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Abstract

Continuous time Markov chain (CTMC) models are frequently employed in medical research to 

study disease progression, but are rarely applied to the transtheoretical model (TTM), a 

psychosocial model widely used in studies of health-related outcomes. The TTM often includes 

more than three states and conceptually allows for all possible instantaneous transitions (referred 

to as general CTMC). This complicates the likelihood function because it involves calculating a 

matrix exponential that may not be simplified for general CTMC models. We undertook a 

Bayesian approach wherein we numerically evaluated the likelihood using ordinary differential 

equation solvers available from the GNU scientific library. We compared our Bayesian approach 

with the maximum likelihood (ML) method implemented with the R package MSM. Our 

simulation study showed that the Bayesian approach provided more accurate point and interval 

estimates than the ML method, especially in complex CTMC models with five states. When 

applied to data from a four-state TTM collected from a nutrition intervention study in the Next 

Step Trial, we observed results consistent with the results of the simulation study. Specifically, the 

two approaches provided comparable point estimates and standard errors for most parameters, but 

the ML offered substantially smaller standard errors for some parameters. Comparable estimates 

of the standard errors are obtainable from package MSM, which works only when the model 

estimation algorithm converges.
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1 Introduction

Continuous time Markov chain (CTMC) models (also known as multi-state Markov models) 

have a wide range of applications in medical research. They are very useful when the 
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research interest is the progression or control of a chronic disease, for instance, HIV 

infection1, breast cancer2, or asthma3. These models have also been applied in health 

promotion, including cancer screening4 and nutrition interventions5. However, application of 

CTMC modelling is limited in the transtheoretical model (TTM), a psychosocial model 

widely used to study health-related outcomes6. The TTM often has more than three states 

and conceptually allows for all possible instantaneous transitions (referred to as a general 

CTMC). Throughout this article, we use the term “instantaneous transition” to denote a 

direct one-step transition from one state to another without requiring an intermediate 

transition. In other words, an individual may make “spontaneous” jumps from the current 

state to any other state without experiencing the intervening states7,8. Conventionally, data 

from longitudinal TTMs have been analyzed using discrete time Markov chain models9 or 

generalized multinomial logit models5. These approaches require a balanced data structure 

(in terms of the time points at which the measurements were taken). When the data are not 

balanced, neither of these approaches are suitable, and complex statistical models might be 

necessary10. There is a large body of literature that supports the TTM; however, 

mathematical approaches to quantify these transitions between states have not been 

sufficiently studied9,11.

In CTMC models, the transition probabilities are calculated as P(t) = eQt, where Q is the 

intensity/infinitesimal matrix and t is the time between two observed states. The likelihood 

function of a general CTMC model is complex and the calculation of the probabilities of 

P(t) involve solving a matrix exponential, which can be mathematically difficult12. The exact 

analytical forms of the likelihood functions are available for two-state and three-state 

general CTMC models13,14, where the transition probabilities are obtained by solving 

ordinary differential equations. Moreover, eigensystem decomposition techniques are often 

employed to obtain an analytical expression of the likelihood1,15,16. In principle, this 

approach is applicable to any general CTMC model, but it fails when repeated eigenvalues 

exist. In contrast, the analytical form of the likelihood function is not required for Bayesian 

approaches, and the likelihood can be numerically calculated, for example, by solving 

ordinal differential equations11,17,18,19. Though both the maximum likelihood (ML) method 

and the Bayesian approach have been widely applied to address different biological 

questions, their relative performances for general CTMC models have not been empirically 

examined.

We undertook a Bayesian approach to analyse longitudinally measured categorical data from 

a TTM of health behavioural change, for which the transitions of the outcome variables over 

time for each individual were assumed to follow a CTMC model. In this approach, the 

likelihood is numerically evaluated using ordinary differential equation solvers available 

from the GNU scientific library (http://www.gnu.org/software/gsl/), and posterior samples 

are generated with the Metropolis Hastings (MH) algorithm. Welton and Ades17 described 

how to implement Bayesian CTMC models by solving P(t) = eQt with the WinBUGS 

differential interface of WBDiff. Though this approach can be used for general CTMC 

models in principle, their focus was on models with some restrictions (e.g., forward 4-state 

models with state 4 being an absorbing state). An R package, MSM, has been developed to 

handle CTMC models using standard optimization algorithms within the ML framework16. 
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The analytical expression of the likelihood, if it exists, is obtained from symbolic algebraic 

software, and otherwise, eigen decomposition or Pade approximates (repeated eigenvalues) 

are used. We conducted simulation studies to evaluate the validity of the proposed method, 

as well as to compare it with the ML method implemented with the R package MSM.

We organise this article as follows: In Section 2, we introduce and formulate the CTMC 

model and discuss Bayesian implementation of the model and its goodness of fit. In Section 

3, we report the results of a simulation study conducted for general four-state and five-state 

Markov chain models. In Section 4, we apply our method to the Next Step Trial data. In 

Section 5, we discuss our conclusions, and in Section 6, we report limitations of this study.

2 Methods

In medical research, models that incorporate death as the absorbing state are normally 

referred to as “illness-death” models or “forward” models if backward transitions are not 

allowed. In contrast, for a general (or recurrent) model, which is of interest in this study, a 

subject can move from one state to any other state without restriction. In this study, we treat 

the TTM model as a four-state recurrent model and represent its four states/stages by 

precontemplation (P), contemplation (C), action (A) and maintenance (M). (We use state and 

stage synonymously in this article.) An example of a forward model is one in which state M 

represents death, in which case transitions from state M to any other state would not be 

biologically possible. Though the proposed method can be applied to such models that 

include restrictions, in this study, we focus on models with unrestricted movement among 

multiple states.

2.1 The Likelihood

Consider a longitudinal study in which individuals can move among S stages. Assume that 

the kth subject is measured repeatedly at times tk,1, tk,2, …, tk,nk, with outcomes denoted by 

yk(tk,1), yk(tk,nk) and recorded as 1,2,…,S, where k = 1, 2, …m is the number of subjects in 

the study and nk is the number of observations on subject k. Let P(t) denote the S × S 

transition probability matrix, with entries pij=p[yk(s + t) = j |yk(s) = i] for i, j= 1, 2,…,s. The 

stochastic process can be fully described by the infinitesimal transition matrix Q = qij, such 

that qij(t) ≥ 0 and –qii = Σi≠j qij for i, j = 1,2,…,s. Under these assumptions, the time that a 

subject spends in state i is exponentially distributed with the mean of 1/qii; and when that 

subject’s state is about to change in the next instant, he or she will move from state i to state 

j with the probability of qij/qii for i ≠ j21. Let θ denote the S(S − 1) dimensional parameter 

vector, which consists of all entries of qij in Q for i ≠ j. The transition probability matrix P(t) 

is determined by the infinitesimal matrix, which is given as 

with P(0) = I20. The likelihood function is given as

(1)
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where y = (y1,y2,…,ym). Note that equation (1) is indeed a function of the model parameters 

of Q. If there are restrictions on the instantaneous transition, we can specify the model by 

setting the corresponding rate qij = 0. For example, we can specify the model as qSi = 0 for i 

= 1, 2,…, s for a model with an absorbing state. In addition, after estimating the model 

parameters, we can calculate the transition probabilities within a given time interval.

2.2 Priors and Posterior Distributions

In general CTMC models, the parameters in θ = {qij : i, j = 1, 2,…, S and i ≠ j} are 

restricted, (i.e., greater than or equal to 0); thus, independent gamma distributions that have 

the same support as the restrictions of θ are chosen as priors. Let

(2)

denote the joint prior distribution for qij, where i, j = 1, 2,…,S and i ≠ j. The hyper-

parameters aij = 0.001 and bij = 100 were chosen, so that the priors in 2 have a mean of 0.1 

and a variance of 10 and are considered as flat priors. For restricted parameters, log 

transformations are often recommended to improve the performance of the sampling22. In 

this research, we adopt the log transformation on all parameters, i.e., λij = log(qij), λij ∈ 
(−∞,∞) for i, j = 1, 2,…,S and i ≠ j. The logarithm of the transformed posterior distribution 

is given by

(3)

where Λ is the parameter vector of λij for i, j = 1, 2,…,S and i ≠ j. Then the parameter θ is 

transformed back as  in the sampling process during 

the implementation of the Bayesian estimation procedures.

In the Bayesian framework, previous information/knowledge, which may be derived from 

data in similar historical studies, can be integrated as informative priors to improve model 

estimation. For example, we can use priors of gamma distributions for which the means are 

around the point estimates of the model parameters. These point estimates can be 

approximately estimated14. Sensitivity studies are often conducted by comparing posterior 

inferences with different magnitudes of the variance, e.g., strong informative (small 

variance) or weak informative (large variance)23,24. In this article, we employ flat priors in 

both the simulation and case studies. These priors perform satisfactorily; hence, we do not 

explore other priors.

2.3 Bayesian Implementations

This research takes advantage of time efficiency in the C programming language and 

effectiveness in the fourth-order Runge-Kutta method for solving differential 
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equations(GSL-GNU Scientific library; http://www.gnu.org/software/gsl/). The combination 

of these approaches can help to overcome the difficulty of solving the equation of P(t), 

which is essential when implementing the Bayesian method. In addition, we use the generic 

MH algorithm to sample the posterior distributions on the proposed density of N(Λζ−1, cΣ). 

This multivariate normal distribution is centered at the current sample of Λζ−1, where Σ is 

the variance-covariance matrix. The constant c is adjustable so as to maintain an optimal 

acceptance rate around 23%, or around 20% when there are no standard forms for the 

conditional distributions23. Note that the acceptance rate is defined as the percentage of 

samples that are accepted via the MH algorithm.

Drawing multivariate normal values in C language is not immediately available; thus, we 

draw independent standard normal variables and use the Cholesky decomposition technique 

to generate the desired multivariate normal distributions. Let X be a vector of independent 

identically distributed variables of the standard normal distribution, and Σ = LLT, where L 

and LT are the upper and lower triangular matrices, respectively. Then we have Var(LX) = 

LV ar (X) LT = Σ. The multivariate normal distribution can be obtained with this algorithm 

using random sample X and pre-specified matrix L. Note that if L is a diagonal matrix, we 

will have independent variables for the components of X. In all simulation studies and in the 

analysis of real data, we apply independent proposal densities. Given the initial values Λ0, 

the sampling procedure goes as follows:

1. Draw a sample of Λ* from the proposal density of N(Λζ−1,cΣ).

2. Compute the value of ρ = log{p(Λ*)} − log{p(Λζ−1)}.

3. Draw a random uniform variable u ∈ (0,1), and calculate n = log(u).

4. If n ≤ ρ, set Λζ = Λ*; otherwise, set Λζ = Λζ−1.

5. Repeat steps 1–4 until a desired set of samplings is obtained.

After generating the desired number of samples from the MH algorithm, we transform the 

parameters back as qij = eλij, for i,j = 1, 2, 3 …,S and i ≠ j. We run three parallel chains with 

over-dispersed initial values for both the case and simulation studies, and calculate the 

Brooks-Gelman statistic . The results we report in this article are calculated using samples 

with , which are considered to be converged23. For Bayesian inference, we compute 

the sample means as the point estimates and use the 2.5% and 97.5% quantiles to construct 

the 95% credible intervals.

2.4 AIC, DIC, and Goodness-of-fit tests

In a frequentist framework, Akaike’s information criterion (AIC) has been widely applied 

for model selection. The deviance information criterion (DIC) is a hierarchical modelling 

generalization of the AIC23. A smaller value of AIC or DIC indicates a better fitting model. 

Since instantaneous transitions are generally not observable in CTMC models, it is 

important to check how well the model fits the data1,15,16,25. A Pearson-type goodness-of-fit 

statistic has been proposed; however, it does not have a χ2 distribution, and the bootstrap 

technique was used to describe the whole distribution26. In the Bayesian framework, model 

checking is often conducted by using posterior predictive values, which is analogous to the 
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aforementioned bootstrap technique. Letting T(y, θ) be the test quantity (i.e., number of 

transitions in this study) that measures the discrepancy between the fitted model and the 

data, the Bayesian predictive p-value is then defined as PB = Pr{T(yrep, θ) ≥ T(y, θ)}, where 

yrep represents the predicted values of the data23. Extreme values of PB greater than 0.95 or 

less than 0.05 are normally considered to indicate a significant discrepancy between the data 

and the model. We calculate AIC/DIC and perform a goodness-of-fit test only for the 

analysis of real data.

3 Simulation Studies

In this section, we describe the simulation studies we conducted to examine the proposed 

methods for analysing general recurrent four-state and five-state CTMC models. For each 

setting, we first selected a Q matrix, and then simulated data sets under the Markov 

assumption. That is, the sojourn time of the process in any state has an exponential 

distribution with parameters of the diagonal entries of Q. When the process is about to 

change its state, the probability of moving to one of the next possible states (other than the 

current state) is qij/qii, i,j = 1, 2, 3,…, S, and j ≠ i. Readers are referred to27 for more details 

of how to simulate CTMC data.

3.1 Interval Time of 1

In all settings, we simulated 1000 duplicate data sets and set the observation time intervals 

equal to one for all subjects. For each duplicate data set, we generated 400 subjects and 

associated each subject with 13 visits to measure the outcomes. We do not include the results 

from some data sets as they failed to meet the convergence criteria. To fully examine the 

proposed method, we report the percentage of bias (PB) for each parameter, along with its 

bias, standard deviation (SD), square root of the mean of the estimated variance, or standard 

error (SE), mean of the squared error (MSE), and nominal coverage probability (CP). Note 

that we calculated the percentage of bias as the bias divided by the true value times 100. In 

addition, all results are based on data sets that meet the convergence criteria. For the 

Bayesian method, the criterion is ; while for the ML method, the criterion is that the 

Hessian approximation of the log-likelihood at the reported solution is positive definite.

Table 1 presents the results for a recurrent five-stage model and is based on 851 and 715 data 

sets (out of 1000) for the respective Bayesian approach and ML method implemented in the 

MSM package with the default settings (version 1.1.4). We generated 100 000 samples for 

each chain and dropped the first half, leaving the second half for inferences. The acceptance 

rate was about 16%. For the Bayesian approach, the point estimates were all accurate, the 

SDs and SEs were very close, and the CPs were all approximately 95%. The performance of 

the ML method was poor in comparison. We observed large biases (e.g., 21.1% for q32) and 

low coverage probabilities (e.g., 16 of 20 were less than 90%, 6 of 20 were less than 80%, 

and the lowest one was merely about 27%). Many parameters had noticeably smaller 

estimated SEs compared to the corresponding SDs (e.g., for q13, the SD was 0.04, and the 

SE was 0.029); and some had dramatically underestimated SEs (e.g., for q53, the SD was 

0.041, and the SE was 0.006). To further examine the performances of these methods, we 

conducted simulation studies for the five-stage models with two extra sets of parameters. We 
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found consistent performances for the proposed Bayesian approach and the ML method 

implemented in the MSM package (Tables 7 and 8, Appendix A).

Table 2 shows the results for a general, recurrent four-state model, and is based on 966 and 

908 data sets for the respective Bayesian approach and ML method implemented in the 

MSM package. We again generated 100 000 samples for each chain and dropped the first 

half, leaving the second half for inferences. The acceptance rate was about 20%. The point 

estimates were all accurate and comparable for the two approaches, while the ML method 

again provided underestimated SEs for some parameters, particularly q32 and q43.

3.2 Increased Interval Time of 1.5

As a final comparison of the proposed Bayesian model and the ML method, we conducted 

simulation studies for the five-state general CTMC model, as shown in Table 1, but with the 

observational time intervals set at 1.5. Our purpose was to investigate the results achieved 

when the intervals used to monitor transitions between states were increased. We noticed 

convergence issues for both the Bayesian and the ML methods, e.g., only 493 and 112 

respective data sets had results that met the convergence criteria. The mean sojourn times 

(MSTs) for this five-state model were 1.23, 2.63, 1.22, 1.16, and 1.16 for the respective 

states of 1, 2, 3, 4, and 5. The observational time intervals (1.5) were longer than most of the 

MSTs, which may explain the poor convergence rates (493/1000, 112/1000) for both 

methods. Moreover, the Bayesian method offered similar results compared to those obtained 

when the observational time interval was 1; whereas the ML method performed worse with 

noticeably larger biases (Table 9, Appendix A). Similar results were obtained for a general 

four-state model, except that the convergence rates were 344/1000 and 497/1000 for the 

Bayesian and ML methods, respectively (Table 10, Appendix A).

From these results, we conclude that the proposed Bayesian approach performed better than 

the ML method implemented with the MSM package, especially for the complex model with 

five states, resulting in a total of 20 parameters. The SEs from the MSM package were 

obtained from Hessian approximation by default and were expected to be underestimated, 

resulting in lower CPs16,28,29. The SEs can be well calibrated with the bootstrap approach, 

which is available in the MSM package. We did not implement the bootstrap approach in the 

simulation studies; however, we did apply it to the case study reported in Section 4.

4 Application to the Next Step Trial Data

4.1 Data Description

The Next Step Trial was a randomized trial of colorectal cancer screening and nutrition 

interventions in the work place of employees of the automobile industry. Data were collected 

from participants in the trial at baseline and yearly for two years. The outcome variable for 

our study was the stage of dietary change in fat consumption, classified into five stages 

(precontemplation, contemplation, preparation, action, or maintenance) in the TTM 

model5,30,31. The analyses we report in this article were based on a cohort of 1,758 male 

employees who completed dietary assessments of the stage of change in fat consumption at 

all three survey time points. Among these survey participants, the mean age at baseline 
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(±SE) was 58.3 ±10.7 years, the mean number of years of education (±SE) was 13.6 ±2.6, 

1,693 (97%) were white, 1,588 were married (90%), and 853 (49%) were retired. The data 

were not sufficient to estimate transitions from preparation to the other stages; thus, we 

combined the stages of contemplation and preparation and labeled them as contemplation. 

The resulting four stages in our study were precontemplation (P), contemplation (C), action 

(A) and maintenance (M). The proportions of participants in each of these stages at baseline 

were 8.7%, 18.7%, 40.8% and 31.8% for P, C, A and M, respectively. The average length of 

follow-up was 1.04 years, and the median was 1.03 years (95% were within 0.78–1.29 

years). The numbers of transitions were (127, 66, 75, 23) from stage P to stages P, C, A and 

M, respectively; (72, 220, 265, 58) from stage C to stages P, C, A and M, respectively; (54, 

221, 901, 308) from stage A to stages P, C, A and M, respectively; and (32, 84, 262, 748) 

from stage M to stages P, C, A and M, respectively.

4.2 Results for Parameters of the Infinitesimal Matrix

At the outset, we ran three parallel chains for the proposed Bayesian method with over-

dispersed initial values, as discussed in Section 2.3. We generated 120 000 samples for each 

chain and dropped the first half, leaving the second half for inferences. The acceptance rate 

was 23%, with a Brooks-Gelman statistic of  for all parameters. We calculated the 

DIC as 7351.5. For the MSM package, using the recommended initial values, the asymptotic 

standard errors could not be calculated and the optimization algorithm did not converge. In 

this situation, users of MSM may have difficulty finding the optimum values. We therefore 

tried different initial values. The smallest value of deviance among the models we tried was 

7328.0, and the AIC was calculated as 7328.0+24=7352.0. The quantities of DIC and AIC 

were close, which was expected22. Note that the DIC and AIC were used for model 

selection, and turned out to be helpful for the selection of the optimal estimates for the ML 

method.

In Table 3, the point estimates from the MSM package and the Bayesian approach are 

relatively close, and the SEs for q32, q42, q43 obtained from the ML method implemented 

with the MSM package are smaller than those obtained from the Bayesian approach. 

Further, for these three parameters, the 95% confidence intervals obtained from the MSM 

package were obviously narrower than the corresponding 95% credible intervals obtained 

from the Bayesian approach. This was consistent with our simulation results. As the last 

step, we performed goodness-of-fit tests. For simplicity, we used the numbers of transitions 

as the test statistics. We used the baseline stages as the initial values and used the 

observation time intervals to generate predicted data sets. We generated 1000 predicted data 

sets, and observed no extreme Bayesian predictive p-values (≤0.05 or ≥0.95, Figure 1). For 

the ML method, we used the bootstrap approach26. The results (not shown) do not suggest a 

discrepancy between the model and the data.

4.3 Results for Bayesian Inferences

In practice, parameters of the infinitesimal matrix do not have a direct interpretation, thus we 

focused on the MST and the one-year transition probabilities. We calculated the (MST) as 

1/qii and used the C program we developed to calculate the one-year transition probability, 

denoted by pij(1) = Pr[yk(s + 1) = j|yk(s) = i] for i, j = 1, 2, …,S. For the Bayesian method, 
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we used the Monte Carlo algorithm to calculate these statistics, using samples generated for 

the posterior distributions (randomly selecting 50% of the posterior samples). The R 

package MSM has options to calculate these statistics, except for the SEs of the one-year 

transition probabilities; therefore, they are not displayed for both methods. We noticed that 

MSM offered narrower confidence intervals for the MSTs compared to those credible 

intervals obtained from the proposed Bayesian method, especially for the stage of 

maintenance (Table 4). We found similar results for the one-year transition probabilities 

(Table 5), where the proposed method provided 95% credible intervals that were comparable 

to or wider than the corresponding 95% confidence intervals obtained from the MSM 

method. The point estimates resulting from the two approaches were quite close. For 

instance, the confidence interval for the transition probability of M-A was estimated as 

(0.218–0.240), while the corresponding credible interval was estimated as (0.206–0.255). 

These differences may arise from the underestimated standard errors in Table 3, since the 

MSTs and transition probabilities are functions of the transition rates.

We analysed the nutrition intervention data from the Next Step Trial with the proposed 

Bayesian approach and the ML method implemented with the MSM package (version 1.1.4 

with the default settings). We found these results to be consistent with the results obtained in 

the simulation studies, i.e., the two methods offered similar point estimates, while the MSM 

package provided underestimated SEs for some parameters. To obtain the calibrated 

estimates, we further analysed the data with the bootstrap approach, using the options that 

are available in the MSM package. We obtained comparable results for the transition rates, 

sojourn times and transition probabilities (not shown). Although the bootstrap method works 

when the model estimation algorithm converges, this was not the case when we used the 

recommended initial values for model estimation.

4.4 Transitions Restricted to Adjacent States

To investigate a situation in which instantaneous transitions between states of health are 

limited to adjacent moves in either direction, we fitted a model to the Next Step Trial data. 

We allowed instantaneous transitions to occur only between adjacent states in both 

directions: between P and C, between C and A, and between A and M. We observed extreme 

Bayesian predictive p-values (<0.05 or >0.95) for this simplified model (Figure 2, Appendix 

B), which indicates discrepancies between the model and the data. We find general CTMC 

modelling to be suitable for the TTM model of behavioural changes (Figure 1), as 

individuals will jump from one state to any of the other states7,8.

5 Discussion

We encountered convergence issues when we applied the MSM package to analyse the 

nutrition intervention data; numerical problems and convergence failures are not rare when 

fitting CTMC models. As instantaneous transitions are not directly observed in practice, the 

observational time intervals may be too long (e.g., longer than the MSTs) and a CTMC 

model may be misspecified (e.g., assuming an instantaneous transition that does not actually 

occur). In both scenarios, the model may not be identifiable or some parameters may not be 
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well estimated1,15,16,32. We recommend being aware of these situations and using care when 

fitting CTMC models.

To have value in applications, a CTMC model must be biologically meaningful. For 

example, in a model in which the health states are defined by the concentration of CD4 cells 

in a blood sample, which is an important factor for patients infected with HIV, a patient may 

instantaneously transition only from the current state to an adjacent state, and may not jump 

to a different state unless the jump is to the last absorbing state of death1. If all instantaneous 

transitions (except for the state of death) are allowed, this model will not be identifiable, 

resulting in a convergence failure for the maximization algorithms16. In our final modelling 

of the Next Step Trial data, we restricted transitions in a way that did not correlate with 

reality, which resulted in a model that did not fit the data. Such an over-simplified model 

may not have a convergence issue, but may fail to adequately describe the data. To avoid 

scientifically meaningless models, we should employ biological knowledge (e.g., CD4 

counts for HIV infection) and check the goodness-of-fit for a selected model.

In addition, the observational time intervals need to be reasonable so that the observed data 

carry enough information for model estimation. The likelihood is constructed from the 

observed transitions, which depend on the observational time intervals. When the intervals 

are too long, it becomes more likely that more than one instantaneous transition will occur 

within that time period. As a result, the CTMC model may not be identified or some 

parameters may not be well estimated15. Our final simulation study, which used a lengthy 

observational time interval, resulted in convergence issues under both methods. Although the 

two methods may not be comparable because of the low convergence rates, the Bayesian 

approach outperformed the ML method by providing more accurate estimates. These results 

are not surprising. When the observed data do not provide sufficient information, the 

likelihood tends to be flat, which causes convergence failure for the ML methods. Bayesian 

methods, however, average the posterior samples and thus still provide reasonable estimates. 

The model estimation could be improved by integrating informative priors; however, we 

advise caution as “incorrect” priors may generate unstable and misleading results33,34.

In summary, we urge researchers to ensure that the application of a CTMC model is 

biologically meaningful, and to utilize prior knowledge of the MSTs when determining the 

observational time intervals for a scientific study. In our experience, the observational time 

intervals are sufficient if they are shorter than or close to the MSTs. Convergence issues 

occur when the observational time intervals are not sufficient, i.e., they are substantially 

longer than the MSTs, even when the models are properly specified; see the results in 

Section 3.2.

6 Limitations and Conclusions

In this study, we developed a Bayesian method to fit CTMC models and made comparisons 

with ML methods implemented with the R package of MSM. The Bayesian approach 

outperformed the ML methods in our simulation studies. When applied to data from the 

Next Step Trial, the two methods provided comparable point estimates, but the ML method 

still underestimated some standard errors. We applied the bootstrap method that is available 
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in the MSM package and obtained well calibrated results. The bootstrap method does not 

work when the estimation algorithms fail to converge, which often occur when the sample 

size is small and/or when the observational time intervals are longer than the MSTs. The 

Bayesian approach is therefore more useful than the ML method in these situations.

We analysed the Next Step Trial data using continuous time Markov chain models. This 

application bears the same limitations as other methods, i.e., the assumptions that we have a 

Markov process and that the process is time-homogeneous26,35. Piecewise homogeneous 

models may provide a better fitting model; however, the exploration of these models is not 

the focus of this study. Moreover, our assumption that individuals in the Next Step Trial 

followed a general CTMC model may also have some limitations. Although we did not find 

discrepancies between the fitted model and the data, further investigations in this regard are 

needed. Such investigations are beyond the scope of the current study.
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Appendix A Additional simulation results

To fully investigate the performances of the Bayesian and ML methods, we conducted extra 

empirical studies with two sets of parameters for two 5-state CTMC models. These model 

parameters are chosen to reflect real data circumstances36. In Table 7, the true parameters 

represent a situation in which a subject’s current state is about to change, and he or she is 

more likely to move from the current state to an adjacent state9. Recall that the subject 

leaves state i for state j with the probability of qij/qii for i ≠ j (Section 2.1). For example, the 

true value of parameter q12 is 0.29, which is greater than that for q15 = 0.07. If a subject is in 

state 1, then he or she will be more likely to move to the adjacent state of 2. Moreover, in 

Table 8, the parameters reflect a situation in which the subject is less likely to move from his 

or her current state to state 3 (given that he or she is not in state 3). This scenario mimics the 

Next Step Trial data, with the observed number of transitions shown in Table 6. Note that 

there were not sufficient data to estimate the transition rates for the state of preparation for 

the case study. The parameters for the simulation study are set to reflect reality as well as to 

assure that the model is still estimable with reasonable observation time intervals.

Appendix B Bayesian predictive p-values for a simplified CTMC model
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Figure 1. 
Bayesian predictive p-values with 1000 duplicate data sets. The red lines represent the 

observed transition counts. Precontemplation, contemplation, action and maintenance are 

represented by 1, 2, 3, and 4, respectively; TC12, for example, is for transitions from 

precontemplation to contemplation.

Ma et al. Page 14

Stat Methods Med Res. Author manuscript; available in PMC 2017 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Bayesian predictive p-values with 1000 duplicate data sets for a simplified model, where we 

allowed only adjacent instantaneous transitions in both directions, between P and C, between 

C and A, and between A and M. The red lines represent the observed transition counts. 

Precontemplation, contemplation, action and maintenance are represented by 1, 2, 3, and 4, 

respectively; TC12, for example, is for transitions from precontemplation to contemplation.
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Table 4

The mean sojourn times of being at the stages of precontemplation (P), contemplation (C), action (A), and 

maintenance (M) for participants in the Next Step Trial.

Parameter

Bayesian method MSM

Mean Sd CI†: (95%) Mean Sd CI‡ (95%)

P 1.097 0.097 0.918 1.298 1.112 0.099 0.935 1.323

C 0.733 0.055 0.632 0.845 0.767 0.046 0.683 0.862

A 1.413 0.076 1.266 1.566 1.443 0.056 1.339 1.557

M 2.170 0.121 1.942 2.422 2.163 0.070 2.029 2.305

†
: Bayesian credible intervals;

‡
: confidence intervals.

Stat Methods Med Res. Author manuscript; available in PMC 2017 October 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ma et al. Page 20

Ta
b

le
 5

O
n
e-

y
ea

r 
tr

an
si

ti
o
n
 p

ro
b
ab

il
it

ie
s 

fo
r 

p
ar

ti
ci

p
an

ts
 i

n
 t

h
e 

N
ex

t 
S

te
p
 T

ri
al

. 
S

ta
g
es

 i
n
 t

h
is

 s
tu

d
y
 a

re
 p

re
co

n
te

m
p
la

ti
o
n
 (

P
),

 c
o
n
te

m
p
la

ti
o
n
 (

C
),

 a
ct

io
n
 (

A
) 

an
d
 

m
ai

n
te

n
an

ce
 (

M
).

T
ra

ns
it

io
n

B
a
ye

si
a
n

 m
et

h
o
d

M
S

M

M
ea

n
C

I†
 :

(9
5%

)
M

ea
n

C
I‡

(9
5%

)

P
-P

0
.4

4
2

0
.3

8
7

0
.4

9
7

0
.4

4
4

0
.3

7
2

0
.4

8
8

P
-C

0
.2

3
1

0
.1

8
5

0
.2

7
9

0
.2

2
9

0
.1

7
4

0
.2

7
7

P
-A

0
.2

5
4

0
.2

0
6

0
.3

0
6

0
.2

4
9

0
.2

1
0

0
.3

1
4

P
-M

0
.0

7
3

0
.0

4
8

0
.1

0
7

0
.0

7
8

0
.0

6
0

0
.1

4
7

C
-P

0
.1

2
5

0
.0

9
9

0
.1

5
1

0
.1

1
4

0
.0

8
7

0
.1

3
8

C
-C

0
.3

5
3

0
.3

1
6

0
.3

9
3

0
.3

6
2

0
.2

6
4

0
.3

9
4

C
-A

0
.4

3
2

0
.3

9
7

0
.4

6
6

0
.4

3
1

0
.3

7
9

0
.4

6
2

C
-M

0
.0

9
0

0
.0

7
8

0
.1

0
7

0
.0

9
3

0
.0

8
3

0
.2

5
4

A
-P

0
.0

3
3

0
.0

2
6

0
.0

4
3

0
.0

3
7

0
.0

2
9

0
.0

5
2

A
-C

0
.1

5
2

0
.1

3
4

0
.1

7
1

0
.1

4
8

0
.1

2
8

0
.1

5
7

A
-A

0
.6

0
8

0
.5

8
3

0
.6

3
1

0
.6

1
1

0
.5

8
6

0
.6

3
0

A
-M

0
.2

0
7

0
.1

8
7

0
.2

2
7

0
.2

0
5

0
.1

8
8

0
.2

3
2

M
-P

0
.0

2
7

0
.0

1
8

0
.0

3
8

0
.0

2
8

0
.0

2
1

0
.0

4
2

M
-C

0
.0

7
3

0
.0

5
9

0
.0

9
0

0
.0

7
3

0
.0

6
4

0
.0

8
1

M
-A

0
.2

3
0

0
.2

0
6

0
.2

5
5

0
.2

2
9

0
.2

1
8

0
.2

4
0

M
-M

0
.6

6
9

0
.6

4
2

0
.6

9
7

0
.6

6
9

0
.6

5
0

0
.6

8
6

† : 
B

ay
es

ia
n
 c

re
d
ib

le
 i

n
te

rv
al

s;

‡ : 
co

n
fi

d
en

ce
 i

n
te

rv
al

s.

Stat Methods Med Res. Author manuscript; available in PMC 2017 October 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ma et al. Page 21

Ta
b

le
 6

T
h
e 

n
u
m

b
er

 o
f 

al
l 

th
e 

p
o
ss

ib
le

 t
ra

n
si

ti
o
n
s 

fo
r 

p
ar

ti
ci

p
an

ts
 i

n
 t

h
e 

N
ex

t 
S

te
p
 T

ri
al

.

P
re

co
nt

em
pl

at
io

n
C

on
te

m
pl

at
io

n
P

re
pa

ra
ti

on
A

ct
io

n
M

ai
nt

en
an

ce

P
re

co
n
te

m
p
la

ti
o
n

1
2
7

6
6

0
7
5

2
3

C
o
n
te

m
p
la

ti
o
n

7
2

1
9
3

1
6

2
3
2

5
2

C
re

p
ar

at
io

n
0

7
4

3
3

6

A
ct

io
n

5
4

1
9
2

2
3

9
0
1

3
0
8

M
ai

n
te

n
an

ce
3
2

7
0

1
4

2
6
2

7
4
8

Stat Methods Med Res. Author manuscript; available in PMC 2017 October 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ma et al. Page 22

Ta
b

le
 7

C
o
m

p
ar

is
o
n
 o

f 
th

e 
B

ay
es

ia
n
 a

p
p
ro

ac
h
 a

n
d
 t

h
e 

M
L

 m
et

h
o
d
 i

m
p
le

m
en

te
d
 w

it
h
 t

h
e 

M
S

M
 p

ac
k
ag

e 
fo

r 
a 

fi
ve

-s
ta

te
 m

o
d
el

 w
h
en

 o
b
se

rv
at

io
n
 i

n
te

rv
al

s 
ar

e 

eq
u
al

 t
o
 1

. 
L

is
ti

n
g
 t

h
e 

p
er

ce
n
ta

g
e 

o
f 

b
ia

s 
(P

B
),

 c
ov

er
ag

e 
p
ro

b
ab

il
it

y
 (

C
P

),
 s

ta
n
d
ar

d
 d

ev
ia

ti
o
n
 (

S
D

),
 s

q
u
ar

e 
ro

o
t 

o
f 

th
e 

m
ea

n
 o

f 
th

e 
es

ti
m

at
ed

 v
ar

ia
n
ce

 

(S
E

),
 m

ea
n
 o

f 
th

e 
sq

u
ar

ed
 e

rr
o
r 

(M
S

E
).

 L
ar

g
e 

P
B

, 
p
o
o
r 

S
E

 a
n
d
 C

P
 a

re
 h

ig
h
li

g
h
te

d
 i

n
 b

o
ld

fa
ce

. 
T

h
e 

re
su

lt
s 

ar
e 

b
as

ed
 o

n
 9

5
1
 a

n
d
 6

6
5
 d

at
a 

se
ts

 (
o
u
t 

o
f 

1
0
0
0
) 

fo
r 

th
e 

B
ay

es
ia

n
 a

p
p
ro

ac
h
 a

n
d
 t

h
e 

M
L

 m
et

h
o
d
, 
re

sp
ec

ti
ve

ly
.

T
ru

e 
P

a
ra

m
et

er
s

B
a
ye

si
a
n

 m
et

h
o
d

M
S

M

P
B

SD
SE

M
SE

C
P

P
B

SD
SE

M
SE

C
P

q 1
2

0
.2

9
1
.4

3
0

0
.0

3
3

0
.0

3
3

0
.0

0
1

0
.9

4
0

−
2
.0

6
9

0
.0

4
1

0
.0

3
4

0
.0

0
2

0
.8

6
2

q 1
3

0
.2

1
1
.1

0
9

0
.0

3
2

0
.0

3
2

0
.0

0
1

0
.9

4
1

−
2
.3

8
1

0
.0

3
8

0
.0

3
3

0
.0

0
1

0
.9

0
2

q 1
4

0
.1

3
−

0
.0

6
8

0
.0

2
6

0
.0

2
6

0
.0

0
1

0
.9

4
3

0
.7

6
9

0
.0

3
4

0
.0

3
1

0
.0

0
1

0
.9

1
1

q 1
5

0
.0

7
−

1
.9

8
0

0
.0

1
9

0
.0

1
9

0
.0

0
0

0
.9

4
4

−
8
.5

7
1

0
.0

2
3

0
.0

3
8

0
.0

0
1

0
.9

4
0

q 2
1

0
.1

9
−

1
.2

9
9

0
.0

2
2

0
.0

2
2

0
.0

0
0

0
.9

5
9

−
3
.1

5
8

0
.0

2
7

0
.0

2
2

0
.0

0
1

0
.8

9
6

q 2
3

0
.2

6
0
.8

8
2

0
.0

2
8

0
.0

2
8

0
.0

0
1

0
.9

5
1

−
1
.9

2
3

0
.0

3
5

0
.0

2
7

0
.0

0
1

0
.8

7
8

q 2
4

0
.1

5
−

0
.2

6
8

0
.0

2
3

0
.0

2
2

0
.0

0
1

0
.9

4
4

−
6
.6

6
7

0
.0

2
9

0
.0

2
3

0
.0

0
1

0
.8

9
0

q 2
5

0
.0

8
0
.7

3
8

0
.0

1
8

0
.0

1
7

0
.0

0
0

0
.9

3
7

0
.0

0
0

0
.0

2
2

0
.0

2
0

0
.0

0
0

0
.9

0
4

q 3
1

0
.1

1
−

0
.6

3
5

0
.0

2
0

0
.0

2
0

0
.0

0
0

0
.9

5
4

0
.0

0
0

0
.0

2
6

0
.0

2
0

0
.0

0
1

0
.8

9
2

q 3
2

0
.2

5
1
.5

3
3

0
.0

2
8

0
.0

2
9

0
.0

0
1

0
.9

6
0

−
4
.8

0
0

0
.0

3
6

0
.0

1
4

0
.0

0
1

0
.5

1
4

q 3
4

0
.3

3
1
.6

6
4

0
.0

3
1

0
.0

3
1

0
.0

0
1

0
.9

5
5

−
1
.8

1
8

0
.0

4
2

0
.0

3
0

0
.0

0
2

0
.8

4
2

q 3
5

0
.1

3
0
.3

7
2

0
.0

2
2

0
.0

2
2

0
.0

0
0

0
.9

4
8

−
1
.5

3
8

0
.0

2
8

0
.0

2
3

0
.0

0
0

0
.9

0
7

q 4
1

0
.0

7
−

0
.0

2
6

0
.0

1
4

0
.0

1
4

0
.0

0
0

0
.9

5
2

−
1
.4

2
9

0
.0

1
9

0
.0

1
4

0
.0

0
1

0
.9

0
1

q 4
2

0
.1

2
0
.3

0
9

0
.0

1
8

0
.0

1
8

0
.0

0
0

0
.9

5
0

−
1
.6

6
7

0
.0

2
3

0
.0

0
8

0
.0

0
1

0
.5

3
7

q 4
3

0
.1

9
1
.6

1
0

0
.0

2
2

0
.0

2
2

0
.0

0
1

0
.9

4
1

−
4
.2

1
1

0
.0

2
8

0
.0

0
8

0
.0

0
1

0
.4

2
4

q 4
5

0
.2

3
0
.9

8
1

0
.0

2
1

0
.0

2
1

0
.0

0
0

0
.9

4
7

−
3
.9

1
3

0
.0

2
6

0
.0

2
0

0
.0

0
1

0
.8

5
9

q 5
1

0
.0

6
0
.5

0
6

0
.0

1
6

0
.0

1
6

0
.0

0
0

0
.9

4
8

−
1
3
.3

3
3

0
.0

2
1

0
.0

2
2

0
.0

0
1

0
.9

2
6

q 5
2

0
.1

1
−

0
.6

8
1

0
.0

2
0

0
.0

2
1

0
.0

0
0

0
.9

5
2

−
1
.8

1
8

0
.0

2
8

0
.0

1
0

0
.0

0
1

0
.5

5
5

q 5
3

0
.1

5
1
.3

0
8

0
.0

2
5

0
.0

2
4

0
.0

0
1

0
.9

3
8

0
.6

6
7

0
.0

3
1

0
.0

0
9

0
.0

0
1

0
.4

3
8

q 5
4

0
.2

2
1
.2

7
5

0
.0

2
7

0
.0

2
6

0
.0

0
1

0
.9

3
7

−
2
.7

2
7

0
.0

3
1

0
.0

0
9

0
.0

0
1

0
.4

1
2

Stat Methods Med Res. Author manuscript; available in PMC 2017 October 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ma et al. Page 23

Ta
b

le
 8

C
o
m

p
ar

is
o
n
 o

f 
th

e 
B

ay
es

ia
n
 a

p
p
ro

ac
h
 a

n
d
 t

h
e 

M
L

 m
et

h
o
d
 i

m
p
le

m
en

te
d
 w

it
h
 t

h
e 

M
S

M
 p

ac
k
ag

e 
fo

r 
a 

fi
ve

-s
ta

te
 m

o
d
el

 w
h
en

 o
b
se

rv
at

io
n
 i

n
te

rv
al

s 
ar

e 

eq
u
al

 t
o
 1

. 
L

is
ti

n
g
 t

h
e 

p
er

ce
n
ta

g
e 

o
f 

b
ia

s 
(P

B
),

 c
ov

er
ag

e 
p
ro

b
ab

il
it

y
 (

C
P

),
 s

ta
n
d
ar

d
 d

ev
ia

ti
o
n
 (

S
D

),
 s

q
u
ar

e 
ro

o
t 

o
f 

th
e 

m
ea

n
 o

f 
th

e 
es

ti
m

at
ed

 v
ar

ia
n
ce

 

(S
E

),
 m

ea
n
 o

f 
th

e 
sq

u
ar

ed
 e

rr
o
r 

(M
S

E
).

 L
ar

g
e 

P
B

, 
p
o
o
r 

S
E

 a
n
d
 C

P
 a

re
 h

ig
h
li

g
h
te

d
 i

n
 b

o
ld

fa
ce

. 
T

h
e 

re
su

lt
s 

ar
e 

b
as

ed
 o

n
 7

6
8
 a

n
d
 8

2
5
 d

at
a 

se
ts

 (
o
u
t 

o
f 

1
0
0
0
) 

fo
r 

th
e 

B
ay

es
ia

n
 a

p
p
ro

ac
h
 a

n
d
 t

h
e 

M
L

 m
et

h
o
d
, 
re

sp
ec

ti
ve

ly
.

T
ru

e 
P

a
ra

m
et

er
s

B
a
ye

si
a
n

 m
et

h
o
d

M
S

M

P
B

SD
SE

M
SE

C
P

P
B

SD
SE

M
SE

C
P

q 1
2

0
.2

1
1
.2

0
1

0
.0

2
8

0
.0

2
7

0
.0

0
1

0
.9

4
4

−
6
.6

6
7

0
.0

3
4

0
.0

2
6

0
.0

0
1

0
.8

6
4

q 1
3

0
.0

5
0
.7

3
2

0
.0

1
6

0
.0

1
6

0
.0

0
0

0
.9

6
4

2
.0

0
0

0
.0

1
8

0
.0

1
7

0
.0

0
0

0
.9

3
3

q 1
4

0
.2

6
0
.8

2
8

0
.0

3
1

0
.0

3
1

0
.0

0
1

0
.9

5
2

−
7
.3

0
8

0
.0

4
0

0
.0

3
0

0
.0

0
2

0
.9

4
6

q 1
5

0
.1

3
−

0
.8

4
4

0
.0

2
3

0
.0

2
2

0
.0

0
1

0
.9

4
3

0
.0

0
0

0
.0

2
5

0
.0

2
2

0
.0

0
1

0
.9

2
6

q 2
1

0
.1

7
0
.9

1
9

0
.0

2
2

0
.0

2
1

0
.0

0
1

0
.9

3
4

−
7
.6

4
7

0
.0

2
8

0
.0

2
0

0
.0

0
1

0
.8

1
9

q 2
3

0
.0

8
2
.2

1
5

0
.0

1
7

0
.0

1
7

0
.0

0
0

0
.9

5
2

−
7
.5

0
0

0
.0

2
0

0
.0

1
6

0
.0

0
0

0
.9

0
2

q 2
4

0
.2

9
1
.0

4
3

0
.0

2
8

0
.0

2
9

0
.0

0
1

0
.9

6
9

−
1
.0

3
4

0
.0

3
9

0
.0

2
8

0
.0

0
2

0
.8

4
4

q 2
5

0
.1

4
−

0
.6

1
8

0
.0

2
0

0
.0

2
1

0
.0

0
0

0
.9

6
5

−
6
.4

2
9

0
.0

2
4

0
.0

2
0

0
.0

0
1

0
.9

2
2

q 3
1

0
.0

7
5
.7

8
0

0
.0

2
9

0
.0

2
9

0
.0

0
1

0
.9

3
9

−
1
5
.7

1
4

0
.0

3
3

0
.0

3
0

0
.0

0
1

0
.8

4
5

q 3
2

0
.1

9
0
.8

7
6

0
.0

4
2

0
.0

4
1

0
.0

0
2

0
.9

4
4

−
1
5
.2

6
3

0
.0

5
5

0
.0

1
8

0
.0

0
4

0
.4

6
9

q 3
4

0
.5

0
1
.9

1
0

0
.0

6
2

0
.0

6
0

0
.0

0
4

0
.9

4
3

−
2
.0

0
0

0
.0

9
2

0
.0

5
9

0
.0

0
9

0
.7

8
8

q 3
5

0
.1

7
−

1
.2

9
5

0
.0

3
9

0
.0

3
8

0
.0

0
2

0
.9

4
9

−
1
0
.0

0
0

0
.0

4
8

0
.0

4
0

0
.0

0
3

0
.9

4
5

q 4
1

0
.0

9
0
.0

8
8

0
.0

1
3

0
.0

1
3

0
.0

0
0

0
.9

5
3

−
8
.8

8
9

0
.0

1
5

0
.0

1
3

0
.0

0
0

0
.8

9
8

q 4
2

0
.1

8
0
.8

2
7

0
.0

1
8

0
.0

1
8

0
.0

0
0

0
.9

4
3

−
1
.1

1
1

0
.0

2
7

0
.0

0
9

0
.0

0
1

0
.4

6
8

q 4
3

0
.0

7
1
.4

7
5

0
.0

1
3

0
.0

1
2

0
.0

0
0

0
.9

3
9

−
1
0
.0

0
0

0
.0

1
6

0
.0

0
4

0
.0

0
0

0
.3

7
8

q 4
5

0
.2

5
1
.2

0
7

0
.0

1
9

0
.0

1
9

0
.0

0
0

0
.9

5
3

1
.2

0
0

0
.0

2
8

0
.0

1
9

0
.0

0
1

0
.8

0
2

q 5
1

0
.0

8
0
.2

4
8

0
.0

1
3

0
.0

1
4

0
.0

0
0

0
.9

4
3

−
1
.2

5
0

0
.0

1
4

0
.0

1
3

0
.0

0
0

0
.9

4
1

q 5
2

0
.1

1
0
.7

7
5

0
.0

1
7

0
.0

1
6

0
.0

0
0

0
.9

5
2

−
4
.5

4
5

0
.0

2
0

0
.0

0
8

0
.0

0
0

0
.5

7
8

q 5
3

0
.0

5
1
.4

1
2

0
.0

1
2

0
.0

1
2

0
.0

0
0

0
.9

6
0

−
4
.0

0
0

0
.0

1
4

0
.0

0
4

0
.0

0
0

0
.4

5
5

q 5
4

0
.2

3
0
.8

7
9

0
.0

2
3

0
.0

2
2

0
.0

0
1

0
.9

4
4

−
1
.3

0
4

0
.0

3
1

0
.0

0
7

0
.0

0
1

0
.3

6
2

Stat Methods Med Res. Author manuscript; available in PMC 2017 October 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ma et al. Page 24

Ta
b

le
 9

C
o
m

p
ar

is
o
n
 o

f 
th

e 
B

ay
es

ia
n
 a

p
p
ro

ac
h
 a

n
d
 t

h
e 

M
L

 m
et

h
o
d
 i

m
p
le

m
en

te
d
 w

it
h
 t

h
e 

M
S

M
 p

ac
k
ag

e 
fo

r 
a 

fi
ve

-s
ta

te
 m

o
d
el

 w
h
en

 o
b
se

rv
at

io
n
 i

n
te

rv
al

s 
ar

e 

eq
u
al

 t
o
 1

.5
. 
In

cl
u
d
in

g
 t

h
e 

p
er

ce
n
ta

g
e 

o
f 

b
ia

s 
(P

B
),

 c
ov

er
ag

e 
p
ro

b
ab

il
it

y
 (

C
P

),
 s

ta
n
d
ar

d
 d

ev
ia

ti
o
n
 (

S
D

),
 s

q
u
ar

e 
ro

o
t 

o
f 

th
e 

m
ea

n
 o

f 
th

e 
es

ti
m

at
ed

 v
ar

ia
n
ce

 

(S
E

),
 a

n
d
 m

ea
n
 o

f 
th

e 
sq

u
ar

ed
 e

rr
o
r 

(M
S

E
).

 T
h
e 

re
su

lt
s 

ar
e 

b
as

ed
 o

n
 4

9
7
 a

n
d
 1

1
2
 d

at
a 

se
ts

 (
o
u
t 

o
f 

1
0
0
0
) 

fo
r 

th
e 

B
ay

es
ia

n
 a

p
p
ro

ac
h
 a

n
d
 t

h
e 

M
L

 m
et

h
o
d
, 

re
sp

ec
ti

ve
ly

.

T
ru

e 
P

a
ra

m
et

er
s

B
a
ye

si
a
n

 m
et

h
o
d

M
S

M

P
B

SD
SE

M
SE

C
P

P
B

SD
SE

M
SE

C
P

q 1
2

0
.2

3
0

−
0
.4

8
7

0
.0

3
0

0
.0

2
8

0
.0

0
1

0
.9

3
9

1
.7

3
9

0
.0

4
0

0
.0

2
7

0
.0

0
2

0
.8

0
4

q 1
3

0
.2

6
0

3
.2

4
2

0
.0

3
6

0
.0

3
7

0
.0

0
1

0
.9

4
3

5
.3

8
5

0
.0

5
8

0
.0

4
5

0
.0

0
4

0
.7

5
9

q 1
4

0
.1

3
0

0
.2

7
4

0
.0

3
5

0
.0

3
3

0
.0

0
1

0
.9

4
1

−
9
.2

3
1

0
.0

5
2

0
.0

6
2

0
.0

0
3

0
.9

2
0

q 1
5

0
.1

9
0

2
.5

2
8

0
.0

4
1

0
.0

4
0

0
.0

0
2

0
.9

4
1

0
.0

0
0

0
.0

7
3

0
.0

7
9

0
.0

0
5

0
.9

0
2

q 2
1

0
.0

8
0

−
0
.7

6
4

0
.0

1
4

0
.0

1
4

0
.0

0
0

0
.9

4
9

−
8
.7

5
0

0
.0

2
2

0
.0

1
7

0
.0

0
1

0
.9

2
9

q 2
3

0
.1

0
0

1
.7

7
2

0
.0

1
4

0
.0

1
4

0
.0

0
0

0
.9

5
7

1
0
.0

0
0

0
.0

2
1

0
.0

1
4

0
.0

0
1

0
.7

2
3

q 2
4

0
.0

5
0

−
1
.9

8
4

0
.0

1
3

0
.0

1
4

0
.0

0
0

0
.9

5
9

−
1
0
.0

0
0

0
.0

1
6

0
.0

1
5

0
.0

0
0

0
.9

6
4

q 2
5

0
.1

5
0

1
.8

0
3

0
.0

1
9

0
.0

1
8

0
.0

0
0

0
.9

3
5

0
.0

0
0

0
.0

2
6

0
.0

1
9

0
.0

0
1

0
.8

4
8

q 3
1

0
.2

9
0

2
.5

4
6

0
.0

4
5

0
.0

4
5

0
.0

0
2

0
.9

4
7

−
1
.3

7
9

0
.0

6
6

0
.0

4
8

0
.0

0
4

0
.8

5
7

q 3
2

0
.0

9
0

−
2
.1

9
5

0
.0

3
0

0
.0

2
9

0
.0

0
1

0
.9

4
3

−
3
4
.4

4
4

0
.0

4
5

0
.0

0
7

0
.0

0
3

0
.1

7
0

q 3
4

0
.1

2
0

−
1
.2

1
0

0
.0

4
2

0
.0

3
9

0
.0

0
2

0
.9

2
7

7
.5

0
0

0
.0

6
2

0
.0

6
4

0
.0

0
4

0
.8

0
4

q 3
5

0
.3

2
0

2
.1

7
0

0
.0

5
2

0
.0

4
9

0
.0

0
3

0
.9

 3
7
.5

0
0

0
.0

7
4

0
.0

7
3

0
.0

0
6

0
.7

7
7

q 4
1

0
.2

1
0

1
.7

0
1

0
.0

3
8

0
.0

4
1

0
.0

0
1

0
.9

7
0

1
3
.3

3
3

0
.0

7
2

0
.0

4
5

0
.0

0
6

0
.7

0
5

q 4
2

0
.2

6
0

1
.7

6
0

0
.0

3
5

0
.0

3
4

0
.0

0
1

0
.9

4
3

3
.0

7
7

0
.0

5
6

0
.0

1
5

0
.0

0
3

0
.4

9
1

q 4
3

0
.1

1
0

−
0
.5

3
0

0
.0

3
4

0
.0

3
4

0
.0

0
1

0
.9

5
7

−
2
2
.7

2
7

0
.0

7
4

0
.0

0
6

0
.0

0
6

0
.0

7
1

q 4
5

0
.2

8
0

2
.8

3
9

0
.0

4
6

0
.0

4
8

0
.0

0
2

0
.9

6
3

−
9
.6

4
3

0
.0

7
5

0
.0

5
3

0
.0

0
6

0
.8

3
0

q 5
1

0
.2

2
0

1
.9

8
0

0
.0

3
9

0
.0

4
0

0
.0

0
2

0
.9

4
9

1
.3

6
4

0
.0

7
4

0
.0

4
2

0
.0

0
5

0
.7

3
2

q 5
2

0
.2

2
0

0
.8

1
9

0
.0

3
2

0
.0

3
2

0
.0

0
1

0
.9

4
3

2
.2

7
3

0
.0

5
2

0
.0

1
2

0
.0

0
3

0
.3

7
5

q 5
3

0
.0

9
0

−
0
.9

7
7

0
.0

3
2

0
.0

3
2

0
.0

0
1

0
.9

3
9

−
2
5
.5

5
6

0
.0

6
8

0
.0

0
5

0
.0

0
5

0
.0

7
1

q 5
4

0
.3

3
0

4
.6

4
0

0
.0

4
7

0
.0

4
6

0
.0

0
2

0
.9

2
7

2
.1

2
1

0
.0

7
5

0
.0

0
9

0
.0

0
6

0
.2

5
9

Stat Methods Med Res. Author manuscript; available in PMC 2017 October 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ma et al. Page 25

Ta
b

le
 1

0

C
o
m

p
ar

is
o
n
 o

f 
th

e 
B

ay
es

ia
n
 a

p
p
ro

ac
h
 a

n
d
 t

h
e 

M
L

 m
et

h
o
d
 i

m
p
le

m
en

te
d
 w

it
h
 t

h
e 

M
S

M
 p

ac
k
ag

e 
fo

r 
a 

fo
u
r-

st
at

e 
m

o
d
el

 w
h
en

 o
b
se

rv
at

io
n
 i

n
te

rv
al

s 
ar

e 

eq
u
al

 t
o
 1

.5
. 
In

cl
u
d
in

g
 t

h
e 

p
er

ce
n
ta

g
e 

o
f 

b
ia

s 
(P

B
),

 c
ov

er
ag

e 
p
ro

b
ab

il
it

y
 (

C
P

),
 s

ta
n
d
ar

d
 d

ev
ia

ti
o
n
 (

S
D

),
 s

q
u
ar

e 
ro

o
t 

o
f 

th
e 

m
ea

n
 o

f 
th

e 
es

ti
m

at
ed

 v
ar

ia
n
ce

 

(S
E

),
 a

n
d
 m

ea
n
 o

f 
th

e 
sq

u
ar

ed
 e

rr
o
r 

(M
S

E
).

 T
h
e 

re
su

lt
s 

ar
e 

b
as

ed
 o

n
 3

4
4
 3

0
6
 a

n
d
 4

9
7
 d

at
a 

se
ts

 (
o
u
t 

o
f 

1
0
0
0
) 

fo
r 

th
e 

B
ay

es
ia

n
 a

p
p
ro

ac
h
 a

n
d
 t

h
e 

M
L

 

m
et

h
o
d
, 
re

sp
ec

ti
ve

ly
.

T
ru

e 
P

a
ra

m
et

er
s

B
a
ye

si
a
n

 m
et

h
o
d

M
S

M

P
B

SD
SE

M
SE

C
P

P
B

SD
SE

M
SE

C
P

q 1
2

0
.5

0
0

6
.2

9
9

0
.1

2
6

0
.1

3
3

0
.0

1
7

0
.9

5
3

−
2
.4

1
6

0
.1

3
9

0
.1

5
6

0
.0

1
9

0
.8

5
3

q 1
3

0
.3

5
0

−
2
.5

2
8

0
.0

8
8

0
.0

8
8

0
.0

0
8

0
.9

5
9

4
.1

1
8

0
.1

1
2

0
.1

6
0

0
.0

1
3

0
.8

3
9

q 1
4

0
.1

5
0

0
.3

7
8

0
.0

4
8

0
.0

4
8

0
.0

0
2

0
.9

4
5

3
.9

2
2

0
.0

5
2

0
.1

1
5

0
.0

0
3

0
.9

0
7

q 2
1

0
.4

0
0

5
.7

6
7

0
.1

0
1

0
.1

0
7

0
.0

1
1

0
.9

4
8

−
2
.6

1
9

0
.1

0
8

0
.1

0
0

0
.0

1
2

0
.8

5
7

q 2
3

0
.8

0
0

3
.7

8
0

0
.1

2
5

0
.1

2
9

0
.0

1
7

0
.9

4
8

−
1
.2

0
7

0
.1

4
1

0
.2

3
6

0
.0

2
0

0
.8

5
5

q 2
4

0
.2

0
0

0
.2

8
4

0
.0

6
1

0
.0

6
4

0
.0

0
4

0
.9

4
8

−
2
.3

9
3

0
.0

6
9

0
.2

0
2

0
.0

0
5

0
.9

3
0

q 3
1

0
.0

8
0

−
3
.1

5
5

0
.0

2
4

0
.0

2
4

0
.0

0
1

0
.9

4
8

1
.7

7
6

0
.0

3
1

0
.0

2
3

0
.0

0
1

0
.8

4
5

q 3
2

0
.2

5
0

4
.8

5
2

0
.0

4
5

0
.0

4
4

0
.0

0
2

0
.9

3
3

1
.9

4
7

0
.0

6
0

0
.0

0
9

0
.0

0
4

0
.2

2
9

q 3
4

0
.3

0
0

0
.6

4
3

0
.0

2
2

0
.0

2
4

0
.0

0
0

0
.9

6
5

0
.4

9
8

0
.0

2
8

0
.0

4
2

0
.0

0
1

0
.8

9
9

q 4
1

0
.0

6
0

0
.5

7
2

0
.0

1
8

0
.0

1
8

0
.0

0
0

0
.9

5
3

8
.3

4
8

0
.0

2
3

0
.0

1
6

0
.0

0
1

0
.7

6
7

q 4
2

0
.1

2
0

−
0
.5

7
0

0
.0

2
6

0
.0

2
8

0
.0

0
1

0
.9

5
6

−
9
.5

8
7

0
.0

4
1

0
.0

0
7

0
.0

0
2

0
.2

5
8

q 4
3

0
.3

0
0

1
.1

1
6

0
.0

2
5

0
.0

2
7

0
.0

0
1

0
.9

5
3

2
.8

3
4

0
.0

3
8

0
.0

0
8

0
.0

0
2

0
.3

4
8

Stat Methods Med Res. Author manuscript; available in PMC 2017 October 04.


	Abstract
	1 Introduction
	2 Methods
	2.1 The Likelihood
	2.2 Priors and Posterior Distributions
	2.3 Bayesian Implementations
	2.4 AIC, DIC, and Goodness-of-fit tests

	3 Simulation Studies
	3.1 Interval Time of 1
	3.2 Increased Interval Time of 1.5

	4 Application to the Next Step Trial Data
	4.1 Data Description
	4.2 Results for Parameters of the Infinitesimal Matrix
	4.3 Results for Bayesian Inferences
	4.4 Transitions Restricted to Adjacent States

	5 Discussion
	6 Limitations and Conclusions
	Appendix A Additional simulation results
	Appendix B Bayesian predictive p-values for a simplified CTMC model
	References
	Figure 1
	Figure 2
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Table 9
	Table 10

