performed better than
the ML method implemented with the MSM package, especially for the complex model with
five states, resulting in a total of 20 parameters. The SEs from the MSM package were
obtained from Hessian approximation by default and were expected to be underestimated,
resulting in lower CPs1-28:29 The SEs can be well calibrated with the bootstrap approach,
which is available in the MSM package. We did not implement the bootstrap approach in the
simulation studies; however, we did apply it to the case study reported in Section 4.

4 Application to the Next Step Trial Data

4.1 Data Description

The Next Step Trial was a randomized trial of colorectal cancer screening and nutrition
interventions in the work place of employees of the automobile industry. Data were collected
from participants in the trial at baseline and yearly for two years. The outcome variable for
our study was the stage of dietary change in fat consumption, classified into five stages
(precontemplation, contemplation, preparation, action, or maintenance) in the TTM
model’30-31, The analyses we report in this article were based on a cohort of 1,758 male
employees who completed dietary assessments of the stage of change in fat consumption at
all three survey time points. Among these survey participants, the mean age at baseline
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(£SE) was 58.3 £10.7 years, the mean number of years of education (+SE) was 13.6 £2.6,
1,693 (97%) were white, 1,588 were married (90%), and 853 (49%) were retired. The data
were not sufficient to estimate transitions from preparation to the other stages; thus, we
combined the stages of contemplation and preparation and labeled them as contemplation.
The resulting four stages in our study were precontemplation (P), contemplation (C), action
(A) and maintenance (M). The proportions of participants in each of these stages at baseline
were 8.7%, 18.7%, 40.8% and 31.8% for P, C, A and M, respectively. The average length of
follow-up was 1.04 years, and the median was 1.03 years (95% were within 0.78-1.29
years). The numbers of transitions were (127, 66, 75, 23) from stage P to stages P, C, A and
M, respectively; (72, 220, 265, 58) from stage C to stages P, C, A and M, respectively; (54,
221,901, 308) from stage A to stages P, C, A and M, respectively; and (32, 84, 262, 748)
from stage M to stages P, C, A and M, respectively.

4.2 Results for Parameters of the Infinitesimal Matrix

At the outset, we ran three parallel chains for the proposed Bayesian method with over-
dispersed initial values, as discussed in Section 2.3. We generated 120 000 samples for each
chain and dropped the first half, leaving the second half for inferences. The acceptance rate

was 23%, with a Brooks-Gelman statistic of j; < 1 1 for all parameters. We calculated the
DIC as 7351.5. For the MSM package, using the recommended initial values, the asymptotic
standard errors could not be calculated and the optimization algorithm did not converge. In
this situation, users of MSM may have difficulty finding the optimum values. We therefore
tried different initial values. The smallest value of deviance among the models we tried was
7328.0, and the AIC was calculated as 7328.0+24=7352.0. The quantities of DIC and AIC
were close, which was expectedzz. Note that the DIC and AIC were used for model
selection, and turned out to be helpful for the selection of the optimal estimates for the ML
method.

In Table 3, the point estimates from the MSM package and the Bayesian approach are
relatively close, and the SEs for ¢35, 42, g43 obtained from the ML method implemented
with the MSM package are smaller than those obtained from the Bayesian approach.
Further, for these three parameters, the 95% confidence intervals obtained from the MSM
package were obviously narrower than the corresponding 95% credible intervals obtained
from the Bayesian approach. This was consistent with our simulation results. As the last
step, we performed goodness-of-fit tests. For simplicity, we used the numbers of transitions
as the test statistics. We used the baseline stages as the initial values and used the
observation time intervals to generate predicted data sets. We generated 1000 predicted data
sets, and observed no extreme Bayesian predictive p-values ( 0.05 or X0.95, Figure 1). For
the ML method, we used the bootstrap approach®. The results (not shown) do not suggest a
discrepancy between the model and the data.

4.3 Results for Bayesian Inferences

In practice, parameters of the infinitesimal matrix do not have a direct interpretation, thus we
focused on the MST and the one-year transition probabilities. We calculated the (MST) as
1/g;; and used the C program we developed to calculate the one-year transition probability,
denoted by p,-j(l) = Plys+ 1) =jly(s) =1 for i, j=1, 2, ..., S. For the Bayesian method,
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we used the Monte Carlo algorithm to calculate these statistics, using samples generated for
the posterior distributions (randomly selecting 50% of the posterior samples). The R
package MSM has options to calculate these statistics, except for the SEs of the one-year
transition probabilities; therefore, they are not displayed for both methods. We noticed that
MSM oftered narrower confidence intervals for the MSTs compared to those credible
intervals obtained from the proposed Bayesian method, especially for the stage of
maintenance (Table 4). We found similar results for the one-year transition probabilities
(Table 5), where the proposed method provided 95% credible intervals that were comparable
to or wider than the corresponding 95% confidence intervals obtained from the MSM
method. The point estimates resulting from the two approaches were quite close. For
instance, the confidence interval for the transition probability of M-A was estimated as
(0.218-0.240), while the corresponding credible interval was estimated as (0.206-0.255).
These differences may arise from the underestimated standard errors in Table 3, since the
MSTs and transition probabilities are functions of the transition rates.

We analysed the nutrition intervention data from the Next Step Trial with the proposed
Bayesian approach and the ML method implemented with the MSM package (version 1.1.4
with the default settings). We found these results to be consistent with the results obtained in
the simulation studies, i.e., the two methods offered similar point estimates, while the MSM
package provided underestimated SEs for some parameters. To obtain the calibrated
estimates, we further analysed the data with the bootstrap approach, using the options that
are available in the MSM package. We obtained comparable results for the transition rates,
sojourn times and transition probabilities (not shown). Although the bootstrap method works
when the model estimation algorithm converges, this was not the case when we used the
recommended initial values for model estimation.

4.4 Transitions Restricted to Adjacent States

To investigate a situation in which instantaneous transitions between states of health are
limited to adjacent moves in either direction, we fitted a model to the Next Step Trial data.
We allowed instantaneous transitions to occur only between adjacent states in both
directions: between P and C, between C and A, and between A and M. We observed extreme
Bayesian predictive p-values (<0.05 or >0.95) for this simplified model (Figure 2, Appendix
B), which indicates discrepancies between the model and the data. We find general CTMC
modelling to be suitable for the TTM model of behavioural changes (Figure 1), as
individuals will jump from one state to any of the other states’-8.

5 Discussion

We encountered convergence issues when we applied the MSM package to analyse the
nutrition intervention data; numerical problems and convergence failures are not rare when
fitting CTMC models. As instantaneous transitions are not directly observed in practice, the
observational time intervals may be too long (e.g., longer than the MSTs) and a CTMC
model may be misspecified (e.g., assuming an instantaneous transition that does not actually
occur). In both scenarios, the model may not be identifiable or some parameters may not be
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well estimated!-13-1632, We recommend being aware of these situations and using care when
fitting CTMC models.

To have value in applications, a CTMC model must be biologically meaningful. For
example, in a model in which the health states are defined by the concentration of CD4 cells
in a blood sample, which is an important factor for patients infected with HIV, a patient may
instantaneously transition only from the current state to an adjacent state, and may not jump
to a different state unless the jump is to the last absorbing state of death!. If all instantaneous
transitions (except for the state of death) are allowed, this model will not be identifiable,
resulting in a convergence failure for the maximization algorithms!. In our final modelling
of the Next Step Trial data, we restricted transitions in a way that did not correlate with
reality, which resulted in a model that did not fit the data. Such an over-simplified model
may not have a convergence issue, but may fail to adequately describe the data. To avoid
scientifically meaningless models, we should employ biological knowledge (e.g., CD4
counts for HIV infection) and check the goodness-of-fit for a selected model.

In addition, the observational time intervals need to be reasonable so that the observed data
carry enough information for model estimation. The likelihood is constructed from the
observed transitions, which depend on the observational time intervals. When the intervals
are too long, it becomes more likely that more than one instantaneous transition will occur
within that time period. As a result, the CTMC model may not be identified or some
parameters may not be well estimated!>. Our final simulation study, which used a lengthy
observational time interval, resulted in convergence issues under both methods. Although the
two methods may not be comparable because of the low convergence rates, the Bayesian
approach outperformed the ML method by providing more accurate estimates. These results
are not surprising. When the observed data do not provide sufficient information, the
likelihood tends to be flat, which causes convergence failure for the ML methods. Bayesian
methods, however, average the posterior samples and thus still provide reasonable estimates.
The model estimation could be improved by integrating informative priors; however, we
advise caution as “incorrect” priors may generate unstable and misleading results33-34,

In summary, we urge researchers to ensure that the application of a CTMC model is
biologically meaningful, and to utilize prior knowledge of the MSTs when determining the
observational time intervals for a scientific study. In our experience, the observational time
intervals are sufficient if they are shorter than or close to the MSTs. Convergence issues
occur when the observational time intervals are not sufficient, i.e., they are substantially
longer than the MSTs, even when the models are properly specified; see the results in
Section 3.2.

6 Limitations and Conclusions

In this study, we developed a Bayesian method to fit CTMC models and made comparisons
with ML methods implemented with the R package of MSM. The Bayesian approach
outperformed the ML methods in our simulation studies. When applied to data from the
Next Step Trial, the two methods provided comparable point estimates, but the ML method
still underestimated some standard errors. We applied the bootstrap method that is available
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in the MSM package and obtained well calibrated results. The bootstrap method does not
work when the estimation algorithms fail to converge, which often occur when the sample
size is small and/or when the observational time intervals are longer than the MSTs. The
Bayesian approach is therefore more useful than the ML method in these situations.

We analysed the Next Step Trial data using continuous time Markov chain models. This
application bears the same limitations as other methods, i.e., the assumptions that we have a
Markov process and that the process is time-homogeneous26-33. Piecewise homogeneous
models may provide a better fitting model; however, the exploration of these models is not
the focus of this study. Moreover, our assumption that individuals in the Next Step Trial
followed a general CTMC model may also have some limitations. Although we did not find
discrepancies between the fitted model and the data, further investigations in this regard are
needed. Such investigations are beyond the scope of the current study.
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Appendix A Additional simulation results

To fully investigate the performances of the Bayesian and ML methods, we conducted extra
empirical studies with two sets of parameters for two 5-state CTMC models. These model
parameters are chosen to reflect real data circumstances°. In Table 7, the true parameters
represent a situation in which a subject’s current state is about to change, and he or she is
more likely to move from the current state to an adjacent state”. Recall that the subject
leaves state 7 for state j with the probability of g;/g;; for 7 #/ (Section 2.1). For example, the
true value of parameter gy, is 0.29, which is greater than that for g;5 = 0.07. If a subject is in
state 1, then he or she will be more likely to move to the adjacent state of 2. Moreover, in
Table 8, the parameters reflect a situation in which the subject is less likely to move from his
or her current state to state 3 (given that he or she is not in state 3). This scenario mimics the
Next Step Trial data, with the observed number of transitions shown in Table 6. Note that
there were not sufficient data to estimate the transition rates for the state of preparation for
the case study. The parameters for the simulation study are set to reflect reality as well as to
assure that the model is still estimable with reasonable observation time intervals.

Appendix B Bayesian predictive p-values for a simplified CTMC model
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observed transition counts. Precontemplation, contemplation, action and maintenance are

represented by 1, 2, 3, and 4, respectively; TC12, for example, is for transitions from

precontemplation to contemplation.

Stat Methods Med Res. Author manuscript; available in PMC 2017 October 04.



1duosnuepy Joyiny

1duosnuely Joyiny

Ma et al. Page 15

p-value=0.373 p-value=0.999 p-value=0.487 p-value=0.001
o
g g 8 Z 8 g -
2 9 2 2 g o £
g e g "3 g ‘*3 g @
L o L o L o L - |
80 120 160 70 90 110 50 70 90 510 20
TG11 TC12 TC13 TC14
p-value=0.927 p-value=0.017 p-value=0.937 p-value=0.853
7 8 & ,8_ & oy g
g § g §
§ s i 2 g @ § s
L o [ L o o
60 80 110 140 180 220 240 280 320 40 60 80 100
TC21 TC22 TC23 TC24
p-value=0.902 p-value=0.985 p-value=0.032 p-value=0.469
z 8 g g z
3 8 o 5 g o
§ 33 g 3 § 83 g °
[radies L s L o L o
40 60 80 100 200 240 280 750 850 950 240 300 360
TC31 TC32 TCaz TC34
p-value=0 p-value=0.002 p-value=0.998 p-value=0.376
E=1
= 8 o =
f x e - : g )
o I
g ® g ¢ § & 2 L
[T ol L o L o IR
5 10 20 40 60 80 260 300 340 650 750
TCM TC42 TC43 TC44

Figure2.
Bayesian predictive p-values with 1000 duplicate data sets for a simplified model, where we

allowed only adjacent instantaneous transitions in both directions, between P and C, between
C and A, and between A and M. The red lines represent the observed transition counts.
Precontemplation, contemplation, action and maintenance are represented by 1, 2, 3, and 4,
respectively; TC12, for example, is for transitions from precontemplation to contemplation.
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Table 4

The mean sojourn times of being at the stages of precontemplation (P), contemplation (C), action (A), and
maintenance (M) for participants in the Next Step Trial.

Bayesian method MSM

Parameter Mean Sd  CIT:  (95%) Mean Sd  CI¥f  (95%)

P 1.097 0.097 0918 1298 1.112 0.099 0935 1323
C 0733 0055 0632 0845 0.767 0.046 0.683 0.862
A 1413 0.076 1266 1566 1.443 0.056 1.339 1.557
M 2170 0.121 1942 2422 2163 0.070 2.029 2305

: Bayesian credible intervals;
7
“: confidence intervals.

Stat Methods Med Res. Author manuscript; available in PMC 2017 October 04.



Page 20

Ma et al.

*S[BAISIUL QOUSPYUOD :
/
7

(S[RATQIUT Q[QIPAID UBISIAe :

4
9890 0890 6990  L690 90 6990 W-IN
0¥C0  8ITO 6CC0 SSTO  90T0 0£TO V-N
1800  ¥90°0 €L0'0 0600 6500 €L0°0 O
00 1200 8200 8¢0'0  8I00 LTOO d-N
°€C0 8810 S0T0  LTTO  LBI'O  LOTO N-v
0€9°0  98S°0 I190 1€90 €850 8090 Vv
LST°0  8CI'0  8YI'0  ILI'O  ¥El'0  CSI0 oV
¢S00  6T00 LEOO  €¥O0 9200  €£0°0 dv
¥SC0 €800 €600  LOI'O  8LO0 0600 W-O
WOr0  6LE0  IEV'0 990 L6E0  TEVO v-O
¥6€°0  ¥9T0 790 €6£0  9I€0  €SE0 O 0]
8€1'0  L800 vIT'0O ISI'O 6600 SCTIO d-D
Ly1'0 090°0 8L00  LOI'O  8¥0O'0  €L00 N-d
YI€0  0IT0 6¥T0  90€0  90T0 ¥STO v-d
LLTO  ¥LI'O  6CCT0  6LC°0  S8I'0  1€T0 O-d
88Y'0 TLEO vvP0  L6v'0  L8CO  THYO d-d

(%S6) 710 UBBIN  (%G6) 1,10 U Uonsued|

NS poyraw uvisakvg

‘(JN) QoueUdJUIRW
pue (v) uonoe ‘(D) uonedwayuod ‘(J) uonejdwojuodard are Apnis sy ut safer§ Tert], dois 1xoN oy ut syuedronged 10) saniiqeqold uonisuesy Jeak-ouQ

G 9|qeL

Author Manuscript Author Manuscript Author Manuscript Author Manuscript

Stat Methods Med Res. Author manuscript; available in PMC 2017 October 04.



Page 21

Ma et al.

Author Manuscript

8YL 9¢C i4! 0oL [43 QOUBUDUIRIA!

80¢ 106 €C col ¥S uonosy

9 €€ 14 L 0 uoneredor)

s (454 91 €61 L uone[dwaiuo)

€C SL 0 99 LT uonedwauosard
QouBUBIURIN  UOIPDY  uollesedold uolle|dweiuod  uolfe|dwelucde.id

‘Teu], dois 1xaN ayp ur syuedioned 103 suonisues) 9[qrssod ay} [[& JO Joquunu Ay ],

9 9|qeL

Author Manuscript

Author Manuscript

Author Manuscript

Stat Methods Med Res. Author manuscript; available in PMC 2017 October 04.



Page 22

Ma et al.

TIF0 1000 6000 T€0°0  LTLT—  LE60 1000 9200 LTOO  SLTT 70 b
8EF'0 1000 6000 I€00  £99°0  8€6'0 1000 +T00 STOO  80ET S1°0 &b
SS¢'0 1000 0100 8200 8IST- TS60 0000 1200 0T00 1890 110 “b
976'0 1000 TTO0 1200 €ECEI-  8P6'0 0000 9100 9100 9050 90°0 b
6580 1000 0T00 9200 €I6€— LP6O 0000 1200 1200 1860 €20 Sth
YCr0 10000 8000 8200  IITH— I¥60 1000 <TTOO <TTO0  OI91 61°0 &b
LESO 1000 8000 €200 L99T— 0S60 0000 8100 8I00  60£0 Tro @b
1060 1000 +I00 6100 6ZF 1= TS6'0 0000 #1000 +100 9200~ L0°0 b
L060 0000 €200 8T00 8EST-  8¥6'0 0000 <TI0 TCOO  TLEO €10 stb
P80 T000  0£00 THO'0  8I8I-  SS60 1000 1€00  [€00  #99'1 €€°0 b
YISO 1000 100 9€00  008F— 0960 1000 6200 8T00  €€ST ST0 “b
7680 1000 0200 9200 0000  #S60 0000 0TO0 0T00 SE90- 110 'th
$060 0000 0TO0 TTO'0 0000  LEGO 0000 LIOO 8100  8ELO 80°0 Stb
0680 1000 €200 6200 L999— P60 1000 <TTOO €200 89TO- S1°0 b
8/8°0 1000 LTOO SE00 €6T— IS60 1000 S8TO0 8200  T8S0 970 b
9680 1000 TTO0 LTOO  8SI'E— 6560 0000 TTOO TIO0 66T 1- 61°0 1
0F6'0 1000 8€0°0 €200 [LS8— P60 0000 6100 6100 086'1- L0°0 Sib
1160 1000 1€00 #€00  69L0  €v6'0 1000 9200 9200 890°0- €10 vib
2060 1000 €£00 8€00 ISE€T- 160 1000 <TEO0 TEO0 6011 120 £lp
7980 TO00  FEO0 100 690CT— Ov60 1000 €€00 €£00  OEHl 620 b

dD 3ISN =S as ad do  3ISW =S as ad  swpuvind andf

WS poyau uvisakng

‘A[eanoadsar ‘poyiawr TIA 2yl pue yoeoidde ueisakeq ayi 103 (0001

JO 1N0) $19S BIEP G99 PUB [GE UO Paseq ale s}Nsal Y], *a0ejp[oq ur paySiysry axe JH pue gs Iood ‘gd 9517 (SIA) I0118 parenbs ay) Jo ueaw ‘(gS)
QOUBLIBA POJEWINISI Q) JO UBAW A} JO JooI arenbs ‘((S) uonerasp prepuels ‘(D) Liqeqold a3e1aa00 ‘(gd) selq jo oSejuadrad ayy Sunsry ‘| o3 [enba

QI® S[BAIOIUI UONJBAIISQO UYM [9pOW JJeIS-9AL B 10J 93eoed INSIA oY) Yiim pauswsdur poyaw A 9yl pue yoeoidde ueisadeq ayp jo uostredwo))

L 3l|qeL

Author Manuscript Author Manuscript Author Manuscript Author Manuscript

Stat Methods Med Res. Author manuscript; available in PMC 2017 October 04.



Page 23

Ma et al.

79¢0 1000 L0000 1€00  ¥OEI—- +¥6'0 1000 TTO0 €200  6L80 £C0 b
SS¥'0 0000 +000  ¥I00  000F— 0960 0000 <CIOO <TIOO CIV'I SO0 b
8LS°0 0000 8000 0200 SYSv— CS6'0 0000 9100 LIOO  SLLO 170 “b
I¥6'0 0000 €100 +I00 0STI- €v6'0 0000 +I00 €100  8¥CTO 800 b
080 1000 6100 8200  00T'1 €56'0 0000 6100 6100 LOT'I §To Stb
8L£0 0000 +00'0 9100 0000I- 6£60 0000 <CIOO0 €100  SLY'T LO0O &b
89%'0 1000 6000 LZOO IIT'T= €#60 0000 8100 8I0O0 LT8O 81°0 &b
868°0 0000 €100 SI00 6888— €560 0000 €100 €100 8800 600 b
S¥6'0 €000 0v0'0 8700 0000I— 6760 TO00 800 6£00 S6TI— L1°0 sth
88L0 6000 6S00 TO600 000C— €¥60 +000 0900 <T900 OI6'1 00 Vb
690 000 8100 SSO0 €9TSI— +¥6'0 <2000 1¥00 THO'0  9.8°0 610 b
S¥80 1000 0£00 €€00 VILSI= 6£60 1000 6200 6200 08L'S LO0 't
76’0 1000 0200 +200 69— S96'0 0000 1200 0TO00 8I90— ¥1°0 stb
¥780 TO00 8C00 6€00 ¥EO'I- 6960 1000 6C00 800 €¥OI 620 b
2060 0000 9100 0C00 00SL- TS60 0000 LIOO LIOO SITCT 800 &b
6180 1000 0T00 8200 L¥9'L- +€6'0 1000 1200 TTO0O 6160 LT°0 1%
9¢6'0 1000 CCO0 ST00 0000  €76'0 000 <TTOO €200 +¥8°0— €10 slb
96’0  TO0'0 0£0'0 0O¥0'0  80€L— TS60 1000 1€00 1€00  8T80 970 vib
€€6'0 0000 LI0'0 8100  000C  #960 0000 9100 9100 <TELO SO0 tlb
980 1000 9200 +€00  L999— +v6'0 1000 LTOO 8200 10T 120 b

d0  3ISK ES as ad d0 IS ES as ad Sda1oun.Ind ondy

WS poyow uvisakvg

‘A[eanoadsar ‘poyiawr TIA 2yl pue yoeoidde ueisakeq ayi 103 (0001

JO INO) S19S BIBP G PUB 89/ UO PIseq aIe SINSAI oY ], *d0ejp[oq ur pAySiysy oxe gD pue gS§ Iood ‘qd o31eT "(SIN) 0112 parenbs oy jo ueows ‘(S)
QOUBLIEA PRSI I JO UBAW A} JO 1001 axenbs (QS) uoneiaap prepuels (JD) LAiqeqoid 9310400 ‘(gd) seiq jo a8ejuaorad oy Junsry 1 o1 fenba
QI® S[BAIOIUI UONJBAIISQO UYM [9pOW JJeIS-9AL B 10J 93eoed INSIA oY) Yiim pauswsdur poyaw A 9yl pue yoeoidde ueisadeq ayp jo uostredwo))

8 9|qeL

Author Manuscript Author Manuscript Author Manuscript Author Manuscript

Stat Methods Med Res. Author manuscript; available in PMC 2017 October 04.



Page 24

Ma et al.

65T0 9000 6000 SL00  ITI'T  LT6O  TOOO 9¥00 LYOO OV ogco "D
1L00  S000  S000 8900 9SS'ST—  6€6'0 1000 TEO0 TEOO LLEO- 0600 D
SLED €000 TIOO0 TSO0  €LTT  €¥6'0 1000 TEO0 TEOD  6ISO occo  “b
TELO S000 TWOO ¥LO0  FI9ET  6¥60  TOOO OWO0  6£00 0861 occo b
0€8'0 9000 €500 SLO0  €¥9'6— €960 TOOOD 8KO0  9Y00  6€8C 080 b
1L00 9000 9000 +L00 LTLTT- LS60 1000 ¥E00  ¥€00 0€S0- 0110 D
I6v'0 €000 SI00 9S00  LLOE €460 1000 €00  SE00  O9L'T 09z0 @D
S0L0 9000 SYO'0 TLOO  €ECET  0L60 1000 I¥00  8€0°0  IOL'I orco "
LLLO 9000  €L00 ¥L00  00S'L €60 €000 6¥00 TSO0 OLI'C oo <
v08'0  ¥000  ¥900 TY00  00SL  LT6O TOO0 600 THOO O0ITI-  oclo "
0L1'0 €000 LOOO SHO'O PPYPE~ €960 1000 6200 0€00 S6IT- 0600 D
LS80 ¥00'0  8¥00 9900  6LET-  LY60 TOOD SYO0  SYOO  9vST 0620 '
8¥8°0 1000 6100 9200 0000  S€60 0000 8100 6100 €08’ os1o <
¥96'0 0000  SI00 9100 0000I- 6560 0000 %100 €100 #86'1- 0500 "
€2L°0 1000 100 1200 00001  LS60 0000 ¥I00 +100  TLLI 0010 b
6260 1000 LIO0 TTOO  OSL'8—  6¥6'0 0000 %100 ¥IOO +9L0- 0800  'D
2060 S000  6L00 €L00 0000  I¥60 TOO0 OWOO I¥00  8TST o610 <5
0260 €000 2900 TSO0 I€T6~ I¥60 1000 €00 SE00  ¥LTO ocro b
6SL'0 ¥000 SPO'0 8500 $8ES €460 1000 LEOO 9€00  THTE 09z0 5

$08°0 TO00 LTO0 OVO0  6ELT  6€60 1000 8200 0€00 L870-  0ecO b

do 3ISW IS S ad dd0 3ISN IS aS ad  sopuving onif
WS poyau uvisakng

‘A[oAnoadsar

‘poyreur TIA oy} pue yoeoxdde uersekeq oy3 103 (00QT JO INO) SIAS BIBP 71 PUR LG UO Paseq a1e s)nsax oy, "(SIA) Jo11e parenbs oy jo ueow pue ‘(S)
QOUBLIEA PIJBWIISS Y} JO UBAW A1} JO 1001 axenbs (QS) uoneiasp prepuess ‘(gD) LAqiqeqord o3e10a00 ‘(gd) seiq Jo 28ejuaorad oy Jurpnyouy "¢ 1 o3 [enbo
QI® S[BAIOIUI UONJBAIISQO UYM [9pOW JJeIS-9AL B 10J 93eoed INSIA oY) Yiim pauswsdur poyaw A 9yl pue yoeoidde ueisadeq ayp jo uostredwo))

6 9lqeL

Author Manuscript Author Manuscript Author Manuscript Author Manuscript

Stat Methods Med Res. Author manuscript; available in PMC 2017 October 04.



Page 25

Ma et al.

8¥€'0  C00'0 8000 8¢00  ¥E8T  €S6'0 1000 LZOO SCO0  OII'I 00€°0 R
86C°0  CT00'0  LOOO I¥0°0 L8S6— 9S6'0 1000 800 9200 OLSO- 0cr'o b
L9L'0 1000 9100 €700 8¥€'8 €560 0000 8100 8I00 TLSO 090°0 R
6680 1000 <00 8200 86¥0 960 0000 200 <CCO0  €¥90 00€°0 veb
6CC’0  ¥00'0 6000 0900 LV6'T  €€6'0 <TO00 ¥¥00 SHO0  TS8Y 0sC°0 “h
S¥8'0 10000 €200 1€00  9LL'T 8760 1000 +C00 $C0'0 SSI'e— 080°0 1%
0€6'0 S000 <T0T0 6900 ¢€6£C— 860 H¥000 ¥900 1900  ¥8T0 00C0 b
6680 0200 9¢T0 IvI'0  LOTI- 8¥6'0 LIOO 6CI'0 SCI'0  08LE 0080 b
LS80 TIO0 00I'0 80I'0 619C- 8¥6'0 1100 LOI'O T101°0  LOL'S 00¥°0 1
L060 €000 SIT'0 ¢SO0 ¢Ccoc Sv6'0  CO000 8¥00 8Y00  8LEO 0s1°0 vib
6£8'0 €100 0910 <CIT'0O 8IT'Y 6560 8000 8800 8800 8CST— 00 tlb
€68°0 6100 9SI'0 6£1'0 9I¥C— €560 LIOO €€1'0 9CI'0  66C9 0050 b

dO IS ES as ad do IS ES) as ad S1219unIDd INLL
WS poyaw uvisakvg

‘A[oAn0adsar ‘poyowr

TIA oy pue yoeoidde uerseleq ay) 10§ (0QQT JO INO) SI3S BIELP L6 PUB 9O€ H1€ U0 paseq a1e s)nsar Y, "(FSIA) I011a parenbs ay) Jo uesw pue ‘(gS)
QOUBLIBA POJEUINSI A} JO UBAW A} JO J00I a1enbs ‘((S) uoneraap prepuels ‘(dD) Liqeqoid a5e10409 ‘(gd) seiq Jo oSejuadrad oyy Surpnjouf "G'| o3 [enbo

QI® S[BAIOIUI UONBAIISGO UYM [pOW J)e)s-Inoj € 10J a3eyoed NSIA 2y Yam pajuawa[dwr poyiow A oY) pue yoeoidde uersakeg oy Jo uostredwo)

0T 3lgeL

Author Manuscript Author Manuscript Author Manuscript Author Manuscript

Stat Methods Med Res. Author manuscript; available in PMC 2017 October 04.



	Abstract
	1 Introduction
	2 Methods
	2.1 The Likelihood
	2.2 Priors and Posterior Distributions
	2.3 Bayesian Implementations
	2.4 AIC, DIC, and Goodness-of-fit tests

	3 Simulation Studies
	3.1 Interval Time of 1
	3.2 Increased Interval Time of 1.5

	4 Application to the Next Step Trial Data
	4.1 Data Description
	4.2 Results for Parameters of the Infinitesimal Matrix
	4.3 Results for Bayesian Inferences
	4.4 Transitions Restricted to Adjacent States

	5 Discussion
	6 Limitations and Conclusions
	Appendix A Additional simulation results
	Appendix B Bayesian predictive p-values for a simplified CTMC model
	References
	Figure 1
	Figure 2
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Table 9
	Table 10

