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Abstract

Quantum walks, the quantum analogy of the classical random walk, exhibit markedly
different properties compared to their classical counterpart; taking advantage of quantum
superposition and quantum correlations, they propagate across graph structures quadrat-
ically faster. They have since become an important tool in the field of quantum computa-
tion and quantum information theory, finding use in modelling complex quantum dynam-
ical systems and providing a universal method of quantum computation. In this thesis,
we consider continuous-time quantum walks across two areas of interest: efficient numeri-
cal simulation of the continuous-time quantum walk, and applications of continuous-time
quantum walks to graph isomorphism and network centrality.

In Part I, we introduce the classical and quantum walks, as well as key graph theory
concepts that will underpin later results. Then, in Part II, we begin by considering methods
of efficiently simulating the matrix exponential using distributed memory computation.
The results of our analysis leads to the presentation of the software package pyCTQW,
which allows us to simulate multi-particle continuous-time quantum walks on arbitrary
graphs more efficiently through the use of high performance computation. We follow with
an analysis of fermionic continuous-time quantum walks, and show that by considering
the set of symmetrized vertex states, the multi-particle fermionic quantum walk can be
implemented by considering a single-particle quantum walk on a much reduced-vertex
weighted graph.

We then consider quantum walk-based algorithms and applications in Part III, beginning
with graph isomorphism; using the Bose-Mesner algebra, we verify that the single-particle
continuous-time quantum walk cannot distinguish non-isomorphic strongly regular graphs.
Further, we show that modifying the quantum walk to include a vertex-dependent phase
factor does not provide any additional distinguishing power. Finally, we turn our at-
tention to network centrality algorithms, and propose a centrality measure based on the
continuous-time quantum walk. Through a statistical analysis on randomly generated
graphs, we show that our proposed measure is highly correlated with the classical eigen-
vector centrality, and suggest that it provides an extension of the eigenvector centrality
to the quantum realm. We then detail an experimental implementation of this centrality
scheme on a 4-vertex star graph; to our knowledge, the first physical quantum centrality
implementation. Next, we extend the continuous-time quantum walk to select directed
networks via the use of the PT-symmetry framework, without any increase in the state
space or resources required — unlike approaches such as the quantum stochastic walk
or the Szegedy quantum walk. Lastly, we use this framework to augment our quantum
centrality scheme to include directed networks, and show via statistical analysis that the
centrality scheme continues to correlate well with classical measures.
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CHAPTER 1

Introduction

Since the seminal paper by Aharonov et al. [1], quantum walks have become a funda-
mental tool in quantum information theory, allowing us to bridge the often more esoteric
world of quantum computation and algorithms with real life network theory and dynami-
cal quantum modelling applications. The quantum analogue of the classical random walk,
the astonishing abilities of the quantum walk are due, in part, to its markedly differing
properties. Harnessing inherent quantum effects such as superposition, quantum coher-
ence, and entanglement, the quantum walk propagates across structures quadratically
faster than its classical counterpart, with propagation ballistic rather than diffusive [2,
3]. They also exhibit wave-like nature around defects and impurities, such as interference,
resonance trapping and transmission, and can take advantage of multi-particle quantum
entanglement [4–7]. As a result of their drastically different propagation properties, there
has been an abundance of quantum walk-related research in the last decade, with quan-
tum walk formulations motivating the creation of quantum algorithms that are faster and
more efficient than their classical analogues [8, 9] — examples include network search
and centrality [10–14], graph isomorphism analysis [5, 6, 15–18], and quantum chemistry
simulation [19–24]. Furthermore, quantum walks on graphs have been proven to provide
methods of universal computation [25, 26], allowing quantum walk-based systems to play
a crucial role in the race to develop a quantum computer.

In order to ascertain an understanding of the advantage provided by the quantum walk to
the field of quantum computation compared to the well established quantum circuit model,
it is advantageous to briefly ‘retrace one’s steps’ and consider the classical random walk.
The random walk performs random ‘steps’ between various states of the system, with
the probability of transition between states independent of the past history of the walker
— that is, the random walk is memoryless, and is referred to as a stochastic Markovian
process. First coined by Karl Pearson in a 1905 letter to Nature [27, 28], the random walk
has since found prestige in its ability to model countless systems within numerous fields,
including physics (Brownian motion and diffusion [29]), biology (population dynamics [30,

1
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31], genetic drift [32, 33], neuroscience [34]), economics (stock market modelling [35–37]),
and network theory (graph isomorphism [38], network centrality [39, 40]), to name a few.
Whilst the quantum walk is no longer a Markovian process (its time-evolution is instead
governed by the time-reversible Schrödinger equation, and is now restricted to symmetric
transitions between states due to the unitarity condition imposed by quantum mechanics),
it retains the ability to naturally model systems that can be described as a collection
of states with direction and history-independent transition probabilities. As a result,
performing a quantum walk may allow us to extract useful information from the system,
whilst taking advantage of the potential quantum speedup over classical algorithms. This
has the potential to greatly increase the speed at which we can analyse underlying network
structures.

With the ongoing demand for increasingly accurate models of complex biochemical pro-
cesses that border the quantum regime (and thus exhibit some form of quantum coher-
ence), this ability has further led to the investigation of quantum walkers as a viable mod-
elling candidate [41]. So far, early research has explored their potential in analysing energy
transport in biological systems [19–24], highlighting the growing versatility of quantum
walks whilst providing new insights into the natural world. Most significantly, however, as
quantum walks on graphs constitute a universal system of quantum computation [25, 42],
any quantum walk-based algorithm or model can be recast in the quantum circuit model,
and vice versa [13, 43–45]. The resulting quantum circuit reformulations can take advan-
tage of the power afforded by constantly growing advances in theoretical and experimental
quantum computation — consequently, this places the quantum walk in a commanding
position, providing a new paradigm for the development of quantum algorithms. Quantum
walks have therefore become an integral apparatus in linking network analysis and mod-
elling with the problem solving potential of quantum computation. Furthermore, in recent
years outside the theoreticians’ office, physical implementations of quantum walkers have
been demonstrated experimentally, with approaches including the use of waveguides and
photonics [46–48] and ion lattices [49–51]; paving the way for the construction of devices
capable of running these quantum algorithms.

Note that, like the classical case, quantum walks are divided by two distinct approaches
— the discrete-time quantum walk (DTQW), which introduces spin-states and a quantum
coin operation with discrete time-evolution operators, and the continuous-time quantum
walk (CTQW), which evolves the walker continuously in time [52]. Due to the enlarged
Hilbert space and extra spin degrees of freedom of the DTQW, the relationship between
these two formulations is inherently non-trivial; regardless, an equivalency has been ex-
plored using both a limiting approach [53] and percolation theory [54]. In this thesis, we
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will be primarily concerned with the CTQW and its applications.

We begin by considering methods of efficient numerical simulation of CTQW. With the
accelerating number of quantum walk algorithms and applications (especially those in-
volving multiple walkers on increasingly large and complex graphs) and the current lack
of readily available programmable quantum computers, the ability to efficiently simulate
and analyse CTQW behaviour using classical computation becomes essential. As the time-
evolution unitary operator is determined by the solution to the Schrödinger equation, this
is analogous to requiring an efficient method of implementing the matrix exponential-
vector product. Common approaches include Krylov-subspace techniques [55, 56] and the
Padé approximation [57, 58]; the Chebyshev series method is another possible approach,
but so far has largely been confined to the field of computational quantum chemistry
[59–64]. Further complicating matters, the computational resources required to simu-
late multi-particle quantum walks increases exponentially with the number of interacting
particles in the system. To address these issues, in chapter 4 we present a detailed investi-
gation into the efficient simulation of the CTQW matrix exponential, with emphasis on the
choice of algorithm and method of implementation. We then introduce pyCTQW, a dis-
tributed memory software package written in Fortran with a Python interface. By taking
advantage of the impressive potential provided by modern High Performance Computing
(HPC) platforms, pyCTQW allows efficient simulation of large multi-particle CTQW-
based algorithms and systems. Moreover, we consider an additional approach to reducing
computational resources required to simulate CTQWs of multiple interacting fermions in
chapter 5; in particular, by removing ‘redundant’ and forbidden quantum states from con-
sideration, we are able to significantly reduce the original graph structure of the walk. As
a result, as the number of interacting fermions in the system increases, the computational
resources required no longer increases exponentially.

Utilising these tools and methods developed for efficient classical simulation allows us
to turn our focus towards CTQW-based applications and algorithms, and in particular,
graph isomorphism and network centrality. An important open problem in mathematics
and computer science, the graph isomorphism problem is concerned with efficiently deter-
mining if two differing graph labellings represent the different underlying graph structures.
While its exact computational complexity remains a long standing question, a polynomial-
time algorithm for determining graph isomorphism is conjectured to exist [65], and if found,
would lead to dramatic advancement in fields such as cheminformatics [66]. The classical
random walk has previously been considered as a candidate in developing an efficient graph
isomorphism algorithm [38], and over the past two decades, the quantum speedup afforded
by the quantum walk has motivated a dizzying array of quantum walk-based graph isomor-
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phism algorithms proposals, both using the DTQW [15, 17, 67–69] as well as the CTQW
[5, 6, 17, 70] — differing mainly in the number of particles involved, the presence of inter-
actions, localised perturbations, and how the graph structures are compared. As of yet,
however, no proposal has managed to solve the graph isomorphism problem completely,
with suggested algorithms failing to distinguish various classes of large, highly symmetric
and highly similar graphs. It has been shown that the DTQW has consistently higher
distinguishing power, with the single-particle DTQW able to distinguish non-isomorphic
graphs that are indistinguishable by single-particle CTQW algorithms, with distinguishing
power increasing as the number of walkers increases. Furthermore, it has been proven that
non-interacting multiple particle CTQWs are unable to distinguish particular families of
non-isomorphic graphs [5, 6, 17]. In order to circumvent the increase in computational
resources required by multiple particles, a peturbed single particle DTQW algorithm has
been proposed allowing an increase in distinguishing power [16]. However, the CTQW
would allow for an even more drastic reduction in computational resources, due to the
lack of a quantum coin operation and reduced Hilbert space; it is therefore natural to
ask, would a single-particle perturbed CTQW similarly allow for an increase in graph
distinguishability? In chapter 6, we prove using the Bose-Mesner algebra that this is not
the case — a single-particle CTQW perturbed in an analogous fashion to the perturbed
DTQW algorithm fails to distinguish non-isomorphic graph families distinguished by the
DTQW.

Thus, when searching for potential CTQW-based quantum algorithms, it is constructive
to consider cases where the CTQW produces results on par or bettering the DTQW,
allowing potential physical implementations a significant reduction in required computa-
tional resources. One such application we may consider is that of network centrality; the
process of determining the nodes of a network more ‘central’ or ‘important’ to the overall
network structure [71]. An immensely important topic in the field of network analysis
and graph theory, the ability to determine the most central network nodes efficiently
has wide-ranging applications across a range of interdisciplinary fields, due to the large
number of physical systems that can be modelled as networks. For example, ranking web-
sites for search engines [40], determining best practices for organisational management
[72–74], analysing grooming networks in macaques [75], and finding active sites in protein
molecules [76] all rely on the use of network centrality algorithms. Furthermore, a great
number of network centrality algorithms are designed by utilizing classical random walks
over graphs; including PageRank, arguably the most ‘famous’ of all centrality algorithms
due to its role in the rise of the Google search engine. As such, quantum walks provide a
natural method for translating these classical algorithms into the quantum realm, taking
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advantage of the potential exponential speedups offered by quantum computation over
the best known classical methods.

Indeed, in recent years several quantum centrality measures have been proposed — ranging
from quantizations of the aforementioned classical measures to wholly new proposals —
formulated using either the DTQW [12, 77] or the Quantum Stochastic Walk (QSW)
[13, 78, 79], an approach that combines the CTQW with environmental dephasing. In
chapter 8, we instead propose a quantum centality measure based on the CTQW, and
show via a large-scale statistical analysis that our proposed scheme is highly correlated
with the classical eigenvector centrality, potentially providing a quantum analogue to the
eigenvector centrality. Furthermore, due to a reduction in resources required compared to
previous quantum centrality algorithms, we are able to experimentally demonstrate our
quantum centrality scheme via linear optics, thus reporting the first successful physical
implementation of a quantum centrality algorithm.

Unfortunately, the above quantum centrality algorithm suffers from its inability to consider
non-Hermitian directed network structures; that is, transitions between states with a non-
zero possibility of transition in one direction, but zero possibility of transition in the
other. This arises due to the unitarity condition imposed by the quantum evolution of
the CTQW, and is not a barrier in classical random walks — indeed, the PageRank
algorithm, itself based on classical random walks, works equally well on both directed and
undirected networks — a necessity for applications such as web analysis where hyperlinks
are decidedly one-sided in nature. Consequently, various workarounds have been proposed
for dealing with this non-unitary behaviour, for example Szegedy quantum walks [13,
77, 80] and the aforementioned QSW [13, 78]. However, both of these approaches have
significant limitations when considering experimental implementation — each require a
significantly expanded Hilbert space, whilst muting the effect of quantum behaviour (due
to environmental dephasing).

A solution to this issue arises in the form of PT-symmetry, the observation that a system
Hamiltonian need not require Hermiticity to ensure unitary time-evolution, but simply
exhibit invariance under a combination of any linear operator P and non-linear operator
T [81–85]. Building on the preliminary results of earlier investigations into PT-symmetric
CTQWs [86], we therefore present in chapter 9 an independent and rigorous framework for
PT-symmetric CTQWs, allowing the propagation of CTQWs on PT-symmetric directed
graphs, whilst preserving the spectral information of the directed graph. Furthermore, we
extend these results to interdependent networks, and show that this formalism is equivalent
to an undirected, yet weighted, complete graph with self loops, providing a structural
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interpretation that may aid in the design of simple physical implementation. As a result,
we are able to generalize the CTQW centrality scheme to include PT-symmetric directed
graphs, and we present a statistical analysis highlighting that, on directed graphs, this
quantum centrality scheme continues to strongly agree with classical centrality measures
such as PageRank.

This thesis is structured as a collection of papers (either published in a peer-reviewed
journal or in the process of submission), each one reformatted to remove unnecessary
repetition and to adhere to a common style. In Part I, we introduce key graph theory
concepts in chapter 2, before introducing the classical and quantum walk in chapter 3. In
Part II, we focus on efficient numerical simulation of CTQWs, with emphasis on classical
computational tools such as matrix exponential algorithms and high performance com-
puting in chapter 4, where the software package pyCTQW is detailed. We change track
in chapter 5, detailing methods in which multi-fermion CTQWs may be simulated with
substantial reduction in the computational resources required. This includes calculat-
ing the reduced antisymmetrised graph representation of the original graph under study,
removing redundant and forbidden graph states.

Finally, in Part III, we consider CTQW algorithms and applications. In chapter 6, we
prove via the Bose-Mesner algebra that the single-particle peturbed CTQW is unable to
distinguish non-isomorphic pairs of strongly regular graphs belonging to the same family,
before introducing concepts fundamental to network centrality in chapter 7. A CTQW-
based network centrality algorithm is proposed in chapter 8, and an in-depth statistical
analysis over an ensemble of random graphs is presented, highlighting the high correlation
between our proposed quantum algorithm and the classical eigenvector centrality. We
then present the results of a proof-of-concept physical implementation of the proposed
CTQW quantum centrality scheme on a 4-vertex star graph, via linear optics. Then, in
chapter 9, we introduce the field of PT-symmetry, and present a PT-symmetric CTQW
framework that allows unitary time-evolution on directed graph structures. We show how
this framework generalises for interdependent networks, and how it may be interpreted in
terms of undirected and weighted graphs. Lastly, we extend the CTQW centrality scheme
proposed in the previous chapter to PT-symmetric directed graphs, and provide a detailed
statistical analysis on ensembles of random graphs, showing general strong agreement with
classical centrality measures. The thesis then concludes in chapter 10.
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CHAPTER 2

Graph theory

In this chapter, we will provide an overview of basic graph theory concepts, which will
be required when analyzing quantum walks over graph structures in subsequent chap-
ters.

2.1 Graph theory and definitions

Whilst quantum walks were initially introduced as propagating quantum particles in a
discretised one-dimensional or two-dimensional position space [1], their analogy to classi-
cal random walks soon led to them being defined over any arbitrary graph structure [52,
87]. That is, the orthogonal position states are now represented by vertices, with transi-
tions between states indicated by (undirected or directed) edges. As the quantum walk
Hamiltonian now encodes general graph structure, the theorems and properties found in
graph theory provide a useful foundation for analysing and characterising the quantum
walk.

In this section, we start with an introduction to concepts common in graph theory, before
applying these results in subsequent sections and chapters to quantum walks.

2.1.1 Undirected graphs

Consider an arbitrary undirected graph, denoted G(V,E), composed of vertices (or nodes)
V = {v1, v2, . . . , vN} and edges E = {e1, . . . , eM} where E ⊆ V × V . The graph consists
of |V | = N vertices, and the unordered pair ek = (vi, vj) represents an undirected edge
connecting vertices vi and vj . The vertices are said to be adjacent when (vi, vj) ∈ E;
this is denoted as vi ∼ vj . Note that, without loss of generality, we will be assuming no
isolated vertices — every vertex will have at least one other adjacent node. Using this as
a starting point, we define some important graph properties and definitions below.

8
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Definition 2.1 (Adjacency matrix). The adjacency matrix of an undirected graphG(V,E)

is an N ×N matrix which fully describes the graph structure; its elements are given by

Aij =







1, (vi, vj) ∈ E

0, (vi, vj) /∈ E.
(2.1)

Using the adjacency matrix, we can also define the concept of vertex degree:

Definition 2.2 (Degree). The degree of a vertex vi, denoted di = d(vi) where d : V → N0,
is the number of edges incident on vertex vi. This can be calculated by taking the sum of
the ith row of the adjacency matrix:

di ≡ d(vi) =
∑

k

Aik. (2.2)

Definition 2.3 (Degree matrix). The degree matrix D of an undirected graph G(V,E) is
an N ×N diagonal matrix composed of the vertex degrees:

D = diag(d(v1), d(v2), . . . , d(vN )) or equivalently Dij = δij
∑

k

Aik. (2.3)

Definition 2.4 (Degree regular graph). A graph G(V,E) is denoted k-degree regular if
every vertex vi has degree k; d(vi) = k ∀ vi. The degree matrix is then given by D = kI.

As the adjacency matrix for an undirected graph is real and symmetric (the edge repre-
sented by the unordered pair (vi, vj) is equivalent to the edge represented by unordered
pair (vj , vi), and thus Aij = Aji), it therefore satisfies Hermiticity (A† = A) and has a
complete orthonormal eigenbasis with real eigenvalues.

Corollary 2.5. For a k-degree regular graph G(V,E) with adjacency matrix A,

AJ = JA = kJ (2.4)

where J is the all one’s matrix. That is, the (1, 1, . . . , 1) is an eigenvector of A with
eigenvalue k.

An important property of the adjacency matrix is that it allows us to analyze the walks
present in a graph — an important characteristic that provides information regarding
network flow.

Definition 2.6 (Walk). A walk of length ℓ between vertices vi and vj is a sequence of ℓ+1

adjacent vertices of the form vi ∼ vs1 ∼ vs2 · · · ∼ vsℓ−1
∼ vj . Vertices may be repeated
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along the sequence. If vi = vj , this is referred to as a closed walk, otherwise it is referred
to as an open walk.

Definition 2.7 (Path). If a walk between vertices vi and vj has no repeating vertices
between vi and vj , it is referred to as a path. If vi = vj , it is a closed path.

Consider the ijth element of Aℓ, the ℓth matrix power of the adjacency matrix:

(Aℓ)ij =
∑

s1

∑

s2

· · ·
∑

sℓ−1

Ais1As1s2 · · ·Asℓ−1sj . (2.5)

For the summand to be non-zero, the only possibility is Ais1 = As1s2 = · · · = Asℓ−1sj = 1;
this occurs only when vi ∼ vs1 , vs1 ∼ vs2 , and so on. As we are summing over all possible
intermediate adjacent vertices sm, we can therefore see that (Aℓ)ij provides the number
of walks of length ℓ emanating from vertex vi and ending at vertex vj .

The definition of paths and walks allows us to further define several graph distance mea-
sures.

Definition 2.8 (Distance). The distance between two vertices vi and vj , denoted dist(vi, vj),
is defined as the length of the shortest path connecting the two vertices.

Definition 2.9 (Diameter). The diameter D of a graphG(V,E) is given by max({dist(vi, vj) :
vi, vj ∈ V }); i.e. it is the ‘longest distance’ contained in the graph connecting any two
vertices.

It should be noted that whilst an adjacency matrix fully describes the graph G, it is not
unique; a relabelling of the vertices (which does not affect the underlying graph structure)
results in a simultaneous permutation of the rows and columns of A. If two such graphs
are identical under a vertex relabelling, they are referred to as isomorphic.

Definition 2.10 (Graph isomorphism). Two graphs G and H are isomorphic if there
exists a bijection f : V (G) → V (H) between the two sets of vertices such that any two
vertices u and v are adjacent in G if and only if f(u) and f(v) are adjacent in H.

Theorem 2.11. Two graphs G1(V,E) and G2(V,E) are isomorphic if and only if there
exists a permutation matrix P such that their respective adjacency matrices, A1 and A2,
are related via

A2 = P−1A1P . (2.6)

For example, consider the two graphs displayed in Fig. 2.1 — even though they are iden-
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(a) Graph G1 (b) Graph G2

Figure 2.1: A 4-vertex undirected graph with two different vertex labellings. The graphs
in (a) and (b) are isomorphic; to transform from (a) to (b), simply make the vertex label
permutation (1, 2, 3, 4) → (4, 3, 1, 2).

tical, differing only in vertex labelling, Eq. 2.1 will provide two different adjacency matri-
ces:

A1 = A(G1) =










0 1 1 1

1 0 0 1

1 0 0 0

1 1 0 0










, A2 = A(G2) =










0 0 0 1

0 0 1 1

0 1 0 1

1 1 1 0










. (2.7)

It can easily be seen that A2 = PA1P
−1, where

P =










0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0










(2.8)

is the permutation matrix representing the vertex relabelling. Note that, as two isomor-
phic graphs have adjacency matrices related via a similarity transform, they share the
same eigenvalues, determinant, and trace — these properties are isomorphic invariants.
Furthermore, the eigenvectors corresponding to each eigenvalue will be preserved under
vertex labelling permutation.

As an alternative to the adjacency matrix, we may also represent the graph structure using
what is known as an incidence matrix.

Definition 2.12 (Incidence matrix). The incidence matrix of an undirected graph G(V,E)

is a |V | × |E| matrix M such that

Mij =







2, if ej = (vi, vi) ∈ E

1, if ej = (vi, vk) ∈ E for some k ∈ [1, N ]

0, otherwise.

(2.9)
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Unlike the adjacency matrix, which indicates vertex adjacency, the incidence matrix de-
scribes vertex-edge incidence; in other words, Mij = 2 if edge ej is a self-loop incident on
vertex vi, Mij = 1 if edge ej is incident on vertex vi, and Mij = 0 if edge ej is not inci-
dent on vertex vi. Therefore, the incidence matrix indicates which edges of the graph are
incident on which vertices. Since every edge is incident on only two vertices, the oriented
incidence matrix as defined by Eq. 2.9 has the property

N∑

k=1

Mkj = 2. (2.10)

For example, consider graph G1 in Fig. 2.1(a); constructing the incidence matrix as per
above, we have

M =










1 1 1 0

1 0 0 1

0 1 0 0

0 0 1 1










, (2.11)

where the rows correspond to vertices in V , the columns correspond to edges in E, and a
non-zero element represents incidence between the respective vertex and edge.

A variant of the incidence matrix, known as the oriented incidence matrix, assigns a
random direction to each edge — in effect, the edge ek = (vi, vj) becomes an ordered
pair, with the edge ek incident away from vertex vi and towards vertex vj . As such, the
definition of the incidence matrix above is now modified to take into account this random
graph orientation:

Definition 2.13 (Oriented incidence matrix). The oriented incidence matrix of an undi-
rected graph G(V,E) is a |V | × |E| matrix M̃ such that

M̃ij =







2, if ej = (vi, vi) ∈ E

1, if ej = (vi, vk) ∈ E for some k ∈ [1, N ]

−1, if ej = (vk, vi) ∈ E for some k ∈ [1, N ]

0, otherwise.

(2.12)

Following this definition, it can be seen that the column sum of an oriented incident
matrix now sums to 0 rather than 2. To illustrate, consider graph G1 from Fig. 2.1 again;
choosing a random orientation for each of the edges (Fig. 2.2) and constructing the oriented
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1

2

3

4

Figure 2.2: The undirected graph G1 from Fig. 2.1 with a random orientation applied

incidence matrix,

M̃ =










1 −1 −1 0

−1 0 0 1

0 1 0 0

0 0 1 −1










. (2.13)

From hereon, the term incidence matrix and symbol M will refer to the oriented incidence
matrix; the (unoriented) incidence matrix can then be denoted |M |.

Alongside the adjacency matrix and the incidence matrix, we introduce one final ma-
trix of importance in graph theory; the (combinatorial) graph Laplacian or Laplacian
matrix.

Definition 2.14 (Graph Laplacian). For an undirected graph G(V,E) with adjacency ma-
trix A and corresponding degree matrix D =

∑

k Aik, the (combinatorial) graph Laplacian
matrix is defined by

L = D −A ⇔ Lij = δij
∑

k

Aik −Aij . (2.14)

Corollary 2.15. The Laplacian is real and Hermitian: L† = L.

As a result, it has a complete orthonormal eigenbasis {v1,v2, . . . ,vN} with respective
real eigenvalues {λ1, λ2, . . . , λN}. It is therefore diagonalizable by the unitary matrix
Qij = (vi)j , resulting in Λ = QTLQ where Λ = diag(λ1, λ2, . . . , λN ).

Lemma 2.16. The Laplacian is positive semi-definite. As a consequence, it follows that
the eigenvalues of L are real and non-negative:

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λN . (2.15)

Proof. Consider the quadratic form of the Laplacian, x
TLx =

∑

i

∑

j xiLijxj , where
x ∈ R

N\{0} is an arbitrary column vector. Substituting in Lij = δij
∑

k Aik − Aij and
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rearranging:

x
TLx =

∑

i

∑

j

xiLijxj =
∑

i

∑

j

xi

(

δij
∑

k

Aik −Aij

)

xj

=
∑

i

∑

j

x2iAij −
∑

i

∑

j

xixjAij

=
1

2




∑

i

∑

j

x2iAij +
∑

i

∑

j

x2jAji





− 1

2




∑

i

∑

j

xixjAij +
∑

i

∑

j

xixjAji





=
1

2

∑

i

∑

j

Aij(xi − xj)
2

=
∑

(vi,vj)∈E
(xi − xj)

2. (2.16)

Since (xi − xj)
2 ≥ 0 for all (vi, vj) ∈ E, it follows that x

TLx ≥ 0 for all x, and therefore
L is positive semi-definite.

From the definition of the Laplacian, it can readily be seen that the diagonal elements of
the Laplacian correspond to the vertex degrees, whilst the row and column sums of the
Laplacian sum to zero,

∑

k

Lik =
∑

k

Lki = 0. (2.17)

This leads us to our next corollary:

Corollary 2.17. The nullspace of L is given by the all one’s vector 1 = (1, 1, . . . , 1), with
respective eigenvalue λ1 = 0.

In general, the eigenspectrum of the Laplacian and the adjacency matrix have a highly
non-trivial relationship; knowing properties of the eigenspectrum of one will not allow
deduction of the equivalent properties for the other. However, for a degree regular graph
G, the eigenspectrum of the adjacency matrix and the Laplacian are related via a linear
transformation.

Lemma 2.18. For a k-degree regular graph G(V,E), the adjacency matrix A and graph
Laplacian L share the same orthonormal eigenbasis vi,

Avi = µivi and Lvi = λivi, i = 1, 2, . . . , N , (2.18)
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whilst the eigenvalues µi of the adjacency matrix are related to the eigenvalues λi of the
Laplacian by

λi = k − µi. (2.19)

Proof. For a k-degree regular graph, we have D = kI, and thus L = kI − A. Recall
that, as L is Hermitian, it is diagonalizable by Qij = (vi)j , producing diagonal matrix
Λ = diag(λ1, . . . , λN ). Since D and A commute, they are simultaneously diagonalizable:

Λ = QTLQ = QT (kI −A)Q = kI −QTAQ = kI −M, (2.20)

where M = diag(µ1, . . . , µN ).

Finally, it should also be noted that the Laplacian can also be constructed via the incidence
matrix of the graph:

Lemma 2.19. For an undirected graph G(V,E) with oriented incidence matrix M ,

L =MMT . (2.21)

Note that this result is independent of the random orientation chosen to compute M .

In the literature, the graph Laplacian is known by a dizzying variety of names; a quick
scan will reveal papers referring to the same construction as the Laplacian matrix, discrete
Laplacian, combinatorial Laplacian, graph Laplacian, Kirchoff matrix1, amongst others.
To see how the term ‘Laplacian’, more commonly associated with the Laplacian operator
of vector calculus, came to be affiliated with this graph-theory matrix, let’s discretise the
Laplacian operator over a 1D infinite grid.

In one-dimension, the Laplacian operator acting on a function ϕ(x) is given by

∇2ϕ(x) =
∂2

∂x2
ϕ(x). (2.22)

Using the method of central finite differences, we can approximate this to second order
by

∇2ϕ(x) ≈ (ϕ(x+ h)− ϕ(x)) + (ϕ(x− h)− ϕ(x))

h2
+O(h2), (2.23)

1Some readers may recognise the name Kirchoff from Kirchoff’s circuit laws. His name has also come
to be attached to the Laplacian matrix, due to its use in Kirchoff’s matrix tree theorem [88].
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where h ≪ 1. We now discretise the spatial coordinate x over a finite grid of size N

(x1, x2, . . . , xN where xi+1 − xi = h); this allows us to discretise the function ϕ(x) over
the grid, ϕi = ϕxi

. The discretised one-dimensional Laplacian now takes the form

∇2ϕi =
(ϕi+1 − ϕi) + (ϕi−1 − ϕi)

h2
=
ϕi+1 − 2ϕi + ϕi−1

h2
, (2.24)

or, in matrix notation,

∇2φ = − 1

h2













2 −1 0 0 0 · · · 0 0

−1 2 −1 0 0 · · · 0 0

0 −1 2 −1 0 · · · 0 0
... . . . ...

...
0 0 0 0 0 · · · 0 −1













φ. (2.25)

The matrix in Eq. 2.25 is identical to the (combinatorial) graph Laplacian of a finite line
of N vertices — thus, if we set h = 1 (signifying a distance of 1 between adjacent nodes
in the graph), interpret ϕ as a function over the set of vertices (ϕ : V → R), and let
φ = (ϕ(v1), . . . , ϕ(vN )), we see that

∇2 = −L, (2.26)

i.e. the negative graph Laplacian of a one-dimensional finite line is equal to the one-
dimensional discrete Laplacian operator.

We can expand this result to any arbitrary undirected graph G(V,E) as follows.

Theorem 2.20. Consider the graph G(V,E). Let ϕ : V → R
N denote a function over

the vertex set V , with ϕi symbolizing the ith component of vector φ = (ϕ(v1), . . . , ϕ(vN )).
The action of the Laplcian operator acting on the vertex function ϕi is given by

∇2ϕi =
∑

(vi,vj)∈E
(ϕj − ϕi) = −

∑

j

Lijϕj . (2.27)

Proof. It can be seen that this is a generalization of Eq. 2.24 to account for all edges
emanating from vertex i, and can be interpreted as summing the difference in ϕ across
all vertices adjacent to vi. Now, we know that Aij = 0 if vi ≁ vj and 1 if vi ∼ vj ; thus,
substituting this result in and rearranging:

∇2ϕi =
N∑

j=1

Aij(ϕj − ϕi) =
N∑

j=1

Aijϕj − ϕi

N∑

k=1

Aik
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=

N∑

j=1

Aijϕj −
N∑

j=1

ϕjδij

N∑

k=1

Aik

=
N∑

j=1

(

Aij − δij

N∑

k=1

Aik

)

ϕj

= −
N∑

j=1

Lijϕj . (2.28)

Writing this in vector form, ∇2φ = −Lφ, and we can see that the negative graph Laplacian
of an unidrected graph G(V,E) is equivalent to the discrete Laplacian operator acting on
the graph.

In addition to the graph Laplacian discussed above, normalized variations also exist in
the literature. In our case, we will only be concerned with the so-called random walk
normalized Laplacian.

Definition 2.21 (Normalized graph Laplacian). For an undirected graph G(V,E), the
random walk normalized graph Laplacian is defined by

L̃ = (D −A)D−1 ⇔ L̃ij =







1, i = j

− 1
d(j) , (vi, vj) ∈ E

0, (vi, vj) /∈ E.

(2.29)

That is, the normalized Laplacian can be constructed by post-multiplying the combinato-
rial graph Laplacian by the inverse of the degree matrix2. Since we are only considering
graphs with no isolated vertices (d(vi) = 0), the diagonal matrix D will contain no zeros
along the diagonal, ensuring |D| ̸= 0 and that L̃ is well-defined.

As might be guessed from its name, the random walk normalized Laplacian is used ex-
tensively when studying classical random walks, as it is inextricably linked to the random
walk transition matrix. This property allows it to act as a stochastic transition matrix for
continuous-time random walks, which we will cover in detail in chapter 3.

Note that, in a similar fashion to Eq. 2.27 we can also write the normalized Laplacian as an

2We adopt this convention due to our use of column probability vectors in subsequent section. If we
were instead to use row probability vectors, we would defined the random walk normalized Laplacian by
L̂ = D−1L to ensure row stochasticity for random walks.
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operator acting on a function ϕ : V → R defined over the vertex set, with ϕi = ϕ(vi):

∇̃2ϕi = −
∑

ij

L̃ijϕj =
∑

(vi,vj)∈E

(
1

dj
ϕj −

1

di
ϕi

)

, (2.30)

i.e. the normalized Laplacian acting on ϕi measures the sum of the differences in ϕ, divided
by vertex degree, across all vertices adjacent to vi.

From here onwards, to avoid confusion, the terms ‘graph Laplacian’, ‘discrete Laplacian’,
‘Laplacian matrix’, and simply ‘Laplacian’ will be used to refer to the un-normalized
combinatorial graph Laplacian L.

2.1.2 Weighted graphs

Weighted undirected graphs are an extension of the framework detailed above, this time
with real-valued weights permitted to be assigned to each edge in the graph:

Definition 2.22 (Weighted graph). A weighted, undirected graph G(V,E,W ) is com-
posed of a set of vertices V = {v1, v2, . . . , vN}, edge set E = {e1, e2, . . . , eM} ⊆ V ×V , and
edge weights W = {w1, w2, . . . , wM} ⊆ V ×V . The unordered pair ek = (vi, vj) represents
an undirected edge between vi and vj , whilst wk = w(vi, vj), wk ∈ R represents a non-zero
weight placed on the corresponding edge ek.

Note that this is a generalization of the previous section — letting W = {1, 1, . . . , 1} in Def.
2.22 reduces us back to the case of the unweighted, undirected graph. As such, most of
the concepts and properties we saw can be extended to the weighted graph quite trivially,
with only a few major subtleties relevant to this work extended upon3. In particular,
the definition for the adjacency, Laplacian, and incidence matrices remains the same for
weighted graphs, and are simply complemented by the addition of the weighted adjacency
matrix and weighted Laplacians, and the concept of weighted degree.

Definition 2.23 (Weighted adjacency matrix). The weighted adjacency matrix of an
undirected graph G(V,E,W ) is an N×N matrix which fully describes the graph structure;

3Although it is possible to introduce graph theory concepts starting from weighted graphs, and later
consider unweighted graphs as a special case, in general this is not done. This is mostly due to a mix of
historical convention, and the fact that various important theorems (e.g. Perron-Frobenius theorem) can
be applied to adjacency matrices composed of solely ones and zeros.
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its elements are given by

A
(w)
ij =







wk, ek = (vi, vj) ∈ E

0, (vi, vj) /∈ E.
(2.31)

Analogously to the (unweighted) adjacency matrix, we can then also define the concept
of weighted vertex degree:

Definition 2.24 (Weighted degree). The weighted degree of a vertex vi, denoted d
(w)
i =

d(w)(vi) where d(w) : V → N0, is the sum of the edge weights incident on vertex vi. This
can be calculated by taking the sum of the ith row of the weighted adjacency matrix:

d
(w)
i = d(w)(vi) =

∑

k

A
(w)
ik . (2.32)

Definition 2.25 (Weighted degree matrix). The weighted degree matrix D(w) of a graph
G(V,E,W ) is an N ×N diagonal matrix composed of the weighted vertex degrees:

D(w) = diag(d(w)(v1), d
(w)(v2), . . . , d

(w)(vN )) = δij
∑

k

A
(w)
ik . (2.33)

The weighted Laplacian can now be defined in a similar fashion to how the unweighted
graph Laplacian is calculated:

Definition 2.26 (Graph Laplacian). For a weighted graph G(V,E,W ) with weighted
adjacency matrix A(w) and corresponding weighted degree matrix D(w) =

∑

k A
(w)
ik , the

weighted graph Laplacian matrix is defined by

L(w) = D(w) −A(w) ⇔ L
(w)
ij = δij

∑

k

A
(w)
ik −A

(w)
ij . (2.34)

We now state, without proof, the following well-established relationship between the
oriented incidence matrix of a weighted graph, and its corresponding weighted Lapla-
cian:

Lemma 2.27. For a weighted graph G(V,E,W ) with oriented incidence matrix M ,

L(w) =MWMT , (2.35)

where W = diag(W ) is a diagonal matrix containing the edge weights.



20 Chapter 2 Graph theory

Finally, as an aside and for some physical intuition, note that the action of the weighted
Laplacian on a function defined over a graph’s vertex set can be interpreted as a discrete,
weighted, Laplacian operator:

Theorem 2.28. Consider the weighted graph G(V,E,W ). Let ϕ : V → R
N denote a

function over the vertex set V , with edge weight wk = w(vi, vj) corresponding to edge
ek = (vi, vk). Let ϕi symbolize the ith component of vector φ = (ϕ(v1), . . . , ϕ(vN )). The
action of the weighted Laplcian matrix acting on the vertex function ϕi is given by

∑

j

L
(w)
ij ϕj = −

∑

(vi,vj)∈E
w(vi, vj)(ϕj − ϕi). (2.36)

2.1.3 Directed graphs

So far, we have considered undirected graphs — both weighted and unweighted. In this
section, we will now introduce the concept of directed graphs, and we will later see that
this category poses a significant challenge to the quantum walk framework.

Definition 2.29 (Directed graph). A directed graph G(V,E) is composed of a set of
vertices V = {v1, v2, . . . , vN} and edge set E = {e1, e2, . . . , eM} ⊆ V ×V , with the ordered
pair ek = (vi, vj) representing a directed edge incident away from vi and toward vj .

Now that we are representing edges as ordered pairs of vertices, we see that the direction
of the edge is now vital to describing the graph structure; (vi, vj) ̸= (vj , vi). Calculating
the adjacency matrix of the directed graph (Eq. 2.1), it follows that the adjacency matrix
of a directed graph is no longer symmetric — Aij is not necessarily equal to Aji — and
thus A is no longer an Hermitian matrix. As such, it cannot be guaranteed that A has a
complete orthonormal eigenbasis with real eigenvalues.

Along with the now non-symmetric adjacency matrix, directed graphs also inherit a couple
of subtleties with regards to vertex degree; it is now possible to define both vertex in-degree
and out-degree.

Definition 2.30 (In-degree). The in-degree of vertex vi, denoted d−i = d−(vi) where
d− : V → N0, is the number of edges incident toward vertex vi. It can be calculated from
the row sums of the adjacency matrix:

d−i ≡ d−(vi) =
∑

k

Aik. (2.37)

Definition 2.31 (Out-degree). The out-degree of vertex vi, denoted d+i = d+(vi) where
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d+ : V → N0, is the number of edges incident away from vertex vi. It can be calculated
from the column sums of the adjacency matrix:

d+i ≡ d+(vi) =
∑

k

Aki. (2.38)

Corollary 2.32. The total degree di = d(vi) of vertex vi is given by di = d+i + d−i .

For a directed graph, the construction of the incidence matrix M remains the same as in
the oriented incidence matrix of an undirected graph (Eq. 2.12), with the addendum that
we no longer need to randomly assign direction to the already-directed edges.

However, when we try and extend the Laplacian matrix to the directed graph, we start to
run into several issues. For example, lets naïvely assume our previous undirected Laplacian
matrix definitions extend without modification to the directed graph case:

L = D −A ⇔ Lij = δij
∑

k

Aik −Aij ⇔ L =MMT . (2.39)

Instantly, we’ll notice ambiguities and false-equivalences. Do we choose D to be the
diagonal matrix of total vertex degrees, in-degrees, or out-degrees? Kirchoff’s matrix tree
theorem would imply a diagonal matrix of in-degrees [88, 89], but calculating L =MMT

produces the total vertex degree along the diagonal. Further muddling the picture, the
directed graph Laplacian is not as well-studied as its undirected counterpart; studies
constructing the directed Laplacian using vertex out-degree [90], in-degree [91], and total
degree [92] coexist alongside one-another in the literature.

Thus, in order to follow conventions laid out in prior quantum walk studies [86], in this
manuscript we will adopt the convention of utilizing in-degrees along the diagonal of the
Laplacian.

Definition 2.33 (Directed graph Laplacian). For a directed graphG(V,E) with adjacency
matrix A, the directed graph Laplacian matrix is defined by

Lij = δij
∑

k

Aik −Aij . (2.40)

2.2 Important graph classes

We have already seen that graphs may exhibit degree regularity (Def. 2.4) — the set of
graphs satisfying this property form the class of degree regular graphs, and as a result
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of this shared property, further characteristics common to this class may be deduced or
proven. In a similar vein, numerous other classes of graphs all sharing unique characteris-
tics exist. In this section, let us introduce a couple of useful graph classes, properties, and
theorems that will be used throughout this thesis.

2.2.1 Complete graphs

The complete graphs are the class of graphs where every possible pair of vertices are
adjacent.

Definition 2.34 (Complete graph). The complete undirected graph KN is an undirected
graph of N vertices V = {v1, v2, . . . , vN} and N(N−1)/2 edges E = {e1, e2, . . . , eN(N−1)/2}
such that vi ∼ vj for all pairs of vi, vj ∈ V .

The total number of edges in the complete graph can be easily shown by considering that
the edge set consists of every possible unordered pair of vertices; |E| =

(
N
2

)
= N(N−1)/2.

Moreover, by the above definition, complete graphs are also members of the degree-regular
class of graphs, with each vertex having degree d = N − 1.

Corollary 2.35. The (unweighted) adjacency matrix of the complete graph KN is given
by A = J − I.

Furthermore, complete graphs all satisfy a property known as vertex-transitivity.

2.2.2 Vertex transitive graphs

Definition 2.36 (Vertex transitivity). Let G(V,E) be an undirected graph with vertex
set V = {v1, v2, . . . , vN}. It is vertex transitive if, for every pair of vertices (vi, vj), there
exists a function over the vertex set f : V → V such that f(vi) = vx and f(vj) = vy.

Note that, under this definition, f is an automorphism of the graph vertex set, simply
relabelling them in such a way as to preserve the vertex adjacency of G under the new
labelling. In other words, every vertex in a vertex transitive graph has the same local
environment; we cannot distinguish vertices by considering their adjacent neighbours. As
a consequence, it can be seen that vertex transitive graphs must necessarily be degree-
regular.
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2.2.3 Strongly connected graphs

The complete graph, as defined earlier, is also an example of a strongly connected graph;
that is, every pair of vertices are connected by a walk of arbitrary length.

Definition 2.37 (Strongly connected graph). A graph G(V,E) is said to be strongly
connected if, for every pair of vertices vi and vj , there exists a walk of length k ∈ N in
both directions between vi and vj .

Recall Eq. 2.5; we can thus reformulate this condition in terms of the adjacency matrix.
The adjacency matrix of a strongly connected graph is an irreducible matrix.

Definition 2.38 (Irreducible matrix). An adjacency matrix A for a graph G(V,E) is
irreducible if any of the following equivalent conditions are met:

• For every i, j ∈ [1, N ] there exists an integer k ∈ N such that (Ak)ij > 0,

• There exists no permutation matrix P such that PAP−1 is block upper triangular
matrix,

• Graph G is strongly connected.

Corollary 2.39. For a graph G(V,E) with adjacency matrix A, the following are equiva-
lent:

• Graph G is strongly connected

• A is irreducible

When a graph is strongly connected, it allows us to make an important observation re-
garding the spectrum of its adjacency matrix, due to the Perron-Frobenius theorem.

Theorem 2.40 (Perron-Frobenius theorem for irreducible matrices). Let G(V,E) be a
strongly connected graph G(V,E), with corresponding irreducible adjacency matrix A and
eigenvalues {λi}. Then,

1. There exists an eigenvalue λP of A that is real and positive;

2. λP ≥ |λi| for all λi ̸= λP — λP is referred to as the principal eigenvalue;

3. λi is a simple eigenvalue, i.e. it has a multiplicity of 1;

4. The eigenvector vP corresponding to λP is real, unique, and strictly positive, i.e.
(vP )j > 0 for all j.
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However, note that point 2. above uses a greater than or equal to sign, implying that
cases may exist where multiple principal eigenvalues λP exist. In order to guarantee that
the Perron-Frobenius theorem ensures a unique λP , an additional property is required —
we require the matrix concerned to be primitive.

Definition 2.41 (Primitive matrix). An adjacency matrix A for a graph G(V,E) is prim-
itive if any of the following equivalent conditions are met:

• there exists an integer k ∈ N0 such that every element of Ak is positive,

• Every vertex in G is connected to any other by a path of length at least k,

• the graph G has at least one odd length closed path.

Corollary 2.42. Every primitive adjacency matrix A is also irreducible.

Corollary 2.43. If A is an irreducible matrix, then A + I is necessarily irreducible and
primitive.

Applying the Perron-Frobenius theorem to primitive matrices now ensures a unique prin-
cipal eigenvalue.

Theorem 2.44 (Perron-Frobenius theorem for primitive matrices). Let G(V,E) be a
strongly connected graph G(V,E), with corresponding primitive adjacency matrix A and
eigenvalues {λi}. Then,

1. There exists a unique principal eigenvalue λP of A that is real and positive;

2. λP > |λi| for all λi ̸= λP ;

3. λi is a simple eigenvalue, i.e. it has a multiplicity of 1;

4. The eigenvector vP corresponding to λP is real, unique, and strictly positive, i.e.
(vP )j > 0 for all j.

Henceforth, unless explicitly stated and without loss of generality, it should be assumed
that all graphs discussed are strongly connected.

2.2.4 Random graphs

Sometimes, when analysing functions of a graph vertex set ϕ : V → R
N , we would like

to be able to determine the ‘typical’ behaviour of such a function. This can be difficult
to do when working with specific network examples — the subconscious choices made
when picking or designing specific graph structures may lead to the presentation of results
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showing atypical properties of function ϕ. As such, it is critical to analyse the performance
of the graph function ϕ over an ensemble of randomly generated graphs of vertex size N
[93]. Graphs belonging to this random ensemble must conform to |V | = N , with the
existence of edges between vertices described by a random variable of random process.
Note that, as a result of random variable or process chosen to generate the edge set E,
the random graphs can be grouped into classes which all share particular properties and
characteristics; when performing a statistical analysis over random graph ensembles, care
must be taken to choose classes of random graphs that accurately model the system under
consideration. In this section, we will briefly introduce two classes of random graphs that
will be heavily used in this thesis.

The study of random graphs was initiated by Erdös and Rényi [94] in their influential
1959 paper, and as a result, in some fields the term ‘random graph’ remains synonymous
with the Erdős-Rényi random graph. A random Erdős-Rényi graph, denoted G(N, p), is
comprised of N vertices with edges randomly distributed via a Bernoulli distribution with
probability p [95]; subsequently, this class of random graph is sometimes referred to as a
binomial random graph. For such a network, the expected vertex degree distribution P (k)
(the fraction of vertices with degree k) is binomial in form,

P (d) ∼
(

N − 1

d

)

pd(1− p)N−d−1, (2.41)

resulting in most vertices with degree close to np, the mean number of connections [94,
96]. An example of a randomly generated Erdős-Rényi random graph G(50, 0.3) is shown
in Fig. 2.3, alongside a plot of its vertex degree distribution.

In the last two decades, it was noticed that quite a few real-world networks did not
exhibit the binomial degree distribution observed in Erdős-Rényi graphs. Instead, they
were characterised by a degree distribution with a small number of very highly connected
nodes, and a long ‘tail’ indicating a large number of vertices with a limited number of
connections. Known as scale-free networks, they exhibit a power law degree distribution
of the form P (d) ∼ d−γ , with the few very highly connected vertices known as ‘hubs’.
As such, this makes them well suited to modelling a wide array of physical systems and
networks with similar characteristics, for example power grids, the World Wide Web, social
networks, and biochemical molecules [97, 98].

In order to generate random scale-free networks, one such model commonly used is the
Barabási-Albert algorithm [99, 100]. A method of preferential attachment, at each time-
step, a vertex with m directed edges is introduced to the system, and preferentially at-
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Figure 2.3: Left: a randomly generated Erdős-Rényi graph G(25, 0.3). Right: The
degree distribution, frequency P (d) vs vertex degree d, for a randomly generated Erdős-
Rényi graph G(2048, 0.3) (black). The red line represents the expected degree distribution
P (d).

tached to existing vertices with higher degrees (with the probability of being connected to
vertex vi given by pi = di/

∑

j dj). This process continues until we have a graph contain-
ing the required number of vertices N ; as a result, we may characterize graphs generated
from the Barabási-Albert algorithm via the parameters N and m. For the Barabási-Albert
algorithm, the expected degree distribution is therefore given by

P (d) ∼ 2m(m+ 1)

d(d+ 1)(d+ 2)
= O(d−3). (2.42)

An example of a scale-free graph generated via the Barabási-Albert algorithm is presented
in Fig. 2.4, alongside a plot of its power law degree distribution. With the basic terminol-
ogy and definitions of graph theory and various graph classes established, we can now turn
our attention to classical random (and later, quantum!) walks over graph structures.
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Figure 2.4: Left: a random scale-free graph generated via the Barabási-Albert algorithm
with parameters N = 40, m = 2. Right: The degree distribution, frequency P (d) vs
vertex degree d, for a random scale-free graph generated via the Barabási-Albert algorithm
with parameters N = 1024, m = 2 (black). The red line represents the expected degree
distribution P (d).



CHAPTER 3

Classical and quantum walks

In this chapter, we will provide an overview and introduction to the quantum walk frame-
work, and discuss its relationship to the well-established classical random walk.

3.1 Classical random walks

Classical random walks over graphs are examples of Markovian processes — by letting
each vertex in the graph represent a state of the system, and the edge representing the
rate of transition between states, the graph can be interpreted as a Markov chain. Each
step in the random walk is then determined solely by the current location of the walker;
i.e. the random walk is memoryless. In the study of Markovian processes, random walks
have proven invaluable — modelling physical processes such as Brownian motion, forming
the basis of computational Monte Carlo techniques, and providing methods of network
analysis. In this section, we will introduce both the discrete and continuous-time random
walks, and discuss a few of their properties.

3.1.1 Discrete-time random walk

Definition 3.1 (Discrete-time random walk). Consider an strongly connected graph
G(V,E), composed of vertices j ∈ V and edges (i, j) ∈ E with |V | = N . A discrete-
time random walk (DTRW) over G is a stochastic Markovian process that evolves as
follows,

P
(n+1) = TP(n), (3.1)

where T is the transition matrix, and P
(n) ∈ R

N the state vector, constrained such that
∑N

i=1P
(n)
i = 1 and P

(n)
i ≥ 0 ∀i. The ith element of the state vector, P

(n)
i , represents

28
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the probability of finding the walker at vertex vi at time-step n. As per convention, the
transition matrix is normally taken to be

T = AD−1, (3.2)

where Dij = δij
∑

k Aik is the diagonal degree matrix containing the vertex degrees of the
graph. This ensures that T is stochastic (

∑

k Tik = 1), preserving the probability of the
walker.

A DTRW with a transition matrix T that is irreducible and primitive ((T t)ij > 0 for some
t ∈ N) always permits a limiting probability distribution of the walker,

lim
t→∞

T t
P

(n) = π, (3.3)

which satisfies the steady-state equation Tπ = π. Thus, the limiting-distribution is simply
the eigenvector of T with eigenvalue λ = 1, and by the Perron-Frobenius theorem must
be unique. It is trivial to show that the limiting distribution is therefore proportional to
the vertex degree, and given by

πj =
Djj

Tr(D)
=

∑

iAij
∑

i

∑

j Aij
. (3.4)

Note that in cases where a graph only has even-length closed loops (i.e. T is not primitive),
the walker will only occupy sites an even distance from the initial state at even time-
steps — causing the walker to never converge to its limiting distribution π (the limiting
distribution need not be unique, either). In such cases, it is useful to redefine the DTRW so
that at every time-step, the walker only has a ϵ probability of moving as per the transition
matrix:

P
(n+1) = ϵTP(n) + (1− ϵ)P(n)

= ϵ(T − I)P(n) +P
(n). (3.5)

This is known as the lazy random walk, and is sufficient to break the periodicity and ensure
convergence to the limiting probability distribution π.
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3.1.2 Continuous-time random walk

We can interpret each time-step of the lazy random walk as corresponding to a time of
ϵ [101]. Thus, by rearranging this equation and taking the limit ϵ → 0, we arrive at the
Master equation,

lim
ϵ→0

P
(n+ϵ) −P

(n)

ϵ
= −(I − T )P(n), (3.6)

a stochastic Markovian process governing the time evolution of the continuous-time ran-
dom walk (CTRW).

Definition 3.2 (Continuous-time random walk). Consider a strongly connected graph
G(V,E). A continuous-time random walk over G is a stochastic Markovian process that
evolves as per the master equation,

d

dt
P(t) = −LP(t), (3.7)

with solution P(t) = eTt
P(0), where L is the normalized graph Laplacian

L = I − T = (D −A)D−1, (3.8)

such that e−Lt is stochastic and the walk is probability conserving.

For the CTRW, the steady-state limiting probability distribution,

π = lim
t→∞

e−Lt
P(0) (3.9)

must satisfy the equation e−Ltπ = π. After expanding the matrix exponential as a Taylor
series, it can be seen that this is equivalent to Lπ = 0; i.e. π is the nullspace of L. Note
that since L = I − T , Lπ = (I − T )π = 0 ⇒ Tπ = π, and thus the CTRW limiting
distribution and the DTRW limiting distribution (Eq. 3.4) are identical.

3.2 Quantum walks

When it comes to ‘quantizing’ the classical random walks described previously, there are
two well-established formulations — the discrete-time quantum walk (DTQW) and the
continuous-time quantum walk. Furthermore, there are two major distinct models for
the DTQW, the coined quantum walk (the oldest and most established quantum walk
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model) and the Szegedy quantum walk. Here, we will briefly introduce the DTQW, before
continuing on to the CTQW, the principal focus of this thesis.

3.2.1 Discrete-time quantum walks

The quantum analogue of the discrete-time random walk, the discrete-time quantum walk
(DTQW) on undirected graph G(V,E) differs in that it takes place in the expanded Hilbert
space

H = HP ⊗HC , (3.10)

where HP = {|vi⟩ : i = 1, 2, . . . , N} is the position Hilbert space comprising of the
orthonormal vertex states, and HC the coin Hilbert space, comprising of the ‘coin’ states.
For each vertex state |vi⟩, there are di associated coin states {|cj⟩ : j = 1, 2, . . . , di}, with
each representing the outgoing edges from vertex vi. Thus, the orthonormal basis for the
coined quantum walk is given by

|vi, cj⟩ ≡ |vi⟩ ⊗ |cj⟩ ∈ HP ⊗HC . (3.11)

At each discrete time-step of the DTQW propagation, we perform two unitary operations
on the current state of the walker: a coin operation acting on HC , and a shifting operation,
acting on HP . The coin operation first acts to ‘mix’ the probability amplitudes located at
each vertex vi, by use of the local unitary coin operator Ci as follows:

|vi⟩ ⊗ Ci |cj⟩ =
di∑

k=1

αk |vi, ck⟩ ,
di∑

k=1

|αk|2 = 1, (3.12)

i.e. Ci can be represented as a di × di unitary matrix acting on the set of coin states for
vertex vi. Once the coin operations have been performed on all vertices, we then apply
the shifting operator S,

S |vi, cj⟩ = |vj , ci⟩ , (3.13)

which acts to swap two adjacent coin states along an edge. For example, if a graph
contains the undirected edge (vi, vj), and |vi, cj⟩ represents the coin state at vertex vi on
edge (vi, vj), then the action of the shifting operator results in the coin state |vj , ci⟩ — the
coin state at vertex vj , on edge (vi, vj). Based on this definition, we see that the shifting
operator is an involutory matrix, S2 = I, with dimension

∑

i di ×
∑

i di. Common local
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coin operators on vertices with degree d include the Grover coin,

(

C
(d)
G

)

ij
=

2

d
− δij , (3.14)

and the DFT (discrete Fourier transform) coin,

(

C
(d)
DFT

)

ij
=

1√
d
e2πij/d. (3.15)

The global coin operator is the block diagonal matrix C = diag(C1, C2, . . . , CN ) with
dimension

∑

i di ×
∑

i di, acting on the entire Hilbert space,

C |vi, cj⟩ = |vi⟩ ⊗ Ci |cj⟩ ; (3.16)

this reduces to C = I ⊗ C(d) if the graph is d-degree regular with the same d × d local
coin operator C(d) acting on every vertex. As such, the unitary time-evolution operator
for each discrete time-step in the coined DTQW may be given by

U = S · C (3.17)

and thus the time-evolution from initial state |ψ(0)⟩ to time t is given by

|ψ(t)⟩ = U t |ψ(0)⟩ . (3.18)

The DTQW time-evolution unitary operator can alternatively be expressed on the space
of all directed edges of the graph; i.e. the space formed by all ordered tuples of vertices
in the graph. For example, in the case of a d-degree Grover coin applied to a d-degree
regular graph, the DTQW unitary time-evolution operator is expressible as follows:

Uij,kl = S · C =
[

S ·
(

I ⊗ C
(d)
G

)]

ij,kl
=







2
dj

− δil, j = k

0, j ̸= k,
(3.19)

where (vi, vj), (vk, vl) ∈ E and dj denotes the degree of the jth vertex. This form, which
is equivalent to the above definition, has been adopted by Emms et al. [68] and Smith
[102].

An alternative framework for the DTQW is the eponymous Szegedy quantum walk, in-
troduced by Szegedy [80]. In this approach, the quantum walk is formulated by directly
quantizing classical Markov chains with stochastic transition matrix T (Eq. 3.2), through
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the use of unitary reflection and swap operators. We don’t describe the Szegedy walk here
(Szegedy [80] offers a good introduction to the Szegedy DTQW formalism), but we note
that the Szegedy walk can always be written in the form of a coined quantum walk on a
complete graph with self-loops (i.e. an N2 Hilbert space).

3.2.2 Continuous-time quantum walks

Consider a graph G(V,E) with vertex set V = {v1, v2, . . . , vN} and edge set E =

{e1, e2, . . . , eM}, with corresponding adjacency matrix A and Laplacian L. The
continuous-time quantum walk (CTQW) on graph G is the quantum analogue of the
CTRW, with the main differentiation being the method of propagation. Unlike the CTRW,
which propagates as per the Markovian master equations, the CTQW instead has its time
evolution governed by the Schrödinger equation [52].

Definition 3.3 (Continuous-time quantum walk). The continuous-time quantum walk on
graph G(V,E) evolves as per the Schrödinger equation,

i~
d

dt
|ψ(t)⟩ = H |ψ(t)⟩ , (3.20)

where

• H is the system Hamiltonian, encoding the discrete structure of the underlying graph
G;

• |ψ(t)⟩ =
∑

j αj(t) |j⟩ is the complex-valued state vector; and

• the set {|j⟩ : j = 1, 2, . . . , N}, ⟨j|j′⟩ = δjj′ represents the orthogonal vertex basis
states corresponding to graph vertex set V = {v1, v2, . . . , vj}.

Note that we sometimes use the notation |vj⟩ in lieu of the shorthand |j⟩, especially in
cases where we must distinguish between multiple walkers inhabiting the same vertex
state, or other statespaces such as the momentum space (or coin space for the DTQW).

We use atomic units from hereon, and thus set ~ = m = e = 1 — as a result, the general
solution to the system is

|ψ(t)⟩ = U(t) |ψ(0)⟩ = e−iHt |ψ(0)⟩ . (3.21)

Consistent with standard quantum formalism, αj(t) = ⟨j|ψ(t)⟩ ∈ C is the probability
amplitude, and |αj(t)|2 the corresponding probability, of the walker being found at vertex
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j after time t. Unlike the classical CTRW, the CTQW gains properties characteristic
of quantum systems — including time reversibility (hence, no limiting state) and super-
position, allowing propagation through networks quadratically faster than its classical
counterpart [8, 52]. However, the CTQW is no longer a stochastic process, but rather de-
terministic; the probabilistic nature of the walk comes from measuring the quantum state,
rather than the walk’s dynamics [103]. Further, note that unlike discrete-time formula-
tions of the quantum walk, in which probability amplitudes can only transition between
adjacent (or ‘local’) vertices at each time-step, the CTQW is a global process. That is, it
is possible for probability amplitude to transition to non-adjacent vertices in the strongly
connected graph at each infinitesimal time-step ∆t.

It is important to note that there are two competing conventions for the CTQW Hamil-
tonian that are ubiquitous in the field; the adjacency matrix (H = γA) and the (combi-
natorial) Laplacian (H = γ(D − A)) [104], where γ represents the hopping rate per edge
per unit time. Both provide similar dynamics, with each being preferred for particular
applications — the adjacency matrix for simplicity in quantum computation calculations,
and the Laplacian for its discrete approximation to the kinetic energy operator of quan-
tum mechanics. There is one exception, however, to this general rule of thumb; if the
CTQW is performed on a degree-regular graph with degree k, then the Laplacian be-
comes L = D −A = kI −A, and thus the time evolution operator is

U(t) = e−iLt = e−i(kI−A)t = e−ikteiAt, (3.22)

i.e. the dynamics of the CTQW on a degree regular graph with H = L is identical to that
of H = A, up to a global phase factor and change in direction.

In the papers presented in this thesis, we will explain each subsequent choice of the CTQW
Hamiltonian, and the physical reasons that led to that choice. Nevertheless, for undirected
graphs, both L and A are Hermitian matrices. It therefore follows that regardless of the
choice of the system Hamiltonian, the time evolution operator U = e−iHt is unitary
(UU † = I), guaranteeing that the norm of |ψ(t)⟩ is conserved under a continuous-time
quantum walk, as required by the Born rule of quantum mechanics [105].

3.2.3 Multiple-particle CTQWs

If we wish to extend the quantum walk to simulate P distinguishable particles on graph G,
the Hamiltonian of the system is expanded to act on a NP Hilbert space H⊗H⊗ · · · ⊗ H

︸ ︷︷ ︸

P

,
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as follows [5, 6, 42, 102]:

H(P ) = H1 ⊕H2 ⊕ · · · ⊕HP + Γ, (3.23)

where Hj is the free-particle Hamiltonian of the jth particle on graph G, Γ represents a
potential interaction between the particles acting on the entire Hilbert space, and ⊕ is the
tensor or Kronecker sum defined via the Kronecker product1,

An×n ⊕Bm×m = An×n ⊗ Im×m + In×n ⊗Bm×m. (3.24)

Note that, as each particle is walking over the same graph structure, the free particle
Hamiltonians are identical (H1 = H2 = · · · = HP ), allowing this to be rewritten as

H(P ) = H⊕P + Γ, (3.25)

where we use the shorthand

H⊕P = H ⊕H ⊕ · · · ⊕H
︸ ︷︷ ︸

P

. (3.26)

The unitary time-evolution operator is then provided by [106]

U(t) = e−iH(P )t, (3.27)

and acts on the composite state vector

|ψ(t)⟩ =
∑

j1

∑

j2

· · ·
∑

jP

αj1,j2,...,jP (t) |j1⟩(1) ⊗ |j2⟩(2) ⊗ · · · ⊗ |jP ⟩(P ) (3.28)

such that U(t′) |ψ(t)⟩ = |ψ(t+ t′)⟩. Here, superscript (i) indicates a vertex state in the ith
subspace, and, like the single-particle case, we require

∑

j1

∑

j2
· · ·
∑

jP
|αj1,j2,...,jP (t)|2 = 1.

Note that, due to the unwieldy nature of the above equation, it is common form to see
the shorthand

|j1, j2, . . . , jP ⟩ ≡ |j1⟩(1) ⊗ |j2⟩(2) ⊗ · · · ⊗ |jP ⟩(P ) . (3.29)

In the case of no interactions, we can drop the Γ term – this allows us to separate the
system time evolution operator into tensor products of the individual particle time evolu-

1Note that the Kronecker sum is distinct from the matrix direct sum, which is also commonly denoted
using the symbol ⊕.
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tion operators, as the free particle Hamiltonians act separately on each particle’s Hilbert
space:

U(t) = e−iH⊕P t = e−iH1⊕H2⊕···⊕HP t = e−iH1t ⊗ · · · ⊗ e−iHP t. (3.30)

Recall that for the CTQW, H is commonly chosen to be either the adjacency matrix or
Laplacian matrix of graph G. It is well known that the Kronecker sum of adjacency matrix
A with itself, A ⊕ A is equivalent to the cartesian graph product of G with itself, G�G
[107]. Furthermore, using the definition of the Laplacian given in Eq. 2.14, it can be easily
seen that L(A ⊕ A) = L(A) ⊕ L(A). Thus, regardless of our choice for the Hamiltonian,
the simulation of a multiparticle quantum walk on graph G(V,E) with |V | = N vertices
is equivalent to simulating a single particle quantum walk on graph

G�P = G�G� · · ·�G
︸ ︷︷ ︸

P

, (3.31)

where � represents the cartesian product of graphs, and G�P contains NP vertices. Ac-
cordingly, this provides an avenue for classical numerical simulation of the multi-particle
CTQW, an essential process for analysing multi-particle CTQW-based algorithms or sys-
tems that cannot be solved analytically.

In Part II, we turn our focus to methods of classical simulation of the CTQW and, in
particular, high performance computing techniques and multi-fermion CTQWs.
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CHAPTER 4

Efficient numerical simulation
This chapter is based on the paper by J. A. Izaac and J. B. Wang, “pyCTQW: a continuous-time
quantum walk simulator on distributed memory computers”, Computer Physics Communications 186,
81–92 (2015). with minimal modification to match the formatting and notation of this thesis.

With the growing number of quantum walk applications — especially those in the bio-
chemical sciences (which can involve numerous interacting walkers on increasingly large
and complex graphs) — the ability to efficiently simulate and analyse quantum walk be-
haviour becomes essential. To tackle this problem, we introduce pyCTQW, a distributed
memory software package with an object-oriented Python interface. By carefully analysing
various methods of numerical CTQW simulation, pyCTQW allows efficient simulation of
large multi-particle CTQW (continuous-time quantum walk)-based systems, whilst taking
advantage of the huge potential provided by modern High Performance Computing (HPC)
platforms.

Developed using Fortran, the Python module interfaces directly with the Fortran library
via F2PY [109]. This allows pyCTQW to take advantage of the many scientific and data
visualisation Python libraries available in the much more user-friendly Python environ-
ment, whilst avoiding the additional overhead that would be caused by implementing the
core algorithms in an interpreted language. As such, pyCTQW is a valuable tool for the
study, data visualisation and analysis of CTQW based systems.

In this chapter, we present an introduction to the Python and Fortran interfaces of
pyCTQW, discuss various numerical methods of calculating the matrix exponential, and
demonstrate the performance behaviour of pyCTQW on a distributed memory cluster. In
particular, the Chebyshev and Krylov-subspace methods for calculating the quantum walk
propagation are discussed, as well as methods for visualisation and data analysis.

38
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4.1 Introduction

In the simulation of continuous-time quantum walk based systems, often the most com-
putationally intensive process is the propagation algorithm itself; that is, the calculation
of the evolved state at time t from an initial state |ψ(0)⟩

|ψ(t)⟩ =
⟨
j|e−iHt

∣
∣ψ(0)

⟩
, (4.1)

due to the need to efficiently and accurately calculate a matrix exponential-vector dot
product. In the case of single walkers or small graphs, fast and efficient matrix exponential
calculation is readily available using modern numerical packages and toolkits such as
Mathematica, Matlab, and SciPy.

Alternatively, consider a CTQW composed of P simultaneous interacting walkers on an
arbitrary graph G(V,E) of |V | = N vertices. As per Eq. 3.23, in order to construct the
system Hamiltonian, we take the Kronecker sum of the Hamiltonian over all p single walker
subspaces, and add on the interaction term:

H(P ) = H1 ⊕H2 ⊕ · · · ⊕HP + Γint

=
(

H(1) ⊗ I
(2)
N ⊗ · · · ⊗ I

(P )
N

)

+ · · ·+
(

I
(1)
N ⊗ · · · ⊗ I

(P−1)
N ⊗H(P )

)

+ Γint, (4.2)

where H(i) is the single walker N × N Hamiltonian of the ith particle on graph G, I(i)N

represents the N ×N identity matrix acting on particle i, and Γint is the interaction term
acting on an arbitrary number of particles. In the development of pyCTQW, we were
mainly concerned with on-site interactions between all walkers,

Γint(α) =
1

2
α

P∑

i,i′=1
i ̸=i′

N∑

j=1

(|j⟩ ⟨j|)(i) ⊗ (|j⟩ ⟨j|)(i′) , (4.3)

where α ∈ R is the interaction constant, and superscript (i) indicates the operator acts on
the ith particles subspace. In the case of no interactions (i.e. α = 0), the above definition
of the multi-particle Hamiltonian (Eq. 4.2) results in a separable time evolution operator
(see Eq. 3.30); however this is not possible when interactions are present. In this work,
the Hamiltonian matrix is taken as the same for all particles, and is simply given by the
graph Laplacian,

H(i) = L(G) ∀i ∈ {1, · · · , n}, (4.4)



40 Chapter 4 Efficient numerical simulation

where the superscript simply defines the subspace the Hamiltonian acts on.

The important thing to note from the above multi-particle Hamiltonian is that for P
simultaneous walkers on a graph containing N nodes, the system Hamiltonian will have
dimensions NP ×NP – significantly larger than the Hamiltonian for a single walker. Thus
for systems requiring multiple walkers on large graphs, calculating the propagation using
the tools mentioned above can potentially take an excessive amount of time, warranting
an investigation into alternate algorithms and HPC solutions.

This chapter is structured as follows. We begin by introducing the numerical algorithms
commonly used to solve CTQW-based systems in Sec. 4.2. The pyCTQW software pack-
age is then detailed in Sec. 4.3, with particular attention given to the structure, usage,
and installation, followed by specific examples presented in Sec. 4.4, and computational
performance discussed in Sec. 4.5. Finally, our conclusions are provided in Sec. 4.6.

4.2 Matrix exponential methods

Although published almost 35 years ago, ‘Nineteen Dubious Ways to Compute the Expo-
nential of a Matrix’ by Moler and Van Loan [110] remains a heavily influential review
of the various methods of approximating the matrix exponential, even necessitating an
updated revision in 2003 [56]. Of the various methods described by Molar and Van Loan,
today the two most pervasive include the squaring and scaling method (primarily for dense
matrices) and Krylov subspace methods (for large sparse matrices) – both commonly used
in conjunction with the Padé approximation, a high order series approximation.

An alternative algorithm that has recently found traction in the field of computational
physics and quantum chemistry is the so-called Chebyshev series approximation, which
takes its name from the Chebyshev polynomials that occur in the series expansion [59–64].
A huge part of what makes the Chebyshev expansion so attractive is the use of Bessel J zero
functions as series coefficients, leading to exceptionally fast convergence without sacrificing
a high level of accuracy. In fact, recent research has shown the Chebyshev approximation is
an efficient alternative to both the scaling and squaring method [111] and Krylov subspace
methods [55], which holds significant promise in parallel computation.

The matrix exponential approximations mentioned here will be expanded on below, with
the background theory, advantages and implementations summarised (for a more detailed
summary, refer to Molar and Van Loan [56]).
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4.2.1 Padé approximation

The Padé approximant uses a rational function of power series in order to approximate
the matrix exponential; this is commonly defined as

eA ≈ Rpq(A) = [Dpq(A)]
−1Npq(A), (4.5)

where

Npq(A) =

p
∑

j=0

(p+ q − j)!p!

(p+ q)!(p− j)!

(
Aj

j!

)

(4.6)

and

Dpq(A) =

q
∑

j=0

(p+ q − j)!q!

(p+ q)!(q − j)!

(
(−A)j
j!

)

. (4.7)

Note that for q = 0, p > 0, this reduces to the Taylor series expansion of eA; the Padé
approximant simply matches the Taylor series to order O(Ap+q). Rather than implement-
ing the above definition directly, however, in practice we typically choose the diagonal
Padé approximants p = q, as these result in similar accuracy for significantly reduced
computational cost. Eq. 4.5 then reduces to

eA ≈ Rpp(A) = [Npp(−A)]−1Npp(A), (4.8)

with error given by

eA −Rpp(A) =
(−1)p(p!)2

(2p)!(2p+ 1)!
A2p+1 +O

(
A2p+2

)
. (4.9)

The main advantage of the Padé approximation over other series expansions is that for
matrices where ||A||2 . 1, matrix exponentials can be computed to the same level of
accuracy with up to half the computation. However, there are important downsides –
firstly, a reasonable level of accuracy can only be achieved for ||A||2 . 1; issues also arise for
large p, increasing the risk that the denominator is ill-conditioned for inversion (although
this is highly dependent on the eigenvalue spread of A). Furthermore, the evaluation of the
power series Npp(A) requires dense matrix arithmetic, foregoing any speed-ups/memory
reductions that may have arisen by manipulating sparse matrices.
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4.2.2 Scaling and squaring method

In order to apply the Padé approximation to matrices of all norms, an iterative process
known as the scaling and squaring method is used, which exploits the property eA =
(
eA/s

)s to reduce the matrix norm of A before finding the Padé approximant. Thus, the
adjusted Padé approximant can be written as

eA ≈ eA+E = Rpp (A/2
s)2

s

, (4.10)

where s ∈ N, and E is a matrix signifying the deviation from the exact value when
calculating the matrix exponential of eA using the Padé approximation. The following
inequality is satisfied:

||E||
||A|| ≤

23−2p(p!)2

(2p)!(2p+ 1)!
, (4.11)

where the parameters p and s are chosen such that ||E||/||A|| ≤ ϵ (here ϵ is a specified
parameter determining the error tolerance), and p+ s is minimised (as the floating point
operations per second for an n×n matrix is of the order (p+ s+1/3)n3). Very generally,
p = 6 or 7 is optimal for single precision, whereas p = 17 is optimal for double precision.
For example, MATLAB’s expm function uses p = 6 and max{s : ||A/2s||∞ ≤ 0.5}.

This method remains one of the most effective methods of numerically calculating the ma-
trix exponential of dense matrices [57, 58], and as such is widely used in modern numerical
packages (such as MATLAB’s expm, Mathematica’s MatrixExp, SciPy’s linalg.expm, and
Expokit’s Fortran and Matlab libraries).

4.2.3 Krylov subspace methods

Over the last 35 years, an alternative method has arisen which enables us to harness
the computational advantages afforded by large sparse matrices. This is the eponymous
Krylov subspace method, which provides an effective scheme for efficiently calculating the
matrix-vector product eAt

v – avoiding the need to calculate and store a large intermediate
matrix. Here A is a n × n matrix, t is a scaling parameter, and v ∈ R

n is an n-element
vector. Whilst not providing the matrix exponential directly, this matrix-vector product
arises often in the study of quantum systems, and as such is frequently the desired compu-
tational end-product – this is generally the case in CTQWs, where transition amplitudes
⟨

j
∣
∣
∣Û(t)

∣
∣
∣ψ(0)

⟩

=
⟨
j
∣
∣e−iHt

∣
∣ψ(0)

⟩
are desired.
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This scheme takes its name from the process of approximating an n-dimensional problem
(in this case eAt

v) onto a smaller m-dimensional Krylov subspace,

Km(At,v) = span{v, Av, A2
v, . . . , Am

v}, ∀t ∈ C, (4.12)

whereby dense matrix methods become adequately efficient to solve the reduced problem.
For example, in the case of eAt

v, we first use the Arnoldi or Lanczos methods (successful
Krylov-based iterative methods in their own right, used for calculating the eigenvalues of
large sparse general/symmetric matrices respectively) to calculate the orthonormal basis
set Vm = {v1, . . . ,vm} ∈ R

n×m from Km(A,v). A byproduct of this calculation is the
upper Hessenberg matrix Hm ∈ R

m×m, which is the projection of An ∈ R
n×n onto Vm

(i.e. V T
mAnVm = Hm). Note that Hm approximates the original sparse matrix An,

AVm = VmHm + hm+1,mvm+1ê
T
m ≈ VmHm, (4.13)

allowing the large sparse matrix exponentiation-vector product problem to be approxi-
mated via

eAt
v ≈ βVme

tHm ê1, (4.14)

since v = βv1 for some constant β. This can then be tackled via dense matrix meth-
ods.

Krylov subspace methods are often combined with the squaring and scaling method when
calculating the matrix exponential of a large sparse matrix, due to the latter’s efficiency in
computing the resulting dense matrix exponential. Moreover, the ability to achieve a high
level of accuracy with a relatively small value of m, typically around 40, combined with
the fact that successive time-steps can be computed by utilising previously constructed
Krylov subspace with little-to-no extra cost, have resulted in the Krylov method becoming
a leading approach for large sparse matrices. Today, Krylov matrix exponential methods
are available as part of Mathematica (using the MatrixExp[A,v] function), Expokit [112] (a
collection of Fortran and Matlab libraries designed for working with Markovian processes),
and SLEPc/slepc4py (a HPC implementation with C, Fortran and Python bindings),
amongst others.
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4.2.4 Chebyshev approximation

Not as common as the Padé and Krylov methods, but rapidly gaining traction in fields
such as high performance computing and quantum mechanics, is the Chebyshev series
expansion to the matrix exponential;

etA = e(λmax+λmin)t/2

[

J0(α)ϕ0(Ã) + 2
∞∑

n=1

inJn(α)ϕn(Ã)

]

, (4.15)

where λmax, λmin ∈ C are the eigenvalues of an n× n matrix A with largest and smallest
real parts respectively, α = i(λmin−λmax)t/2, and ϕn(Ã) are the Chebyshev polynomials,
satisfying the recurrence relations

ϕ0(Ã) = I, (4.16a)

ϕ1(Ã) = Ã, (4.16b)

ϕn(Ã) = 2Ãϕn−1(Ã)− ϕn−2(Ã). (4.16c)

Note that for maximal convergence, we require normalisation such that λ ∈ [−1, 1];
thus

Ã =
2A− (λmax + λmin)I

λmax − λmin
. (4.17)

As with the Krylov method, we can calculate the matrix-vector product eAtv directly using
the Chebyshev approximation, by post-multiplying the Chebyshev series expansion with
v. This allows us to take full advantage of sparse matrix libraries when calculating the
sparse matrix× dense vector terms in the summation, whilst avoiding the extra memory
usage required to store intermediate matrix terms. Another attractive property of the
Chebyshev expansion is the use of Bessel function zeros as series coefficients, as Jn(α) ≈ 0

for n > |α|, allowing for fast convergence and significantly high accuracy after only |α| ∝ t

terms (see Fig. 4.1). Whilst various definitions exist for the relative error of the Chebyshev
expansion [55], for simplicity it is sufficient to instruct the series to be truncated when the
condition

|2Jn(α)| ≤ ϵ, (4.18)

is satisfied for a specified tolerance ϵ > 0, as subsequent terms can be considered negligible.
In pyCTQW, we nominally choose ϵ = 10−18.
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Figure 4.1: Absolute value of the Chebyshev coefficients |Jn(α)| for |α| = 1000, when
calculating eAt for a 3× 3 matrix A. Note that |α| is proportional to the numerical range
of matrix A and time-step t.

As with the Padé approximation, the Chebyshev approximation is only convergent for
matrices where ||A|| < 1, thus necessitating the scaling procedure A→ Ã detailed above.
In practice only λmax need be calculated, since the Laplacian for a undirected, defect-free
graph is positive-semidefinite, ensuring λmin = 0, whilst the calculation of λmax is often
computationally much less demanding.

However, when working with large finite graphs in the presence of disorder, or infinite
graphs, the density of the eigenvalue spectrum around λ = 0 can lead to time-consuming
eigenvalue calculations, resulting in a significant bottleneck when simulating the quantum
walk propagation. This issue can be avoided in principle by implementing the scaling
and squaring method, as described in Sec. 4.2.2, as it does not require the calculation of
eigenvalues:

etA =

[

J0(α)ϕ0

(
tA

2s

)

+ 2

∞∑

n=1

inJn(α)ϕn

(
tA

2s

)]s

. (4.19)

Unfortunately, this approach requires the use of dense matrix operators and functions, and
also loses the ability to compute the matrix-vector product etAv directly from a matrix-
vector product series, removing many of the properties that make the Chebyshev series
expansion so appealing.

As such, we have elected to implement the eigenvalue scaling method in pyCTQW as
one of the two possible propagator methods (alongside SLEPc’s built-in Krylov methods).
In order to alleviate the computational expense of calculating λmin or λmax for infinite
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graphs or graphs containing defects, the user may choose to enter a value for λ̂min or λ̂max

directly – bypassing the eigenvalue calculation – or fallback to the Krylov method. If
entering eigenvalue estimates, these should be such that 0 ≤ λ̂min ≤ λmin < λmax ≤ λ̂max,
ensuring that the numerical range of Ã remains within [−1, 1]. Note that estimation of the
extreme eigenvalues outside the actual numerical range produces the same level of accuracy
at the expense of a larger value of |α|, which would then require some extra matrix-vector
terms in the series expansion to ensure accuracy. Nonetheless, the Chebyshev expansion
has been shown to exhibit very low sensitivity to eigenvalue estimates [55], allowing this
‘semi-empirical’ implementation to continue to be an effective alternate to the Krylov
method in specific circumstances.

Although the Chebyshev matrix exponentiation method is starting to show great promise,
especially in fields of quantum chemistry and physics, the more established Krylov tech-
niques continue to dominate in computational applications – today, Expokit[112] is the
only well known package providing the Chebyshev methods (albeit, only for dense ma-
trices). By implementing distributed memory Chebyshev methods in addition to Krylov
methods, pyCTQW will be able to provide fast and efficient CTQW propagation methods
to work with multiple quantum walkers.

4.3 Software package

The pyCTQW package provides both a Python-based object-orientated framework
(pyCTQW.MPI) as well as a library (libctqwMPI) containing various Fortran subroutines,
which enable the user to simulate and explore various user-defined CTQW systems in a
HPC environment. In the latter case, this is performed via the manipulation of graph-
constrained quantum walk objects, whereas in the former case a more sequential paradigm
is required where the user calls various subroutines on matrix or vector objects.

In this section, installation and dependencies will be addressed briefly, after which usage
of both the Python and Fortran components of pyCTQW will be discussed in detail.

4.3.1 Dependencies and installation

As the ability to readily take advantage of modern HPC systems is one of the major design
goals of this package, the decision was made to utilize the MPI-based PETSc [113–115] and
SLEPc [116, 117] scalable linear algebra libraries. This allowed rapid parallelisation whilst
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also taking advantage of the optimised data structures and matrix operations provided by
PETSc and SLEPc.

Furthermore, in addition to requiring PETSc and SLEPc for parallel computation, the
pyCTQW Python module also makes use of a wide variety of scientific and data visu-
alisation libraries, including NumPy, SciPy, Matplotlib and NetworkX. This provides a
rich user environment, and builds on the maturity and efficiency of the aforementioned
libraries. It should be noted that whilst the Python module requires the petsc4py Python
extension in order for the user to directly manipulate PETSc data structures and ac-
cess MPI attributes (such as rank), the quantum walking calculations are called directly
from the Fortran library, allowing the module to exploit the speed gain afforded by For-
tran.

Once these dependencies are met, the Python module can be installed from the source
code by running the following terminal command:

python setup.py install

whilst the Fortran library can be compiled via the included makefile:

make fortran

For additional installation help and compilations options, for example building pyCTQW
as a shared library, the user should refer to the online pyCTQW documentation [7].

4.3.2 Fortran library libctqwMPI

Of the two interfaces available as part of the software package, the Python module is
designed for an easier end-user experience, and thus is much more full featured. However,
the underlying Fortran library may still be used, and is described briefly below.

To call functions and subroutines from the included libctqwMPI Fortran library, the main
Fortran program should have the following basic structure:

program main
! load libctqwMPI module
use ctqwMPI

! PETSc headers
#include <finclude/petsc.h>

PetscErrorCode :: ierr
PetscMPIInt :: rank
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! initialize SLEPc and PETSc
call PetscInitialize(PETSC_NULL_CHARACTER ,ierr)
call MPI_Comm_rank(PETSC_COMM_WORLD ,rank,ierr)

! program code here

! finalise PETSc
call PetscFinalize(ierr)

end program main

Note that this structure is influenced by typical PETSc and SLEPc Fortran programs,
due to the dependence on these aforementioned libraries. As such, we can take advantage
of PETSc system routines, e.g. allowing command line arguments to be easily added, as
well as code profiling capabilities (i.e. using PETSc LogStages to create a computational
summary of parallel code execution). For more details, refer to the PETSc and SLEPc
documentations [114, 118].

Once the libctqwMPI module has been included and PETSc and SLEPc have been prop-
erly initialised, CTQW subroutines can then be called directly. For example, to calculate
the propagation of Hamiltonian H from state psi0 to psi after time t,

call qw_cheby(psi0,psi,t,H,Emin,Emax,rank,n)

where psi0, psi and H are properly declared/allocated PETSc vectors/matrices, t, Emin
and Emax are PETSc reals, and rank, n are PETSc integers. For a summary of available
parallel CTQW subroutines, see Tab. 4.1.

Once the Fortran program is complete, it can be compiled and linked against libctqwMPI
using the supplied makefile template, and then executed by running

mpirun -np X <program> [options]

where X is the number of MPI nodes to use, and options refer to either user defined or
inbuilt PETSc/SLEPc command line arguments used to modify program function. For
further information and additional details regarding the Fortran interface, the user is
advised to refer to the online documentation [7].

4.3.3 Python module pyCTQW.MPI

Once pyCTQW.MPI is installed, calculations involving CTQWs can be called in several ways;
either via an executable Python script, or as an interactive session, for example, using the
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Table 4.1: Summary of parallel CTQW subroutines available in the Fortran libctqwMPI
library. For more details and required arguments, refer to the online documentation.

Hamiltonian subroutines
importadjtoh Import an adjacency matrix from a file, and create a

PETSc Hamiltonian matrix
adjtoh Convert an adjacency array to a PETSc Hamiltonian ma-

trix
hamiltonian_p<N>_line Create the Hamiltonian matrix representing N = 1, 2 or

3 walkers on an infinite line

Statespace subroutines
p<N>_init Initialise the statespace of an N = 1, 2 or 3 particle

CTQW on specified graph nodes
marginal<N> Calculate the marginal probability of particle number p ∈

N for an N = {1, 2, 3} particle CTQW

Quantum walk propagation
min_max_eigs Calculate the minimum and maximum eigenvalues of a

PETSc matrix using SLEPc
qw_krylov Propagate the quantum walk for time t using Krylov sub-

space methods
qw_cheby Propagate the quantum walk for time t using the Cheby-

shev series expansion
entanglement Calculates the 2 particle Von Neumann entropy S =

−
∑

i
λi log2 λi, where λi are the eigenvalues of the re-

duced density matrix ρ2 = Tr1(|ψ(t)⟩ ⟨ψ(t)|)

iPython or iPython-Notebook environments. The syntax in both cases is identical, with
slight differences in execution. Here, we will be concerned mainly with executable Python
scripts, required by most HPC job schedulers.

Initialisation

In order to set-up the Python environment correctly, we must first initialize the PETSc
environment, and import the pyCTQW.MPI module:

#!/usr/bin/env python2.7
import sys, petsc4py
petsc4py.init(sys.argv)
from petsc4py import PETSc
import pyCTQW.MPI

User defined options

PETSc can be used to create command line arguments for the script; this is useful in HPC
environments where multiple jobs are to be submitted for a parameter exploration. For
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example, the following code creates two command line options, -t and -N, with default
values of 100 and 20 respectively:

OptDB = PETSc.Options()
N = OptDB.getInt(`N', 100)
t = OptDB.getReal(`t', 20)

When running the complete parallelised simulation, the options created are invoked as
follows,

mpirun -np X <script>.py [options]

where X is the number of MPI compute nodes/processes. In the case of the latter example,

mpirun -np X <script>.py -N 5 -t=`0.3'

would alter the two user defined variables as indicated. Furthermore, most PETSc and
SLEPc subroutines accept command line options which modify their settings; for instance,
when using the SLEPc EPS eigensolver, the eigensolver type to be used can be changed
dynamically by passing an eps_type option:

mpirun -np 2 <program> -eps_type=`lapack'

For more details on built-in PETSc/SLEPc command line options, refer to the PETSc
and SLEPc documentation [114, 118].

Rank and local operations

When running on multiple nodes, sometimes only specific nodes are required to perform a
specific calculation or operation, for instance, the I/O operations where all nodes already
have the same information. Using PETSc, the rank (i.e. the MPI process number) can be
determined for each process, and conditional statements are used to control which node
performs the I/O operation:

rank = PETSc.Comm.Get_rank(PETSc.COMM_WORLD)
if rank == 0:

print `1P Line\n'

Caution is advised, however – the above should only be utilised for user defined functions
and processes, as all of the methods and functions available in pyCTQW.MPI are designed
to work globally on all processes, and should not be created or called on a subset of
all available nodes; doing so may result in unresponsive simulations. Moreover, most
objects in pyCTQW.MPI contain I/O methods (e.g. pyCTQW.MPI.Graph.exportState()),
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alternatively PETSc I/O methods are also available (e.g. PETSc.Vec.view()); these are
global over all nodes as mentioned above and should be used over custom I/O methods
when possible.

Code profiling

PETSc also allows for easy code profiling by supplying the command line option
-log_summary when executing your script. This functionality is built-in to pyCTQW.MPI
with log stages created automatically for available methods, for example, when creating
the Hamiltonian or initial statespace, finding the eigenvalues, or CTQW propagation, etc.
This provides a wealth of important computational information, such as memory usage,
communication, and timing data, allowing the user to fine-tune simulation parameters and
solvers for ultimate efficiency.

Custom log stages may also be included using the following template:

stage1 = PETSc.Log.Stage('First Stage Title ')
stage1.push()
# place stage 1 functions/operations here
stage1.pop()

4.3.4 pyCTQW framework

The pyCTQW.MPI Python module provides an object-oriented framework for simulating
CTQW systems, which involves the creation of CTQW objects storing various data struc-
tures (such as Hamiltonians), which can be manipulated via built-in methods and functions
(see Tab. 4.2).

The number of available methods and attributes is too large to detail in full here. Instead,
a two particle CTQW on a Cayley tree will be discussed in the next section to provide a
feel of the framework and its structure. For further details, refer to the pyCTQW online
documentation [7].

4.4 Worked example

In this example, a two particle continuous-time quantum walk will be performed on a
3-Cayley tree using pyCTQW.MPI. After initialising PETSc and petsc4py, the pyCTQW
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Table 4.2: Summary of parallel CTQW classes available in pyCTQW.MPI. For more details
and required arguments, please refer to the online documentation.

CTQW submodule
ctqw.Hamiltonian Contains methods for initializing, creating and manipu-

lating Hamiltonian matrices
ctqw.EigSolver Contains methods for setting up and solving the for the

boundary eigenvalues of a distributed PETSc matrix

Quantum walks on arbitrary graphs
Graph 1 particle CTQW on a user-defined graph
Graph2P 2 particle CTQW on a user-defined graph
Graph3P 3 particle CTQW on a user-defined graph

Quantum walks on infinite lines
Line 1 particle CTQW on an infinite line
Line2P 2 particle CTQW on an infinite line
Line3P 3 particle CTQW on an infinite line

Graph isomorphism
GraphISO A graph isomorphism solver, containing functions for cre-

ating graph certificates and checking isomorphism of ad-
jacency matrices (see Sec. 6.5)

module is imported and a Graph2P object created, indicating that we will be working on
a graph containing n = 10 nodes:

walk = pyCTQW.MPI.Graph2P(10)

Next, we import a 10 × 10 adjacency matrix of the 3-Cayley tree from a text file1 with
elements delimited by either tabs or spaces2:

d = [3,4]
amp = [2.0,1.5]
walk.createH(`graphs/cayley/3-cayley.txt',`txt',

d=d,amp=amp,layout=`spring ',interaction=0.5)

In this example, defects are introduced at vertices 3 and 4 of the graph, with amplitudes
2 and 1.5 respectively, and the particles interact with strength 0.5 when co-located at the
same vertex; this results in a system Hamiltonian of the form

H = H(1) ⊕H(1) + Γint(0.5), (4.20)

where

H(1) = L3C + 2 |3⟩ ⟨3|+ 1.5 |4⟩ ⟨4|

1Importing the adjacency matrix from a 2D PETSc binary array, specified by filetype `bin', is also
supported.

2Alternative delimiters can also be passed using the delimiter keyword.
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is the 1-particle Hamiltonian and L3C is the Laplacian matrix of the 3-Cayley tree. Note
that the graph layout is being stored in ‘spring’ form, which is the default if not specified
with alternative layout options including circle, spectral and random. After executing the
above code, a Hamiltonian object walk.H is produced, allowing the Hamiltonian matrix
and its eigenvalues to be accessed.

Now that the system Hamiltonian has been calculated, the initial statespace can be pop-
ulated. For example, the initial state is chosen to be |ψ(0)⟩ = 1√

2
(|0, 1⟩+ i |1, 1⟩), which

is implemented as follows:

init_state = [[0,1,1.0/numpy.sqrt(2.0)],
[1,1,1.0j/numpy.sqrt(2.0)]]

walk.createInitState(init_state)

Note that the initial state is passed to the CTQW object in the form of an n × 3 array
with format [[x1,y1,amp1],[x2,y2,amp2],...], which generalizes an n× p array for a
p-particle quantum walk. In more complex cases, an initial statespace can be imported
from an n × n 2D array in text format, or an n2 element PETSc binary vector, via
PETSc.Graph2P.importInitState().

The next process involves setting the eigensolver properties, which are then passed to the
EigSolver object contained in our walk object:

walk.EigSolver.setEigSolver(tol=1.e-2,
verbose=False ,emin_estimate=0.)

It is important to note that, since the minimum eigenvalue of a finite graph is nec-
essarily 0, calculation of the minimum eigenvalue is avoided automatically when pyC-
TQW detects a finite graph. To reduce computational time further, emax_estimate
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may also be provided, however this must be larger than the actual maximum eigen-
value for Chebyshev convergence to be ensured (with convergence time then increasing as
|emax_estimate−emin_estimate| increases). For additional keywords that can be passed
to the eigensolver, see Tab. 4.3.

Table 4.3: pyCTQW.MPI eigensolver keyword arguments

esolver (str) The default eigensolver algorithm to use.
• `krylovschur' (default) – Krylov-Schur
• `arnoldi' – Arnoldi Method
• `lanczos' – Lanczos Method
• `power' – Power/Rayleigh Quotient Iteration
• `gd' – Generalized Davidson
• `jd' – Jacobi-Davidson,
• `lapack' – LAPACK eigensolver subroutines
• `arpack' – ARPACK subroutines

workType (str) The eigensolver worktype (either `ncv' or `mpd'). The default
is to let SLEPc decide.

workSize (int) Sets the work size if workType is set
tol (float) Tolerance of the eigensolver (default is to let SLEPc decide)
maxIt (int) maximum number of iterations of the eigensolver (default is to

let SLEPc decide)
verbose (bool) If True, writes eigensolver information to the console
emax_estimate (float) Override the calculation of the graphs maximum eigenvalue

(must be larger than or equal to the actual maximum eigen-
value for Chebyshev convergence)

emin_estimate (float) Override the calculation of the graphs minimum eigenvalue
(must be smaller than or equal to the actual minimum eigen-
value for Chebyshev convergence)

Everything is now set up, allowing propagation to begin. The following commands will
allow a record of the calculated probability at specified nodes and/or the multipartite
entanglement3,4 to be stored over time:

# create a probability handle for nodes 0-4,9:
walk.watch([0,1,2,3,4,9])
# create a handle to watch the entanglement
walk.watch(None,watchtype=`entanglement ',

verbose=False ,esolver=`lapack ')

Finally, we allow the CTQW to propagate over the 3-Cayley tree for t = 5, using time-steps
of ∆t = 0.01:

3as entanglement is a global measurement, there is a large amount of node communication which may
increase overall computation time.

4the entanglement watchtype uses an eigenvalue solver, and so accepts EigSolver keywords detailed
in Tab. 4.3.
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for dt in np.arange(0.01,t+0.01,0.01):
walk.propagate(dt,method=`chebyshev ')

In this example, we use the Chebyshev propagator, but the Krylov propagator (which is
slightly slower) may be used instead. It should also be noted that, as the watch handles
are updated every time propagation occurs, the small time-step allows transient data to be
collected at a reasonable resolution. However, if the end result of the CTQW propagation
is all that is required, it is equally valid to remove the loop and use a time-step ∆t = t,
without any loss of accuracy and with some saving in computation time.

Now that the simulation is complete, raw data can be exported and visualisations can be
produced, as shown by the following example:

# p1 and p2 marginal probabilities at t=5
walk.plot(`plot.png')

# 3D graph showing of marginal probability at t=5
walk.plotGraph(output=`plot_3D.png')

# p1 and p2 probability over time for node 1
walk.plotNode(`plot_node1.png',1)
# p2 probability over all watched nodes
walk.plotNodes(`plot_nodes_particle2.png',p=2)

# plot the entanglement vs. time
walk.plotEntanglement(`entanglement.png')

# export the partial trace as a text file
walk.exportPartialTrace(`rhoX.txt',`txt',p=1)
# export the final state to a PETSc binary file
walk.exportState(`output_state.bin',`bin')

A selection of these plots is reproduced in Fig. 4.2, Fig. 4.3 and Fig. 4.4.

Finally, once the CTQW object is no longer needed, memory can be freed by destroying
it together with all associated matrices and vectors:

walk.destroy()

Now that the simulation script is complete, it can be made executable and run on dis-
tributed memory systems using mpirun.
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Figure 4.2: Marginal probability of particles 1 and 2 from the worked example after CTQW
propagation over a 3-Cayley tree, as plotted over a 3D representation of the graph (top)
and vs. node number (bottom).
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Figure 4.3: Probability distribution of particle 1 vs time, plotted for various graph nodes.

Figure 4.4: Entanglement (represented by the Von Neumann entropy) of the two particle
CTQW propagation over a 3-Cayley tree vs. time
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4.5 Scaling and performance

In order to effectively determine the performance of the Chebyshev and Krylov expo-
nential methods used in pyCTQW, the following study was undertaken comparing the
aforementioned algorithms across various implementations. Furthermore, as one of the
main design points of pyCTQW is to provide a framework for under-the-hood paralleliza-
tion of CTQW-based simulations, the parallel scaling behaviour of pyCTQW was also
explored for a variety of input problem sets.

Note that in the following performance study, all computations were completed on a Xeon
X5650 based SGI cluster with an InfiniBand low-latency interconnect.

4.5.1 Library comparison

For this comparison, the problem set chosen is that of a two-particle non-
interacting CTQW along a finite line of length N , with vertices labelled
|−N/2 + 1⟩ , . . . , |0⟩ , . . . , |N/2⟩. This system can be made sufficiently large and complex,
and involves the calculation of an N ×N matrix exponential, allowing performance differ-
ences to be clearly visible as N scales whilst reducing Hamiltonian construction overheads.
To add complexity into the system, defects are placed at vertices |3⟩ and |4⟩ of amplitudes
2 and 1.5, respectively. Propagation is calculated for t = 10 from initial state

|ψ(0)⟩ = 1√
2
(|0⟩ ⊗ |0⟩+ i |1⟩ ⊗ |0⟩) .

Fig. 4.5 shows how the resulting wall time of the system scales as N increases, with the
propagation simulated using the Chebyshev algorithm implemented via Intel Fortran/LA-
PACK, Python/SciPy, and pyCTQW (using both a single process and 240 MPI processes
on 40 6-core Intel Xeon X5650s). Also plotted for comparison is the same propagation
calculated using Mathematica’s in-built MatrixExp[] function, using the Krylov method
and sparse matrices.

It can immediately be seen that pyCTQW outperforms all other methods, with the excep-
tion of Intel Fortran/LAPACK for N . 100. However, the dense matrix methods available
in LAPACK quickly prove unsustainable compared to the other sparse matrix methods
for N & 1000. Considering the remaining implementations, whilst the scaling of SciPy’s
sparse matrix Chebyshev algorithm scales similarly to a single process of pyCTQW for
large N (indicating perhaps overhead related to the interpretive nature of Python), the



4.5 Scaling and performance 59

100 1000 104
105 106

0.01

0.05

0.10

0.50

1.00

5.00

10.00

N

W
al

lT
im

e

LAPACK Mathematica SciPy

pyCTQW 1 process pyCTQW 240 processes

Figure 4.5: The CPU wall time for a two particle non-interacting CTQW on a finite line
of N nodes, propagated for t = 10 using a variety of different software libraries/packages
as shown by the legend. All simulations are computed using the Chebyshev algorithm,
with the exception of Mathematica where the in-built MatrixExp[] function is used.

small N behaviour is almost an order of magnitude slower.

Thus, coupled with the two orders of magnitude speedup exhibited by pyCTQW when par-
allelized for N ∼ 106, it can be seen that pyCTQW easily outperforms various other imple-
mentations for large CTQW systems, whilst still remaining competitive for N small.

4.5.2 Parallel scaling

To analyze the scalability of pyCTQW, both one-particle and two-particle CTQWs on a
finite line of N vertices were computed using p MPI threads. In both cases, the CTQW was
propagated for t = 5 with defect Γ = 2 |0⟩ ⟨0|+ 1.5 |1⟩ ⟨1|. With one particle, propagation
commenced from initial state

|ψ(0)⟩ = 1√
2
(|0⟩+ |1⟩) ,

whereas when two-particles were used, propagation commenced from initial state

|ψ(0)⟩ = 1√
2
(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩)
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with an interaction term of Γint(1).

Fig. 4.6 highlights the scaling results for the one-particle problem set. Similar to what
was seen earlier, the Chebyshev algorithm is approximately one order of magnitude faster
than the Krylov algorithm, however both algorithms exhibit analogous scaling behaviour
(∼ O(1/p)).

The two-particle problem set results are plotted in Fig. 4.7, this time with parallel speedup
(defined as Sp = T1/Tp, where Tp is the wall time for p MPI threads) and parallel efficiency
(defined as Ep = T1

pTp
= Sp/p) displayed. Here, it can be seen that both the Krylov

and Chebyshev algorithms demonstrate impressive speedup, with little difference between
them, although the Chebyshev appears slightly more advantageous. The default SLEPc
eigenvalue solver, in contrast, shows a marked drop in efficiency as the number of processors
increases, indicating significant communication overhead. This has the potential to affect
the pyCTQW simulation time when using the Chebyshev algorithm in the case where the
maximum eigenvalues cannot be efficiently calculated.

An accuracy comparison of the Chebyshev and Krylov algorithms has been previously
presented by Bergamaschi and Vianello [55], and so has not been reproduced here. Of
particular note are their findings that the relative error of the Chebyshev approximation
is either comparable or significantly reduced compared to the relative error of the Krylov
algorithm, with all errors rising with t. Furthermore, a low sensitivity to eigenvalue esti-
mation on the convergence of the Chebyshev series was also demonstrated, justifying the
avoidance of costly eigenvalue solvers that in some cases may result in bottlenecks.

4.6 Conclusions

In this chapter, we presented a distributed memory software framework, with an object-
oriented Python interface pyCTQW, that allows the efficient simulation of CTQW-based
systems. This package also provides easy methods of visualisation and data analysis. We
also detailed the Chebyshev series expansion for the calculation of the matrix exponential,
and provided performance data indicating the resulting high degree of speedup achieved
over other well established algorithms, such as Krylov-subspace methods. As such, the
pyCTQW package will serve as an important software tool going forth for many of the
numerical simulations presented in this thesis.

With future versions of pyCTQW, features considered for inclusion include open system
quantum walks using superoperators, and extending the allowable number of simultaneous
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Figure 4.6: Top: The CPU wall time for a one particle CTQW on a finite line of N nodes,
propagated for t = 5 using the Krylov (black) and Chebyshev (blue) algorithms for 1 MPI
thread (solid line) and 128 MPI threads (dashed line). Bottom: Strong scaling behaviour
for problem size N = 105 shown for the Krylov (black, dashed), Chebyshev (blue, dotted)
and Krylov–Schur eigenvalue solver (red, solid).



62 Chapter 4 Efficient numerical simulation

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Number of processors HpL

Sp
ee

du
p

2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

Number of processors HpL

E
ff

ic
ie

nc
y

Figure 4.7: The speedup (top) and efficiency (bottom) for a two particle interacting CTQW
on a finite line of N = 150 nodes, propagated for t = 5 using the Krylov (black, dashed)
and Chebyshev (blue, dotted) algorithms, with the Krylov–Schur eigenvalue solver also
shown (red, solid). The solid gray diagonal line indicates ideal speedup.
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quantum walkers. Furthermore, additional code profiling and testing is likely to result in
optimisations and increased performance.
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CHAPTER 5

Multiple fermion simulation
This chapter is based on the manuscript by J. A. Izaac and J. B. Wang, “Systematic dimensionality
reduction for continuous-time quantum walks of interacting fermions”, with minimal modification to
match the formatting, notation, and terminology of this thesis. The paper has been submitted for
publication in Physical Review E.

As noted in the previous chapter, if we wish to extend the quantum walk to simulate P
distinguishable particles on graph G, the Hamiltonian of the system is expanded to act on
a NP Hilbert space — in effect, simulating the multi-particle CTQW on graph G via a
single particle CTQW propagating on the cartesian graph product G�P . The properties of
the cartesian graph product have been well studied [107], and classical simulation of multi-
particle CTQWs are common in the literature [119, 120]. However, the above approach
is generally applied as is when simulating indistinguishable particles as well, with the
particle statistics then applied to the propagated NP state vector to determine walker
probabilities. In this chapter, we address the question: how can we modify the underlying
graph structure G in order to simulate multiple indistinguishable CTQWs with a reduction
in the size of the state space?

5.1 Introduction

Whilst single-particle CTQWs have historically formed the basis of many theoretical and
experimental results and applications, this is rapidly changing; interacting multi-particle
CTQWs have been shown to provide a method of universal computation [42], and have
been considered in applications such as graph isomorphism algorithms [5, 6]. The dy-
namics of multiple interacting indistinguishable CTQWs have also been investigated on
one-dimensional optical lattices [121] as well as cycle graphs [120]. Furthermore, multi-
fermion CTQWs have been experimentally realised via 2D and 3D arrayed waveguides
[122], taking advantage of non-classical correlations to probe underlying network struc-
ture to a greater degree than possible with a single particle [119].

64
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When simulating non-interacting multi-particle CTQWs either classically or numerically,
it is common practice to evolve the time-evolution operator U(t) for the single-particle
case, before calculating the multi-particle time-evolution operator via application of the
Kronecker product (U(t) ⊗ U(t) ⊗ · · · ⊗ U(t); see Eq. 3.30). If the particles are indis-
tinguishable, we may then project the resulting state vector onto the subset of allowed
symmetrised or antisymmetrised states, for bosons and fermions respectively. However, in
the case where interactions are present between the particles, the time-evolution operator
is no longer separable; for P particles walking on anN vertex graphG, theNP -dimensional
system Hamiltonian must first be constructed and simulated over time, a computation-
ally expensive process for large graphs and/or numerous particles. Instead, by projecting
the CTQW graph Hamiltonian onto the symmetrised/antisymmetrised subspace prior to
calculating the time-evolution operator, the ultimate size of the unitary operator may be
reduced, leading to a reduction in resources required to simulate the system.

In fact, this basic idea has been employed in various forms in the study of CTQW-based
algorithms. In their analysis of two non-interacting fermionic CTQWs on graph G with
corresponding adjacency matrix A, Gamble et al. [5] noted that, using various commuta-
tion relations, it is possible to express the adjacency matrix of G�G, A⊕ A, in the basis
of allowed fermionic states,

(⟨i, j| − ⟨j, i|√
2

)

(A⊕A)

( |k, ℓ⟩ − |ℓ, k⟩√
2

)

= δikAℓj + δjℓAik − δiℓAjk − δjkAiℓ. (5.1)

Here, |i, j⟩ = |i⟩ ⊗ |j⟩ is an orthonormal basis state representing particle 1 and particle 2
localised at vertices vi and vj respectively, and { 1√

2
(|i, j⟩ − |j, i⟩) : i, j = 1, . . . , N, i < j}

the set of antisymmetrised states. This then enabled the authors to apply the Bose-Mesner
algebra to examine the distinguishing ability of two non-interacting fermions on strongly
regular graphs; concluding that the non-interacting fermionic CTQW does not provide the
basis for a solution to the graph isomorphism problem (more on this in chapter 6).

Attempting to solve a very similar problem regarding single-particle CTQWs, it was recog-
nised by Novo et al. [123] that certain graphs possess symmetry, that, in effect, restrict the
CTQW dynamics to a subspace of the N -dimensional Hilbert space spanned by the ver-
tices in the graph. As a consequence, the Hamiltonian need not be described by the N×N
adjacency matrix; the CTQW can instead be simulated via the matrix exponentiation of
a smaller, reduced Hamiltonian corresponding to a weighted graph on N ′ ≤ N vertices.
This result was then utilised to analyse problems in CTQW-based quantum search and
quantum transport algorithms.
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In both cases it was shown that by utilising the underlying symmetry of the system to map
the CTQW on a graph to a smaller, reduced-vertex graph structure, analysis of the system
under study, as well as the dynamics of the walk, can be more intuitively understood
and more efficiently simulated. In this chapter, we show that a similar approach can
be applied to P -particle interacting fermionic CTQWs, and provide methods of directly
calculating the antisymmetrised reduced adjacency matrices. As a result, as the number
of interacting fermions increases, the computational resources required no longer increases
exponentially. Accordingly, this may lead to methods of rapid numerical and experimental
implementation, as well as simpler methods of analytic study.

This chapter is structure as follows. In Sec. 5.2, we introduce notation and definitions
describing multiple indistinguishable particles on a graph structure. We then detail in
Sec. 5.3 the antisymmetrised CTQW Hamiltonian and construction of the antisymmetrised
reduced graph, and provide an explicit example in the case of the two-fermion CTQW on
a 4-vertex star graph. This framework is then extended to include multiple interacting
fermions in Sec. 5.5. Finally, Sec. 5.6 discusses the resources required to classically simulate
the reduced graph, before we provide concluding remarks in Sec. 5.7.

5.2 Indistinguishable particles

Let

|j1, j2, . . . , jP ⟩ ≡ |j1⟩ ⊗ |j2⟩ ⊗ · · · ⊗ |jP ⟩ ∈ HNP (5.2)

denote the state of the system described by P particles located on vertices vj1 to vjP

respectively, where ji ∈ [1, N ] for all i = 1, . . . , P . By construction, this set of states are
orthonormal:

⟨
j′1, j

′
2, . . . , j

′
P

∣
∣j1, j2, . . . , jP

⟩
=
⟨
j′1
∣
∣j1
⟩ ⟨
j′2
∣
∣j2
⟩
· · ·
⟨
j′P
∣
∣jP
⟩
= δj′1j1δj′2j2 · · · δj′P jP , (5.3)

and thus the operator

x̂k =

N∑

j1=1

· · ·
N∑

jP=1

jk |j1, j2, . . . , jP ⟩ ⟨j1, j2, . . . , jP | , 1 ≤ k ≤ P (5.4)

returns the vertex location of the kth particle:

x̂k |j1, j2, . . . , jk, . . . , jP ⟩ = jk |j1, j2, . . . , jk, . . . , jP ⟩ . (5.5)
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If we then evolve the system for time t from an initial state |ψ0⟩, the resulting probability
of P distinguishable particles being localised on a particular set of vertices {j1, j2, . . . , jP }
is given by

Pj1,...,jp(t) = | ⟨j1, j2, . . . , jP |U(t)|ψ0⟩ |2. (5.6)

However, if the particles are instead indistinguishable, then we can no longer distinguish
between states where different particles occupy the same sets of vertices. The following
therefore represent equivalent states,

|j1, j2, . . . , jP ⟩ ≡
∣
∣jσ(1), jσ(2), . . . , jσ(P )

⟩
(5.7)

where σ represents a permutation acting on P elements {1, 2, . . . , P}.

In general, the two classes of identical particles we will be considering are bosons and
fermions, exhibiting symmetric and antisymmetric statistics respectively. These statistics
will need to be taken into account when performing measurements of the two-particle
system described above. For example, in the two-particle case P = 2, the probability of
finding the system localised at vertices vi and vj is given by

Pi,j(t) =







1
2 |⟨i, j|U(t)|ψ0⟩+ (−1)s ⟨j, i|U(t)|ψ0⟩|2 , i ̸= j

|(1 + (−1)s) ⟨i, j|U(t)|ψ0⟩|2 , i = j
(5.8)

where s = 0 for bosons, 1 for fermions.

A significant drawback to simulating an identical multi-particle CTQW in this fashion
is that the measurement statistics are only applied after the time-evolution has been
calculated – requiring the computation of an NP ×NP operator in order to calculate the
time-evolution of significantly fewer than NP states. One way we can avoid this issue is
by symmetrising/anti-symmetrising the graph G itself, and removing the redundant states
in the simulation.

5.3 The antisymmetrized CTQW Hamiltonian

Fermion statistics requires antisymmetrized states – that is, only states that are antisym-
metric under the particle exchange operator P̂x,y are allowed; P̂x,y |ψ⟩ = − |ψ⟩. Here, the
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particle exchange operator acts to swap the locations of particles x and y, as follows:

P̂x,y |j1, . . . , jx, . . . , jy, . . . , jP ⟩ = |j1, . . . , jy, . . . , jx, . . . , jP ⟩ . (5.9)

Note that this property cannot hold if jx = jy for any x and y – thus two or more fermions
cannot be in the same state/be located at the same vertex.

A state vector in our NP Hilbert space can be made antisymmetric by the antisymmetriz-
ing operator A. This acts in the following fashion,

A |j1, . . . , jP ⟩ =
1

P !

∑

σ∈SP

sgn(σ)
∣
∣jσ(1), . . . , jσ(P )

⟩
, (5.10)

where σ is a member of the permutation group SP , representing all permutations acting
on {1, 2, . . . , P}, and sgn(σ) = ±1 is the sign or signature of the particular permutation σ
— providing a value of 1 if σ there are an even number of particle transpositions, and −1

otherwise. Alternatively, we may write this as a Slater determinant,

A |j1, . . . , jP ⟩ =
1

P !

∣
∣
∣
∣
∣
∣
∣
∣

|j1⟩1 · · · |j1⟩P
... . . . ...

|jP ⟩1 · · · |jP ⟩P

∣
∣
∣
∣
∣
∣
∣
∣

, (5.11)

where | ⟩p denotes the state of the pth particle.

Several properties to note about the antisymmetrizing operator:

1. A is Hermitian: A† = A. Thus, A has real eigenvalues and a complete set of
orthonormal eigenvectors.

2. A is singular: A−1 does not exist. This follows from the observation that A, if
applied to a symmetrised state

∣
∣ψS
⟩
, gives 0; A

∣
∣ψS
⟩
= 0. This indicates that A has

a non-trivial nullspace, and thus A is singular or non-invertible. Therefore, if we use
A to antisymmetrize an arbitrary state, we can never recover the initial state – the
symmetric components are gone for good.

3. A is idempotent: An = A. Its eigenvalues are either 0 or 1.

4. [A, H] = 0: since A commutes with the Hamiltonian1, antisymmetry is a constant of
motion. That is, if the CTQW is initialised in an antisymmetric state, it will remain
in an antisymmetric state.

1This follows from the well-known property that A commutes with any Hermitian operator [124].
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5. Since A is idempotent, its trace will always be an integer, and equal to the rank.
Thus, from Eq. 5.10, it can be seen that Tr(A) = rank(A) =

(
N
P

)
.

As fermion statistics excludes two or more particles from coexisting in the same state, with-
out any loss of generality let’s consider the subset of ordered states (using lexicographical
ordering) in our orthonormal NP Hilbert space, where no more than one particle is located
on any vertex:

|ϕn⟩ ∈ {|j1, j2, . . . , jP ⟩ : j1 < j2 < · · · < jP }. (5.12)

Here, n denotes the nth element of this subset, and

n = 1, 2, . . . ,

(
N

P

)

. (5.13)

By antisymmetrizing these states, we generate a complete basis set of antisymmetrized
states, denoted |Fn⟩,

|Fn⟩ =
√
P !A |ϕn⟩ , n = 1, 2, . . . ,

(
N

P

)

, (5.14)

where the
√
P ! is required for normalisation. Note that

A |Fn⟩ =
√
P !A2 |ϕn⟩ =

√
P !A |ϕn⟩ = |Fn⟩ . (5.15)

This follows from the fact that A is idempotent; the states |Fn⟩ are already antisym-
metrized, so further applications of A have no effect. Furthermore, as rank(A) =

(
N
P

)
,

and we have
(
N
P

)
states |Fn⟩, we can conclude that the set of basis states |Fn⟩ represent

the orthonormal eigenvectors of A with eigenvalue 1. Thus

A =

(N
P
)

∑

n=1

|Fn⟩ ⟨Fn| . (5.16)

Note that, since A is singular, the right hand side does not span the entire Hilbert space
— this can be easily seen from the basis restriction in Eq. 5.12. In the case of two particles
(P = 2), this expression for A simplifies down to

A =
1

2



I −
N∑

i=1

N∑

j=1

|j, i⟩ ⟨i, j|



 , (5.17)

which agrees with the form of the antisymmetrised operator (I − S)/2 used by Gamble
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et al. [5].

We now project the P -particle Hamiltonian H⊕P onto our antisymmetrized basis:

H̃ij =
⟨
Fi

∣
∣H⊕P

∣
∣Fj

⟩
= P !

⟨
ϕi
∣
∣
(
AH⊕PA

)∣
∣ϕj
⟩
, i, j = 1, 2, . . . ,

(
N

P

)

. (5.18)

Therefore, rather than simulate a P -particle fermionic CTQW via a single particle on a
NP vertex graph G�P (as we must do when working with distinguishable particles), we
can instead simulate the dynamics via a single particle CTQW on a

(
N
P

)
vertex graph

G̃ = AG�PA, where vertex vi corresponds to antisymmetrised state |Fi⟩.

5.3.1 Example: two fermion walk on a 4-vertex star graph

Let’s consider a quick example where we have two fermions (P = 2) walking on a 4-vertex
star graph G, shown in Fig. 5.1.

Figure 5.1: 4-vertex star graph

The adjacency matrix is

A =










0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0










, (5.19)

and the allowed states |ϕn⟩ are

|ϕn⟩ ∈ {|1, 2⟩ , |1, 3⟩ , |1, 4⟩ , |2, 3⟩ , |2, 4⟩ , |3, 4⟩}n (5.20)

(we have
(
4
2

)
= 6 states, as expected). Applying the antisymmetrizing operator as per
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Eq. 5.11 provides us with the resulting fermionic basis states:

|Fn⟩ =
√
2A |ϕn⟩ =

{
1√
2
(|1, 2⟩ − |2, 1⟩), 1√

2
(|1, 3⟩ − |3, 1⟩), 1√

2
(|1, 4⟩ − |4, 1⟩),

1√
2
(|2, 3⟩ − |3, 2⟩), 1√

2
(|2, 4⟩ − |4, 2⟩), 1√

2
(|3, 4⟩ − |4, 3⟩)

}

n

. (5.21)

From here, it is straightforward to project A⊕2 = A⊕A onto the new antisymmetric basis
states |Fn⟩. One such way is to note that the basis states for A⊕ A, can be written as a
unit vector:

|i, j⟩ → ê2(i−1)+j ∈ R
N2
. (5.22)

Using this representation, the set of fermionic basis states given by Eq. 5.21 become the
columns of our change of basis matrix, M ∈ R

N2×(N
P
),

Mij = |Fj⟩i . (5.23)

For this particular example, where N = 4 and P = 2, this gives

M † =
1√
2















0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0















. (5.24)

Therefore, the reduced fermion adjacency matrix is given by

Ã =M †(A⊕A)M =















0 0 0 −1 −1 0

0 0 0 1 0 −1

0 0 0 0 1 1

−1 1 0 0 0 0

−1 0 1 0 0 0

0 −1 1 0 0 0















, (5.25)

and a simulation requiring a 16× 16 time-evolution operator has been reduced to a 6× 6

time-evolution operator2, and it can be readily verified that this gives the same result as
Eq. 5.1. Thus, the 2-fermion CTQW on the 4-vertex star graph is equivalent to a single

2Note that, as M is a change of basis transformation, M†M = I. Furthermore, we have the result
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particle walk on a 6-vertex weighted cycle graph, as shown in Fig. 5.2(b).

|11〉
|12〉

|13〉
|14〉
|21〉

|22〉
|23〉

|24〉 |31〉
|32〉

|33〉
|34〉

|41〉
|42〉

|43〉|44〉

-1

-1

-1

|12〉

|13〉

|14〉

|23〉

|24〉

|34〉

Figure 5.2: Left: The cartesian product of the star graph with itself, G�G. Right: the
reduced antisymmetric 2-fermion star graph G̃. The edges (|12⟩ , |23⟩), (|12⟩ , |24⟩), and
(|13⟩ , |34⟩), have an edge weighting of −1 due to particle exchange.

Before we continue, a slight aside; it turns out that by choosing a different labelling for our
fermionic states, we can minimise the number of negative values occurring in the reduced
antisymmetrised adjacency matrix. Indeed, repeating the above process with the following
set of allowed states,

∣
∣ϕ′n
⟩
= {|1, 2⟩ , |3, 2⟩ , |3, 1⟩ , |3, 4⟩ , |1, 4⟩ , |2, 4⟩}n, (5.26)

produces the reduced fermionic adjacency matrix

Ã =















0 1 0 0 0 −1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

−1 0 0 0 1 0















. (5.27)

Unfortunately, there does not appear a systematic way to determine the proper basis to
minimise the number of weighted edges, without checking all 2N possible choices of bases
[5]. As such, we will continue to assume lexicographical ordering of allowed fermionic basis
states from hereon.
MM† = A. Thus, we are implicitly antisymmetrizing the system:

Ã
(2) =M

†(A⊕A)M = (M†
M)M†(A⊕A)M =M

†A(A⊕A)M.
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5.4 Constructing the reduced fermionic adjacency matrix

In the previous example, note that we calculated A⊕P before performing the fermionic
change of basis operation; i.e. we still needed to compute a NP × NP operator during
the computation. However, by studying the antisymmetrized graph AG�PA, it is possi-
ble to define the P -fermion adjacency matrix directly, without the need to calculate the
Kronecker sum intermediate. To begin with, we consider the two-fermion case.

Theorem 5.1 (Two-fermion reduced adjacency matrix). Let G(V,E) be an unweighted,
undirected graph of N vertices and N × N adjacency matrix A. The fermionic basis is
given by |Fi⟩ =

√
2A |ϕi⟩, where |ϕi⟩ ∈ {|r, s⟩ : r < s}. The reduced antisymmetrised graph

G̃(V ′, E′,W ′) for two fermions walking on graph G(V,E) has adjacency matrix given by

Ãij =
⟨
Fi

∣
∣A⊕2

∣
∣Fj

⟩
=







1, fik = fjk, fiℓ ∼ fjℓ

−1, fik = fjℓ, fiℓ ∼ fjk

0, otherwise,

(5.28)

where fik = ⟨ϕi|x̂k|ϕi⟩, k = 1, 2, ℓ = 1, 2, and k ̸= ℓ. Note that G̃ is a weighted graph with
vertex set size |V ′| =

(
N
2

)
= N(N − 1)/2.

In other words, if we have two states |ϕi⟩ = |r, s⟩ and |ϕj⟩ = |r′, s′⟩, where r < s and
r′ < s′, then:

• Ã
(2)
ij = 1 if and only if, comparing the two states, one particle remains at the same

vertex, whilst the other particle inhabits adjacent vertices (vr = v′r, vs ∼ v′s or
vr ∼ v′r, vs = v′s);

• Ã
(2)
ij = −1 if and only if, comparing the two states, different particles are at the

same vertex, whilst the remaining inhabited vertices are adjacenct (vr = v′s, v′r ∼ vs

or vr ∼ v′s, v′r = vs) — there has been a relative particle exchange between the two
states.

Thus, it can be seen that Thm. 5.1 is equivalent to Eq. 5.1. By rewriting the above using
set notation, it is easy to recognise that we are, in essence, working with the symmetric
difference of the two states |ϕi⟩ and |ϕj⟩.

Definition 5.2 (Symmetric difference). The symmetric difference between the states
|ϕi⟩ = |j1, j2, . . . , jP ⟩ and |ϕj⟩ = |j′1, j′2, . . . , j′P ⟩ is the unordered set given by

|ϕi⟩ ⊖ |ϕj⟩ = {j1, j2, . . . , jP } ⊖ {j′1, j′2, . . . , j′P }
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= ({j1, . . . , jP }\{j′1, . . . , j′P }) ∪ ({j′1, . . . , j′P }\{j1, . . . , jP }), (5.29)

where \ is the set complement, and ∪ the set union.

Once calculated, we are then checking to see if this symmetric difference is an element
of the edgeset of G. If this is the case, then we assign Ãij = 1 if the state |ϕi⟩ after
traversing the edge |ϕi⟩ ⊖ |ϕj⟩ can be sorted in lexicographical ordering with an even
number of transpositions (i.e. it has a signature of 1); otherwise, Ãij = −1. Note that, for
convenience, from hereon we will use the notation |ψ⟩ → (i, j) to indicate that the state
|ψ⟩ has traversed the graph edge (vi, vj), and thus all particles located at vertex vi are
now located at vertex vj .

This process may still appear slightly esoteric, but can be clarified with a quick example.
Consider the 4-vertex star graph G(V,E) in Fig. 5.1, and in particular, the two-particle
fermionic basis states |ϕ1⟩ = |1, 2⟩ and |ϕ4⟩ = |2, 3⟩. Taking the symmetric difference of
these two states, we get

|ϕ1⟩ ⊖ |ϕ4⟩ = |1, 2⟩ ⊖ |2, 3⟩ = (1, 3). (5.30)

Now, we can see that the ordered pair (1, 3) is an edge in the 4-vertex star graph; (1, 3) ∈ E.
Thus, we know that Ã14 = Ã41 = ±1. To determine the sign, we pick one of the starting
basis states |ϕ1⟩ or |ϕ4⟩, and allow the quantum particles to traverse the edge |ϕ1⟩ ⊖ |ϕ4⟩;
e.g. |ϕ1⟩ → |ϕ1⟩ ⊖ |ϕ4⟩ = |1, 2⟩ → (1, 3) = |3, 2⟩. Calculating the signature of this
state with respect to the lexicographical ordering, we find sgn(|3, 2⟩) = −1, and thus
Ã14 = Ã41 = −1. Repeating this process for all |ϕi⟩ and |ϕj⟩ allows us to construct the
antisymmetrised adjacency matrix Ãij for the 4-vertex star graph (Eq. 5.25).

With this insight, we can generalise this procedure for P particles.

Theorem 5.3 (P -fermion reduced adjacency matrix). Let G(V,E) be an unweighted,
undirected graph of N vertices, with corresponding adjacency matrix A. The fermionic
basis is given by |Fi⟩ =

√
P !A |ϕi⟩, where |ϕi⟩ ∈ {|j1, j2, . . . , jP ⟩ : j1 < j2 < · · · < jP }.

The reduced antisymmetrised graph G̃(V ′, E′,W ′) for P fermions walking on graph G(V,E)

has adjacency matrix given by

Ãij =
⟨
Fi

∣
∣A⊕P

∣
∣Fj

⟩
=







σij , |ϕi⟩ ⊖ |ϕj⟩ ∈ E

0, |ϕi⟩ ⊖ |ϕj⟩ /∈ E,
(5.31)

where σij = sgn (|ϕi⟩ → |ϕi⟩ ⊖ |ϕj⟩). G̃ is a weighted graph, with vertex set size |V ′| =
(
N
P

)
.



5.5 Interacting fermions 75

Using this definition to construct the reduced fermionic adjacency matrix for a given
graph G, one possibility is to perform two loops over all i, j = 1, 2, . . . ,

(
N
P

)
, requiring

(
N
P

)2 iterations. However, the number of loop iterations required can be significantly
reduced by instead iterating over all edges in the original graph G — reducing the number
of iterations required to

|E|
(
N − 2

P − 1

)

≤ N2

(
N − 2

P − 1

)

<

(
N

P

)2

. (5.32)

The algorithm required to generate the P -particle reduced fermion adjacency matrix of
graph G by iterating over all edges is outlined in algorithm 5.1, and a functional imple-
mentation using Mathematica is provided in Program 5.1.

5.5 Interacting fermions

Using this reduced-vertex model, it is relatively simple to include interactions, i.e. modi-
fication of the multi-particle Hamiltonian to include a coupling factor Γ that acts on the
entire NP Hilbert space:

H = H⊕P + Γ. (5.33)

Hereafter, we will use the CTQW convention H = A for simplicity; however, all results
derived follow through similarly for the case where H = L.

Let us begin by considering distinguishable particles; once we have established our for-
malism, we can generalise to interacting fermions. Whilst interactions may be chosen
arbitrarily, they are generally selected such that any interactions between sets of particles
depends only on their pairwise distances on the graph structure [102]. Furthermore, we of-
ten restrict ourselves to forms of interactions that conform to observable physical systems;
such as purely local interactions (the on-site or Bose-Hubbard model) or nearest-neighbour
interactions [42]. On-site interactions occur when two particles inhabit the same vertex;
for example, in the two particle case, this can be written as

Γ = α
N∑

i=1

|i, i⟩ ⟨i, i| , (5.34)

where α is a parameter determining the strength of the interaction. As onsite interactions
do not occur in the case of fermions, due to the Pauli-exclusion principle, they will not be
considered further.
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Algorithm 5.1: Algorithm for constructing the reduced fermionic adjacency
matrix, by iterating over all edges in the original graph. In the following pseudo-
code, square brackets represent matrices, and curly brackets represent unordered
sets.

Function ReducedFermionAdj (A,P )
Input : adjacency matrix A, and integer 1 ≤ P ≤ N
Output: reduced fermionic adjacency matrix
N = length(A);
M = binomial(N ,P );
edges = {(i, j) : i, j = 1, 2, . . . N, Aij = 1};
adj = [0 : i, j = 1, 2, . . .M ];
for (i, j) in edges do

symdiff ={1, 2, . . . , N}\{i, j};
for k in {subsets of symdiff of length P − 1} do

s1 = sorted(append(k, i));
s2 = sorted(append(k, j));
s1E = replaceall(s1, i→ j);
adjfindIndex(s1,N), findIndex(s2,N) = signature(s1E);

end
end
return adj

Function findIndex (state, N)
Input : an allowed fermionic state using lexicographical ordering (e.g. [1,3]

represents (|1, 3⟩ − |3, 1⟩)/
√
2), and the size of the Hilbert space N

Output: the index number of the lexicographically ordered fermionic state
P = length(state);
ind = 1;
iold = 1;
for i in state do

ind += binomial(N,P ) - binomial(N -i+iold, P );
N -= i - iold + 1;
P -= 1;
iold = i + 1;

end
return ind
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In[1]:= ReducedFermionAdj[A_, p_] := Module[{n = Length[A], states, m, edges},
n = Length[A];
m = Binomial[n, p];
edges = Most[ArrayRules[A]][[All, 1]];
SparseArray[

Flatten@Table[
states = Sort /@ {Append[#,i[[1]]], Append[#,i[[2]]]} &

/@ Subsets[Complement[Range[n], i], {p - 1}];
Thread[{findIndex[#[[1]], n], findIndex[#[[2]], n]} &

/@ states -> (Times@@Signature)
/@ (states[[All,1]] /. {i[[1]] -> i[[2]]})],

{i, edges}],
{m, m}]]

findIndex[state_, n_] := findIndex[state, n] =
Module[{p = Length[state], ind = 1, iold = 1, ntmp = n},

Do[ind += Binomial[ntmp, p] - Binomial[ntmp - i + iold, p];
ntmp -= i - iold + 1; p -= 1; iold = i + 1, {i, state}];
Return[ind]]

Program 5.1: Mathematica implementation of the algorithm described in algorithm 5.1,
the reduced fermion adjacency matrix. Here, the input A is an undirected, unweighted
N × N adjacency matrix, and 2 ≤ p ≤ N the number of fermions to be simulated. The
output is a sparse

(
N
P

)
-dimensional matrix.

Nearest-neighbour interactions occur when particles are located in adjacent vertices;
that is, vertices connected by an edge. In the two particle case, this has the following
form:

Γ = α
∑

(i,j)∈E(G)

(|i, j⟩ ⟨i, j|+ |j, i⟩ ⟨j, i|) . (5.35)

To generalise this to P particles, we need to first define the number operator n̂i. Applying
the number operator n̂i to a separable state,

n̂i |j1, j2, . . . , jP ⟩ = ni |j1, j2, . . . , jP ⟩ , (5.36)

results in the eigenvalue ni ∈ N0, a measurement of the number of distinguishable particles
occupying vertex i. The number operator can therefore be constructed as follows. Let
|ji⟩m denote the sum of all possible P -particle states for the mth particle located at vertex
i:

|ji⟩m =
N∑

k1=1

· · ·
N∑

kP−1=1

∣
∣jk1 , . . . , jkm−1 , ji, jkm+1 , . . . , jkP−1

⟩
. (5.37)
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i.e. |j⟩m acts non-trivially only on the location register for the mth distinguishable particle
[42]. The particle number operator is then given by

n̂i =

P∑

m=1

|ji⟩m ⟨ji|m , (5.38)

allowing us to write the generalised nearest-neighbour interaction term for P parti-
cles:

Γnn = β
∑

(u,v)∈E(G)

n̂un̂v (5.39)

(in the case P = 1, it can be easily checked that Γ = 0). While the above formulation
applies to distinguishable particles, this can easily be generalised to fermions by applying
the number operator n̂i to the set of antisymmetrised basis states |Fn⟩.

Noting that the nearest-neighbour interaction is necessarily diagonal, we may construct
the reduced fermion interaction operator via a loop iterating over all

(
N
P

)
allowed states

and all resulting
(
P
2

)
pairwise combinations, resulting in

1

2
P (P − 1)

(
N

P

)

(5.40)

loop iterations.

Algorithm 5.2: Algorithm for constructing the reduced fermionic interaction
matrix, by iterating over all allowed fermionic states. In the following pseudo-
code, square brackets represent matrices, and curly brackets represent unordered
sets.

Function ReducedFermionInt (A,P )
Input : adjacency matrix A, and integer 2 ≤ P ≤ N
Output: reduced fermionic interaction matrix
N = length(A);
M = binomial(N ,P );
Γ = [ ];
for states in {subsets of [1, 2, . . . , N ] of length P} do

sum_of_int = 0;
for (i, j) in {subsets of states of length 2} do

sum_of_int += Ai,j ;
end
Γ = append(Γ, sum_of_int);

end
return Γ
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In[2]:= ReducedFermionInt[A_, p_] := Module[{n=Length[A]},
SparseArray[Band[{1,1}] -> Total@Transpose[

A[[Sequence@@#]] &
/@ Subsets[#,{2}] &
/@ Subsets[Range[n],{p}]]] ]

Program 5.2: Mathematica implementation of the algorithm described in algorithm 5.2,
the reduced fermion interaction operator. Here, the input A is an undirected, unweighted
N × N adjacency matrix, and 2 ≤ p ≤ N the number of fermions to be simulated. The
output is a sparse

(
N
P

)
-dimensional diagonal matrix.

Using algorithm 5.1 and algorithm 5.2, we can now consider the resulting reduced graph
structure of a P -fermion CTQW on graph G with nearest neighbour interactions. The
reduced fermionic graphs representing a P -fermion CTQW with nearest-neighbour inter-
actions on a 4-vertex star graph and a 5-vertex cycle graph are shown in Fig. 5.3 and
Fig. 5.4 respectively. Firstly, note the significant reduction in graph size; each reduced
graph contains

(
N
P

)
vertices, compared to G�P , which contains NP vertices. Furthermore,

it can be seen that the reduced graphs corresponding to P and P ′ = N − P both share
the same underlying graph structure, simply differing in the location of edge weighting,
and, if α ̸= 0, the number of self-loops per vertex. This result may lead to new techniques
of analysis when investigating algorithms based on CTQWs of multiple fermions.
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5.6 Computational resources and analysis

Whilst care has been taken in algorithm 5.1 and algorithm 5.2 to reduce the time taken in
generating the reduced fermionic graphs, our reliance on high-level Mathematica functions
in Program 5.1 and Program 5.2 (such as Binomial[N,P] and Subsets[Range[N],{P}])
obscures the time-scaling complexity of the provided code fragments. Without knowing
how these functions are implemented and their corresponding scaling, it is difficult to
deduce for certain the analytic scaling behaviour of the overall algorithm. Thus, in order
to compare the time complexity of the Kronecker sum method and reduced fermion method
of constructing the P -fermion Hamiltonian of CTQW on graph G with nearest-neighbour
interactions, a short numerical analysis was undertaken.

The results of the numerical scaling analysis, performed using Mathematica 11.0.1.0 with
an Intel i7-3770 processor and 16 GB of available RAM, can be seen in Fig. 5.5. Here, the
two algorithms under consideration were both applied to the construction of the system
Hamiltonian of a P -fermion CTQW on a randomly generated Erdős-Rényi graph G(N, 0.3)
with nearest neighbour interactions. It can be seen that both the Kronecker sum and the
reduced fermionic graph approach scale as expected; O(NP ) for the Kronecker sum, and
O
(

P (P − 1)
(
N
P

))

for the reduced fermionic graph — with the reduced fermionic graph
algorithm significantly faster for P >∼ 5. Furthermore, as this numerical complexity
analysis does not take into account CTQW propagation (i.e. computation of the matrix
exponential e−iHt), the overall computational cost of the Kronecker sum approach is likely
to far exceed that of the reduced graph approach. Unfortunately, due to memory con-
straints, we were unable to generate Kronecker sum results for P > 5 when N = 15, and
P > 4 when N = 20; generation of sparse matrices of dimension larger than 205 proving
too large for our computational set-up. This supports the need for this reduced fermionic
graph framework — indeed, using this framework we were able to simulate a P -fermion
CTQW on a 20 vertex graph with interactions for all possible values of P .

5.7 Conclusion

Therefore, we see one of main advantages of the reduced fermionic graph approach is in
reducing the required computational resources; i.e. the classical memory need to perform
the computation. For example, approaching the simulation of multiple-fermions as per
Sec. 5.3 requires the initial computation of A⊕P , an NP ×NP matrix, before performing
the change of basis transformation MA⊕PMT . Computing this directly, and assuming no
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optimization/sparse matrix techniques are used, a memory space of size O(N2P ) is required
— unmanageable with the RAM available on typical desktop computers for graphs of 30
vertices and more than 3 or 4 fermions [125].

By instead constructing the reduced fermionic graph directly, as outlined in this chapter,
the required computational resources are significantly reduced, and are bound by

(
N
P

)2

where

(
N

P

)

=
N !

P !(N − P )!
=

1

P !

P−1∏

j=0

(N − j). (5.41)

An even greater computational advantage may be found if simulated via quantum com-
putation, as simulating the reduced fermionic graph structure would require only log2

(
N
P

)

qubits, rather than P qubits, as shown in Fig. 5.6. This could also potentially lead to
methods of reducing resources required in experimental design, especially if issues surround
generation of multiple interacting fermions; in fact, performing the reduced fermionic al-
gorithm in ‘reverse’ — mapping a multi-particle CTQW on a graph to a single particle
CTQW on a larger, more complex graph — may allow experimentalists to probe large,
complex network structures by simply scaling up the number of particles injected into
the system. As such, the techniques detailed in this chapter have potential applications
across classical simulation, quantum computation, experimental design, and the analysis
of CTQW-based quantum algorithms. In the following part, we will study several poten-
tial applications of the CTQW, including one in which multi-particle CTQWs have played
an increasingly greater role — the graph isomorphism problem.
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|1〉

|2〉

|3〉

|4〉
(a) P = 1

-1

-1

-1

|12〉

|13〉

|14〉

|23〉

|24〉

|34〉

(b) P = 2
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|124〉 |134〉

|234〉

(c) P = 3

|1234〉

(d) P = 4

Figure 5.3: The reduced fermionic graph G̃ representing a P -fermion CTQW on a 4-
vertex star graph with nearest-neighbour interactions. Edges marked ‘-1’ have an edge
weighting of -1, whilst unlabelled edges have an edge weighting of 1. Self loops represent
nearest-neighbour interactions of strength α and have an edge weighting of α.
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(a) P = 1

-1

-1 -1

|12〉

|13〉 |14〉

|15〉

|23〉 |24〉

|25〉

|34〉

|35〉 |45〉

(b) P = 2

|123〉

|124〉
|125〉
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(c) P = 3
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|1235〉 |1245〉

|1345〉

|2345〉

(d) P = 4

Figure 5.4: The reduced fermionic graph G̃ representing a P -fermion CTQW on a 5-
vertex cycle graph with nearest-neighbour interactions. Edges marked ‘-1’ have an edge
weighting of -1, whilst unlabelled edges have an edge weighting of 1. Self loops represent
nearest-neighbour interactions of strength α and have an edge weighting of α.
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Figure 5.5: Wall time required to construct the P -fermion CTQW Hamiltonian with
nearest neighbour interactions, using the Kronecker sum approach H⊕P + Γ (black) and
the reduced fermion graph approach detailed in Program 5.1 and Program 5.2 (red), for a
randomly generated Erdős-Rényi graph G(N, 0.3). The dashed lines represent regression
fits of the form aNP (black, dashed), and aP (P − 1)

(
N
P

)
(red, dashed), for constant a.
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Figure 5.6: Qubits required to simulate a P -fermion CTQW walking on a graph of N ver-
tices, by either (a) introducing additional particles to the system (black), or (b) performing
a single-particle walk on the equivalent reduced fermionic graph (red, dashed).
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CHAPTER 6

CTQW and graph isomorphism
This chapter is based on the paper by A. Mahasinghe, J. A. Izaac, J. B. Wang, and J. K. Wi-
jerathna, “Phase-modified CTQW unable to distinguish strongly regular graphs efficiently”, Journal
of Physics A: Mathematical and Theoretical 48, 265301 (2015). with minimal modification to match
the formatting, notation, and terminology of this thesis, and an expanded introduction.

Over the last decade, quantum walks have received a significantly increased research focus,
due in part to its applicability as a computational model in quantum computation, as
well as a wide range of potential applications — including network theory, computer
science, quantum information and biochemistry. In particular, the application of quantum
walks in graph isomorphism testing has been especially noteworthy. Various quantum
walk-based algorithms have been developed, aiming to distinguish non-isomorphic graphs
with polynomial scaling, within both the discrete-time quantum walk and continuous-
time quantum walk frameworks. Whilst both the single-particle DTQW and CTQW
have failed to distinguish non-isomorphic strongly regular graph families (prompting the
move to multi-particle GI algorithms), the single-particle DTQW has been successfully
modified by the introduction of a phase factor, vastly increasing its distinguishing power.
In this chapter, we prove that an analogous phase modification to the single particle
CTQW does not have the same distinguishing power as its discrete-time counterpart — in
particular, it cannot distinguish strongly regular graphs with the same family parameters
efficiently.

6.1 Introduction

Graph isomorphism (GI) is an important open problem in mathematics and computer
science, with potential applications in a wide variety of fields ranging from network theory
to biochemistry — for example, efficient GI algorithms may provide the key to distinguish-
ing molecular representations in cheminformatics [66, 126]. However, the existence of a
polynomial-time algorithm for determining graph isomorphism remains a long-standing
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unsolved question in computational complexity theory, with the current fastest algorithm
scaling as 2O(

√
n logn) [127]. In fact, the complexity algorithm scaling of the graph isomor-

phism problem has yet to be definitively ascertained, though it is conjectured to exist in
P and not NP-complete [65].

Over the last several years, there have been various attempts to construct a quantum walk-
based algorithm to distinguish non-isomorphic graphs, by utilizing the time-evolution of
the quantum walk to calculate ‘graph invariants’ or ‘graph certificates’ which, ideally,
produce identical results for two graphs if and only if they are isomorphic. In particular,
algorithms have been proposed based on the DTQW [15, 17, 67–69] as well as the CTQW
[5, 6, 17, 70] — differing mainly in the number of particles involved, the presence of
interactions, localised perturbations, and construction of the GI certificate.

In order to test the distinguishing ability of proposed quantum GI algorithms, a com-
mon benchmark has become their capacity to discern isomorphic strongly regular graphs
(SRGs) with the same graph parameters. As a consequence, this has allowed analytic ex-
amination of proposed quantum walk graph certificates on SRGs; quoting Rudinger et al.
[17],

If a particular certificate will always fail to distinguish two non-isomorphic
SRGs, it is because all elements of a certificate, as well as their multiplicities,
are functions of SRG family parameters.

It has subsequently been proven using this approach that conventional single-particle quan-
tum walk algorithms, both discrete-time and continuous-time, cannot distinguish arbitrary
non-isomorphic SRGs. To alleviate this issue, Douglas and Wang [15] developed a per-
turbed one-particle DTQW-based GI algorithm that was able to successfully distinguish
non-isomorphic pairs of strongly regular graphs (SRGs) with up to 64 vertices. Multipar-
ticle DTQW algorithms were further explored by Berry and Wang [67]; non-interacting
and interacting two-particle DTQWs were used to successfully distinguish specific SRG
families. Although lacking the ‘coin flip’ operation found in DTQWs – and thus result-
ing in a system with reduced degrees of freedom – two-particle interacting CTQW GI
alorithms have been proposed that successfully distinguish arbitrary SRGs. Further, it
has been proven by Gamble et al. [5] that a non-interacting CTQW cannot distinguish a
pair of SRGs with the same family parameters, contrary to the discrete case.

Whilst the single-particle CTQW was discarded by Gamble et al. [5] and Shiau et al. [128]
as it was unable to distinguish families of non-isomorphic SRGs with the same family pa-
rameters, it is natural to ask: would a perturbed one-particle CTQW, modified analogously
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to the process used by Douglas and Wang [15] for the DTQW, result in a similar improve-
ment in distinguishing power? This has not previously been explored in the literature,
due in part to ambiguities in defining the perturbed CTQW system. In this chapter, we
consider several possible methods of modifying the single-particle CTQW, and prove that
none of those considered is as powerful as the phase added DTQW described in Douglas
and Wang [15]. Furthermore, we also provide an explanation for the cause of the increased
distinguishing power of DTQWs.

This chapter is structured as follows. In Sec. 6.2, we introduce a symmetric commutative
matrix algebra known as the Bose-Mesner algebra, and apply it to the class of strongly
regular graphs. We then briefly describe previously proposed quantum walk-based graph
isomorphism algorithms, particularly the CTQW constructed algorithms of Gamble et al.
[5], and the DTQW algorithms of Douglas and Wang [15] and Berry et al. [16], in Sec. 6.3.
Next, in Sec. 6.4, we modify the single particle CTQW graph isomorphism algorithm
to include vertex-dependent phase, and prove using the Bose-Mesner algebra that such
an algorithm cannot distinguish two isomorphic graphs within the same strongly regular
graph family. Finally, in Sec. 6.5, we detail the multi-particle interacting CTQW GI
algorithm available in the pyCTQW software package, which utilizes distributed memory
and high performance computing for efficient numerical simulation.

6.2 Graphs and matrix algebras

A cellular algebra is the algebra formed from the complex span of non-negative integer
matrices with elements 0 or 1, such that the resulting algebra is closed under the Schur
product (also known as Hadamard multiplication) and the Hermitian operator, and con-
tains the matrix of all one’s J [129]. Further, cellular algebras which contain the identity
matrix are known as coherent algebras [130]. As a result, cellular algebras are an important
tool for analysing and graph structures and networks. In this section, we will introduce
a commutative coherent algebra known as the Bose-Mesner algebra, and define it for the
case of strongly regular graphs. This will allow us to fully explore the distinguishing power
of CTQWs over strongly regular graphs.

6.2.1 Bose-Mesner algebra

To produce the Bose-Mesner algebra of a graph, an associative and commutative matrix
algebra, we first must find a way to generate a linearly dependent spanning set of symmetric
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matrices that represent the graph structure, whilst remaining closed under commutative
multiplication. To do so, we harness the algebraic combinatorics theory of association
schemes [131].

Definition 6.1 (Graph association scheme). A graph association scheme for graph
G(V,E), |V | = N , is a set of symmetric N ×N adjacency matrices A = {A0, A1, . . . , AD}
such that

(i) A0 = I,

(ii)
D∑

ℓ=0

Aℓ = J , and

(iii) AiAj = AjAi ∈ span(A ).

Using this as a guideline, let’s attempt to define an association scheme of adjacency matri-
ces. Let G(V,E) be an undirected strongly connected vertex set with diameter D. We can
then define the so-called distance graphs Gℓ(Vℓ, Eℓ), in which any two vertices vi, vj ∈ Vℓ

are adjacent in Gℓ if and only if we have dist(vi, vj) = ℓ in graph G. We can extend
this analogy to the adjacency matrix — the adjacency matrices Aℓ are referred to as the
distance matrices Aℓ of G.

Definition 6.2 (Distance matrices). For an undirected graph G(V,E) with diameter D,
the distance matrices are given by

(Aℓ)ij =







1, dist(vi, vj) = ℓ

0, dist(vi, vj) ̸= ℓ,
ℓ = 0, 1, . . . ,D. (6.1)

As a result of this definition, it can be seen that A0 = I, the identity matrix, and A1 = A,
the adjacency graph of A. Furthermore, since the graph is strongly connected, there exists
a unique ℓ such that (Aℓ)ij = 1 for each i, j ∈ [0, N ], and as a result,

D∑

ℓ=1

Aℓ = J. (6.2)

This implies that the matrices Aℓ are linear independent. If we combine the properties
Eq. 6.2, the existence of the identity A0 = I, then we may be tempted to call the set
{A0,A1, . . . ,AD} a graph association scheme. However, as the elements are not guaranteed
to commute under matrix multiplication, this is not the case.

In order to ensure that the set of distance matrices of a strongly connected graph form an
association scheme, we must restrict ourselves to a subset of graphs known as distance-
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regular.

Definition 6.3 (Distance-regular graph). Let G(V,E) be an undirected graph with vertex
set V = {v1, v2, . . . , vN} and edge set E = {e1, e2, . . . , eM}, and corresponding adjacency
matrix A. The diameter of a graph G(V,E) is distance-regular if, for any two vertices
vx, vy ∈ V , the number of vertices at distance i from vx (|{vℓ ∈ V : dist(vx, vℓ) = x}|) and
the number of vertices at distance j from vy (|{vℓ ∈ V : dist(vy, vℓ) = y}|) depends only
upon i, j, and dist(vi, vj).

The quantity is termed the intersection number of a distance-regular graph, and, as per
the definition above, is defined solely in terms of the variables i, j, and ℓ.

Definition 6.4 (Intersection number). Let G(V,E) be an undirected graph with diameter
D. For all vx, vy ∈ V such that dist(vx, vy) = ℓ, the intersection number is defined by

p
(ℓ)
ij = |{vz ∈ V : dist(vx, vz) = i, dist(vy, vz) = j}|, i, j = 0, 1, . . . ,D. (6.3)

The intersection number is strictly positive (p(ℓ)ij > 0 for all i, j, ℓ ∈ [0,D]) and symmetric
(p(ℓ)ij = p

(ℓ)
ji ).

For this class of graphs, the distance matrices do indeed commute under matrix multipli-
cation, AiAj = AjAi; in fact, this matrix multiplication can be written out in the distance
matrix basis by the relation [132]

AiAj =
D∑

k=0

p
(ℓ)
ij Aℓ. (6.4)

Thus, we come to the following conclusion.

Theorem 6.5. The set of distance matrices A = {A0, A1, . . . , AD} for a distance-regular
graph G(V,E) of diameter D forms a graph association scheme.

Now that we have a valid graph association scheme for distance-regular graphs, we may
construct the Bose-Mesner matrix algebra:

Definition 6.6 (Bose-Mesner algebra). The Bose-Mesner algebra for a graph association
scheme A = {A0, A1, . . . , AD} is the D + 1-dimensional matrix algebra generated by the
complex span(A ). Matrix multiplication, as well as Schur multiplication (element-by-
element multiplication (A ◦B)ij = AijBij) are commutative.

One may note that the association scheme basis of the Bose-Mesner algebra is comprised
of commuting symmetric matrices — as such, it is a well-known property of linear algebra
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that they must be simultaneously diagonalizable by a unitary matrix, i.e. there exists
some unitary matrix S such that STAℓS is a diagonal matrix. As the basis matrices
are also normal (AℓA†

ℓ = A†
ℓAℓ) It follows that there exists an alternative basis for the

Bose-Mesner algebra consisting of minimal orthogonal idempotent matrices [131, 133]. We
use this knowledge to define a subalgebra of the Bose-Mesner algebra, known as the dual
Bose-Mesner algebra [132, 134, 135].

Definition 6.7 (Dual Bose-Mesner algebra). The dual Bose-Mesner algebra with re-
spect to vertex vr for distance-regular graph G(V,E) with diameter D, is given by
F (r) = span({F (r)

0 , F
(r)
2 , . . . , F

(r)
D }), where F (r)

ℓ is a diagonal orthogonal idempotent ma-
trix (F (r)

i F
(r)
j = δijF

(r)
i ) defined by

(

F
(r)
ℓ

)

ii
=







1, dist(vr, i) = ℓ

0, dist(vr, i) ̸= ℓ.
(6.5)

The basis satisfies the property
∑D

ℓ=0 F
(r)
ℓ = I.

6.2.2 Strongly Regular Graphs

Let us now consider a subset of distance-regular graphs known as the strongly regular
graphs.

Definition 6.8 (Strongly regular graph). Let G(V,E) be a k-degree regular graph com-
prising of N vertices and adjacency matrix A that is neither a complete graph (A ̸= J−I)
nor null graph (adjacency matrix A ̸= I). G is then said to be strongly regular with
parameters srg(N, k, λ, µ) if

• every pair of adjacent vertices have exactly λ common neighbours,

• every pair of non-adjacent vertices have exactly µ common neighbours.

From hereon, we will use the notation SRG(N, k, λ, µ) to denote an arbitrary strongly
regular graph with aforementioned parameters. As an aside, choose a vertex vi in
SRG(N, k, λ, µ); counting the number of edges incident from vertices adjacent to vi to
vertices non-adjacent to vi, we find

|{(vx, vy) : vx ∼ vy, vi ∼ vx, vi ≁ vy}| = k(k − λ− 1). (6.6)



92 Chapter 6 CTQW and graph isomorphism

Repeating this analysis, but counting in the other direction, it is easy to see that

|{(vy, vx) : vy ∼ vx, vi ∼ vx, vi ≁ vy}| = µ(n− k − 1). (6.7)

As all edges are undirected, it follows that

k(k − λ− 1) = µ(n− k − 1), (6.8)

and thus the parameters (N, k, λ, µ) are not independent.

Note that the SRG satisfies the criteria for distance-regularity. Further, the path between
any two non-adjacent vertices has length 2, with the path traversing the two via any one
of the µ common neighbours. This leads us to the following corollary:

Corollary 6.9. A distance-regular graph G(V,E) with diameter D = 2 is strongly regular.

Thus, the SRG can be described by intersection numbers as follows.

Theorem 6.10. For a strongly regular graph SRG(N, k, λ, µ), the intersection numbers
are given by

p
(0)
ij =







1 0 0

0 k 0

0 0 N − k − 1







ij

, p
(1)
ij =







0 1 0

1 λ k − λ− 1

0 k − λ− 1 N − 2k + λ







ij

,

p
(2)
ij =







0 0 1

0 µ k − µ

1 k − µ N − 2k + µ− 2







ij

. (6.9)

Let’s consider walks of length 2 in a strongly regular graph more closely. Recall from
Eq. 2.5 that (A2)ij gives us the number of walks of length 2 emanating between vertices
vi and vj . In the case of the SRG(N, k, λ, µ), it is can be seen that

(A2)ij =







k, i = j

λ, i ̸= j, vi ∼ vj

µ, i ̸= j, vi ≁ vj .

(6.10)

It is easy to verify that this result can be written as the following matrix equation,

A2 = kI + λA+ µ(J − I −A), (6.11)
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and comparing this with Eq. 6.4, we see that for the SRG, we have intersection numbers
p
(0)
11 = k, p(1)11 = λ, and p(2)11 = µ, as would be expected. Thus, we see that the Bose-Mesner

algebra of an SRG is given by the spanning set span({A0,A1,A2}) where

A0 = I, (6.12)

A1 = A, (6.13)

A2 = J − I −A. (6.14)

Likewise, the dual Bose-Mesner algebra with respect to reference vertex vr has the basis
elements F (r)

0 , F (r)
1 , and F

(r)
2 , where

(F (r)
ℓ )ii = (Aℓ)ri. (6.15)

6.3 Quantum walk-based graph isomorphism algorithms

In order to utilize the quantum walk to determine graph isomorphism, most approaches
attempt to make use of the unitary time-evolution of the walker to construct a graph
invariant — that is, a function f over the graphs G and H such that f(G) = f(H) if and
only if the graphs G and H are isomorphic. Of course, if any such function were proven
to exist, this would subsequently solve the graph isomorphism problem. In the study
of quantum walk-based graph isomorphism algorithms, the proposed graph invariants
are usually denoted graph certificates, keeping with the terminology used in the field of
computational complexity.

Due to the unknown vertex-labelling permutation relation between two isomorphic graphs,
the graph certificate is generally constructed by performing a frequency measurement on
the resulting probability distribution of the evolved quantum walk — i.e. producing an
ordered list. The various graph certificates proposed have been examined by Rudinger
et al. [17], who notes that they form an integral part of the GI algorithm, and must be
considered alongside the quantum walk propagation to form the algorithm as a whole. As
a result, the choice of graph certificate is an important factor when designing or comparing
GI algorithms. Commonly used graph certificates for unperturbed quantum walks include
(but are not limited to):

1. The sorted list of elements of the unitary time-evolution operator U(t), after prop-
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agating the walker for time t:

sort ({⟨i|U(t)|j⟩ : i, j ∈ [1, N ]}) . (6.16)

This certificate is generally employed with CTQWs, and can be easily extended to
multiple walkers [5, 6].

2. The sorted list of probabilities of finding a discrete-time quantum walker at each
vertex vi after propagating for time t from every possible coin state:

sort











di∑

j=1

| ⟨vi, cj |U(t)|vk, cℓ⟩ |2 : i, k ∈ [1, N ], ℓ ∈ [0, dk]









 . (6.17)

Whilst generally applied to DTQWs, it can also be extended to CTQWs, where
|vi, cj⟩ now corresponds to the bosonic (symmetrized) or fermionic (antisymmetrized)
state of locating particle 1 and vertex vi and particle 2 at vertex cj [17].

3. The sorted list of probabilities of finding two non-interacting discrete-time quantum
walkers at each pair of vertices vi and vi′ , summed over all time-steps 0 ≤ t ≤ 2N ,
and propagated from every possible bosonic edge-state:

sort











di∑

j=1

2N∑

t=0

∣
∣
∣

⟨

v
(1)
i , c

(1)
j , v

(2)
i′ , c

(2)
j′

∣
∣
∣U(t)

∣
∣
∣β

(+)
kℓ

⟩∣
∣
∣

2
: (vk, vℓ) ∈ E









 . (6.18)

Here,
∣
∣
∣β

(+)
kl

⟩

= 1√
2

(∣
∣
∣v

(1)
k , c

(1)
ℓ , v

(2)
ℓ , c

(2)
k

⟩

+
∣
∣
∣v

(1)
ℓ , c

(1)
k , v

(2)
k , c

(2)
ℓ

⟩)

represents the
bosonic edge state where particles 1 and 2 are delocalised over edge (vk, vℓ) ∈ E in
a symmetric fashion; this is chosen so as to remain independent of vertex labelling,
yet reduce the required number of certificate elements to compute [67].

These approaches are all aimed at solving the graph isomorphism problem in polynomial
time by exploiting massive quantum parallelism — by flattening the matrix of transition
amplitudes and discarding detailed structural information, they are therefore efficient (i.e.
computable in polynomial time). Unfortunately, it has been shown that the three forms of
the graph certificate above are not universal for non-interacting CTQWs or single particle
DTQWs — although their distinguishing power can be increased by including interactions
in the case of the CTQW [5, 6] or by increasing the number of non-interacting DTQWs
[67].

In order to try and reduce the additional computational resources required to implement
multi-particle quantum walk GI algorithms, other approaches have been examined in the
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literature. For example, Emms et al. [68] successfully distinguish certain pairs of SRGs by
examining the cospectrality of the unitary time-evolution operators. Alternatively, using
a single-particle DTQW with a vertex dependent phase factor, Douglas and Wang [15]
compared the resulting probabilities at timestep t = N2, and successfully distinguished
certain pairs of SRGs with the same family parameters. It is natural to ask whether the
continuous counterpart of this phase addition could be successfully used for GI testing.
In the following section, we will introduce several analogous vertex-dependent phase mod-
ifications to the single-particle CTQW, and show that the corresponding GI certificates
(unlike the DTQW case) do not afford additional distinguishing power to the single-particle
CTQW1.

6.4 Single particle CTQW with phase

In considering the possibilities of modifying the DTQW to increase distinguishing power
without extending the system to two particles, Douglas and Wang [15] successfully mod-
ified the single particle DTQW by adding a phase, distinguishing several non-isomorphic
SRGs with the same family parameters. In their algorithm, a vertex is selected as the
reference vertex, and a local phase is applied for transitions to all adjacent vertices. This
is achieved by selectively modifying the shifting operator S; i.e. when acting on the refer-
ence vertex vr, a phase factor is introduced S |vr, cj⟩ = eiθ |vj , cr⟩. The graph certificate
is then taken as the probabilities at all pairs of vertices (vi, vj) of the graph, which makes
it uniform up to a vertex permutation.

We consider several possible algorithms for CTQW phase additions, restricting ourselves
to those which are uniform for permutations of the vertices. To construct the graph
certificate, we then utilize transition amplitudes between all pairs of vertices (Eq. 6.16).
It should be noted that this is equivalent to the DTQW graph certificate construction as
used by Douglas and Wang [15] — naïvely assuming this follows through in continuous
time, we would conclude that whenever the method used by Douglas and Wang [15] can
distinguish two vertex transitive graphs (for example the first few distinct pairs of SRGs
within the same family), so should the method of CTQW phase additions. Here, we use

1Of course, if we were simply concerned with maximising the quantum walks distinguishing power,
modifying the algorithm to account for the detailed structure of ⟨i|U(t)|j⟩ would most likely be the most
advantageous approach — and may even be able to distinguish non-isomorphic graphs that produce CTQW
time-evolutions with the same list of elements. However, to our knowledge, there does not exist any
proposed CTQW GI algorithm that makes use of the structural information in an efficient manner, due
to the unknown vertex-labelling permutation relation between two graphs. One could always test all
possible permutations of rows and columns between the two ⟨i|U(t)|j⟩ matrices, but this would require
factorial/exponential time and thus offers no advantage over classical algorithms.
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the Bose-Mesner algebra of SRGs to show that the elements of the graph certificate, as
well as their multiplicities, are simply functions of the SRG family parameters, and thus
this is not the case.

Before we begin, a quick note regarding the Hamiltonian choice for our CTQW GI algo-
rithm. As previously noted in Sec. 3.2.2, amongst the literature, there are several com-
peting definitions of the Hamiltonian, the most popular including the adjacency matrix
or the graph Laplacian. However, in the case of degree-regular graphs the time evolution
operator using the Laplacian, e−iLt, is simply proportional to eiAt up to a global phase fac-
tor. Therefore, as we are working with SRGs, for simplicity and without loss of generality
we will select H = A.

6.4.1 No phase

We will begin by proving, using the Bose-Mesner algebra, that two non-isomorphic SRGs
with the same family parameters cannot be distinguished, before arriving at the explicit
continuous counterpart of the phase added DTQW. Finally we consider general phase
additions, and compare and contrast the two methods.

Lemma 6.11. The ordered transition amplitude lists of a single-particle CTQW are iden-
tical for two non-isomorphic SRGs with the same family parameters (N, k, λ, µ).

Proof. Recall that the Hamiltonian is expressible as H = A. Since the basis elements of
the Bose-Mesner algebra obey the relations

AiAj =
2∑

ℓ=0

p
(ℓ)
ij Aℓ, (6.19)

where A0 = I, A1 = A and A2 = J − I −A, it can be seen that

An = An
1 =

2∑

ℓ1=0

· · ·
2∑

ℓn−1=0

p
(ℓ1)
11 p

(ℓ2)
1l1

· · · p(ℓn−1)
1ln−2

Aℓn−1 , (6.20)

i.e. powers of the adjacency matrix can be written as a linear combination of the Bose-
Mesner basis, a consequence of the Bose-Mesner algebra being closed under matrix multi-
plication. Thus, we have U(t) ∈ A , and the CTQW unitary time evolution operator can
be written as

U(t) = e−iAt =

∞∑

n=0

1

n!
(−it)nAn = αA0 + βA1 + γA2, (6.21)
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where α, β and γ are time dependent and depend only upon the family parameters
(N, k, λ, µ) of the SRG. The graph certificate is thus given by {⟨i|U(t)|j⟩ : i, j ∈ [0, N ]}, i.e.
the list of elements of the matrix U(t). We can now calculate the diagonal and off-diagonal
elements of U :

• Diagonal elements (i.e. i = j): as (A1)jj = (A2)jj = 0 and (A0)jj = 1 ∀j, we
therefore have N diagonal elements equal to α.

• Off-diagonal elements (i ̸= j): we have (A0)ij = 0 ∀i, j, whilst A1 and A2 contains
a mixture of zeros and ones. Since the SRG is k-degree regular, the adjacency
matrix will contain k non-zero elements for each N vertex. Thus, there will be kN
off-diagonal elements equal to β, and N2 − N − kN off-diagonal elements equal to
γ.

Hence, {⟨i|U(t)|j⟩ : i, j ∈ [0, N ]} contains N elements of α, kN elements of β, and N2 −
N − kN elements of γ. As α, β and γ depend only on (N, k, λ, µ), two non-isomorphic
SRGs with identical family parameters will produce the same time evolution and therefore
GI certificate. Hence, two SRGs with same family parameters are not distinguished the
CTQW.

As expected, the Bose-Mesner approach provides the same conclusion as previously shown
by Gamble et al. [5].

6.4.2 SV-phase addition

The first possible option for phase addition includes adding a local phase factor at a
selected vertex. We shall call this SV (selected vertex) phase addition. The Hamiltonian
in this case is simply the adjacency matrix with phase added along the diagonal at a
single vertex vr (the reference vertex); this can be expressed as H = A + θF0, where F0

is the first element in the dual Bose-Mesner basis (we have dropped the superscript (r)

for clarity). The resulting time evolution operator is thus USV (t, θ) = e−i(A+θF0)t. Note
that it follows that if the two graphs to be tested are vertex transitive, comparing the
transition amplitudes at the vertices is sufficient to measure the strength of the SV-phase
added CTQW.

Considering pairs of SRGs with same family parameters, the Shrikhande graph and the
(4,4)-lattice graph provide the non-isomorphic pair of SRG(N, k, λ, µ) with minimum N .
For these graphs, the family parameters are given by N = 16, k = 6, λ = µ = 2, and both
these graphs are vertex transitive. Therefore, the transition amplitudes will provide an
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unbiased graph certificate. The effect of SV-phase added CTQW on this pair is described
in Lem. 6.12.

Lemma 6.12. The ordered transition amplitude lists of the SV-phase added CTQW are
identical for two non-isomorphic SRGs with parameters (16,6,2,2).

Proof. Recall the Hamiltonian for SV-phase added CTQW is given by A+ θF0. Consider
the terms in the expansion of the SV time evolution operator:

USV =

∞∑

n=0

1

n!
(−it)n(A+ θF0)

n =

[

I − it(A1 + θF0) +
(−it)2
2!

(A1 + θF0)
2 + . . .

]

. (6.22)

Let us use mathematical induction on n to prove the following result,

(A+ θF0)
n =

2∑

j=0

α
(n)
j Aj +

2∑

j=0

β
(n)
j Fj +

2∑

j=0

2∑

k=0

γ
(n)
j,k FjAk

+ χ(n)A1F0 + ϵ(n)A2F0 + ζ(n)A1F0A1 + η(n)A2F0A1, (6.23)

where α(n)
j , β(n)j , γ(n)j,k , χ(n), ϵ(n) and ζ(n) are coefficients depending only upon the family

parameters of the SRG. By requiring α(1)
1 = 1, β(1)0 = θ, and γ

(1)
j,k = χ(1) = ϵ(1) = ζ(1) =

η(1) = 0, it can be seen that for the case n = 1, Eq. 6.23 reduces to

A+ θF0 = A1 + θF0. (6.24)

Thus Eq. 6.23 holds true for n=1.

Now, assuming it is true for n, consider the case n + 1. The terms of the expansion
of (A + θF0)

n+1 are derived by right-multiplying each term in Eq. 6.23 by A1 and F0

respectively. Since {A0,A1,A2} form the basis of the Bose-Mesner algebra of SRGs, we
can make use of the multiplication closure relation AiAj =

∑2
ℓ=0 p

(ℓ)
ij Aℓ. Thus, right-

multiplying the first term by A1, we get




2∑

j=0

α
(n)
j Aj



A1 =

2∑

j=0

α
(n+1)
j Aj , (6.25)

where α(n+1)
j denotes a new coefficient signifying its continued contribution to the first

term in the expansion Eq. 6.23. Similarly, right-multiplying the second and third terms of



6.4 Single particle CTQW with phase 99

the expansion by A1, we find that they contribute to the FjAk double summation term:




2∑

j=0

β
(n)
j Fj



A1 =

2∑

j=0

γ(n+1)
aj,1 FjA1, (6.26a)





2∑

j=0

2∑

k=0

γ
(n)
j FjAk



A1 =
2∑

j=0

2∑

k=0

γ
(n+1)
bj,k

FjAk. (6.26b)

where γ(n+1)
aj,k + γ

(n+1)
bj,k

+ γ
(n+1)
cj,k = γ

(n+1)
j,k (γcj,k , the final contribution to γ

(n+1)
j,k , will be

defined later). Similarly, after right-multiplication by A1 the fourth and fifth terms can
now be written in terms of the sixth and seventh terms of Eq. 6.23, respectively:

(

χ(n)A1F0

)

A1 = ζ(n+1)A1F0A1, (6.27a)
(

ϵ(n)A2F0

)

A1 = η(n+1)A2F0A1. (6.27b)

For the case SRG(16,6,2,2), it can be shown that

A1F0A1
2 = 2 (F1A1 + F1A2 + 2A1F0 + F1) , (6.28a)

A2F0A1
2 = 2 (F2A1 + F2A2 + 2A2F0 + F2) . (6.28b)

Thus, multiplying the sixth term of Eq. 6.23 by A1 in the case of SRG(16,6,2,2), and
expanding in terms of the basis elements,

(ζnA1F0A1)A1 = β(n+1)
a1 F1 + γ(n+1)

c1,1 F1A1 + γ(n+1)
c1,2 F1A2 + 2χ(n+1)

a A1F0, (6.29a)

(ζnA2F0A1)A1 = β(n+1)
a2 F2 + γ(n+1)

c2,1 F2A1 + γ(n+1)
c2,2 F2A2 + 2ϵ(n+1)

a A2F0 (6.29b)

We now return to the general case of an arbitrary SRG, and repeat the previous procedure
— this time right-multiplying the terms in Eq. 6.23 by F1:





2∑

j=0

α
(n)
j Aj



F0 = β(n+1)
a0 F0 + χ

(n+1)
b A1F0 + ϵ

(n+1)
b A2F0. (6.30)

Now we make use of the property FjFk = δjkFj of the dual Bose-Mesner algebra at the
reference vertex vr, and establish the following:





2∑

j=0

β
(n)
j Fj



F0 = β
(n+1)
b0

F0. (6.31)

Considering the three-fold products of the form FjAkFl, we can now make use of the fact
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that the uvth entry of this three-fold product is expressible as

(FjAkFl)uv =







1, if vu ∈ Gj(x), vv ∈ Gl(x), and vu ∈ Gk(v)

0, otherwise,
(6.32)

(where Gj(x) denotes the set of vertices in the graph located at a distance j from the
vertex x [136, 137]) to deduce the following:

F0A1F0 = F2A1F0 = F0A2F0 = F1A2F0 = O. (6.33)

Further, since

(AjFk)uv =







1, dist(vu, vv) = jand dist(vv, vx) = k

0, otherwise
(6.34)

we deduce that

F1A1F0 = A1F0, (6.35a)

F2A2F0 = A2F0. (6.35b)

Recall that A0 = I; it follows that

FjA0F0 = FjF0 =







F0, j = 0

O, j = 1, 2.
(6.36)

Using this fact with Eq. 6.33 and Eq. 6.35, we establish the following:




2∑

j=0

2∑

k=0

γ
(n)
j,k FjAk



F0 = βc0
(n+1)F0 + χ(n+1)

c A1F0 + ϵ(n+1)
c A2F0. (6.37)

Since FjFk = δjkFj , the terms A1F0 and A2F0 undergo only a change of coefficients when
right-multiplied by F0. Finally, in the specific case of SRG(16,6,2,2), it can be shown that

A1F0A1F0 = A2F0A1F0 = O. (6.38)

Now, using Eq. 6.25–6.27, 6.29–6.31, and 6.37–6.38, we establish that

(A+ θF0)
n+1 =

2∑

j=0

α
(n+1)
j Aj +

2∑

j=0

β
(n+1)
j Fj +

2∑

j=0

2∑

k=0

γ
(n+1)
j,k FjAk
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+ χ(n+1)A1F0 + ϵ(n+1)A2F0 + ζ(n+1)A1F0A1 + η(n+1)A2F0A1. (6.39)

Therefore, by the principle of mathematical induction, we establish Eq. 6.23. Next, we
consider the term A2F0A1; this three-fold product is expressible as a combination of
singeltons, two-fold products and the three-fold product A1F0A1:

A2F0A1 = F1 +A1F1 +A2F2 − F0A1 −A1F0A1. (6.40)

Observe that the singletons can be expressed as two-fold products, as A0 = F0+F1+F2 =

I. Thus, it follows that (A+ θF0)
n is expressible as a linear combination of two-fold

products and the single three-fold product A1F0A1; and therefore we express (−it)n(A+

θF0)
n as follows;

(−it)n(A+ θF0)
n =

2∑

j=0

2∑

k=0

(

α
(n)
j,kAjFk + β

(n)
j,k FjAk + γ(n)A1F0A1

)

. (6.41)

Hence, summing over all n, the SV time evolution operator is expressible as

USV (t, θ) = −
2∑

j=0

2∑

k=0

(αj,kAjFk + βj,kFjAk + γA1F0A1) . (6.42)

where αj,k, βj,k and γ depend on the family parameters of the SRG, and implicitly on
time t and phase θ.

Now we calculate the contribution of each term in this summation. Since each matrix is
comprised solely of ones and zeros, an entry of the matrix U is a summation of αj,k, βj,k,
and γ. The contribution of each element can be determined both combinatorially and
computationally. Tab. 6.1 provides a list of all possible elements in the USV expansion of
graphs in the SRG(16,6,2,2) family. As expected, since αj,k, βj,k and γ depend only on
(N, k, λ, µ), each element in the table occurs an equal number of times in the summation
for both USV and ÚSV . Thus it follows that the two SRGs with parameters (16,6,2,2) are
not distinguishable by the SV-phase added CTQW.

6.4.3 AV-phase addition

In this section, a phase θ will be added to all vertices adjacent to a selected reference vertex;
let us refer to this method as the adjacent vertices (AV) phase added CTQW. Note that
this is the continuous analogue of the perturbed DTQW GI algorithm by Douglas and
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Element Occurrences in USV Occurrences in ÚSV

α00 + β00 1 1
α11 + β01 6 6
α22 + β02 9 9
α10 + β11 6 6
α12 + β11 18 18
α22 + β12 36 36
α02 + β20 9 9
α11 + β21 18 18
α12 + β21 36 36
α20 + β22 9 9
α21 + β22 36 36
α22 + β22 36 36

α01 + β10 + γ 6 6
α11 + β11 + γ 12 12
α21 + β12 + γ 18 18

Table 6.1: Number of occurrences of all possible coefficients in the expansion of the selected
vertex (SV) CTQW unitary operator Eq. 6.42 of two non-isomorphic graphs G and Ǵ in
the SRG(16,6,2,2) family.

Wang [15], which successfully distinguished all non-isomorphic members of the same SRG
family they tested.

Mathematically, the AV-phase added CTQW can be achieved by replacing the ones in the
vrth row and column of the Hamiltonian by the phase θ. Consequently, the Hamiltonian
for the AV-phase added CTQW is expressible as

(HAV )uv =







θAuv if u = vr or v = vr

Auv otherwise.
(6.43)

An alternative form of expressing the Hamiltonian is through the use of the elements of the
Bose-Mesner algebra and its dual at the reference vertex as discussed in the previous sec-
tion. This allows us to express the AV-phase added Hamiltonian via the expansion

HAV = A1 + θ (F0A1 +A1F0) . (6.44)

Since the two graphs are vertex transitive, we again take the transition amplitudes over
all vertices as the graph certificate. We then prove that the AV-phase added CTQW is
not as powerful as its discrete time equivalent, the phase-added DTQW used by Douglas
and Wang [15]. Lem. 6.13 gives the desired result.
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Lemma 6.13. The ordered transition amplitude lists of the AV-phase added CTQW are
identical for two non-isomorphic SRGs with parameters (16,6,2,2).

Proof. Recall that the AV-Hamiltonian is expressible as

UAV (t, θ) = e−i[A1+θ(F0A1+A1F0)]t, (6.45)

therefore,

UAV (t, θ) = I − it [A1 + θ(F0A1 +A1F0)] +
(−it)2
2!

[A1 + θ(F0A1 +A1F0)]
2 + . . . (6.46)

Similar to the SV-phase added CTQW, all the higher powers cancel out, reducing to a
linear combination of singletons, two-fold products and a single three-fold product again;

UAV (t, θ) =
2∑

j,k=0

(

α̂j,kAiFj + β̂j,kFiAj + γ̂A1F0A1

)

. (6.47)

where, as before, α̂j,k, β̂j,k and γ̂ depend on the family parameters of the SRG, and
implicitly on time t and phase θ. Therefore, following the same argument as detailed in
the proof of Lem. 6.12, the set of transition amplitudes and thus the graph certificates for
two non-isomorphic graphs within SRG(16,6,2,2) are identical.

6.5 Multi-particle CTQW with interactions

Whilst we have proved that a single-particle perturbed CTQW cannot distinguish SRGs in
the same family (augmenting the existing result for non-interacting multi-particle CTQWs
[5]), it is currently unknown whether multi-particle CTQWs with interactions afford the
same distinguishing power as DTQWs. Although not analyzed analytically nor numerically
here, it is worth noting that, along with continuous-time quantum walking simulations, the
software package pyCTQW detailed in chapter 4 also provides CTQW-based methods for
determining whether two graphs G and H are isomorphic. The GI implementation used in
pyCTQW is an adaptation of the two particle interacting DTQW algorithm of Berry et al.
[16] for continuous-time quantum walks, and extended to allow up to 3 interacting quantum
particles. Coupled with the parallel capability of pyCTQW, this functionality is designed
to allow a quick and efficient quantum-walk based method of determining whether two
graphs are indeed isomorphic. It should be noted that this algorithm cannot distinguish
arbitrary graphs when using only a single walker [133] or two interacting walkers [5],
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however the question of whether the three particle interacting CTQW can distinguish
arbitrary strongly regular graphs remains unanswered.

GI certificate and algorithm

The P -particle interacting CTQW GI certificate, used to distinguish non-isomorphic
graphs, is constructed by pyCTQW as described below:

1. Construct the P -particle CTQW Hamiltonian for the graph, with on-site interaction
term Γint(1).

2. (a) A bosonic edge state of the graph,
∣
∣
∣β+j,k

⟩

=
1√
2

(∣
∣
∣v

(1)
j

⟩

⊗ · · · ⊗
∣
∣
∣v

(P )
j

⟩

+
∣
∣
∣v

(1)
k

⟩

⊗ · · · ⊗
∣
∣
∣v

(P )
k

⟩)

, (6.48)

is chosen for some j, k ∈ {1, . . . , N} such that vj ∼ vk (they are adjacent of the
graph), and superscript (i) represents the particle number.

(b) Propagate the P -particle interacting CTQW starting from initial state |ψ(0)⟩ =
∣
∣
∣β+j,k

⟩

for time t = 2N . Store the resulting particle probabilities over the graph

nodes in the form of a list; Pj,k = {
∣
∣
∣

⟨

vℓ

∣
∣
∣Û(2N)

∣
∣
∣β+j,k

⟩∣
∣
∣

2
: vℓ ∈ V }.

(c) Repeat step (2) for all possible bosonic edge states
∣
∣
∣β+j,k

⟩

.

3. Create a frequency table containing all resulting unique values from
∪

j,k Pj,k, along
with the frequency at which each value occurs.

By comparing the graph certificates constructed for two arbitrary graphs, pyCTQW then
attempts to determine whether the two graphs are isomorphic.

6.5.1 GI framework and functions

Similarly to the CTQW simulations, the graph isomorphism class pyCTQW.MPI.GraphISO
is provided by the pyCTQW.MPI Python module, containing a variety of methods and
functions that can be used to analyse arbitrary graphs.

Before calling any of the GI functions, a graph isomorphism object must be created. For
example, creating a graph isomorphism object utilizing two interacting walkers propagated
via the Krylov method:

gi = pyCTQW.MPI.GraphISO(p=2,propagator='krylov ')
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Other parameters that may be passed when creating the GraphISO object include freqTol
(float), the tolerance to use when constructing the frequency table (the default value is
0.01; decreasing this value may result in rounding/precision errors causing fluctuations
in the GI certificate), as well as compareTol (float, default 1 × 10−9), the tolerance to
use when comparing two GI certificates – two certificates are considered isomorphic if
max |cert1 − cert2| < compareTol. Also note that if the Chebyshev propagator is used,
GraphISO.setEigSolver() may be used to set the various eigensolver properties; see
Tab. 4.3.

Once initialised, various MPI enabled GI methods are available; these are briefly described
in Tab. 6.2, and provide a means of efficiently calculating the GI certificate and testing
for isomorphism.

Table 6.2: Summary of parallel GI methods available in pyCTQW.MPI.GraphISO. For more
details and required arguments, please refer to the online documentation.

GIcert() Generate the GI certificate of a graph.

AllIsomorphicQ() Calculates whether each pair of graphs
(from a folder containing adjacency
matrices) are isomorphic, returning an
array R with Rij = 1 if graphs i and j
are isomorphic, and Rij = 0 otherwise.

isomorphicQ() Returns True if two graphs are isomor-
phic.

One drawback of the multi-particle interacting CTQW algorithm described here is the
large state space required for simulation; a 3-particle walk on a N vertex graph results in
the calculation of a N3 ×N3 matrix exponential.

6.6 Conclusion

It is well known that a standard single-particle DTQW or CTQW cannot distinguish a
pair of SRGs with the same family parameters, and furthermore it has been proven by
Gamble et al. [5] that a two particle CTQW with no interaction cannot distinguish such a
pair. In the case of the single particle DTQW, variations (such as the addition of phases
at a reference vertex) lead to an increased distinguishing power, providing single-particle
DTQWs with the ability to distinguish the aforementioned SRGs [15]. However, no analo-
gous modifications had been previously explored in the case of the single particle CTQW;
whilst considered unlikely, it was hitherto unknown for sure whether the continuous coun-
terpart of a single-particle DTQW could be modified to produce a similar increase in
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distinguishing ability.

In this study, it was proven that various phase-added CTQWs are unable to distinguish
non-isomorphic SRGs with family parameters (16,6,2,2), the smallest such set of family
parameters with a distinct disadvantage compared to the equivalent DTQW algorithm.
Note that although the two-fold and singleton Bose-Mesner products derived in Thm. 6.4.2
are specific to SRG(16,6,2,2), equivalent relations continue to hold in the case of general
SRG parameters – allowing the Hamiltonian to remain written as linear combinations of
k-fold products. Consequently, the time evolution will persist in producing identical graph
certificates for two non-isomorphic SRGs with same parameters; this inference has been
supported by numerical computation.

Instead of the phase additions discussed here, one may consider a general phase addition
to the single particle CTQW. The corresponding Hamiltonian of the system is expressible
as A ◦ P1 ◦ P2 ◦ · · · ◦ Pk, where A is the adjacency matrix, Pi is the i th phase matrix
(produced by adding θi − 1 to specified elements of J), and ◦ is the Schur product of
matrices (defined as (A ◦B)ij = AijBij). As long as this belongs to the algebra generated
by the basis elements of the Bose-Mesner algebra and the dual Bose-Mesner algebra at
the reference vertex vr, the general phase-modified CTQW will be of similar form to the
phase modifications described in this paper. This particular algebra of the spanning set
T (r) = {A0,A1, . . . ,AD, F

(r)
0 ,

(r)
1 , . . . , F

(r)
D } was first studied by Terwilliger [136], and is

therefore referred to as the Terwilliger algebra (denoted T
(r) = span(T (r))) of the graph

with respect to vr. It should be noted that in most studies the dual Bose-Mesner algebra is
analyzed in conjunction with the Bose-Mesner algebra, thus leading towards the Terwilliger
algebra [132, 134, 135]. Considering the general phase addition, whenever A◦P1◦P2◦· · ·◦Pk

does not belong to the Terwilliger algebra, the exponentiated Hamiltonians of SRGs with
same parameters are expected to be distinguishable. Therefore, for a pair of SRGs to be
distinguishable, the CTQW has to be phase-modified in a way that A ◦ P1 ◦ P2 ◦ · · · ◦ Pk

does not belong to the Terwilliger algebra.

In order to explain the reduced distinguishing power of the single-particle phase-added
CTQW compared to the discrete case, it is worth recalling (Sec. 3.2) that the two quantum
walks evolve in different spaces; even confined to a single-particle system, the unitary time-
evolution of the CTQW is simply a polynomial of the N×N adjacency matrix or Laplacian
of the graph, whilst the DTQW unitary time-evolution operator is a significantly more
complicated expression given by

U(t) = (S · C)t, (6.49)
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where the shifting operator S and the global coin operator C both act in the much larger
Hilbert space H = HP ⊗HC with dimension

∑

i di ×
∑

i di.

Thus, it can be seen that due to the extra degrees of freedom afforded by the coin space,
the DTQW evolves in a higher dimensional space compared to the CTQW, allowing it to
possess extra distinguishing power. Hence, it follows that a phase addition to the DTQW
Hamiltonian is not reducible, as is the case for the CTQW — the complexity contributed
to the structure of the DTQW Hamiltonian by the coin operation seemingly greatly affects
the time evolution of the discrete time walk.

Considering these results, we conclude that the DTQW is significantly more powerful than
CTQWs for distinguishing non-isomorphic graphs, even when taking into account phase
defects or modifications. Although the DTQW has its own limitations (as shown in [68]
and [102]), it intrinsically has extra distinguishing power compared to the CTQW, due to
its time evolution occurring in a larger dimensional Hilbert space.

However, it is worth noting that the increased distinguishing power of the DTQW comes at
the cost of a larger statespace, and thus physically implementing such algorithms requires
an increase in resources over the CTQW. In the next part of this thesis, we will consider
the use of CTQWs in analysing network centrality — an application in which the CTQW
produces results on par with the DTQW, but with significantly reduced experimental
overhead.



CHAPTER 7

Network centrality
This chapter is based on the paper by J. A. Izaac, X. Zhan, Z. Bian, K. Wang, J. Li, J. B. Wang, and
P. Xue, “Centrality measure based on continuous-time quantum walks and experimental realization”,
Physical Review A 95, 032318 (2017)., with minimal modification to match the formatting, notation,
and terminology of this thesis.

In the study of network structure and graph theory, centrality measures are an integral
tool, allowing determination and ranking of vertices deemed to be most important. Due to
the large number of physical systems that can be modelled as networks, this has seen wide
application across multiple disciplinary fields, including internet technology (ranking web
sites for search engines [40]), industry (power distribution [138]), business (organisational
management [72–74]), biology (grooming networks in macaques [75]), and biochemistry
(finding active sites in proteins [76]). In this chapter, we present a detailed introduction to
the theory of network centrality, and discuss some well-known random-walk based central-
ity measures. Furthermore, we review proposed quantum walk-based centrality measures,
and consider the continuous-time quantum walks’ aptness in providing a quantum ana-
logue of the classical eigenvector centrality.

7.1 Introduction

At its most basic, a graph centrality measure C satisfies the following properties:

• C : G(V,E) → R
|V | is a function or algorithm that accepts a graph as input, and

returns a real-valued vector over the set of vertices V .

• Higher values are provided to vertices deemed more ‘important’ or ‘central’ to the
graph structure.

However, with this general definition comes several caveats. Firstly, note that no meaning
has been attributed to vertices with low centrality values — this is deliberate, as noise
grows successively larger for vertices beyond the topmost ranked vertices [139]. As such,

108

http://dx.doi.org/10.1103/PhysRevA.95.032318


7.2 Classical centrality measures 109

centrality measures convey very little information regarding a majority of vertices; they
are solely for determining the most central nodes (ranking all the vertices is more the
domain of influence measures [140]). Secondly, what constitutes ‘importance’ is subjective
— it depends on the application or model to be analysed, and how information ‘flows’
throughout the network [71]. For example, information might flow predominantly though
paths (a sequence of unique edges and vertices — characteristic of bacterial and viral
infections [141]), trails (vertices can be revisited but each edge is only traversed once —
the flow of gossip in social networks [142]), and walks (where there is no restrictions on
edge and vertex sequences — for example bank note exchange in a population). Moreover,
this flow can occur through serial duplication (travelling via one edge at each timestep —
gift exchange) or parallel duplication (traversing multiple edges simultaneously — radio
broadcasting).

Thus, it is important to apply a centrality measure that models information flow corre-
sponding to the network under study; failure to do so may result in poor results, and
even the inability to correctly interpret the results [71]. To deal with this plethora of
scenarios, various classical centrality measures have been introduced: degree centrality,
eigenvector centrality, betweenness centrality, closeness centrality, and PageRank, among
others. Of these, degree, eigenvector and PageRank centrality are what is known as radial
parallel duplication measures, which measure network flow via walks emanating from or
terminating at particular nodes [143].

In this chapter, we being by discussing the various categories and classical centrality
measures in common use in Sec. 7.2. Secondly, in Sec. 7.3, we give an overview of recently
proposed quantum walk-based centrality measure, and make the case for introduction of
a CTQW-based quantum centrality measure.

7.2 Classical centrality measures

Here, we describe some well-known classical centrality measures, including degree central-
ity, eigenvector centrality, PageRank, and random walk centrality. It is pertinent to note
that, due to the walk-based approach of these aforementioned classical measures, many of
these centrality measures can be reformulated as classical random walks — we will make
a note of these relationships where applicable.
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7.2.1 Degree centrality

The degree centrality measure, calculated via the row-sums of the adjacency matrix,

C
(deg)
j =

deg(vj)
∑

k deg(vk)
=

∑

iAij
∑

i

∑

j Aij
, (7.1)

is based on walks of length one emanating from each vertex, and is useful in cases when
dealing with direct and immediate influence between nodes. Further, it can be seen that
the limiting probability distribution of classical random walks (Eq. 3.4) are proportional
to the node degree, allowing the degree centrality to be simulated via a Markovian pro-
cess.

7.2.2 Eigenvector centrality

Eigenvector centrality, on the other hand, is a useful measure when considering long-term
‘indirect’ influence between vertices; if a vertex with low degree is adjacent to a vertex
with a high number of connections, the first vertex will likewise have a high eigenvector
centrality measure [71]. The simplest centrality measure to be based on the spectral
properties of a graph, the eigenvector centrality is defined by C

(ev)
j = vj , where v is the

eigenvector of the adjacency matrix with maximum eigenvalue [144]. Also referred to as the
principal eigenvector, it is chosen to ensure (via the Perron-Frobenius theorem, Thm. 2.40,
assuming that A is irreducible) that the ranking C(ev)

j remains strictly positive.

It has been shown by Bonacich [145] that the eigenvector centrality is proportional to the
row-sums of matrix S, vj ∝

∑

i Sij , where

S = A+
1

λ
A2 +

1

λ2
A3 + · · · =

∞∑

n=1

λ1−nAn. (7.2)

Combining these two equations, we see that

vj ∝
∑

i

∞∑

n=1

λ1−n(An)ij , (7.3)

where λ is the maximum (principal) eigenvalue. As (An)ij represents the number of walks
of length n between vertices i and j, it can be seen that the eigenvector centrality performs
walks of all lengths, weighted inversely by length, from each node.
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7.2.3 PageRank

Unfortunately, the eigenvector centrality can provide ineffectual results when applied to
directed graphs, for a multitude of reasons. For example, vertices not in a strongly con-
nected component will be assigned an eigenvector vertex centrality of 0, as A is no longer
irreducible and the Perron-Frobenius theorem is no longer valid. Furthermore, ‘dangling
nodes’ (vertices or components with in-degree and zero out-degree) found in directed
acyclic subgraphs can result in the eigenvector centrality ‘localising’ or accumulating at
the affected vertices [146, 147].

To rectify these issues, a wide range of variations to the eigenvector centrality have been
proposed, including PageRank and Katz centrality. Of these, PageRank is arguably the
most well known spectral centrality measure — developed as a ranking algorithm for sites
on the World Wide Web, it has accumulated significant prestige as the algorithm behind
the Google search engine [40]. In this context, vertices represent websites, with directed
edges the links between them. Designed from conception to take into account directed
networks, the PageRank improves on the eigenvector centrality by modifying the adjacency
matrix to ensure stochasticity and irreducibility.

To do so, the eigenvector centrality method is instead applied to the Google matrix G,
defined by

G = αE +
1

N
(1− α)J, 0 ≤ α ≤ 1, (7.4)

where N is the number of vertices in the graph, E is the patched adjacency matrix, column-
normalised1 to ensure G is stochastic,

Eij =







Aij/
∑

k Akj ,
∑

k Akj ̸= 0

1/N,
∑

k Akj = 0,
(7.5)

and J the all one’s matrix. The addition of J is to provide a small ‘random surfer effect’,
i.e. a non-zero uniform probability that a walker at a particular vertex can jump to any
other vertex, even in cases of non-adjacency. Moreover, since J is an irreducible matrix,
it has the effect of ensuring that G is irreducible (the corresponding graph is strongly
connected) and primitive (since all elements Gij > 0). In practice, α is generally chosen
to be 0.85, providing a good compromise between information flow via hyperlinks and the
random surfer effect.

1Although E is column-normalised, i.e. each column is normalised by the corresponding vertex out-
degree, the PageRank has been shown to be highly correlated with vertex in-degree [148].



112 Chapter 7 Network centrality

Once the Google matrix is calculated, the PageRank centrality measure is then applied
by solving the eigenvector equation

Gx = x, (7.6)

as, per the Perron-Frobenius theorem, the eigenvector corresponding to the largest eigen-
value (λ = 1 for PageRank, as G is stochastic) will be strictly positive. Note that this
equation is identical to that of a DTRW; thus, the PageRank can be modelled as a DTRW
with G taken to be the transition matrix. Nevertheless, when α < 1, the PageRank con-
tinues to model its centrality measure on walks of all lengths, due to the random surfer
effect. To see this explicitly, it can be easily shown that in the case 0 ≤ α < 1,

Gx = x

⇒ αEx+
1

N
(1− α)Jx = x

⇒ (I − αE)x =
1

N
(1− α)Jx (7.7)

has the exact solution

x = (I − αE)−1 1

N
(1− α)Jx = (1− α)

( ∞∑

k=0

αkEk

)
N∑

j=1

ej

N

∴ xi =
1

N
(1− α)

N∑

j=1

( ∞∑

k=0

αkEk

)

ij

, (7.8)

and therefore x is calculated using walks of k length for all k ∈ N, weighted by αk

[149].

7.2.4 Random walk centrality

The random walk centrality (RWC), unlike the centralities previously discussed, is not a
radial volume based measure (counting the number of walks between each pair of nodes)
but rather a radial length based measure, quantifying the length of the walks between
nodes [143]. Alternatively, this can be interpreted as a measure of the expected time for
information to arrive at a particular node; i.e., the effectiveness or speed of communication
[71]. It therefore follows that the random walk centrality is not a spectral measure like
the eigenvector centrality and PageRank, but rather a form of closeness centrality.

The RWC measure, introduced by Noh and Rieger [39] and based on a DTRW, is given
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by

C
(RWC)
j =

πj

τj
, (7.9)

where π is the random walk limiting distribution, and

τj =

∞∑

n=0

(
Tn
jj − πj

)
(7.10)

is the characteristic relaxation time of vertex j. Here, T represents the DTRW transition
matrix of the graph structure to be analyzed (see Sec. 3.1.1).

7.3 Quantum centrality measures

The above described walk-based centrality measures are classical in nature. However, due
to the close relationship between centrality measures and classical walks, in recent years
several quantum centrality measures have been proposed, ranging from quantizations of
the aforementioned classical measures to wholly new proposals. For example, the Quantum
PageRank utilizes the Szegedy quantum walk (a DTQW formulation [80]) to quantize the
directed Markov chains encoded by the Google matrix, before taking the long-time average
of the walks probability distribution [12, 13, 77]. In essence, providing a quantum analogue
of PageRank centrality.

The quantum stochastic walk (QSW) is another approach, which makes use of the Lindblad
master equation to introduce environmental decoherence to a CTQW [13, 78, 79]. In
practice, this has the effect of creating a continuous-time walk continuum parametrized
by ω, with ω = 0 (no dephasing) corresponding to a purely quantum walk (CTQW) on an
undirected graph, and ω = 1 (complete dephasing) corresponding to a purely classical walk
(CTRW) over a digraph. By restricting the domain to 0 < ω ≪ 1, quantum dynamics and
the resulting quantum speedup are retained, however the walker will eventually converge
to the CTRW limiting probability distribution [103]. Similarly to Quantum PageRank, the
centrality measure is then given by the time-average of the probability distribution.

Another proposed quantum centrality measure based on the CTQW utilizes the quantum
Jensen-Shannon divergence (QJSD) to assign importance to the network nodes [150]; it
is shown that this measure is proportional to the degree centrality of the graph, and is
independent of the specific CTQW Hamiltonian chosen (H = A, H = L, or H = L̂) and
initial walker state |ψ(0)⟩.
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Finally, Berry and Wang [11] proposed a novel method, in which the quantum search
algorithm is applied to graph structures via DTQW — the resulting frequency of successful
search probability was shown to correlate with the (lazy) random walk centrality of Noh
and Rieger [39]. Thus, the quantum centrality scheme of Berry and Wang [11] differs
from the three previous quantum centrality schemes, as it considers the mean speed of the
walker in transmitting information over the network — it is a form of quantum closeness
centrality.

Unfortunately, when it comes to physically implementing these quantum centrality mea-
sures, we run into various issues. Regarding the DTQW and QSW formulations, due to
the use of either a coin state (DTQW) or an environment (QSW), the size of the states-
pace must be significantly increased, taking us beyond the current experimental capability
to simulate quantum graph centrality of even simple graph structures. For example, for
a graph of N vertices, the Szegedy DTQW formulation used in the Quantum PageRank
scheme requires a statespace of size N2. Physical implementation of the QJSD quantum
centrality measure, on the other hand, is hindered by the lack of an existing quantum
algorithm that enables the measure to be performed experimentally. As such, the ability
to physically realise these quantum centrality measures is currently beyond our reach.
Furthermore, only two of these proposed centrality measures permit the use of directed
graphs — namely, the QSW (through the use of decoherence) and the Quantum PageR-
ank (as the Szegedy walk ‘encodes’ information regarding directed edges into the DTQW
local coin operations). The QJSD approach of Rossi et al. [150] and the DTQW approach
of Berry and Wang [11] are both undefined on directed graphs.

To avoid the aforementioned shortfalls, we would like to design a quantum walk-based
centrality measure that:

(a) is physically realisable with current experimental techniques (i.e. the measure should
possess a significantly smaller statespace than the QSW and Quantum PageRank,
allowing for a reduction in resources);

(b) is purely quantum in nature, unlike the QSW which reaches a classical stochastic
equilibrium;

(c) measures long-term indirect influence between vertices, to avoid capturing information
that is trivially revealed by calculating the network degree like the QJSD; and

(d) can be extended to directed graphs.

The CTQW appears uniquely placed to satisfy the first two of these goals — a CTQW
on a graph containing N vertices requires a statespace of size N , and its time-evolution
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as per the Schrödinger equation is purely quantum. Regarding point (c), recall Eq. 7.3 of
the eigenvector centrality. It should be noted that this result allows us to draw interesting
parallels with the CTQW; consider the CTQW time-evolution operator for infinitesimal
time dt:

U(t) = e−iHdt =

∞∑

n=0

1

n!
(−idt)nHn. (7.11)

That is, like the eigenvector centrality, the CTQW performs walks of all lengths at each
infinitesimal time-step dt, weighted inversely by walk length. Thus, at the very least,
the CTQW may provide the means for an eigenvector-like quantum centrality measure.
Finally, the well-established theory of PT-invariance provides an avenue for expanding the
CTQW to directed (albeit not arbitrary) graphs.

In the following chapters, we will detail a CTQW-based centrality measure, building on
the foundation of classical radial centrality measures such as eigenvector centrality, whilst
allowing us to take advantage of the quantum speedup afforded over the CTRW. Uti-
lizing a significantly smaller statespace than the QSW and DTQW, we also present the
experimental results of a proof of concept physical implementation of this quantum cen-
trality measure using quantum optics — the first successful physical demonstration of a
quantum centrality algorithm. Finally, we will introduce our pseudo-Hermitian CTQW
framework, which allows our CTQW-based centrality measure to be extended to select
directed graphs.



CHAPTER 8

CTQW centrality on undirected graphs
and experimental implementation

This chapter is based on the paper by J. A. Izaac, X. Zhan, Z. Bian, K. Wang, J. Li, J. B. Wang, and
P. Xue, “Centrality measure based on continuous-time quantum walks and experimental realization”,
Physical Review A 95, 032318 (2017). with minimal modification to match the formatting, notation,
and terminology of this thesis.

Network centrality has important implications well beyond its role in physical and infor-
mation transport analysis; as such, various quantum walk-based algorithms have been pro-
posed for measuring network vertex centrality. In this chapter, we propose a continuous-
time quantum walk algorithm for determining vertex centrality, allowing us to preserve
the full quantum behaviour of the walker, whilst limiting the dimension of the Hilbert
space to N . Furthermore, we show that it generalizes to arbitrary graphs via a statistical
analysis of randomly generated scale-free and Erdős-Rényi networks. Finally, as a proof
of concept, the algorithm is detailed on a 4-vertex star graph and physically implemented
via linear optics, using spatial and polarization degrees of freedoms of a single photon.
We therefore report the first successful physical demonstration of a quantum centrality
algorithm.

8.1 Introduction

The quantum walk framework, in providing a method of modelling network structures
that doubles as a universal system of quantum computation, is uniquely placed in the
quest to find quantum analogues of classical network algorithms. As such, one potential
application of the quantum walk is in providing an efficient quantum algorithm for vertex
centrality ranking in network analysis. Previous studies have proposed algorithms built
on the standard discrete-time quantum walk [11], the Szegedy discrete-time quantum walk
[12, 13, 77], or the continuous-time quantum stochastic walk (QSW) [13, 78, 79]. However,
whilst comparing well to classical centrality measures, these have the distinct disadvantage
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of requiring expanded Hilbert spaces (up to N2 dimensions for a graph of N vertices), or
in the case of the QSW, muting the quantum behaviour due to decoherence.

In this study, we propose an alternative quantum walk centrality algorithm based on
the CTQW, allowing us to preserve the full quantum behaviour of the walker, whilst
limiting the dimension of the Hilbert space to N . Furthermore, we have experimentally
implemented this algorithm in the case of the 4-vertex star graph. As far as we are aware,
this is the first quantum centrality measure to be physically implemented.

This chapter is structured as follows. We introduce our CTQW-based quantum centrality
scheme in Sec. 8.2, before presenting a thorough statistical analysis using ensembles of
randomly generated graphs in Sec. 8.3, highlighting the suitability of the quantum cen-
trality scheme for general graphs. Then, we discuss our experimental implementation via
linear optics in Sec. 8.4, before finally presenting our conclusions in Sec. 8.5.

8.2 CTQW-based centrality measure

Similarly to the Quantum PageRank and the QSW centrality measures, as the time-
evolution of the CTQW is determined by the Hamiltonian — and thus the underlying
network structure — one method for extracting the centrality information is to simply
start the walker in an equal superposition of all vertex states, |ψ(0)⟩ = 1√

N

∑

j |j⟩ (so
as not to bias any one particular vertex), and compare the time-average probability of
locating the walker at each vertex1.

Now, convention allows for two choices for the Hamiltonian (see Sec. 3.2.2) — we
may choose either the adjacency matrix A or the graph Laplacian L (given by Lij =

δij
∑

k Aik − Aij , a discrete approximation to the continuous-space Laplacian). However,
the construction of the undirected graph Laplacian ensures that the equal superposition
state is always an eigenvector (Thm. 2.17), resulting in a stationary time-evolution:

U |ψ(0)⟩ = e−iLt




1

N

∑

j

|j⟩



 =
1

N

∑

j

|j⟩ ∀t. (8.1)

As such, the Laplacian is ill-suited for such a CTQW centrality measure on undirected
graphs, as it will be unable to distinguish vertices more central to the network structure.

1Note that this is only one of many possible choices of an unbiased initial state; while we must ensure
that the walker is initialised in a state of uniform probability over the entire vertex set, there is no restriction
on the relative phases between vertex states. Here, for convenience, we choose the initial state where there
is no relative phase difference between vertices.
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This is not the case for the adjacency matrix; thus, for the remainder of this work, we will
set H = A.

To briefly summarise, the proposed CTQW centrality scheme works as follows:

1. Prepare the quantum walker in an initial equal superposition over all vertex states:
|ψ(0)⟩ = 1

N

∑

j |j⟩.

2. Propagate the walker for time t ≫ 0: |ψ(t)⟩ = e−iHt |ψ(0)⟩, where H = A is the
graph adjacency matrix.

3. Calculate the time-average probability distribution of finding the walker at each
vertex:

C
(CTQW )
j = lim

t→∞
1

t

∫ t

0
| ⟨j|ψ(t)⟩ |2 dt. (8.2)

To fully ascertain the reliability of the proposed CTQW centrality measure, we will con-
sider both a simple example (allowing us to qualitatively assess the measures performance),
as well as a rigorous statistical analysis comparing the CTQW measure to the PageRank
over an ensemble of randomly generated graphs. Freeman [151], in his discussion of the
canonical formulations of centrality measures, noted that the degree, closeness and be-
tweenness centralities all attain their highest values for the central node of the star graph;
Borgatti and Everett [143], in reviewing Freeman’s work, suggested that this may serve as
a defining characteristic of a ‘proper’ centrality measure. Thus, let us consider a 4-vertex
star graph as an example of the proposed CTQW centrality measure.

For the 4-vertex star graph shown in Fig. 8.1(a), the adjacency matrix is

A =










0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0










, (8.3)

with the first vertex (vertex 0) the central node. In this case, the time-evolution operator
is given by

U(t) =
1

3










3c(t) s(t) s(t) s(t)

s(t) c(t) + 2 c(t)− 1 c(t)− 1

s(t) c(t)− 1 c(t) + 2 c(t)− 1

s(t) c(t)− 1 c(t)− 1 c(t) + 1










, (8.4)
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(a) 4-vertex star graph (b) CTQW vertex probability vs. time

Figure 8.1: CTQW probability at vertex 0 (black, solid) and vertex 1,2,3 (red, dashed) on
a 4-vertex star graph. The initial state is a equal superposition of all vertex states. The
dotted lines show the respective long-time averaged probability of the respective vertices,
with the blue vertical line denoting one period (T = π/

√
3).

where c(t) = cos(
√
3t) and s(t) = −i

√
3 sin(

√
3t). Using this operator to propagate from

an initial equal superposition of vertex states |ψ(0)⟩ = 1
4

∑

j |j⟩, the probability of locating
the walker on vertex j at time t is

| ⟨j|ψ(t)⟩ |2 = | ⟨j|U(t)|ψ(0)⟩ |2 =
[
1

2
− 1

4
c(2t)

]

δj0 +

[
1

6
+

1

12
c(2t)

] 3∑

j′=1

δjj′ (8.5)

(Fig. 8.1(b)). Noting that this probability distribution is periodic with period T = π/
√
3,

the CTQW centrality measure becomes

C
(CTQW )
j = lim

t→∞
1

t

∫ t

0
| ⟨j|ψ(t)⟩ |2 dt = 1

T

∫ T

0
| ⟨j|ψ(t)⟩ |2 dt, (8.6)

yielding values of 1/2 for j = 0, and 1/6 for j = 1, 2, 3. This fits well with what would
be expected intuitively — the central vertex (vertex 0) has the highest time-averaged
probability, indicating a high centrality measure, whilst the remaining vertices (1,2,3) are
equivalent and have an equal and lower ranking. The proposed CTQW centrality measure
therefore satisfies one of the defining properties of centrality measures; however, a detailed
statistical analysis is required to properly assess its behaviour on general graphs.
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Figure 8.2: Left: Randomly generated Erdős-Rényi graph G(20, 0.3) Right: Normalised
vertex centrality values for vertex j on G(20, 0.3). Measures shown are the degree central-
ity, PageRank, eigenvector centrality, CTQW centrality, and RWC centrality.

8.3 Statistical analysis

To investigate the reliability of this newly proposed quantum centrality algorithm, it is
pertinent to compare its ranking results to classical algorithms on large random graphs. To
do so, we consider two classes of random graphs — Erdős-Rényi networks, and scale-free
networks.

8.3.1 Correlation to classical measures

Firstly, let’s investigate correlation between the CTQW centrality measure and classical
measures. As centrality measures only provide useful information for the top 5 or so
valued vertices (with noise growing successively larger for lower ranked nodes [139]), we will
consider a randomly generated 20-vertex Erdős-Rényi graph G(20, 0.3), and use this as the
basis of our correlation test. The graph generated and its respective vertex centrality values
(calculated using degree centrality, PageRank, eigenvector centrality, CTQW centrality,
and RWC centrality) are shown in Fig. 8.2. Qualitatively, it can be seen that all centrality
measures strongly agree on the top-ranked vertices, with slight variations for the lower
ranked vertices, as is expected.

Another method of quantifying the correlation between the various centrality methods is to
calculate their rank correlation coefficients. One such metric is Kendall’s rank correlation
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coefficient, commonly referred to as Kendall’s τ coefficient [152]. To get a rudimentary
understanding of what the Kendall τ coefficient is measuring, we will take a brief foray
into the realm of rank correlation coefficients, starting with the centrality measure inner
product.

Definition 8.1 (Centrality measure inner product). The centrality inner product of the
centrality measures C(r) and C(s) applied to graph vertex set V is defined by

⟨C(r), C(s)⟩ =
∑

i

∑

j
i<j

sgn(C(r)
i − C

(r)
j )sgn(C(s)

i − C
(s)
j ). (8.7)

This has the property ⟨C(r), αC(s)⟩ = ⟨αC(r), C(s)⟩ = sgn(α)⟨C(r), C(s)⟩. The norm is
given by

∥C(r)∥ =
√

⟨C(r), C(r)⟩,

with maximum value ∥C(r)∥ =
√

N(N − 1)/2 when all values are distinct, and ∥C(r)∥ = 0

if and only if C(r) is constant. The centrality measure inner product also satisfies a
Cauchy-Scwartz like inequality, |⟨C(r), C(s)⟩| ≤ ∥C(r)∥∥C(s)∥.

The Kendall’s τ correlation coefficient is then defined as follows:

Definition 8.2 (Kendall’s τ correlation coefficient). Let C(r) ∈ R
N and C(s) ∈ R

N

correspond to centrality measures C(r) and C(s) applied to graph vertex set V . The
Kendall’s τ correlation coefficient is given by

τ(C(r), C(s)) =
⟨C(r), C(s)⟩
∥C(r)∥∥C(s)∥ . (8.8)

As a result, −1 ≤ τ ≤ 1, where τ = 1 denotes perfect agreements between the ranked
lists, τ = 0 denotes no correlation, and τ = −1 denotes perfect anticorrelation (i.e. one
list is the reverse of the other). As a general rule of thumb, τ ≥ 0.8 is referred to as a very
strong rank correlation, 0.6 ≤ τ < 0.8 a strong rank correlation, 0.4 ≤ τ < 0.6 a moderate
rank correlation, 0.2 ≤ τ < 0.4 a weak rank correlation, and 0 < τ < 0.2 a very weak rank
correlation [153].

Note that this definition is equivalent to

τ(C(r), C(s)) = (C −D)/

(
N

2

)

, (8.9)

where

• C =
∑

i

∑

j i<j

[

sgn(C(r)
i − C

(r)
j ) = sgn(C(s)

i − C
(s)
j )
]

is the number of concordant
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pairs (i.e. the number of pairs of vertices (vi, vj) across the two lists such that both
lists have the same ranking order of vi and vj)

• D =
∑

i

∑

j i<j

[

sgn(C(r)
i − C

(r)
j ) = −sgn(C(s)

i − C
(s)
j )
]

is the number of disconcor-
dant pairs (i.e. the number of pairs of vertices (vi, vj) across the two lists such that
both lists have the opposite ranking order of vi and vj)

This allows the following probabilistic interpretation of Kendall’s τ coefficient:
τ(C(r), C(s)) = p − (1 − p) = 2p − 1 where p = C/

(
N
2

)
is the probability of picking a

concordant pair at random.

In the field of centrality analysis, Kendall’s τ has become the definitive metric [154–157],
by means of its ubiquity, efficient computability [158], and the fact that variants exist that
take into account ties [159]. Despite this, Kendall’s τ coefficient is not particularly suited
towards comparing centrality measures. Measures with highly correlated top-ranked ver-
tices may produce comparatively low τ values, as Kendall’s τ equally weights all discordant
pairs, regardless of where they appear in the ranking. Recently, weighted modifications
have been proposed — specifically catered to comparing centrality measures — which use
a hyperbolic weighting function to more heavily weight correlations of the top-ranked ver-
tices. These include the AP (average precision) correlation [160] and Vigna’s τ correlation
coefficient [161]. As Vigna’s τ further takes into account ties, we will apply Vigna’s τ
correlation coefficient to analyse the results of Fig. 8.2. We briefly describe Vigna’s τ
correlation coefficient here before presenting the results.

Definition 8.3 (Weighted centrality measure inner product). The weighted centrality
inner product of the centrality measures C(r) and C(s) applied to graph vertex set V is
defined by

⟨C(r), C(s)⟩w,ρrs =
∑

i

∑

j
i<j

sgn(C(r)
i − C

(r)
j )sgn(C(s)

i − C
(s)
j )w(ρrs(i), ρrs(j)) (8.10)

where w(i, j) : R2 → R is a weight function applied to vertices vi and vj , and the function
ρrs : [N ] → [N ] is defined such that ρrs assigns a rank to each vertex depending on the
centrality values given in C(r), with 1 the highest rank. In case of a tie in C(r), the tie
is broken based on the ranking in C(s). If both cases are a tie, this doesn’t matter, as it
won’t influence the value of τ .

Definition 8.4 (Vigna’s τ correlation coefficient). Let C(r) ∈ R
N and C(s) ∈ R

N corre-
spond to centrality measures C(r) and C(s) applied to graph vertex set V . The Vigna’s τ
correlation coefficient is given by averaging out the Kendall’s τ coefficient calculated using
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Degree PageRank Eigenvector CTQW RWC
Degree 1. 0.882 0.882 0.882 0.875
PageRank 0.882 1. 0.622 0.622 0.687
Eigenvector 0.882 0.622 1. 1. 0.87
CTQW 0.882 0.622 1. 1. 0.87
RWC 0.875 0.687 0.87 0.87 1.

Degree PageRank Eigenvector CTQW RWC
Degree 1. 0.924 0.86 0.851 0.925
PageRank 0.924 1. 0.687 0.689 0.77
Eigenvector 0.86 0.687 1. 0.95 0.877
CTQW 0.851 0.689 0.95 1. 0.861
RWC 0.925 0.77 0.877 0.861 1.

Table 8.1: Vigna’s τ coefficient comparing the vertex rankings for the labelled centrality
measures, calculated for the Erdős-Rényi graph shown in Fig. 8.2 (top) and averaged over
an ensemble of 200 random Erdős-Rényi graphs G(20, 0.3) (bottom).

the weighted centrality innner product with both ρrs and ρsr:

τ(C(r), C(s)) =
1

2

(

⟨C(r), C(s)⟩w,ρrs

∥C(r)∥w,ρrs∥C(s)∥w,ρrs

+
⟨C(r), C(s)⟩w,ρsr

∥C(r)∥w,ρsr∥C(s)∥w,ρsr

.

)

(8.11)

For the calculations performed in this thesis, we choose an additive weight scheme,
w(i, j) = w1(i) + w2(j), as it provides a natural top-k correlation measure (ranks will
be assigned significantly larger values after the first top k values). Following the analysis
completed by Vigna [161], we select a hyperbolic weight function

w(i, j) = i−1 + j−1 (8.12)

for the following reasons:

• As the rank of the vertex grows, the mass of the weight grows indefinitely

• It does not converge; a function that does converge (i.e. 1/i2) would make the
influence of the low-rank elements vanish too quickly

• It decays sufficiently fast to discriminate extra information versus Kendall’s τ co-
efficient; a function that decays too slowly (i.e. logarithmic decay) would be very
similar to Kendall’s τ .

Vigna’s τ correlation coefficients for Fig. 8.2 are shown in Tab. 8.1; for additional robust-
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ness, this analysis is repeated and averaged over an ensemble of 200 randomly generated
G(20, 0.3) graphs. It can be seen that there is a very strong correlation between the CTQW
centrality ranking and the eigenvector centrality ranking (τ = 0.95 averaged across the en-
semble). This lends credence our previous hypothesis in Sec. 7.3 — the CTQW centrality
scheme appears to be ranking the graph vertices in a similar fashion to the eigenvector cen-
trality, by considering walks of all lengths emanating from each vertex weighted inversely
by length.

We now consider ensembles of larger Erdős-Rényi and scale-free graphs, and compare
the CTQW centrality measure to the eigenvector centrality measure (its closest classical
analogue), as well as the PageRank (the classical centrality measure with arguably the
most impact in the last decade). This analyses will allow us to verify the behaviour of the
CTQW centrality for large graphs of varying degree distributions.

We begin by generating an ensemble of 200 Erdős-Rényi and scale-free graphs (the latter
by way of the Barabási-Albert algorithm), and calculating the average PageRank, eigen-
vector, and CTQW centrality measures over the ensemble. These results are shown in
Fig. 8.3. It can be seen that, on average, the CTQW ranking agrees with the classi-
cal algorithms on the location of the five most central vertices, whilst also following the
following the same general trendline (binomial for the Erdős-Rényi, power law for the
scale-free). In fact, the CTQW measure for the top 5 vertices outperforms that of the
PageRank and eigenvector centrality, by assigning a higher centrality measure, perhaps
allowing for greater distinguishability when sampled experimentally. However, it appears
that this comes at the cost of larger measure variance compared to the PageRank.

Finally, examining the mean Vigna τ values for each of the ensembles, it can be observed
that the results further support our conjecture that the CTQW centrality should provide
a quantum eigenvector-like centrality. When compared to the eigenvector centrality, we
observe a very strong correlation of (τ = 0.991± 0.004 for the Erdős-Rényi ensemble and
τ = 0.812 ± 0.041 for the scale-free ensemble), with a strong correlation when compared
to the PageRank (τ = 0.84± 0.02 for the Erdős-Rényi ensemble and τ = 0.673± 0.055 for
the scale-free ensemble).

Note that Vigna’s τ coefficient does a good job of informing us how correlated the ranked
lists are, allowing us to classify the centrality measures based on how they encode infor-
mation flow through the network. However, Vigna’s correlation coefficient, whilst a better
indicator of overall rank agreement then Kendall’s τ , continues to suffer from the fact
that small discrepancies in ranking of lower-ranked vertices negatively affect the coeffi-
cient value. For example, in Fig. 8.2 it can be seen that the PageRank (a radial volume
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(a) The average CTQW centrality measure (black) compared to the average PageRank measure
(red, dashed).
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Figure 8.3: The average CTQW centrality measure compared to classical centrality mea-
sures for vertices in an ensemble of 200 Erdős-Rényi graphs (left) and 200 scale-free graphs
(right). The Erdős-Rényi graphs have parameters N = 100, p = 0.3. The scale-free net-
works are constructed via the Barabási-Albert algorithm with N = 100 and m = 2 edges
added at every generation. The shaded areas represent one standard deviation from the
average centralities, and the top 5 ranked vertices are shown by the markers.
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Figure 8.4: Charts showing the Jaccard set similarity between the CTQW centrality rank-
ing and (a) the eigenvector centrality and (b) the PageRank ranking for an ensemble of
100 Erdős-Rényi and 100 scale-free graphs. Each bar represents the unordered set con-
taining the n most central vertices as determined by the PageRank and CTQW measures,
whilst the vertical axis gives the average fraction of matching vertices between the two
sets. Error bars indicate the Agresti-Coull 95% confidence interval.

measure) and random walk centrality (a radial length measure) are in total agreement
on the location of the top 3 most central vertices, despite exhibiting a lower correlation
than other measures in agreement (τ = 0.687). Thus, whilst these approaches might be
useful in determining correlation between various centrality measures, they distract from
the main question: how frequently do two centrality measures agree on the k top-most
ranked vertices?

8.3.2 Agreement on top-ranked vertices

In order to answer this question quantitatively, we employ the Jaccard measure of set
similarity [162]. This provides an indicator of how well each centrality measure is able
to determine the identity of the top k highest centrality individuals. Firstly, for each
graph, unordered sets containing the n most central vertices according to each measure
were compared — the fraction of matching vertices providing a quantitative value for
the agreement between the two measures. Finally, these were averaged over the entire
ensemble, providing a general measure of the agreement between the PageRank and the
CTQW centrality ranking, with uncertainty approximated by calculating the Agresti-Coull
95% confidence interval [163] — the results are presented in Fig. 8.4.

It can be seen that the eigenvector and CTQW centrality measures are in near perfect
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agreement — agreeing on the most central node 99% of the time for Erdős-Rényi networks,
and 96% of the time for scale-free networks. This is likely due to the strong correlation
between the CTQW and eigenvector centralities noted previously, and indicates that this
strong correlation continues to hold for larger graphs of varying degree distributions.

Turning our attention to the PageRank, we find a strong agreement with the CTQW mea-
sure, albeit not as strong as the eigenvector centrality; on the location of the most central
vertex, they named the same vertex 88% of the time for scale-free graphs, dropping to
70% for Erdős-Rényi graphs. As the number of vertices compared increases, the agreement
factors decrease slightly for the scale-free and increase slightly for the Erdős-Rényi, before
both ending around 80% by the time the top 5 vertices are compared. This discrepancy
might be partially explained by considering the CTQW measure variance in Fig. 8.3:

• For the Erdős-Rényi graphs, a majority of vertices have degree close to the mean,
leading to the top-ranked vertices having similar centrality measures. The aver-
age CTQW centrality measure of the second and third-ranked vertices lies within
the uncertainty region of the most central vertex; so even as the top 5 are easily
distinguished, changes in their initial ordering might appear.

• For the scale-free graphs, with a small number of connected hubs, the hubs are easily
distinguished by both measures. However, beyond the hubs, most vertices have
similar degree due to the power law distribution — leading to small discrepancies
between the measures as more vertices are ranked.

Nonetheless, our results here show that the CTQW measure proposed works excellently
as a centrality measure on undirected graphs — it assigns higher values to the central
node of a star graph and equal lower values to the surrounding nodes, correlates well with
the classical eigenvector centrality (allowing us to posit that the CTQW measure extracts
centrality in a similar fashion to the eigenvector centrality, namely via weighted walks of all
lengths), and generalises to arbitrary random scale-free and Erdős-Rényi graphs. Thus, the
proposed quantum scheme sufficiently determines node centrality, and in contrast to the
Quantum PageRank algorithm (which requires computation of the dense Google matrix),
preserves the sparse structure of the network in the Hamiltonian; a property that allows
for known efficient quantum implementation [164].

In the following section, we build off this result to experimentally implement the CTQW
centrality scheme on a star graph using linear optics — a proof-of-concept experiment and
the first physical implementation (to our knowledge) of quantum centrality.
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8.4 Experimental realization

Linear optics enables the efficient implementation of an arbitrary unitary transformation
on various degrees of freedoms of a single photon. For example, any 2× 2 unitary trans-
formations on the polarizations of a photon can be realized by a set of half-wave plates
(HWPs) and quarter-wave plates (QWPs) [165]. Here, we aim to devise a linear-optics
realization to physically implement the previously described CTQW centrality measure
on the 4-vertex star graph Fig. 8.1(a), using spatial and polarization degrees of free-
doms of a single photon. This process can be summarized as follows; we first prepare a
four-dimensional equal superposition quantum state |ψ(0)⟩ = 1

2

∑3
j=0 |j⟩ within the single

photon subspace of 4 independent modes, and then perform a 4×4 unitary transformations
on the state. Finally, the probability distributions are then obtained through projective
measurement on the state. The unitary transformations applied to the initial state |ψ(0)⟩
are provided by U(k∆t), where k ∈ {1, 2, . . . , 8}.

It is well known that arbitrary 4×4 unitary transformations can be decomposed using the
cosine-sine decomposition method [166–171]. For each unitary transformation in U(k∆t),
there exist unitary matrices L, S, and R, such that U = LSR where L and R are block-
diagonal,

L =

[

L 0

0 L′

]

,R =

[

R 0

0 R′

]

, (8.13)

and S is an orthogonal cosine-sine matrix,

S =










cos θ 0 sin θ 0

0 1 0 0

− sin θ 0 cos θ 0

0 0 0 1










, (8.14)

where L, L′, R, and R′ are arbitrary 2 × 2 unitary transformations on two modes. This
matrix S can be further decomposed by a 2× 2 unitary transformation

S =

[

cos θ sin θ

− sin θ cos θ

]

(8.15)

on the subspace spanned by the modes {|0⟩ , |2⟩} and I on the subspace spanned by the
modes {|1⟩ , |3⟩}.
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Figure 8.5: The quantum circuit for implementing the 4× 4 unitary transformation U on
a two-qubit system.

This decomposition method can be used to decompose any higher dimensional unitary
operations into series of two dimensional unitary operations, and thus our technology
can be used to realise, in principle, any dimensional unitary operations. However, it is
noteworthy that the numbers of beam displacers (BDs) used to prepare a two-dimensional
state and to realise the two-dimensional unitary operation are d−1 and 2d−2 respectively
— in other words, the number of optical elements grows exponentially with the dimension
of the unitary operation, and decoherence in cascaded interferometers also increases.

For convenience, we encode the four-dimensional quantum states by two-qubit states as
{|0⟩ =

∣
∣0̃0̃
⟩
, |1⟩ =

∣
∣0̃1̃
⟩
, |2⟩ =

∣
∣1̃0̃
⟩
, |3⟩ =

∣
∣1̃1̃
⟩
}. The unitary transformations L, S, and R

can be rewritten as

L =
∣
∣0̃
⟩ ⟨

0̃
∣
∣⊗ L+

∣
∣1̃
⟩ ⟨

1̃
∣
∣⊗ L′,

S = S ⊗
∣
∣0̃
⟩ ⟨

0̃
∣
∣+ I⊗

∣
∣1̃
⟩ ⟨

1̃
∣
∣ ,

R =
∣
∣0̃
⟩ ⟨

0̃
∣
∣⊗R+

∣
∣1̃
⟩ ⟨

1̃
∣
∣⊗R′. (8.16)

The 4 × 4 unitary transformations U(k∆t) can then be implemented by these three con-
trolled two-qubit transformations in Fig. 8.5.

A schematic of our experimental setup is depicted in Fig. 8.6. Note that the two qubits are
encoded via the spatial and polarization modes of a single photon; the first qubit

∣
∣0̃
⟩

(
∣
∣1̃
⟩
)

represents the upper (lower) spatial mode of the photon, whilst the second qubit
∣
∣0̃
⟩

(
∣
∣1̃
⟩
)

represents the horizontal (vertical) polarization of the photon. Polarization-degenerated
photon pairs are generated by type-I spontaneous parametric down-conversion in 0.5mm-
thick nonlinear-β-barium-borate crystal pumped by a 400.8nm CW diode laser with 90mW
of power, with the single photon generated by triggering of the other photon. Next,
interference filters are used to restrict the photon bandwidth to 3nm – the photons are in
horizontal polarization after the first polarizing beam splitter.

The initial 4 vertex equal superposition state is prepared in two steps. Firstly, after
passing through a half-wave plate (HWPa) at 22.5◦ — which rotates the polarization of
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Figure 8.6: Conceptual experimental setup, with three controlled unitary transformations
L, S, and R. Red lines represent the optical modes (beams) of the single photon. (a)
Realization of L (R) as a transformation on two spatial modes and two polarization modes
of the photon. The spatial mode acts as the control qubit, whilst the 2 × 2 unitary
transformation L (R) and L′ (R′) applied to the polarizations of the photons in different
modes can be realized by a set of wave plates (WPs). A phase shifter is used to keep
the global phase unchanged during the transformation. (b) Realization of S. Here, the
polarization is the control qubit. After the first 45◦ HWP and BD, the horizontally
polarized photons in both spatial modes are propagating in the same spatial mode (the
middle); the transformation S is then applied by using an HWP at θ/2 in the middle
mode. Meanwhile, the vertically polarized photons in the upper or lower modes are not
affected, and as a result after the second BD they are still propagating in upper or low
modes. The other HWPs are all set to 45◦; they are used to flip the polarizations and to
change the propagating modes of photons after they pass through the BD.

Figure 8.7: Practical experimental setup with consideration of both compensation of opti-
cal delay between different spatial modes and simplification. In this schematic, acronyms
represent: BBO, β-barium-borate; BD, beam displacer; HWP, half-wave plate; IF, inter-
ference filter; PBS, polarizing beam splitter; QWP, quarter-wave plate. The collection of
3 wave-plates is a universal wave-plate configuration with standard angles of 0◦, 22.5◦,
and 90◦ to the horizontal axis, required to realize the polarization operation. However,
during the experiment, we make use of different various different configurations so as to
realise the different unitary operations. These configurations are detailed in Tab. 8.2 and
Tab. 8.3.
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Figure 8.8: Photon probability distributions after eight unitary transformations. Red bars
represent experimental results. Blue borders represent theoretical predictions. Errors are
estimated via propagated Poissonian statistics. A small additional uncertainty may be
present in the measurement of nodes 0 and 1, due to the photon representing the two
states with different polarization but inhabiting the same spatial mode.

the photon to equal superposition of horizontal and vertical polarizations — the photons
are split into two parallel paths by a birefringent calcite BD, which transmits the vertically
polarized photons directly and displaces horizontally polarized photons by 3mm. Second,
two HWPs (HWPb and HWPc), at −22.5◦ and 22.5◦, are inserted into the upper and
lower modes respectively to flip the polarizations. Thus, the state of the single photons is
prepared in |ψ(0)⟩ = 1

2

∑3
j=0 |j⟩.

For the controlled two-qubit transformations L and R, the spatial mode of photons serves
as the control qubit, with the polarization is the target qubit. In the upper and lower
modes, the 2×2 unitary transformations L (R) and L′ (R′) are applied to the polarization
degrees of freedom, which can be realized by a combination of QWPs and HWPs sequence
inserted into the corresponding spatial mode.

Finally, for the 4 × 4 unitary transformation S, the polarization of photons serves as
the control qubit. An HWP at 45◦ inserted into the lower input mode first flips the
polarization of photons. After the first BD, the horizontally polarized photons in both
the upper and lower input modes are propagating in the same path (the middle), and as a
result the transformation S is then applied by using an HWP at θ/2 in the middle path;
i.e. S ⊗

∣
∣0̃
⟩ ⟨

0̃
∣
∣ is applied to states

∣
∣0̃0̃
⟩

and
∣
∣1̃0̃
⟩
. The vertically polarized photons in the

upper or lower input modes are not affected, and after the second BD remain in the upper
or lower output modes; that is, I⊗

∣
∣1̃
⟩ ⟨

1̃
∣
∣ is applied to states

∣
∣0̃1̃
⟩

and
∣
∣1̃1̃
⟩
. Two HWPs at

45◦ inserted into the other two paths (the propagating paths between two BDs) are used
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to flip the polarizations of photons in these paths, with the propagating modes changing
after the photons pass through the following BD. After the second BD, an HWP at 45◦ is
inserted into the upper output mode to compensate for the effect of the first HWP in the
lower input mode, flipping the polarizations of photons back.

Our actual experimental setup is shown in Fig. 8.7, which takes into consideration the
compensation of optical delay between different spatial modes. The simplified set of wave
plates for the realizations L and R of the eight 4 × 4 unitary transformations U(k∆t) is
listed in Tab. 8.2, including the setting angles of wave plates. Two BDs and six HWPs
(HWP1-HWP6) are used to realize S and compensate for the optical delay. The setting
angles of HWP1-HWP6 are listed in Tab. 8.3.

Table 8.2: The simplified sets of wave plates with indicated setting angles for realization
of eight 4 × 4 unitary transformation. The subscript k of L, L′, R and R′ corresponds
to the kth unitary transformation U(k∆t). Q, quarter-wave plate; HWP, half-wave plate;
WP, wave plate.

L/R WPs Angles (◦) L′/R′ WPs Angles (◦)
L1 Q-H-H 90,0,-3.3 L′

1 H-H-H 90,0,157.5
R1 H-H-Q 0,48.4,90 R′

1 H-Q-Q 0,22.5,22.5

L2 Q-H-H 90,0,-6.7 L′
2 H-H-H 90,0,157.5

R2 H-H-Q 0,51.7,90 R′
2 H-Q-Q 0,22.5,22.5

L3 Q-H-H 90,0,-10.5 L′
3 H-H-H 90,0,157.5

R3 H-H-Q 0,55.5,90 R′
3 H-Q-Q 0,22.5,22.5

L4 Q-H-Q 90,14.9,0 L′
4 H-H-H 90,0,157.5

R4 Q-H-H-Q 0,0,30.1,0 R′
4 Q-Q-Q-Q 0,0,22.5,22.5

L5 Q-H-H 90,0,-20.2 L′
5 H-H-H 90,0,157.5

R5 H-H-Q 0,65.2,90 R′
5 H-Q-Q 0,22.5,22.5

L6 Q-H 90,0,26.8 L′
6 H-H 90,22.5

R6 H-H-Q 0,-18.2,90 R′
6 H-Q-Q 0,22.5,22.5

L7 Q-H-H 90,0,-35.0 L′
7 Q-Q-H 0,0,112.5

R7 H-Q 100.0,90 R′
7 H-H 0,22.5

L8 Q-H-H-Q 90,0,-44.4,0 L′
8 Q-Q-Q-Q -22.5,-22.5,90,90

R8 Q-H-H-Q 0,0,90.6,0 R′
8 Q-Q-Q-Q 0,0,22.5,22.5

In order to implement the proposed centrality algorithm experimentally, we discretise
the CTQW time-evolution operator U(t) = e−iLt given by Eq. 8.4 for the 4-vertex star
graph, using 8 time steps of ∆t = 9/40 to ensure that we sample the probability dis-
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Table 8.3: Setting angles of HWP1 and HWP2 for realization of the eight 4 × 4 unitary
transformations. The setting angles of HWP3, HWP4, and HWP5 are set to −45◦, and
that of HWP6 is set to 45◦ for all eight U(k∆t) values.

k 1 2 3 4 5 6 7 8
HWP1(

◦) 54.1 63.1 71.8 80.0 87.5 86.3 82.0 80.3
HWP2(

◦) 144.1 153.1 161.8 170.0 177.5 176.3 172.0 170.3

tribution adequately over one period (note that T = π/
√
3 ≈ 8∆t). After application

of the unitary time-evolution operator U(k∆t) with k ∈ {1, 2 ... 8}, the quantum state
is measured by a two-qubit projective measurement. A polarising beam splitter is then
used to perform the projective measurement on the photons with the computational basis
{
∣
∣0̃0̃
⟩
,
∣
∣0̃1̃
⟩
,
∣
∣1̃0̃
⟩
,
∣
∣1̃1̃
⟩
}, with the photons detected by avalanche photon-diodes in coinci-

dence with the trigger set DT , with a coincident window of 3ns. The clicks of detectors
D0, D1, D2, and D3 correspond to the probabilities of the final state projected onto the
basis {

∣
∣0̃0̃
⟩
,
∣
∣0̃1̃
⟩
,
∣
∣1̃0̃
⟩
,
∣
∣1̃1̃
⟩
} — we record the clicks for 5s, and more than 18000 coinci-

dence counts are detected in the overall measurement time. Note that, as the experiment
is performed with a single photon, there are no coincidence counts between D1, D2, D3,
and D4.

The measured probability distributions are shown in Fig. 8.8, which are in excellent
agreement with the theoretical predictions given by Eq. 8.5. Here we use the 1-norm
distance,

d =
1

2

∑

x=0,1,2,3

|P exp(x)− P th(x)|, (8.17)

to evaluate the quality of experimental demonstration. Each term in the 1-norm distance
evaluates the difference between the experimental and theoretical probability in each basis;
thus, a 1-norm distance of 0 indicates perfect match between the experimental and the-
oretical results. For each of the eight discrete unitary time-evolution operators U(k∆t),
we obtain d1 = 0.003, d2 = 0.020, d3 = 0.026, d4 = 0.039, d5 = 0.031, d6 = 0.031,
d7 = 0.017, and d8 = 0.009. The distances are all smaller than 0.04, which indicates
successful experimental demonstrations of the 4× 4 unitary transformations.

8.5 Conclusion

In this study, we have proposed a CTQW-based quantum centrality algorithm, shown that
it correlates well with classical measures, and verified its performance on general random
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graphs. The proposed quantum measure was then successfully implemented experimen-
tally for the first time for a 4-vertex star graph. Notably, this algorithm requires an
N -dimensional Hilbert space, compared to discrete-time quantum walk-based algorithms,
which require N2 dimensions for the same graph. Furthermore, this algorithm preserves
the full quantum behavior of the walker, unlike the QSW, which mutes the quantum
behaviour of the walker due to decoherence.

Secondly, this study reports the first successful physical demonstration of a quantum
centrality algorithm on a 4-vertex star graph. In our physical implementation of the
proposed CTQW centrality algorithm, the unitary operation of the walker on the graph
is decomposed into unitary transformations on a two dimensional subspace, and realised
by operating on the polarisation and spacial modes of a single photon. This method
can be used to decompose, in principle, any dimensional unitary operations into series of
two dimensional unitary operations. By making use of the coherent property of photons,
the technology in our experiment is a competitive candidate for demonstrating arbitrary
unitary operations, allowing it to be utilised for a wide array of quantum algorithms and
quantum information processes.

However, there is one setback to our CTQW centrality scheme compared to the Quantum
PageRank and QSW; both of these allow for centrality analysis on directed networks, via
the Szegedy formalism and decoherence respectively, whilst the CTQW remains undefined
and non-unitary. In the next chapter, we will use the framework of PT-symmetry to define
a generalization of the CTQW, the pseudo-Hermitian η-CTQW, allowing us to extend our
centrality scheme to select directed graphs.
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CHAPTER 9

CTQW centrality on directed graphs
via PT-symmetry

This chapter is based on the paper by J. A. Izaac, J. B. Wang, P. C. Abbott, and X. S. Ma, “Quantum
centrality testing on directed graphs via PT-symmetric quantum walks”, arXiv:1607.02673v3 [quant-
ph] (2017)., with minimal modification to match the formatting, notation, and terminology of this
thesis. The paper has been submitted for publication in Physical Review A.

In the previous chapter, we introduced a CTQW-based quantum centrality scheme that
was shown to highly correlate with the classical eigenvector centrality — perhaps acting as
an extension of eigenvector centrality to the quantum realm. Unfortunately, the CTQW
framework is only defined for undirected graphs; attempting to extend it as-is to directed
network structures results in a loss of unitarity of the quantum walker, and we are no
longer able to interpret the state vector as a probability amplitude. In order to rectify
this issue, in this chapter we introduce an extension of the framework that allows us to
propagate CTQWs on a subset of directed graphs that exhibit a property known as PT-
symmetry. As a result, we are able to generalize the CTQW centrality scheme to include
PT-symmetric directed graphs, and we present a statistical analysis highlighting that, on
directed graphs, this quantum centrality scheme continues to strongly agree with classical
centrality measures such as PageRank.

9.1 Introduction

As noted, a major disadvantage of the quantum walk is the condition of unitarity, re-
quired due to the quantum nature of the walkers. It follows that the standard quantum
walk is unable to model or analyse directed network structures, without either a) result-
ing in non-unitary dynamics, or b) modifying the framework. This serves as a particular
hindrance in extending established quantum algorithms (e.g. centrality measures, quan-
tum search, graph isomorphism) and quantum dynamical models (such as transport of
electrons or excitons) to systems with directions or biased potentials. Compare this to a
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classical random walk, where as long as the transition matrix remains stochastic, directed
networks pose no problem. Consequently, various work-arounds have been proposed for
dealing with this non-unitary behaviour, for example Szegedy quantum walks [12, 13] and
quantum stochastic walks (QSW) [13, 78]. Unfortunately, as previously discussed, there
are numerous downsides to these approaches — either requiring a significantly expanded
Hilbert space, or muting the effect of quantum behaviour (due to environmental dephasing
and loss in the open-quantum walk).

An alternative solution to this issue arrives in the form of PT-symmetry. First discovered
by Bender and Boettcher [81], PT-symmetry started off as a simple curiosity — the ap-
pearance of non-Hermitian Hamiltonians that exhibit a real eigenspectra, thus allowing
non-unitary probability conservation via a redefinition of the Hilbert space inner product.
This was attributed to parity-time symmetry of the non-Hermitian Hamiltonian, and over
time was generalised to allow for non-Hermitian Hamiltonian symmetry under a com-
bination of any linear and non-linear operators [81–85]. Simultaneously, PT-symmetric
Hamiltonians were finding use in theoretical models of observed and predicted phenomena
in condensed matter [173], quantum field theory [174, 175], and being observed and im-
plemented in numerous optical experiments [176–179]; whilst older non-Hermitian studies
in condensed matter [180] and nuclear physics [181] have been reformulated in the PT-
symmetry framework [182]. Recently, PT-symmetry has been used to model directed
one-dimensional discrete-time quantum walks (DTQWs) [183], and considered in the case
of continuous-time quantum walks (CTQWs) [86].

In this study, we present a rigorous framework for PT-symmetric CTQWs, extending the
formalism of Salimi and Sorouri [86] to ensure the initial quantum state vector is pre-
served. This is then broadened to the cases of multi-particle systems and interdependent
networks, before being utilised to measure vertex centrality in several example graphs, in
an extension of chapter 8. We show that our PT-symmetric centrality scheme compares
well to the classical PageRank algorithm [40], and in some cases even breaks the vertex
rank degeneracy characterized by the PageRank.

Similarly to the previously introduced CTQW centrality measure on undirected graphs,
but unlike previous quantum centrality measures [12, 13, 78], for a graph of N vertices
this scheme requires a Hilbert space of dimension N (compare this to the Szegedy quan-
tum walk based PageRank scheme, which requires a N2 dimensional Hilbert space), and
without the classical decoherence required for QSWs. Furthermore, we show that this
formalism is equivalent to considering an undirected, yet weighted, complete graph with
self-loops, providing a structural interpretation that may lead to simple experimental im-
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plementation.

This chapter is structured as follows. In Sec. 9.2, we detail the standard CTQW, and
briefly discuss the issues with extending this to directed graphs. A brief introduction
to the PT-symmetry and pseudo-Hermitian formalism is presented in Sec. 9.3, tailored
towards a quantum walker application. In Sec. 9.4, we introduce our framework for PT-
symmetric continuous-time quantum walks, and discuss how this can be interpreted as a
mapping to a weighted and undirected CTQW on a complete graph; the framework is then
extended to multi-particle systems and interdependent networks. A potential application,
network centrality, is presented in Sec. 9.5, and a statistical analysis performed to verify its
performance over an ensemble of randomly generated Erdős-Rényi and scale-free graphs.
Finally, our conclusions are provided in Sec. 9.6.

9.2 CTQWs on directed graphs

Consider an arbitrary undirected graph G(V,E), composed of vertices vj ∈ V and edges
(vi, vj) ∈ E, with corresponding adjacency matrix A. As we saw in Sec. 3.2.2, for a
continuous-time quantum walk on graph G, the Hamiltonian can either be given by the
graph Laplacian or the adjacency matrix, depending on the chosen convention. Further-
more, the graph Laplacian (Eq. 2.14) is constructed from the Hermitian adjacency matrix
and is Hermitian itself — as a result, no matter what we choose for the Hamiltonian, for a
CTQW on an undirected graph we are guaranteed an Hermitian Hamiltonian and therefore
unitary time-evolution. Hence, the norm of |ψ(t)⟩ is conserved under a continuous-time
quantum walk, as required.

Let’s now modify G so that it is a directed graph — that is, the edgeset (i, j) ∈ E is now
described by an ordered pair of vertices. As the adjacency matrix is no longer symmetric
(Aij ̸= Aji ∀i, j), the Hamiltonian H is no longer Hermitian, and thus we no longer have
unitary time evolution (UU † ̸= I). As a consequence, the total norm of the state vector,
previously corresponding to quantum walker probability as per the Born rule, is no longer
conserved,

⟨ψ(t)|ψ(t)⟩ =
⟨

ψ(0)
∣
∣
∣U †U |ψ(0)

⟩

̸= ⟨ψ(0)|ψ(0)⟩ , (9.1)

and may in fact grow or decay exponentially. Various modifications proposed for deal-
ing with this non-unitary behaviour (for example, Szegedy quantum walks [12, 13] and
open-quantum walks [13, 78]) require a significantly expanded Hilbert space, resulting in
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considerable resource overhead in physical implementation.

9.3 PT-symmetry

Whilst non-Hermitian Hamiltonians with complex eigenvalues result in exponentially
growing or decaying time-evolution, a wide variety of non-Hermitian Hamiltonians have
been found to possess real eigenvalue spectra. It was first noted by Bender and Boettcher
[81] that particular non-Hermitian Hamiltonians with real spectra exhibited PT-symmetry,
that is,

[H,PT ] = 0 (9.2)

where P : (x̂, p̂) → (−x̂,−p̂) is the parity transformation operator, and T : (x̂, p̂) → (x̂,−p̂)
the time reflection operator satisfying {T , i} = 0 (anti-linearity) [81, 184]. On the basis of
this observation, it was posited that invariance of a Hamiltonian under PT-transformations
provides a more general condition for the reality of eigenspectra than simply Hermiticity.
Immediately, research into PT-symmetric Hamiltonians found it was not so clear-cut; due
to the anti-linearity of the PT operator, a PT invariant Hamiltonian may still undergo
spontaneous symmetry breaking, leading to complex conjugate pairs of eigenvalues [185,
186]. Furthermore, although the existence of PT-symmetry is a sufficient condition for
real spectra, it is not necessary. This same property can be found in Hamiltonians not
exhibiting PT-symmetry — thus failing to account for the existence of all non-Hermitian
Hamiltonians with real eigenspectra.

An alternative framework was put forward by Mostafazadeh [82]. Denoted pseudo-
Hermiticity, it was shown that for all diagonalizable non-Hermitian Hamiltonians exhibit-
ing a real eigenspectra, there exists a positive semidefinite linear operator V = η†η such
that

H† = V HV −1. (9.3)

Additionally, it was proven that every PT-symmetric and diagonalizable Hamiltonian is
pseudo-Hermitian [82]. Coupled with the fact that V = I corresponds to the case of Hermi-
tian H, it was claimed that the pseudo-Hermiticity framework is the correct generalization
of Hermiticity to non-Hermitian Hamiltonians.

Subsequent research has further explored the connections and similarities between PT-
symmetry and pseudo-Hermiticity [83], with a flurry of papers released proclaiming the
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supremacy of one or the other, in the constant struggle to be seen as the more general of
the two. Of particular note, it has been shown that even though the pseudo-Hermitian
similarity transform is decidedly linear, pseudo-Hermiticity is a necessary and sufficient
condition for H to admit anti-linear symmetry [187–189]; i.e. the condition of pseudo-
Hermiticity is equivalent to the condition [H,Ω] = 0, where Ω is an anti-linear invertible
or involutory operator. On this basis, one can conclude that any time-reversal invariant
Hamiltonian belongs to the class of pseudo-Hermitian Hamiltonians, although the converse
is not true, as Ω is not always guaranteed to be T .

These two competing frameworks were finally reconciled by Bender and Mannheim [190],
who introduced the concept of generalized PT-symmetry; here, P represents any linear
operator (not just parity), and likewise T represents any anti-linear operator; the cho-
sen operators P and T need not commute. This generalized PT-symmetry condition is
necessary and sufficient for reality of the characteristic equation,

|H − λI| = 0, (9.4)

which results in real eigenvalues if PT and H are simultaneously diagonalizable, and
complex conjugate pairs if not1. Thus, a Hamiltonian with a real eigenspectra necessar-
ily displays (generalized) PT-symmetry, regardless of its diagonalizability — providing
the generalisation of Hermiticity so sought after in the original parity-time and pseudo-
Hermiticity frameworks. From hereon in, use of the term ‘PT-symmetry’ will refer to
generalized PT-symmetry.

Under this new, more general, framework, pseudo-Hermiticity exists as a subset of PT-
symmetry [84, 190], and has been expanded to include cases where H is non-diagonalizable
[189] — in such cases, it is no longer possible to satisfy the pseudo-Hermiticity similarity
transform with a linear operator V that is positive semidefinite — leading to spontaneous
symmetry breaking and complex conjugate pairs of eigenvalues. Moreover, Bender and
Mannheim [190] provides a criteria to determine whether a positive semi-definite V exists
for known PT-symmetric Hamiltonians2. In the following section, we will briefly outline
the pseudo-Hermitian operator framework, and provide a method for determining V = η†η

in cases where there is no spontaneous PT-symmetry breaking.

1This is an example of spontaneous PT-symmetry breaking. Even though a Hamiltonian may display
PT invariance (i.e. [H,PT ] = 0), the eigenstates of H, denoted |φn⟩, are not necessarily simultaneously
eigenstates of PT , due to the antilinearity of the PT operator. If this is the case, then the eigenspectrum
is composed of complex conjugate pairs of eigenvalues, and PT |φn⟩ provides the eigenstates of PT .

2If [C,PT ] = 0 ∀ C s.t. C2 = 1 and [C, H] = 0, then there exists a positive semidefinite linear operator
V = CP s.t. V HV −1 = H†
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Let H be a non-Hermitian matrix. It is pseudo-Hermitian (and thus PT-symmetric), if it
is related by a similarity transform to a Hermitian matrix H̃,

H̃ = ηHη−1, (9.5)

where η is frequently referred to in the literature as the pseudo-Hermitian operator or
metric. Without loss of generality, we assume η is an Hermitian operator (η = η†). Due
to the properties of a similarity transform, the eigenvalues of H will be the same as H̃
and necessarily real3. Taking the conjugate transpose of this result, we get

H̃† =
(
η−1
)†
H†η† = η−1H†η. (9.6)

Since H̃ is Hermitian, η−1H†η = ηHη−1, and thus a pseudo-Hermitian matrix must satisfy
the following similarity transform with its conjugate transpose:

H† = η2Hη−2. (9.7)

Rewriting this in the form η2H = H†η2, note that the right-hand side is simply the
Hermitian conjugate of the left-hand side. This suggests that the following redefinition of
the inner product,

⟨· · ·|· · ·⟩η :=
⟨
· · ·
∣
∣η2
∣
∣· · ·

⟩
, (9.8)

should be sufficient to conserve the systems probability. Indeed, by using the Schrödinger
equation, we see that this is in fact the case when working with pseudo-Hermitian opera-
tors:

d

dt
⟨ψ(t)|ψ(t)⟩η =

⟨
d

dt
ψ(t)

∣
∣
∣
∣
η2
∣
∣
∣
∣
ψ(t)

⟩

+

⟨

ψ(t)

∣
∣
∣
∣
η2
∣
∣
∣
∣

d

dt
ψ(t)

⟩

=
⟨

ψ(t)
∣
∣
∣iH†η2

∣
∣
∣ψ(t)

⟩

−
⟨
ψ(t)

∣
∣η2iH

∣
∣ψ(t)

⟩

= i
⟨

ψ(t)
∣
∣
∣

(

H†η2 − η2H
)∣
∣
∣ψ(t)

⟩

= 0.

As Hermitian matrices are always diagonalisable by their unitary eigenbasis (H̃ = PΛP †

where P−1 = P †), it follows from the similarity relation Eq. 9.5 that pseudo-Hermitian

3See Appendix A.1
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matrices must also be diagonalisable4:

H = η−1H̃η =
(
η−1P

)
Λ
(

P †η
)

=
(

P †η
)−1

Λ
(

P †η
)

.

Diagonalisable matrices must admit a biorthonormal eigenbasis5 [191],

H |ψj⟩ = λj |ψj⟩ , (9.9)

H† |ϕj⟩ = λj |ϕj⟩ , j = 1, 2, . . . , n , (9.10)

where ⟨ϕi|ψj⟩ = δij and λj ∈ R due to pseudo-Hermiticity. The completeness relation is
given by

I =
∑

j

|ψj⟩ ⟨ϕj | . (9.11)

By applying the pseudo-Hermiticity relation (Eq. 9.7) to the biorthonormal eigenvector
equations, we can deduce a method of constructing η. For instance,

H† |ϕj⟩ = η2Hη−2 |ϕj⟩ = λj |ϕj⟩ . (9.12)

Pre-multiplying both sides by η−2,

H
(
η−2 |ϕj⟩

)
= λj

(
η−2 |ϕj⟩

)
, (9.13)

it can be seen that

|ψj⟩ = η−2 |ϕj⟩ ⇔ |ϕj⟩ = η2 |ψj⟩ . (9.14)

Hence, η acts to transform the pseudo-Hermitian operator to a Hermitian operator, and
η2 acts to transform between the pseudo-Hermitian biorthonormal eigenbasis. It therefore
follows that the biorthonormal eigenbasis is the basis for the inner product space defined
by Eq. 9.8. Combining this result with the biorthonormal completeness relation, we arrive

4In fact, solving this equation allows you to find an expression for η in terms of the left eigenvectors
of H, ⟨φj |, and the eigenvectors of H̃,

∣

∣

∣
ψ̃j

⟩

: ηij =
∑

k

∣

∣

∣
ψ̃k

⟩

i
⟨φj |k

5See Appendix A.3 for a short explanation why.
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at a method of constructing the pseudo-Hermitian operator η6:

η =

√

η2
∑

j

|ψj⟩ ⟨ϕj | =
√
∑

j

|ϕj⟩ ⟨ϕj | (9.15)

and similarly

η−1 =

√
∑

j

|ψj⟩ ⟨ϕj | η−2 =

√
∑

j

|ψj⟩ ⟨ψj |. (9.16)

Since we have defined V = η2, it follows that

V =
∑

j

|ϕj⟩ ⟨ϕj | ⇔ V −1 =
∑

j

|ψj⟩ ⟨ψj | . (9.17)

Further, as V is positive semidefinite, we can be assured that the square root function
applied to the operators in Eq. 9.15 and Eq. 9.16 is well defined, albeit admitting multiple
solutions. For consistency, we will choose η to be the principal square root — the unique
positive semidefinite square root of V .

So, to briefly summarise, H is necessarily pseudo-Hermitian (and consequently PT-
symmetric) if it satisfies any one of the following equivalent conditions:

1. H is similar to a Hermitian matrix. There exists a Hermitian operator η and a
Hermitian matrix H̃ such that H̃ = ηHη−1.

2. H is similar to its own Hermitian conjugate. There exists a positive Hermitian
operator η such that H† = η2Hη−2.

3. H has real eigenvalues and is diagonalizable Note that a matrix is diagonalis-
able if and only if it has n linearly-independent eigenvectors7 [191].

9.4 Pseudo-Hermitian continuous-time quantum walks

First introduced by Salimi and Sorouri [86], pseudo-Hermitian continuous-time quantum
walks take advantage of the pseudo-Hermitian structure of various graphs in order to im-
plement directed quantum walks. In their study, the transition probability of the pseudo-

6Note that when H is Hermitian, the left and right eigenvectors are identical, and this equation reduces
to the trivial result η = η−1 = I.

7See Appendix A.2 for details regarding this linear algebra result
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Hermitian CTQW at vertex j at time t is defined to be

Pj(t) = |
⟨
j
∣
∣ηe−iHt|ψ(0)

⟩
|2. (9.18)

where H = L, with Lij = δij
∑

k Aik − Aij the directed graph Laplacian consisting of
in-degrees on the diagonal.

Note that this does not preserve the initial state;

Pj(0) = | ⟨j|η|ψ(0)⟩ |2 ̸= | ⟨j|ψ(0)⟩ |2. (9.19)

Thus, if |ψ(0)⟩ is chosen to be an equal superposition over all vertices, this will not
be reflected in the quantum walk at time t = 0, making this definition unsuitable for
algorithms such as centrality testing and graph isomorphism. Thus, rather than utilise
their implementation, we present an alternative formulation.

As our aim is to experimentally produce a pseudo-Hermitian CTQW for network analysis,
rather than redefine the Hilbert space inner-product as per Eq. 9.8, the inner product will
not be modified8. Instead, we have three options available:

A. No modification: assuming analytic continuation, implement the time-evolution op-
erator on directed graphs using the normal framework for the CTQW, U = e−iHt,
with no redefinition of the inner-product. This results in a non-unitary and non-norm
conserving time-evolution — and hence the state vector cannot be interpreted as a
probability amplitude — but the pseudo-Hermiticity of the system ensures the norm
will just oscillate with no exponential growth and decay.

B. Modify the time-evolution operator: the non-unitary time evolution operator
from (A) is instead modified as follows,

Ũ(t) = ηU(t)η−1 = ηe−iHtη−1, (9.20)

where Ũ(t) is unitary due to the pseudo-Hermitian similarity transform of the matrix
exponential. This reflects the underlying directional structure of the graph, whilst
allowing for probability conservation. Note that whilst the product is unitary, η and
U(t) are non-unitary matrices.

C. Modify the Hamiltonian: in this approach, the pseudo-Hermitian Hamiltonian is

8As an aside, Appendix A.4 details a proof showing that this redefined inner product preserves the
η-CTQW norm.
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modified via similarity transform to make it Hermitian,

Ũ(t) = e−iH̃t = e−iηHη−1t. (9.21)

This preserves the directional structure of the graph, whilst allowing us to use the
standard CTQW framework. Furthermore, it has the potential to be implemented
experimentally via quantum simulation.

Note that options (B) and (C) are equivalent — it is only their resulting experimental
implementations which would differ. From hereon, the modified CTQW walk outlined in
(B) and (C) will be referred to as the (pseudo-Hermitian) η-CTQW, to distinguish it from
the standard non-unitary CTQW in (A).

At this point, a subtlety should be pointed out; the research underpinning the papers
constituting this chapter (the pseudo-Hermitian CTQW centrality scheme) and the pre-
vious chapter (CTQW-based centrality measure and experimental implementation) were
undertaken concurrently in collaborations with experimental groups. As a result, deci-
sions made early in the research stage needed to be abided by, lest the theory deviated
from planned experimental set-ups. In the case of chapter 8, the decision was made to
choose H = A, due to the desire to initiate the CTQW in the equal superposition state
(a stationary state of the graph Laplacian). However, when establishing the groundwork
for the pseudo-Hermitian η-CTQW, the decision was instead made to choose H = L, the
graph Laplacian with in-degree on the diagonal, for several reasons:

• When working with a PT-symmetric system, choosing to work with the graph Lapla-
cian feels natural from a physical perspective — the PT-symmetry literature is gen-
erally concerned with continuous-space Hamiltonians, and the graph Laplacian pro-
vides a discrete analogue to the kinetic energy/Laplacian operator.

• This choice for the Hamiltonian would keep our work consistent with that of Salimi
and Sorouri [86], even though we have modified their proposed framework.

• For the non-Hermitian directed graph Laplacian defined as in Eq. 2.14, the all ones
vector is no longer an eigenvector, and thus no longer an impedance to designing a
CTQW-based centrality measure.

For this thesis, modifying either chapter to ensure Hamiltonian consistency was considered,
either by utilizing the adjacency matrix in this chapter, or by letting H = L in the previous
chapter and altering the initial CTQW state to be proportional to the square root of total
vertex degree (|ψ(0)⟩ ∝

∑

j

√
dj |j⟩), as per Rossi et al. [150].
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Ultimately, however, as this thesis is primarily presented as a thesis by publication, it was
decided that it would be best to present each paper as published with minimal modification
for consistency of formatting, notation, and terminology. We now return to the subject at
hand, and provide an example of the η-CTQW framework applied to a 3-vertex directed
graph.

9.4.1 3-vertex directed graph

Consider the 3-vertex graph in Fig. 9.1(c). Its Hamiltonian is found by calculating the
graph Laplacian,

H =







1 −1 −1

−1 1 −1

0 0 2






. (9.22)

Whilst not Hermitian (H† ̸= H), the eigenvalues (λ = 0, 2, 2) are all real and the eigen-
vectors are linearly independent; thus H is PT-symmetric and pseudo-Hermitian.

Standard CTQW (non-probability conserving)

Solving the Schrödinger equation for the standard CTQW (Fig. 9.1(a)), we find that
although there is no exponential growth or decay of the walker’s total probability (due to
the pseudo-Hermiticity), nevertheless, the norm of the state vector oscillates and is not
conserved.

In order to experimentally implement this CTQW, we wish to decompose the time evo-
lution operator such that the time dependence is restricted to a single diagonal unitary
matrix. Diagonalising H yields the following decomposition:

U(t) =
1

2







1 −1 −1

1 0 1

0 1 0













1 0 0

0 e−2it 0

0 0 e−2it













1 1 1

0 0 2

−1 1 −1






. (9.23)

Note that whilst the diagonal matrix is unitary, the two outer matrices are non-unitary,
resulting in a non-unitary time evolution operator U(t).
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(a)

(b) (c)

Figure 9.1: Vertex norm over time for the (a) non-unitary CTQW and (b) pseudo-
Hermitian η-CTQW on the 3-vertex directed graph in (c). The walker is initially in
an equal superposition of vertex states |ψ(0)⟩ = 1√

3

∑

j |j⟩. Vertex 1 and 2 have equal
norm (blue, dashed), with a higher time-average than vertex 3 (red, dotted). The total
norm of the system is given by the black, solid line.
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η-CTQW (probability conserving)

By calculating the biorthonormal eigenbasis, we can derive the pseudo-Hermitian operator
η of the graph,

η =
1

6







3 + 2
√
2 −3 + 2

√
2

√
2

−3 + 2
√
2 3 + 2

√
2

√
2

√
2

√
2 5

√
2






. (9.24)

Thus, the modified time-evolution operator is given by Ũ(t) = ηe−iHtη−1 — see Fig. 9.1(b)
for how this affects the dynamics of the quantum walk.

In order to find a useful decomposition, we need to be able to diagonalise ηHη−1; i.e.

D = S†ηHη−1S. (9.25)

Once S is calculated, by similarity it can also be used to diagonalise Ũ(t). This results in
the following decomposition:

Ũ(t) = S







1 0 0

0 e−2it 0

0 0 e−2it






S† (9.26)

where

S =
1

3







2 − 3√
2

− 1√
2

2 3√
2

− 1√
2

1 0 2
√
2






. (9.27)

Note that, unlike the non-probability conserving case, here all three of the decomposed
matrices are unitary.

9.4.2 Alternative interpretation

To get an understanding of the transformation from the non-probability conserving CTQW
to the pseudo-Hermitian η-CTQW, let’s have a look at the pseudo-Hermitian Hamiltonian
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for the 3-vertex graph discussed above,

H̃ = ηHη−1 =
1

9







10 −8 −4

−8 10 −4

−4 −4 16






. (9.28)

Describing a discrete graph structure, the η-Hamiltonian H̃ is symmetric, yet contains
fractional quantities — we may interpret H̃ as the Laplacian of a weighted, undirected
complete graph with self-loops. (Note that this is just one valid interpretation, and is not
unique). In doing so, it is convenient to use a more rigorous definition of the Laplacian
more suited to weighted graphs.

The oriented incidence matrix M of an undirected weighted graph G(V,E,W ), with
vertex set V = {v1, v2, . . . , vN}, edge set E = {e1, e2, . . . , em}, and edge weights
W = {w1, w2, . . . , wm}, is the n×m matrix associated with a particular orientation of the
edges of G, and was defined earlier in Eq. 2.12. Recall that, given the oriented incidence
matrix of a weighted graph, we can compute the N × N weighted Laplacian using the
relationship

L =MWMT , (9.29)

where W is a diagonal matrix containing the weights {w(vi, vj)} associated with the edges
{(vi, vj)}. For a complete graph over N vertices with self-loops and arbitrary edge weight-
ing, it turns out we can compute the weighted Laplacian directly,

Lij =







∑N
k=1wik + 3wii, i = j

−wij , i ̸= j
(9.30)

where w(vi, vj) = w(vj , vi) and the size of the set W is |E| = 1
2N(N +1). Thus, if we have

an N×N pseudo-Hamiltonian H̃, then solving H̃ = Lij provides the edge weighting

w(vi, vj) =







1
4

∑N
k=1 H̃ik, i = j

−H̃ij , i ̸= j.
(9.31)

That is, we can interpret the η-CTQW of a directed N -vertex graph in terms of a stan-
dard CTQW on a undirected complete graph with self-loops, and edge weights given above.
The undirected edge weightings allows us to approximate the directed dynamics we re-
quire.
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For example, let’s return to the 3-vertex graph examined previously. Using the pseudo-
Hamiltonian of the graph (Eq. 9.28), we can find the edge weights W via Eq. 9.31. See
Fig. 9.2 for the result.

Figure 9.2: Performing an η-CTQW on the 3-vertex directed graph in Fig. 9.1(c) is equiv-
alent to performing a standard CTQW on the undirected edge-weighted graph shown
above.

9.4.3 Multi-particle η-CTQW

If we wish to extend the standard CTQW to simulate P distinguishable particles on
graph G, the Hamiltonian of the system is expanded to act on a NP Hilbert space, as
follows:

H(P ) = H1 ⊕H2 ⊕ · · · ⊕HP + Γ (9.32)

where Hj is the free-particle Hamiltonian of the jth particle on graph G, Γ represents a
potential interaction between the particles, and ⊕ is the tensor or Kronecker sum defined
by

An×n ⊕Bm×m = An×n ⊗ Im×m + In×n ⊗Bm×m. (9.33)

Note that the free particle Hamiltonians are identical (H1 = H2 = · · · = HP ), allowing
this to be rewritten as

H(P ) = H⊕P + Γ. (9.34)
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In the case of no-interaction (Γ = 0), then it is trivial to show that if H is pseudo-
Hermitian, then so is H(P ), with pseudo-Hermitian operator η(P ) given by

η(P ) = η ⊗ η ⊗ · · · ⊗ η
︸ ︷︷ ︸

P

= η⊗P , (9.35)

and η the pseudo-Hermitian operator of the single particle Hamiltonian H.

When Γ ̸= 0, then additional care must be taken — unlike Hermitian matrices, the pseudo-
Hermitian matrices are not closed under addition, so H(P ) is no longer guaranteed to be
pseudo-Hermitian (this can easily be shown by counter-example).

9.4.4 Interdependent networks

Aside from the Cartesian product of graphs discussed above, another method of combining
graph structures are interdependent networks. In the real-world, very few networks oper-
ate independently, instead interacting and depending on a myriad of other networks [192,
193] — examples include modelling cascading failures between power grids, communica-
tion networks, and physiological/biochemical systems. As such, being able to extend the
pseudo-Hermitian CTQW to model interdependent networks greatly expands the scope of
the framework. In this section, we will consider an interconnected network of two pseudo-
Hermitian graphs and determine the properties that must be satisfied for the resulting
network to have guaranteed pseudo-Hermiticity.

Let A1 and A2 refer to the adjacency matrices of two graphs, G1 and G2, respectively.
The resulting interdependent network Hamiltonian is constructed as follows:

A =

[

A1 B0

BT
0 A2

]

(9.36)

where B0 is the adjacency matrix representing the edges connecting the two sets of vertices
V (A1) and V (A2). The Hamiltonian of this graph, defined by Eq. 2.14, can then be written
as

H =

[

H1 −B0

−BT
0 H2

]

(9.37)
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where

(Hu)ij = (Hu)ij +
∑

k

(B0)ikδij , u ∈ {1, 2}, (9.38)

and H1 and H2 are the Hamiltonians of A1 and A2 respectively.

Theorem 9.1. The Hamiltonian of an interdependent network of two graphs A1 and A2,
with pseudo-Hermitian Hamiltonians H1 and H2 respectively, will itself exhibit pseudo-
Hermiticity if the inter-network connections B0 is pseudo-Hermitian and degree-regular,
and the commutation relations H1B0 = B0H2 and H2B

T
0 = BT

0 H1 are satisfied.

Proof. B0 is degree regular with degree c — thus

∑

k

(B0)ikδij = cδij ⇒ Hu = Hu + cI. (9.39)

If we decompose the Hamilton into the sum

H =

[

H1 0

0 H2

]

+

[

0 −B0

−BT
0 0

]

= A+B, (9.40)

we can now prove that the interdependent network Hamiltonian is always pseudo-
Hermitian if the two components A and B commute and are themselves pseudo-Hermitian.

Since H1 and H2 are pseudo-Hermitian, they are therefore diagonalisable by matrices Qu:

Λu = Q−1
u HuQu, (9.41)

where Λu are real diagonal matrices of eigenvalues. It follows that

Q−1
u HuQu = Q−1

u (Hu + cI)Qu = Λu + cI. (9.42)

That is, H1 and H2 are simultaneously diagonalisable and exhibit real eigenspectra —
satisfying the criteria for pseudo-Hermiticity. From here, it is trivial to show that A is
diagonalised as follows:

ΛA =

[

Λ1 + cI 0

0 Λ2 + cI

]

= Q−1
A AQA (9.43)



152 Chapter 9 CTQW centrality on directed graphs

where

QA =

[

Q1 0

0 Q2

]

(9.44)

and ΛA is real.

As B0 is also pseudo-Hermitian, therefore it is also diagonalisable with real eigenvalues;
ΛB0 = Q−1

B B0QB. Similarly to above, we can use this result to diagonalise the matrix B:

ΛB =

[

ΛB0 0

0 −ΛB0

]

= QT
BBQB (9.45)

where

QB =
1√
2

[

QB0 QB0

QB0 −QB0

]

(9.46)

and ΛB is real.

It follows from the above analysis that if H1 and H2 are pseudo-Hermitian, and the
interconnections adjacency matrix B0 is pseudo-Hermitian and degree regular, that the
matrices A and B are also pseudo-Hermitian.

To ensure that the sum A + B remains pseudo-Hermitian, we can make use of the well-
known property that commutating diagonalisable matrices are simultaneously diagonalis-
able [194]. This requires the additional constraint, [A,B] = 0, resulting in the following
two conditions that must be satisfied:

H1B0 = B0H2, (9.47a)

H2B
T
0 = BT

0 H1. (9.47b)

If these are both satisfied, then A and B must be simultaneously diagonalised by a matrix
S:

H = A+B = S(PAΛAP
T
A + PBΛBP

T
B )S−1, (9.48)

where PA and PB are permutation matrices. From here, we can see that the eigenvalues
of H are contained in the set of elements {λ1 ± λB0 + 1} ∪ {λ2 ± λB0 + 1} and thus are
necessarily real. Therefore, the interdependent network of pseudo-Hermitian graphs —
which commute with their interconnections — also exhibits pseudo-Hermiticity.
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Figure 9.3: A pseudo-Hermitian interconnected network composed of two 4-vertex pseudo-
Hermitian graphs (red and yellow respectively) connected via undirected circulant inter-
connections (gray, dashed).

An example of a pseudo-Hermitian interconnected network in which the two graph Hamil-
tonians commute with the interconnections is given in Fig. 9.3. Note that the above
theorem is not a necessary condition for interdependent network pseudo-Hermiticity —
examples can be constructed where [A,B] ̸= 0, yet A + B remains diagonalisable and
pseudo-Hermitian. Nevertheless, this results provides a useful method of constructing
interdependent networks with guaranteed pseudo-Hermiticity.

9.5 Centrality testing

In this section, we propose a quantum centrality measure based on the pseudo-Hermitian η-
CTQW, which has the advantage of a purely quantum propagation and smaller statespace
than both the Quantum PageRank and QSW, and extends the centrality measure of
chapter 8 to PT-symmetric directed graphs.

9.5.1 Proposed quantum scheme and examples

Proceeding as per Sec. 8.2, we propose the following measure for assigning a centrality
value to vertex j on a directed graph represented by the pseudo-Hermitian Hamiltonian
H:

vj = lim
T→∞

1

T

∫ T

0

∣
∣
∣
∣
∣
⟨j| e−iηHη−1t

(

1√
N

∑

k

|k⟩
)∣
∣
∣
∣
∣

2

dt. (9.49)
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Note that this method simply requires a Hilbert space of dimension N . This scheme will
then be applied to the 3-vertex graph discussed previously.

Firstly, consider the non-norm conserving standard CTQW walk in the previous section.
As the pseudo-Hermitian Hamiltonian preserves the graph eigenspectra, we expect the
resulting dynamics to reflect properties that can be classically extracted from the spectra,
such as vertex centrality. Thus, one potential way of extracting this information is simply
to calculate the time-average of the probability on each vertex, and normalise it by the
total probability time-average.

Solving the Schrödinger equation for the unmodified Hamiltonian evolving the initial state
|ψ(0)⟩ = 1√

3
(|1⟩+ |2⟩+ |3⟩), we get the exact solution

|ψ(t)⟩ = 1√
6

√

5− 3 cos(2t) (|1⟩+ |2⟩) + 1√
3
|3⟩ , (9.50)

where

⟨ψ(t)|ψ(t)⟩ = 2− cos(2t). (9.51)

The norm of the state vector has a time average over t = [0, π] (one period) of
∫ π

0
⟨ψ(t)|ψ(t)⟩ dt = 2π, (9.52)

therefore, calculating the time average of this result over t = [0, π]:

1

2π

∫ π

0
| ⟨j|ψ(t)⟩ |2dt = 5

12
δj1 +

5

12
δj2 +

1

6
δj3. (9.53)

That is, by this centrality measure, vertices 1 and 2 are ranked equal first, followed by
vertex 3.

Next, consider the probability conserving η-CTQW case, Ũ(t) = ηe−iHtη−1. As we have
an exact representation of η, we are also able to solve for

∣
∣
∣ψ̃(t)

⟩

exactly:

∣
∣
∣ψ̃(t)

⟩

=
1√
243

√

101− 20 cos(2t) (|1⟩+ |2⟩) + 1√
243

√

41 + 40 cos(2t) |3⟩ . (9.54)

Calculating the time average,

1

π

∫ π

0
|
⟨

j
∣
∣
∣ψ̃(t)

⟩

|2dt = 101

243
δj1 +

101

243
δj2 +

41

243
δj3. (9.55)



9.5 Centrality testing 155

Eigenvector PageRank CTQW η-CTQW
1 0.5 0.475 0.416667 0.415638
2 0.5 0.475 0.416667 0.415638
3 0 0.05 0.166667 0.168724

Table 9.1: Centrality ranking of the vertices of 3-vertex graph Fig. 9.1(c), using the
classical PageRank method, the non-norm conserving pseudo-Hermitian CTQW, and the
probability conserving pseudo-Hermitian CTQW (η-CTQW)

Eigenvector PageRank CTQW η-CTQW
1 0.292893 0.25 0.386364 0.339192
2 0.207107 0.25 0.113636 0.160808
3 0.292893 0.25 0.386364 0.339192
4 0.207107 0.25 0.113636 0.160808

Table 9.2: Centrality ranking of the 4 vertices of graph Fig. 9.4, using the classical PageR-
ank method, the non-probability conserving pseudo-Hermitian CTQW, and the probability
conserving pseudo-Hermitian CTQW (η-CTQW)

The numerical values of the CTQW and η-CTQW centrality rankings have been tabu-
lated in Tab. 9.1, alongside the classical PageRank (α = 0.85) and eigenvector centrality
rankings. Note that the two CTQW rankings strongly agree with the classical PageRank
and eigenvector rank. Furthermore, the numerical values of the two CTQW rankings only
differ by a maximum of about 1.23%, indicating that the pseudo-Hermitian similarity
transform preserves information regarding vertex centrality in this particular example. A
general statistical analysis will be carried out in the subsequent section.

Let’s now consider a 4-vertex pseudo-Hermitian directed graph, as shown in Fig. 9.4. Note
that this graph is composed of two sets of equivalent vertices; vertices 1 and 3 (in-degree

Figure 9.4: 4-vertex directed graph
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= 2 and out-degree = 1), and vertices 2 and 4 (in-degree = 1 and out-degree = 2). Like
the 3-vertex graph analysed previously, the CTQW probability can also be solved exactly,
and thus the same method is applied to determine the vertex centrality.

The results of the CTQW and η-CTQW centrality test can be seen in Tab. 9.2. In this
case, both CTQW formulations and the eigenvector centrality ranked vertices 1 and 3
above vertices 2 and 4. Intuitively, this is perhaps expected, as vertices 1 and 3 have a
greater in-degree and lower out-degree than vertices 2 and 4, resulting in walker probability
accumulating on these two vertices. Interestingly, the classical PageRank measure does not
distinguish between these two sets of vertices, as the limiting distribution of a (classical)
random walk on this graph results in a unitary distribution. The agreement of the CTQW-
based measures to the eigenvector centrality, as opposed to the PageRank, lends further
credence to the suggestion that the CTQW measures centrality via a similar process to
the eigenvector centrality.

As a final example, we briefly examined a pseudo-Hermitian interdependent network con-
sisting of a 4-vertex directed graph and a 3-vertex directed graph, connected via complete
interconnections (i.e. B0 = J). The graph and various centrality rankings of the vertices
are shown in Fig. 9.5 — it can be seen that the pseudo-Hermitian η-CTQW centrality
ranking strongly agrees with the classical PageRank and eigenvector results, with the only
disagreement involving the rankings of vertices 3 and 6, as well as 1 and 4 (both display
degeneracy in the classical measures). Of note, the η-CTQW (along with the PageRank
and eigenvector centrality) breaks many of the vertex rank degeneracies seen in the stan-
dard non-unitary CTQW; perhaps indicating that the pseudo-Hermitian CTQW — itself
a mapping of a directed graph to an undirected, yet weighted, complete graph — provides
a better overall picture of the vertex ranks. Interestingly, the η-CTQW is the only ranking
to break the top-ranked tie seen in the other measures, assigning slightly more importance
to vertex 3 compared to vertex 6.

Investigating the correlation of the η-CTQW centrality measure to various classical mea-
sures, we once again employ Vigna’s τ rank correlation coefficient (Def. 8.4), as described
in Sec. 8.3. The results of this analysis can be seen in Tab. 9.3. All compared central-
ities display very strong correlation (τ ≥ 0.8), with the exception of the CTQW and
η-CTQW, with a correlation value of τ = 0.761 (still indicative of a strong rank corre-
lation, 0.6 ≤ τ < 0.8)). This is most likely due to the degeneracy seen in the CTQW
ranking, which is completely broken in the η-CTQW; these resulting ties slightly lower
the τ value, even though they do not cause disagreeing rankings per se. Finally, note
that the η-CTQW achieves its highest correlation value with the eigenvector centrality at
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Figure 9.5: Left: Interdependent network, consisting of a directed 4-vertex graph (red)
connected to a directed 3-vertex graph (yellow) via complete interconnections (gray,
dashed). Right: Centrality ranking of the vertices, ordered from highest ranking to
lowest ranking vertex. Measures used include the classical PageRank (black, solid), the
eigenvector centrality (blue, dashed), the standard CTQW (red, dotted) and the pseudo-
Hermitian η-CTQW (green, dot-dashed).

PageRank Eigenvector CTQW η-CTQW
PageRank 1. 0.912 0.937 0.896

Eigenvector 0.912 1. 0.896 0.906
CTQW 0.937 0.896 1. 0.761

η-CTQW 0.896 0.906 0.761 1.

Table 9.3: Vigna’s τ rank correlation coefficient compared for various classical (PageRank
and eigenvector) and quantum (non-unitary CTQW and pseudo-Hermitian η-CTQW)
centrality measures applied to the 7-vertex interdependent network in Fig. 9.5.

τ = 0.906, edging out correlation with the PageRank at τ = 0.896, further suggesting that
the η-CTQW assigns vertex centrality values in a method similar to classical eigenvector
centrality.

In these three examples, we have seen that the pseudo-Hermitian CTQW preserves the
vertex centrality information from the original directed graphs, resulting in a vertex rank
identical (barring broken degeneracy) to the classical PageRank. Whilst these relatively
small examples allow us to verify the results of the centrality ranking by intuitively and
qualitatively examining the graph structures by eye, this analysis is not sufficient to en-
sure that the centrality ranking proposed here generalises to other PT-symmetric graph
structures. To do so, a statistical analysis featuring randomly generated directed graphs
is required.
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Figure 9.6: Left: Randomly generated pseudo-Hermitian Erdős-Rényi graph G(15, 0.3),
with bidirectional edges allowed. Right: Centrality ranking of the vertices, ordered from
most central to least central as per the classical PageRank (black). This is compared to
the non-unitary CTQW (blue, dotted) and pseudo-Hermitian η-CTQW (red, dashed).

9.5.2 Random directed networks

To investigate the reliability of the pseudo-Hermitian CTQW on directed graphs, a statis-
tical analysis will be undertaken using randomly generated directed networks, in a similar
fashion to Sec. 8.3. Again, we consider two classes of random networks — Erdős-Rényi
networks, and scale-free networks.

In order to produce a PT-symmetric directed graph satisfying the Erdős-Rényi degree dis-
tribution, we take two approaches. Firstly, we generate numerous directed Erdős-Rényi
graphs (with parameters N = 15, p = 0.3) using the Python software package NetworkX
[195], and selecting from these 300 which satisfy pseudo-Hermiticity. An example is pre-
sented in Fig. 9.6, alongside a plot of the PageRank, non-unitary CTQW, and η-CTQW
centrality measures for the pictured example. In this particular example, all three mea-
sures agree on the location of the top two ranked vertices, with slight discrepancies for the
remaining vertices. Note that, from here onward, the eigenvector centrality is no longer
included as a comparison, as we can no longer guarantee its performance — a majority of
the graphs in this and subsequent ensembles contain acyclic and non-strongly connected
components that result in an eigenvector centrality value of zero.

Our second approach to generating pseudo-Hermitian directed Erdős-Rényi networks was
motivated by computational constraints with using NetworkX, and a desire to generate
larger pseudo-Hermitian graphs in a slightly more systematic way. Here, we first create an
undirected graph of N vertices with edges given by Bernoulli distribution with probability
p. We then upper triangulize the resulting adjacency matrix, by setting everything below
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Figure 9.7: Left: Randomly generated directed pseudo-Hermitian Erdős-Rényi graph
G(25, 0.3), where every edge is directed. Right: Centrality ranking of the vertices, ordered
from most central to least central as per the classical PageRank (black).This is compared
to the non-unitary CTQW (blue, dotted) and pseudo-Hermitian η-CTQW (red, dashed).

the diagonal to zero; in effect, imbuing direction on every edge in a systematic fashion. By
restricting the adjacency matrix to be triangular, it is trivial to see that the Hamiltonian
will also be triangular — with eigenvalues given by the diagonal elements of H, the set of
vertex in-degrees:

λ = {deg−(vi) | i = 1, . . . , N} (9.56)

where deg−(vi) is a function returning the in-degree of vertex vi. As such, we ensure a
real eigenspectrum, and simply restrict our random graph generator to output graphs with
diagonalisable Hamiltonians in order to guarantee pseudo-Hermiticity.

An example of a randomly generated pseudo-Hermitian directed Erdős-Rényi graph using
this method is shown in Fig. 9.7, generated with parameters N = 25 and p = 0.3, alongside
the results of the PageRank and η-CTQW centrality measures. It can be seen that the
η-CTQW and the PageRank strongly agree on the relative vertex rankings — identically
ranking the top four most central vertices, and satisfying the same general trend thereafter.
This indicates that the η-CTQW continues to yield an admissible vertex centrality measure
for larger, randomly generated graphs than in the previous section.

To generate random pseudo-Hermitian scale-free graphs, we make use of the directed
Barabási-Albert algorithm: at each time-step, a vertex with m directed edges is introduced
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Figure 9.8: Left: Randomly generated 20 vertex pseudo-Hermitian graph, with scale-
free in-degree distribution where m = 4. The more highly connected ‘hubs’ (vertices
with higher in-degree) are labelled in red. Right: Centrality ranking of the vertices,
ordered from most central to least central as per the classical PageRank (black). This is
compared to the non-unitary CTQW (blue, dotted) and the pseudo-Hermitian η-CTQW
(red, dashed).

to the system, and preferentially attached to existing vertices with higher degrees (with
probability of being connected to vertex i given by pi = ki/

∑

j kj). This process continues
until we have a graph containing the required number of vertices. Note that the directed
Barabási-Albert algorithm only produces edges with a unidirectional flow of information
[97] — if chosen such that the in-degree distribution is scale-free, then the out-degree
distribution will be of the form δmk, and vice versa.

However, as a result, a fortunate side effect of the directed Barabási-Albert algorithm is
that if we choose all m edges introduced with each additional vertex to be inward-pointing
edges (resulting in deg−(vi) = m ∀i), then the graph is necessarily lower triangular,
leading to a Hamiltonian with real eigenspectrum as given by Eq. 9.56. Similarly, if we
choose all m edges introduced with each vertex to be outward-pointing edges (resulting in
deg+(vi) = m ∀i), the Hamiltonian will be upper-triangular and Eq. 9.56 continues to hold.
Thus, like the Erdős-Rényi case described previously, to ensure pseudo-Hermiticity we
simply ensure the resulting randomly generated scale-free Hamiltonian is diagonalizable.

Fig. 9.8 shows a pseudo-Hermitian directed graph constructed via the Barabási-Albert
algorithm with parameters N = 25, m = 4, such that the in-degree vertex distribution is
scale-free. By examining the classical PageRank and η-CTQW centrality measures, we see
that they provide identical rankings for all 20 vertices, correctly picking out and ordering
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Figure 9.9: Left: Randomly generated 100 vertex pseudo-Hermitian graph, with scale-free
out-degree distribution where m = 3. The top 10 vertices where network flow is likely to
accumulate are labelled in red. Right: Centrality ranking of the vertices, ordered from
most central to least central as per the classical PageRank (black). This is compared to
the non-unitary CTQW (blue, dotted) and the pseudo-Hermitian η-CTQW (red, dashed).

the four ‘hubs’ (marked in red) with larger in-degree. Meanwhile, in Fig. 9.9 we have
a pseudo-Hermitian directed graph constructed via the Barabási-Albert algorithm with
parameters N = 100, m = 3, such that the out-degree is scale-free, and constant in-degree
of 3. Again, the PageRank and η-CTQW display a high correlation, with the ranking
of the top four most central vertices identical. However, in this case a subtlety must be
addressed — the PageRank algorithm is known to correlate with in-degree [148, 196], as
is the η-CTQW scheme by construction of the Hamiltonian in Eq. 2.14. Hence, rather
than assigning higher measures to vertices that are out-degree ‘hubs’, both algorithms
are preferentially selecting top-ranked vertices based on in-degree distribution. These
correspond to the vertices at which the probability flow of a random walk is likely to
accumulate after significant time.

9.5.3 Statistical analysis

So far, we have considered particular Erdős-Rényi and scale-free randomly generated
graphs — to ensure that the pseudo-Hermitian CTQW centrality scheme remains valid
in general, it is pertinent to undertake a statistical analysis of an ensemble of random
graphs. Ensembles of 300 random Erdős-Rényi (N = 25, p = 0.3, bidirectional edges per-
mitted), 100 random Erdős-Rényi (N = 25, p = 0.3, bidirectional edges not permitted),
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100 random in-degree scale-free (N = 20, m = 3), and 100 random out-degree scale-free
(N = 40, m = 3) were generated, and the PageRank, non-unitary CTQW, and η-CTQW
vertex ranking determined for each graph. The mean and standard deviation of these cen-
tralities are plotted in Fig. 9.10 for each ensemble, with the η-CTQW compared to both
the non-unitary CTQW and classical PageRank. Furthermore, Vigna’s τ rank correlation
coefficient has been averaged across the ensemble, and is displayed on each plot.

Studying the results of Fig. 9.10, we may draw several conclusions. Firstly, the η-CTQW
continues to reflect the directed structure of the network, agreeing with the non-unitary
CTQW across all ensembles on the top 5 ranked vertices. This agreement is similarly
reflected in Vigna’s τ correlation coefficient, with τ ≥∼ 0.6 for every ensemble — with
lower values perhaps due to small discrepancies for lower ranked vertices.

Still, this statistical analysis has its drawbacks. The shaded areas, representing one stan-
dard deviation from the mean centrality values, indicate general ranking agreement across
an ensemble only when narrow enough and with a steep enough gradient such that each
consecutive point, when moved upward/downward by one standard deviation, does not
cause a swap in ranking (e.g. Fig. 9.10(c)). Further, the converse is not true — a large
standard deviation does not imply a lack of agreement in ranking. In fact, two centrality
measures could produce the exact same ranking across an entire ensemble, yet one mea-
sure might simply have a greater variance in the values it assigns to the vertices. Finally,
we note as in Sec. 8.3.2 that the Jaccard measure of set similarity [162] provides a better
understanding of how frequently two centrality measures agree on the k top-most ranked
vertices, compared to Vigna’s τ , which is better utilized as a correlation measure.

Thus, we undertake our analysis in a similar manner to that undertaken previously when
considering undirected graphs. Firstly, for each graph, unordered sets containing the n
most central vertices according to each measure were compared — the fraction of match-
ing vertices providing a quantitative value for the agreement between the two measures.
Finally, these were averaged over the entire ensemble, providing a general measure of the
agreement between the PageRank and the η-CTQW, with uncertainty approximated by
calculating the Agresti-Coull 95% confidence interval [163].

The results of the statistical analysis are presented in Fig. 9.11. When considering just the
most central vertex, the PageRank and η-CTQW are in excellent agreement in the case
of the unidirectional Erdős-Rényi and scale-free ensembles, ranging from 95% to 100%
agreement. As the number of vertices compared increases, there is a small decrease in the
Jaccard set similarity, with all three ensembles of random graphs exhibiting agreement
factors in the range of 90% for the top two and three most central vertices. By the time



9.5 Centrality testing 163

·
· · · ·

· · · · ·
1 2 5 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Vertex (sorted by CTQW)

C
e
n
tr
a
lit
y
m
e
a
s
u
re

Vigna's tau:τ = 0.596 ± 0.187

· · · · ·· · · · ·
1 2 5 10

0.00

0.05

0.10

0.15

0.20

Vertex (sorted by PageRank)

C
e
n
tr
a
lit
y
m
e
a
s
u
re

Vigna's tau:τ = 0.377 ± 0.194

(a)

·
· · · ·

· · · · ·
1 2 5 10

0.0

0.1

0.2

0.3

0.4

0.5

Vertex (sorted by CTQW)

C
e
n
tr
a
lit
y
m
e
a
s
u
re

Vigna's tau:τ = 0.701 ±0.115 ·
· · · ·

·
· · · ·

1 2 5 10
0.00

0.05

0.10

0.15

0.20

Vertex (sorted by PageRank)

C
e
n
tr
a
lit
y
m
e
a
s
u
re Vigna's tau:τ = 0.758 ± 0.103

(b)

·

·
· ··

· · · ··1 2 5 10 20
0.0

0.2

0.4

0.6

Vertex (sorted by CTQW)

C
e
n
tr
a
lit
y
m
e
a
s
u
re

Vigna's tau:τ = 0.765 ± 0.025 ·
·
·
··

·
·
·
··

1 2 5 10 20
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Vertex (sorted by PageRank)

C
e
n
tr
a
lit
y
m
e
a
s
u
re

Vigna's tau:τ = 0.764 ± 0.025

(c)

·
· ···· · ···

1 5 10 50
0.00

0.05

0.10

0.15

0.20

0.25

Vertex (sorted by CTQW)

C
e
n
tr
a
lit
y
m
e
a
s
u
re

Vigna's tau:τ = 0.627 ± 0.100 · · ···
· · ···

1 5 10 50
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Vertex (sorted by PageRank)

C
e
n
tr
a
lit
y
m
e
a
s
u
re

Vigna's tau:τ = 0.716 ± 0.077

(d)

Figure 9.10: Centrality measure values for the η-CTQW (red, dashed), compared against
the non-unitary CTQW (blue), and PageRank (black), averaged over an ensemble of (a)
300 Erdős-Rényi graphs with bidirectional edges allowed, (b) 100 Erdős-Rényi graphs with
unidirectional edges, (c) 100 in-degree scale-free graphs, and (d) 100 out-degree scale-free
graphs. The shaded areas represent one standard deviation from the mean.
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Figure 9.11: Chart showing the Jaccard set similarity between the classical PageRank
algorithm and the η-CTQW centrality scheme for an ensemble of 300 directed Erdős-
Rényi graphs with bidirectional edges permitted, 100 directed Erdős-Rényi graphs with
unidirected edges, 100 directed in-degree scale-free graphs, and 100 directed out-degree
scale-free graphs. Each bar represents the unordered set containing the n most central
vertices as determined by the PageRank and η-CTQW scheme, whilst the vertical axis
gives the average fraction of matching vertices between these two sets. The error bars
indicate the Agresti-Coull 95% confidence interval.

we consider five vertices, scale-free networks retain an excellent agreement of 100% and
92%, whilst the unidirectional Erdős-Rényi ensemble exhibits a reasonably good agreement
factor of 78%. These trends can be partially explained by considering the behaviour of
the degree distributions:

• Erdős-Rényi networks, with a majority of vertices having degree close to the mean,
generally results in the highest ranked vertices having similar centrality measures.
As such, beyond the top three, small variations in the PageRank and η-CTQW
vertex ordering appear, leading to discrepancies.

• In-degree scale-free networks, with a small number of highly connected vertices,
should easily distinguish these vertices (the ‘hubs’) as most central to the network.
Beyond the hubs, the power law characteristic results in the majority of remain-
ing vertices having similar degree — leading to small variations in vertex ordering,
and thus the discrepancies observed between the PageRank and η-CTQW as more
vertices are compared.

The Erdős-Rényi ensemble with bidirectionality of edges permitted is the one outlier; in
Fig. 9.11, it can be seen that the Jaccard set similarity between the PageRank and η-
CTQW when considering just the top-most ranked vertex is only 13%. This could be due
to a multitude of factors:

• the PageRank might provide a significantly different rank to other classical measures



9.6 Conclusion 165

(such as the eigenvector centrality), which the η-CTQW is more inclined to agree
with;

• localisation of the η-CTQW may be occurring, due to either classical effects [144,
147] or quantum effects (Anderson localisation).

Whatever the reason, further investigation is required to determine the likely cause of the
discrepancy. Note that this is not a negative result per se — depending on the model
represented by the graph structure, the η-CTQW could be providing a better result of
marking influential and central nodes. However, this analysis is beyond the scope of this
study, and is reserved for future research. Nevertheless, the results presented here show
that the η-CTQW provides centrality rankings for several classes of randomly generated
graphs that are consistent with the classical PageRank algorithm.

9.6 Conclusion

In this study, we have introduced and expanded a framework for continuous-time quan-
tum walks on directed graphs, by utilising PT-symmetry. In the case of interdependent
networks of directed graphs, a sufficient condition for ensuring PT-symmetry was detailed,
and the directed walk formalism was shown to be equivalent to simulating a continuous-
time quantum walker on an undirected, weighted, complete graph with self-loops. This
may potentially lead to easily-implementable experimental directed continuous-time quan-
tum walks.

Finally, we have introduced a quantum scheme for centrality testing on directed graphs, by
utilising PT-symmetric continuous-time quantum walks — unlike other directed quantum-
walk based centrality-measures, our method does not require expanding the Hilbert space
to ensure unitary behaviour. A statistical analysis was performed, confirming the CTQW
centrality measure proposed here is consistent with classical centrality measures for various
classes of randomly generated directed graphs.

Preliminary results on 4-vertex pseudo-Hermitian directed graphs have shown that the
CTQW centrality ranking distinguishes non-equivalent sets of vertices that the classical
PageRank cannot. This is likely due to the CTQW providing an eigenvector-like centrality
measure in the quantum regime; calculating the rank correlation coefficients supports this
interpretation. However, further work is required to fully understand the distinguishing
power of the pseudo-Hermitian CTQW centrality measure. Following on from this work,
we aim to utilise the PT-symmetric CTQW framework to model and simulate behviour in
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physical biochemical systems, such as electron or exciton transport. Future work will also
involve exploring methods of implementing the PT-symmetric CTQW centrality scheme
on physical systems.
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CHAPTER 10

Conclusion

Over the course of this thesis, we have explored various facets of the continuous-time quan-
tum walk — from definition to simulation, from application to physical implementation,
and even extensions to non-Hermitian systems — gaining new insights to the behaviour
and potential applications of continuous-time quantum walks. In this chapter, the results
obtained will be summarised, following by possible future work and final remarks.

In considering methods of efficient simulation of the CTQW on a classical computer, we
presented a distributed memory software framework pyCTQW, which allows the rapid
simulation of interacting multi-particle CTQW-based systems. With a backend writ-
ten using Fortran and a Python user interface, pyCTQW takes advantage of the speed
provided by Fortran, as well as the extensibility and rich user environment supplied by
Python. As a result, pyCTQW includes built-in visualisation and data analysis, and allows
automatic calculation of quantities such as particle entanglement. We also detailed vari-
ous numerical algorithms for implementing the matrix exponential numerically, including
Krylov subspace techniques, and the Chebyshev series expansion. Moreover, pyCTQW
has been designed explicitly for distributed memory computation, taking advantage of
parallel speedup in its computations — when propagating a quantum walk via the Cheby-
shev series expansion, pyCTQW outperforms all other existing numerical libraries for
large graphs, and is approximately one order of magnitude faster than similar implemen-
tations utilizing the Krylov algorithm. Finally, we presented an algorithm for mapping a
multi-fermion CTQW on a graph to a single particle walk on a reduced-vertex weighted
graph; allowing the CTQW to be propagated with a significant speedup and reduction in
classical computational resources. Mathematica functions are provided to implement this
algorithm, and a numerical analysis of the time complexity is performed.

We then proceeded to evaluate potential algorithmic applications of continuous-time quan-
tum walks — focusing on network theory algorithms that may benefit from the ability of
the quantum walker to sample graph structure quadratically faster than its classical ana-
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logue. We began by considering the graph isomorphism problem, which has motivated
the creation of numerous quantum walk-based algorithms in an attempt to efficiently dis-
tinguish all classes of non-isomorphic graphs. It is well established that that the single
particle quantum walk cannot distinguish non-isomorphic pairs of SRGs with the same
family parameters, and the same has been proven true of the multi-particle non-interacting
CTQW. In this study, we proved using the Bose-Mesner algebra that single-particle per-
turbed CTQWs are unable to distinguish non-isomorphic SRGs with family parameters
(16,6,2,2), unlike the single-particle perturbed DTQW. Thus, we have shown that perturb-
ing the CTQW does not afford it any greater distinguishing power, and conclude that the
DTQW is more powerful than CTQWs for distinguishing non-isomorphic graphs.

We then investigated applications of the CTQW to network centrality, and proposed a
CTQW-based centrality algorithm. Performing an extensive statistical analysis of the pro-
posed algorithm over various ensembles of random graphs, it was shown that the CTQW
centrality demonstrates strong correlation with classical centrality measures such as the
eigenvector centrality (correlation coefficient τ ≈ 0.8 − 0.9) and the PageRank (corre-
lation coefficient τ ≈ 0.7 − 0.8). Furthermore, the CTQW-based measure agrees with
the eigenvector centrality on the location of the most central node approximately 95%

of the time, leading us to conjecture that the CTQW centrality algorithm provides an
analogue to the eigenvector centrality in the quantum realm — this is supported by tak-
ing the power series of the time-evolution operator, and comparing it to a well-known
matrix power expansion of the eigenvector centrality. This study also reports the first
successful physical implementation of a quantum centrality algorithm on a 4-vertex star
graph. Implemented via linear optics, the unitary time-evolution operator of the walker is
decomposed into multiple unitary operators on a two dimensional subspace, and realised
by operating on the polarisation and spacial modes of single photons. This is aided by the
fact that the CTQW centrality measure only requires an N -dimensional Hilbert space,
compared to previously proposed quantum algorithms, which require an N2 dimensional
space or muting the quantum behaviour via decoherence.

The last major study is concerned with modifying the proposed CTQW centrality measure
to allow for centrality analysis on directed networks, as the CTQW remains hitherto un-
defined and non-unitary on non-Hermitian graph structures. To do so, we have introduced
a generalisation of the CTQW, the pseudo-Hermitian η-CTQW, which utilises the frame-
work of PT-symmetry to ensure unitary time-evolution is preserved on PT-symmetric
directed graphs. Expanding the results to directed interdependent network, a sufficient
condition for ensuring PT-symmetry was detailed, and the pseudo-Hermitian CTQW for-
malism was shown to be equivalent to simulating the CTQW on a directed graph via an
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undirected, edge-weighted graph. Finally, we extend our CTQW centrality measure to
PT-symmetric directed graphs, and show that the η-CTQW centrality measure provides
an eigenvector-like centrality measure for the quantum regime; this is hypothesized to be
due to the spectra-preserving property of the pseudo-Hermitian similarity transform. A
statistical analysis over an ensemble of random graphs was then performed, confirming
that the η-CTQW centrality measure proposed here remains consistent with the results
of classical centrality measures, for various classes of randomly generated directed graphs
— in the case of scale-free directed graphs, the η-CTQW measure agrees with the clas-
sical PageRank approximately 95% of the time, although showing less agreement when
considering Erdős-Rényi graphs with allowed bidrectionality of edges. Furthermore, the
η-CTQW centrality measure improves on the eigenvector centrality measure by providing
meaningful results on directed graphs which are not accessible to the classical eigenvector
centrality.

Quantum walks remain a fundamental tool, building off decades of study into random walk
modelling and quantum computation to link numerous interdisciplinary fields of study,
including quantum information theory, network analysis, and quantum dynamical mod-
elling. The work presented as part of this thesis attempts to significantly improve our abil-
ity to numerically simulate and analyse such systems, whilst providing insight into various
possible network theory applications. Nevertheless, many questions remained unanswered.
It is currently unknown whether multi-particle quantum walks with or without interactions
will solve the graph isomorphism problem — whilst suspected to be unlikely, this deserves
further study. It is also interesting to ask, aside from network centrality, what other graph
and network properties — such as robustness, percolation, density, and similarity — may
be calculated via quantum walks, leading to future quantum algorithms.

The pseudo-Hermitian CTQW framework, meanwhile, may provide methods of modelling
and simulating behaviour of physical biochemical systems, such as electron or exciton
transport, and should be examined closely. Future work will also consider the ability to
determine, based simply on graphical properties, whether particular directed graphs satisfy
PT-symmetry, and define classes of directed graphs sharing the property of PT-symmetry.
Furthermore, physical implementation of the pseudo-Hermitian CTQW centrality scheme
will be explored. Finally, future versions of pyCTQW will aim to further increase the effi-
ciency of CTQW numerical simulation, whilst including features such as quantum stochas-
tic walks via superoperators, efficient simulation of fermionic and bosonic multi-particle
quantum walks, and the ability to efficiently simulate in parallel large ensembles of random
graphs, for example for quantum percolation and centrality analysis.
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In a broader sense, quantum walks are expected to play an important role in quantum
information theory going forward, as they lie at the intersection between rapid advances
in quantum computation and the modelling of both classical and quantum dynamical
systems. Examples include network theory, where entangled communication networks and
quantum network correlations are revolutionising how we characterise network structure
and information flow; biochemistry, where chemical reactions, biological evolution, and
coherent energy transport are being modelled by quantum walk-based models more suited
to their underlying quantum behaviour; and computer science, where quantum machine
learning, pattern matching, and quantum walk-based optimisation are expected to provide
breakthrough advances. Considering the powerful algorithmic groundwork laid by classical
random walks in the century since their conception, we have yet to scratch the surface of
what quantum walks are capable of.
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APPENDIX A

Linear algebra

In this appendix, we provide proofs for a couple of well-established linear algebra theorems
referenced in Sec. 9.3 and Sec. 9.4.

A.1 Similar matrices have the same eigenvalues

Theorem A.1. If there exists a non-singular matrix S such that

A = SBS−1, (A.1)

then A and B are similar matrices and share the same eigenvalues.

Proof. Let B satisfy the eigenvalue equation

Bxj = λjxj. (A.2)

Pre-multiplying the eigenvalue equation by S,

⇒ SBxj = λjSxj

⇒
(
SBS−1

)
Sxj = λjSxj

⇒ A (Sxj) = λj (Sxj) , (A.3)

it can be seen that A has eigenvalues λj with corresponding eigenvectors Sxj .
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A.2 An n× n matrix is diagonalizable iff it has n linearly independent

eigenvectors

Theorem A.2. A ∈ C
n×n is diagonalizable, that is, there exists a non-singular column

matrix P and diagonal matrix Λ = diag(λ1, λ2, . . . , λn) such that

A = PΛP−1, (A.4)

if and only if A has n linearly independent eigenvectors.

Proof. Assume A has n eigenvectors, |v1⟩ , |v2⟩ , . . . , |vn⟩, satisifying the eigenvalue equa-
tion

A |vj⟩ = λj |vj⟩ ⇔ (A |vj⟩)i = λj |vj⟩i . (A.5)

Next, construct the matrix P = [|v1⟩ |v2⟩ · · · |vn⟩], consisting of the eigenvectors along the
columns, and the diagonal matrix Λ = diag(λ1, λ2, . . . , λn).

Now, expanding the matrix product PΛ using summation notation,

(PΛ)ij =
∑

k

PikΛkj =
∑

k

|vk⟩i λkδkj

=
∑

k

∑

m

Aim |vk⟩m δkj

=
∑

m

Aim |vj⟩m

= (AP )ij .

Now, P is non-singular if and only if the columns of P are linearly independent (rank(P ) =
n); this corresponds to the n eigenvectors of A being linearly independent. If this condition
is satisfied, then

PΛ = AP ⇒ Λ = P−1AP (A.6)

and thus A is diagonalisable.
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A.3 All diagonalisable matrices have a biorthonormal eigenbasis

Theorem A.3. Suppose A ∈ C
n×n is a diagonalizable matrix, that is, there ex-

ists a non-singular column matrix P = [|ψ1⟩ |ψ2⟩ · · · |ψn⟩] and diagonal matrix Λ =

diag(λ1, λ2, . . . , λn) such that

A = PΛP−1. (A.7)

A then has a complete set of biorthonormal eigenvectors {|ψj⟩ , |ϕj⟩} defined by

A |ψj⟩ = λj |ψj⟩ , (A.8)

⟨ϕj |A = ⟨ϕj |λj ⇔ A† |ϕj⟩ = λ∗j |ϕj⟩ , (A.9)

where λn denote the eigenvalues and j = 1, 2, . . . , n. The eigenvectors satisfy the orthonor-
mality relation,

⟨ϕi|ψj⟩ = δij , (A.10)

and are complete over C
n×n,

I =
∑

i

|ψi⟩ ⟨ϕi| . (A.11)

Proof. Post-multiply Eq. A.7 by P , giving

AP = PΛ. (A.12)

Writing this using summation notation,

⇒
∑

k

AikPkj =
∑

k

PikΛkj

⇒
∑

k

Aik |ψj⟩k =
∑

k

|ψk⟩i λjδjk

⇒
∑

k

Aik |ψj⟩k = λj |ψj⟩i , (A.13)

it can be seen that we recover the right eigenvector equation

A |ψj⟩ = λj |ψj⟩ , j = 1, 2, . . . , n. (A.14)
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To recover the left eigenvector equation, premultiply Eq. A.7 by the row matrix P−1 =

[⟨ϕ1| , ⟨ϕ2| , · · · , ⟨ϕn|], and proceed in a similar fashion:

P−1A = ΛP−1

⇒
∑

k

P−1
ik Akj =

∑

k

ΛikP
−1
kj

⇒
∑

k

⟨ϕi|k Akj =
∑

k

λiδik ⟨ϕk|j

⇒
∑

k

⟨ϕi|k Akj = ⟨ϕi|j λi. (A.15)

Taking the conjugate transpose of both sides, we recover the adjoint eigenvector equation:

A† |ϕj⟩ = λ∗j |ϕj⟩ , j = 1, 2, . . . , n. (A.16)

To show that the left and right eigenvectors are orthogonal, consider P−1P = I and recall
the construction of P and P−1:

⇒
∑

k

P−1
ik Pkj = δij

⇒
∑

k

⟨ϕi|k |ψj⟩k = δij

⇒ ⟨ϕi|ψj⟩ = δij . (A.17)

To show that the left and right eigenvectors form a complete basis, consider PP−1 = I:

⇒
∑

k

PikP
−1
kj = δij

⇒
∑

k

|ψk⟩i ⟨ϕk|j = δij

⇒
∑

k

|ψk⟩ ⟨ϕk| = I. (A.18)
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A.4 The redefined pseudo-Hermitian inner product preserves the

η-CTQW norm

Theorem A.4. The redefined inner product

⟨· · ·|· · ·⟩η :=
⟨
· · ·
∣
∣η2| · · ·

⟩
(A.19)

preserves the norm of a pseudo-Hermitian CTQW.

Proof. Let the quantum walk evolve from initial state |ψ(0)⟩ for t ≥ 0 seconds;

|ψ(t)⟩ = e−iHt |ψ(0)⟩ . (A.20)

Expanding out the inner product in terms of the pseudo-Hermitian biorthonormal eigen-
basis (I =

∑

n |ψn⟩ ⟨ϕn|):

⟨ψ(t)|ψ(t)⟩η =
⟨
ψ(t)

∣
∣η2|ψ(t)

⟩

=
∑

n

⟨
ψ(t)

∣
∣η2
∣
∣ψn

⟩
⟨ϕn|ψ(t)⟩

=
∑

n

⟨

ψ(0)
∣
∣
∣eiH

†tη2
∣
∣
∣ψn

⟩ ⟨
ϕn
∣
∣e−iHt

∣
∣ψ(0)

⟩

=
∑

n

⟨

ψ(0)
∣
∣
∣eiH

†t
∣
∣
∣ϕn

⟩ ⟨
ϕn
∣
∣e−iHt

∣
∣ψ(0)

⟩
, (A.21)

where we have made use of the fact that η2 |ψn⟩ = |ϕn⟩ on the last line. Substituting in
the eigenvalue equation ⟨ϕn|H = ⟨ϕn|λn (where λn ∈ R),

⟨ψ(t)|ψ(t)⟩η =
∑

n

eiλnte−iλnt ⟨ψ(0)|ϕn⟩ ⟨ϕn|ψ(0)⟩

=
∑

n

⟨ψ(0)|ϕn⟩ ⟨ϕn|ψ(0)⟩

= ⟨ψ(0)|
(
∑

n

|ϕn⟩ ⟨ϕn|
)

|ψ(0)⟩

=
⟨
ψ(0)

∣
∣η2|ψ(0)

⟩

= ⟨ψ(0)|ψ(0)⟩η . (A.22)

Thus, ⟨ψ(t)|ψ(t)⟩η = ⟨ψ(0)|ψ(0)⟩η for all t ≥ 0, and hence probability is conserved.



APPENDIX B

Wolfram Demonstration

In this appendix, we provide a copy of the Wolfram Demonstration entitled PT-symmetric
Quantum Walks and Centrality Testing on Directed Graphs, completed and submitted as
part of the study into CTQW-based network centrality on directed graphs. This demon-
stration provides an intuitive interactive visualisation of PT-symmetric CTQWs (and the
corresponding vertex centrality values) for an arbitrary drawn graph, and may be down-
loaded via the Wolfram Demonstrations Project website.
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PT-symmetric Quantum Walks and Centrality Testing on 
Directed Graphs 

 

This Demonstration lets you draw a graph using the mouse (or choose a premade graph from the drop-

down menu) and then view the continuous-time quantum walk (CTQW) probability distribution. If the 

graph drawn has direction, then the CTQW probability blows up to infinity. This is avoided, however, 

for directed graphs with PT-symmetry (pseudo-Hermiticity). You can also choose to view the vertex 

centrality measurement of the graph, comparing the classical PageRank algorithm, the time-averaged 

CTQW, and the pseudo-Hermitian CTQW. 

To draw the graph, click and drag to create vertices and edges, click to create disjoint vertices, and 

click an existing vertex to create a self-loop.  

Vertices can be deleted by right-clicking and moved by holding down the CTL/CMD key and dragging. 

To make a directed edge undirected, draw a new edge along it in the opposite direction. 

 

Contributed by: Josh Izaac 

After work by: Josh Izaac, Jingbo Wang, Paul C. Abbott, and Xiaosong Ma 

 



SNAPSHOTS 

  



 

 



DETAILS 

Snapshot 1: The CTQW of the directed six-vertex cycle graph is shown. As the graph is directed, the 

Hamiltonian is non-Hermitian, and it can be seen that probability is not conserved. 

Snapshot 2: This is the pseudo-Hermitian CTQW ( -CTQW) of the same graph; by pseudo-Hermiticity, 

we can define a similarity transform to allow the walker probability to be conserved. 

Snapshot 3: This shows the vertex centrality ranks of the graph using three different measures: (1) the 

classical PageRank; (2) the non-unitary CTQW; and (3) the unitary -CTQW. 

Snapshot 4: This is similar to snapshot 3, however this time plotted on a line plot, with the axis sorted 

from vertices with highest PageRank (left) to vertices with lowest PageRank (right). 

In a classical random walk, when a walker is on a vertex with possible edges to walk along, the walker 

flips an -sided coin to decide which of the edges to walk down. However, in a quantum walk, the 

walker utilizes quantum superposition to walk down all possible edges. This leads to markedly 

different properties to the classical walk, and the quantum walk is able to propagate through a graph 

quadratically faster than the classical walk [1]. In fact, the quantum walk has been shown to be a 

system of universal quantum computation—any quantum circuit can be reformulated as a quantum 

walk on a graph [2]. 

The continuous-time quantum walk on a graph is defined as follows. For a graph , composed of 

vertices and edges and with adjacency matrix , the Hamiltonian can be given by either 

or , depending on the convention preferred (this can be set in the 

Demonstration using the Hamiltonian radio buttons). Solving the Schrödinger equation, 

gives the formal solution , where is the initial state, and the state is given by the 

complex wavefunction . In this Demonstration, the initial state has been chosen to 

be an equal superposition of all vertices; . 

If the graph is directed, then the adjacency matrix and the Hamiltonian  become nonsymmetric 

and non-Hermitian. As a consequence, the time-evolution operator is no longer unitary (

), causing the probability of the walker over time to blow up to infinity. As such, the standard 

CTQW is unsuited to walks on directed graphs. This can be seen from the Demonstration by viewing 

plots of the CTQW for a directed graph, for example, the graph . 

One solution explored here comes in the form of PT-symmetry [3]. Graphs that exhibit PT-symmetry, 

while still non-Hermitian and non-unitary, will have real eigenvalues. This results in a total probability 

that oscillates with time—this can be seen by choosing an example of a PT-symmetric graph from the 

drop-down box in the Demonstration. In order to ensure the probability remains constant with time, 

we can utilize the "pseudo-Hermiticity" of these graphs by finding an operator such that , 

where is Hermitian yet retains information about the structure of the graph. This is known as a 

pseudo-Hermitian CTQW [4], or -CTQW for short, and can be viewed by clicking the "Pseudo-

Hermitian -CTQW" tab. 

Finally, we compare the vertex centrality ranking of the graph vertices using the CTQW, -CTQW, and 

the classical PageRank algorithm. For the CTQW and -CTQW, this is done simply by using the time-

average probability for each vertex. The PageRank algorithm was created by Google for ranking their 

search results; it finds the fixed points of the so-called Google matrix, defined by , 

where is the column normalized adjacency matrix, and is generally chosen to be 0.85. In this 

Demonstration, you can view the vertex rankings in a line plot or a bar chart, and reorder the plots 



based on each ranking algorithm. In the toolbar, there is also a slider allowing you to change the value 

of used in the PageRank algorithm. 
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We investigate the scattering properties of quantum walks by considering single and double position defects

on a one-dimensional line. This corresponds to introducing, at designated positions, delta potential defects for

continuous-time quantum walks and phase-defect Hadamard coins for discrete time quantum walks. The delta

potential defects can be readily considered as potential barriers in discrete position space, which affect the time

evolution of the system in a similar way as the quantum wave-packet dynamics in a continuous position space

governed by Schrödinger’s equation. Although there is no direct analogy of potential barriers in the theoretical

formulation of discrete time quantum walks, in this paper we show that the phase defects in the coin space can be

utilized to provide similar scattering effects. This study provides means of controlling the scattering properties

of quantum walks by introducing designated position-dependent defects.

DOI: 10.1103/PhysRevA.87.012314 PACS number(s): 03.67.Lx, 05.40.Fb, 05.45.Mt

I. INTRODUCTION

Quantum walks are the quantum analog to the classical

random walk, extended to take into account superposition,

interference, and quantum correlations. It provides a compre-

hensive framework to study quantum dynamics in discrete

and structured space. Compared to the classical random

walk, quantum walks exhibit markedly different behavior; for

instance, a quantum walk can propagate quadratically faster

than its classical counterpart, is a time-reversible process rather

than a memoryless Markov process, and results in a probability

distribution drastically different from the classically expected

Gaussian [1]. As with classical random walks, there are two

related but fundamentally different formulations of quantum

walks—the discrete-time quantum walk (DTQW) [2] and the

continuous-time quantum walk (CTQW) [3]. Due to their

unintuitive dynamical behavior, quantum walks have been

extensively explored over the past decade, which may provide

methods of modeling complex biological systems [4,5] or hold

the key to radical new quantum algorithms [1,6–11].

Disorder is unavoidable in most quantum systems. The

evolution of quantum walks in a discrete environment with

static and dynamic disorders have been studied both theoreti-

cally and experimentally, demonstrating a variety of interesting

dynamics such as ballistic and diffusive spreading [12–16],

as well as Anderson and bound-state localization [15–23].

In CTQW, disorder can be represented by position- or time-

dependent potential defects in the diagonal elements of the

transition matrix. The position dependence can be chosen

as a random distribution within a certain range [19] or as a

function distribution such as a Cauchy distribution [15], while

time dependence can also be either random or regular [15].

In DTQW, disorder is introduced through the coin operator;

the position-dependent coin provides static disorder, while the

time-dependent coin gives rise to dynamic disorder [13,23]. In

this paper, we study the scattering properties of quantum walks,

including reflection, trapping, and resonance transmission for

*zjli@sxu.edu.cn
†jingbo.wang@uwa.edu.au

both CTQW and DTQW with a wide range of defect settings.

In particular, we investigate the roles played by the potential

defects in CTQW and the phase defects in DTQW with respect

to the control of quantum walk behaviors. Furthermore, we

extend the work of previous studies (which were primarily

concerned with quantum walkers initially localized at a defect)

to consider an initially free quantum walk interacting with

multiple defects.

In what follows we present, in Sec. II, an introductory

overview of CTQW and DTQW, and describe the single and

double point-defect model. In Sec. III, we give the evolution

properties of QW’s for three initial cases: (1) the particle lies

at the node containing the defect (the “distinguished node”),

(2) the particle lies to the side of the defect, and (3) the

particle lies between two defects. In Sec. III D, we investigate

resonance transmission when two defects are present with

specific separation. Finally, Sec. IV contains our conclusions.

II. QUANTUM WALK POINT-DEFECT MODEL

A. Continuous-time quantum walk

The continuous-time quantum walk was first posited by

Farhi and Gutmann [3], motivated by a desire to establish

a general framework to study coherent transport in discrete

systems. The continuous-time quantum walk can be regarded

as a quantization of the corresponding classical continuous-

time random walk, with the system now evolving as per

the Schrödinger equation rather than the Markovian master

equation. As a result, classical probabilities are replaced by

quantum probability amplitudes.

To illustrate, consider a continuous-time random walk on

the discrete graph G(V,E), composed of unordered vertices

j ∈ V and edges ei = (j,k) ∈ E connecting two vertices j

and k. The transition rate matrix H is defined as

Hjk

=

⎧

⎪

⎨

⎪

⎩

−γjk for j �= k if node j is connected to node k,

0 for j �= k if node j is not connected to node k,

Sj for j = k,

(1)

012314-11050-2947/2013/87(1)/012314(9) ©2013 American Physical Society
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where γjk is the probability per unit time for making a

transition from node j to node k and for H to be conservative:

Sj =
N

∑

k = 1,k �= j

γjk. (2)

Classically, the state of the random walker is fully described by

the probability distribution vector P(t), with its time evolution

governed by the master equation

dP(t)

dt
= HP(t),

which has the formal solution P(t) = exp(−Ht)P(0).

Extending the above description to the quantum realm

involves replacing the real valued probability distribution

vector P(t) with a complex valued wave function |ψ(t)〉, and

adding the complex notation i to the evolution exponent; i.e.,

|ψ(t)〉 = exp(−iH t)|ψ(0)〉. (3)

The quantum transition matrix H , often referred to as the

system Hamiltonian, is required to be Hermitian and thus the

above time evolution is unitary—guaranteeing that the norm

of |ψ(t)〉 is conserved under CTQWs. The complex-valued

state vector |ψ(t)〉 =
∑

j aj (t)|j 〉, where aj (t) = 〈j |ψ(t)〉 ∈
C, represents the probability amplitude of the walker being

found at node |j 〉 at time t , with |aj (t)|2 = |〈j |ψ(t)〉|2 the

resulting probability.

For CTQWs on an infinite line, if each node is assumed

to be connected only to its neighboring nodes by a constant

transition rate γ = 1, the action of the corresponding Hamil-

tonian H0 on the state vector |ψ(t)〉 leads to the inner product

relationship

〈j |H0|ψ〉 = 2〈j |ψ〉 − 〈j + 1|ψ〉 − 〈j − 1|ψ〉. (4)

Note that this equation is identical to the first-order finite

difference approximation of the continuous-space operator

−∇2, which generates the time evolution of a free particle. In

an analogous fashion we can regard the discrete position-space

Hamiltonian H0 given in Eq. (4) as the generator of a free

CTQW. The significant difference in propagation behavior

between these two systems arises due to the use of a discrete

position space for the CTQW. It was shown by Manouchehri

and Wang [24] that the discreteness of position space in

Eq. (4) is a necessary condition for a CTQW to display its

characteristic propagation behavior, as opposed to continuous-

space wave-packet dispersion.

Symmetries that are present in continuous-space quantum

systems, for instance invariance under spatial translation for

free particles, can also be formulated for discrete space systems

such as the continuous-time quantum walk on an infinite line.

For instance, consider the discrete translational operator T̂n,

which acts on the set of orthonormal vertex states |j 〉 such that

T̂n|j 〉 = |j + n〉. This operator is unitary, and as such can be

written in the form T̂n = eik̂n, where k̂ is an Hermitian operator

and the generator of the translation. In cases where the state

of a quantum walker is invariant under spatial translation, the

Hermiticity of k̂ indicates that its eigenstates |k〉 =
∑

j eikj |j 〉
form a complete orthonormal basis, satisfying the eigenvalue

equation H0|k〉 = 2(1 − cos k)|k〉 for −π � k < π . These

eigenstates are useful when investigating resonance scattering

in defect containing CTQW systems, as they provide a method

of producing biased walks (since the initial state |k〉 has a

well-defined “momentum” of k) similar to the continuous-

space propagation of a plane wave. This allows its interaction

multiple barriers to be considered in an analogous fashion.

Continuous-time quantum walks in the presence of absorb-

ing barriers have previously been studied by Mülken et al. [25]

and Agliari et al. [26]. Alternatively, walks in the presence of

reflecting barriers (or defects) have been considered by Keating

et al. [19] (using a Cauchy distributed defect) and Childs

et al. [27] (a single defect), in the context of decoherence

and algorithmic speedup, respectively. In this paper, we will

be primarily concerned with implementing reflecting barriers,

and characterizing the resulting behavior of quantum walking

systems.

Keeping with the case of the CTQW on an infinite line, let

us assume that there are defects present at particular nodes |m〉.
This breaks the translational symmetry, and as such the walker

can no longer be considered free. To account for these defects,

the Hamiltonian matrix is modified in the following way:

H = H0 + Ŵ, Ŵ =
∑

m

Ŵm|m〉〈m|, (5)

where we have introduced a real diagonal matrix Ŵ, with

positive elements corresponding to defects or reflecting

barriers placed at vertex |m〉 with strength Ŵm. The probability

of the walker being found at node |j 〉 at time t can thus be

given by |〈j |e−iH t |ψ(0)〉|2. In subsequent sections, we will

consider reflecting barriers placed at specific nodes in order

to investigate the scattering properties of quantum walks.

B. Discrete-time quantum walk

The discrete-time quantum walk also has a very similar

mathematical formalism to that of its classical counterpart, and

is implemented by a concatenation of coin operations and suc-

cessive position shifts. It takes place in the Hilbert spaceHP ⊗
HC where, in the case of an infinite line, the position Hilbert

space HP is spanned by the position basis states |i ∈ Z〉 and

the “coin” Hilbert space HC is spanned by the coin basis states

|c = 0,1〉. A single step time evolution operator is given by

U =

(

∑

c

(|c〉〈c| ⊗ Sc)

)(

C ⊗
∑

i

|i〉〈i|

)

, (6)

where C is the coin operator, and Sc is a conditional translation

operator defined as Sc =
∑

i |i + (−1)c+1〉〈i|. As with the

continuous-time case, the system is described via the state

vector |ψ(t)〉 =
∑

i

∑

c fic(t)|i〉 ⊗ |c〉, with its evolution

from initial state |ψ(0)〉 for discrete time t calculated via

repeated use of the unitary operator given by Eq. (6), i.e.,

|ψ(t)〉 = U t |ψ(0)〉.

The major point of difference between the classical and

quantum implementation of the discrete time walk is the use

of a quantum, rather than classical, coin operator—with the

result that the walker now has the possibility of being in a

superposition of possible coin states |c〉 at every step. It should

be noted that the resulting coherence is a source of most of the

counterintuitive behavior of the DTQW; if the coin operator is

applied randomly, or if we were to measure the coin state after

012314-2
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each time step, the superposition is destroyed and we recover

the classical random walk.

When working with DTQWs, the coin degrees of freedom

offer a wide range of control over the evolution of the walk.

Of particular interest are position-dependent coin operators,

as they act to break down the translational symmetry of the

unitary operation in Eq. (6)—thus modification of the DTQW

coin operation on a small number of nodes may be used to

create an analogous system to the node-defect Hamiltonian

in CTQW. It has been shown that the full range of possible

DTQW evolutions obtained by different coin operators can

also be obtained by fixing the coin operator, and choosing

a range of different initial coin states [28]. Without loss of

generality, one often restricts the coin operator to one with

real coefficients; in the case of an unbiased quantum walk on

a line, this leaves the Hadamard coin

CH =
1

√
2

[

1 1

1 −1

]

as the only possible choice. Taking this into account, the

unitary operation in Eq. (6) is modified as follows:

U =

(

∑

c

(|c〉〈c| ⊗ Sc)

)(

∑

j

Cj (⊗|j 〉〈j |

)

, (7)

where the phase-defect Hadamard coin Cj = eiφj CH is applied

at designated “defect nodes,”and Cj = CH otherwise.

III. LOCALIZATION, TRAPPING, AND REFLECTION

Localization and trapping by a single phase defect in

discrete-time quantum walks have been studied in the litera-

ture, especially with the quantum walker starting at the defect

position [13,23,29]. In this section we analyze the influence

of single and double defects on the dynamical evolution of

both discrete- and continuous-time quantum walks, with the

quantum walker initially located at the origin but the defects

at various positions. In particular, we investigate the physical

interpretation of these defects in both CTQW and DTQW.

A. Single defect—localization

Let us first consider the case where a defect is present at

the origin |j = 0〉 of an infinite line. Figure 1 shows that both

CTQW and DTQW have similar probability distributions, with

sharp peaks present at the origin. For comparison, the dashed

line depicts the probability distribution of the free quantum

walk without the defect. Further investigation shows that the

amplitude of the peak, or alternatively the slope of standard

deviation with time, is dependent on the strength of the defect

potential for the CTQW [Fig. 2(a)]; the stronger the defect

potential, the larger the probability amplitude at the origin.

The peak in the probability distribution can be understood

as bound-state localization, occurring due to the presence of

the defect which generically generates a bound state in its

surrounding [22,23]. The peak in the probability distribution

is the fingerprint of this bound state [30]. Besides this large

peak at the origin, two smaller peaks are also observed at

the same locations as the ballistic peaks of the free quantum

walk—inferring that the linear relationship between the states’

FIG. 1. Probability distribution at time t = 30 for (a) CTQW with

a defect potential Ŵ0 = 5; (b) DTQW with a phase defect φ0 = π

and initial state (|1〉 + i|0〉)/
√

2. The dashed line corresponds to a

quantum walk without a defect.

standard deviation with time, σ ∼ t , remains unchanged in

spite of a drastically reduced amplitude for the two smaller

peaks.

The similarity of the DTQW and CTQW probability

distributions in Fig. 1 suggests the possibility of manipulating

the DTQW coin degrees of freedom, in an attempt to reproduce

the CTQW physical effects attributed to the point defects. As

discussed in Sec. II B, a wide range of possible evolutions

of the DTQW can be produced by either varying the initial

state (and using a fixed coin operator), or by varying the coin

operator. Figure 2(b) displays the probability at the origin of

the DTQW as a function of φ in the phase-defect Hadamard

coin, for the initial coin states (|1〉 + i|0〉)/
√

2, |1〉, and |0〉. It

can be seen that the amplitude of the sharp peak depends

strongly on the initial coin state of the system as well as

the phase defect φ. For instance, using the initial coin state

(|1〉 + i|0〉)/
√

2, no localization is observed for any phase in

the domain φ ∈ (0,π/4), since its overlap with the stationary

bound state is close to zero. The probability at the origin

is symmetric about φ0 = 0 for initial coin state |0〉 and |1〉,
but not for initial state (|1〉 + i|0〉)/

√
2. Also note that, for a

given initial state, the phase defect φ appears to have the same

function as the defect potential Ŵ in CTQW; both act to change

the amplitude of the localization peak centered at the origin.

012314-3



Z. J. LI, J. A. IZAAC, AND J. B. WANG PHYSICAL REVIEW A 87, 012314 (2013)

a

15 10 5 0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

Defect potential 0

P
ro

b
ab

il
it

y
at

o
ri

g
in

b

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

Defect Phase Φ0

P
ro

b
ab

il
it

y
at

o
ri

g
in

FIG. 2. Probability at the origin at time t = 30 as a function of

(a) the defect potential Ŵ0 for CTQW and (b) phase defect φ0 for

DTQW. In (b), the solid line corresponds to the initial coin state

(|1〉 + i|0〉)/
√

2, while the dashed line corresponds to the coin initial

state |1〉 or |0〉.

B. Single defect—reflection

Next, we discuss the case where the single point defect

is located away from where the quantum walk starts. As

an example, consider the quantum walk initially located at

the origin with one defect Ŵ15 = 5 on an infinite line. The

resulting probability distribution over the discrete position

space at time t = 30 is shown in Fig. 3(a). Some important

features to note: (1) it evolves symmetrically in both the left

and right direction, which is identical to a “free”quantum walk

prior to its interaction with the barrier; (2) upon interacting

with the barrier, it is largely reflected with a small probability

of transmission; (3) the transmitted component continues to

evolve ballistically as per the free quantum walk; (4) the larger

the defect potential, the weaker the transmitted amplitude,

as shown in Fig. 4(a); and (5) the reflected component

interferes with the original propagating component, resulting

in a complex interference pattern and asymmetric distribution

compared to the free quantum walker.

Figure 3(b) shows very similar propagation behavior in

the case of DTQW, now using a phase-defect Hadamard coin

φ15 = π and starting with initial state (|1〉 + i|0〉)/
√

2. In this

case, the transmission amplitude through the reflecting barrier

can be manipulated by altering the phase value φ15 as shown

in Fig. 4(b). It can be seen that the transmission amplitude is

symmetric about φ15 = 0 for initial coin state |0〉 or |1〉, but

not for initial state (|1〉 + i|0〉)/
√

2.

The above observations are very similar to the wave-packet

dynamics in continuous position space when potential barriers

FIG. 3. Probability distribution for (a) CTQW at time t = 30 with

a defect potential Ŵ15 = 5, and (b) DTQW after t = 80 steps with a

phase defect φ15 = π and initial coin state (|1〉 + i|0〉)/
√

2.

are applied. In CTQW, the delta potential defects can be readily

considered as potential barriers in discrete space, which bring

about similar behaviors. Although there is no direct analogy

of potential barriers in the theoretical formulation of DTQW,

here we show that the additional coin degree of freedom can

be utilized to provide similar scattering effects.

C. Double defects—trapping

Another scenario we can consider is to start the quantum

walker at the origin between two reflecting barriers at nodes

j = ±15 on an infinite line. The resulting probability dis-

tributions for both CTQW and DTQW are shown in Fig. 5.

Both Figs. 5(a) and 5(b) demonstrate similar behavior with

the probability distribution mostly confined between the two

barriers. Smaller group peaks are observed outside the barriers,

which are symmetric about the origin, and their amplitudes

depend on the strength of the defect potential Ŵj for CTQW

and the phase defect φj for DTQW. It is interesting to note that

the gap between the consecutively transmitted group peaks is

simply the distance between the two reflecting barriers, which

suggests that the walker is reflected each time it interacts with

a defect barrier and consequently bounces back and forth

in between. As shown in Fig. 6, the total probability of the

quantum walker trapped between the two barriers decreases

stepwise as the time increases, with almost constant step

time corresponding to the trapping time before significant
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FIG. 4. Transmission probability as a function of (a) the defect

potential Ŵ15 for CTQW after time t = 30 and (b) the phase defect φ

for DTQW after t = 80 steps. In (b) the solid line corresponds to the

coin initial state (|1〉 + i|0〉)/
√

2, whilst the dotted and dashed lines

correspond to the coin initial states |1〉 and |0〉, respectively.

transmission occurs. The steady emission of group peaks, as

shown in Fig. 5, may lead to potential applications such as

generating pulses with their magnitudes and time separation

controlled by altering the strength and position of the defect

barriers.

D. Double defects—resonance

In continuous position space, it has been well established

analytically that a quantum particle with energy E incident on

double rectangular, cosh, and delta barriers shows complete

transmission at particular values of E in the classically

forbidden region when E < V0 [31–34]. In this section, we

investigate similar resonance behaviors of CTQW in discrete

space, in particular on an infinite line with two delta barriers

of amplitude α and β placed at vertices |0〉 and |L〉. In this

case, the Hamiltonian matrix is

H =
∑

j

(2|j 〉〈j | − |j − 1〉〈j | − |j + 1〉〈j |)

+α|0〉〈0| + β|L〉〈L|. (8)

Let a momentum eigenstate |k〉 be incident on the barriers from

the left-hand side. The resulting time-independent scattered

state |ψs(k)〉 can then be written as [27]

|ψs(k)〉 =

⎧

⎪

⎨

⎪

⎩

|k〉 + r1(k)| − k〉, j < 0,

t1(k)|k〉 + r2(k)| − k〉, 0 � j < L,

t2(k)|k〉, L � j,

(9)

FIG. 5. Probability distribution for a walker initially localized at

origin between two barriers for (a) CTQW at time t = 30 with the

defect potentials Ŵ±15 = 5, and (b) DTQW after t = 80 steps with

phase defects φ±15 = π and initial state (|1〉 + i|0〉)/
√

2.

where t1(k) and t2(k) give the proportion of the momentum

eigenstate transmitted through barriers 1 and 2, respectively,

and r1(k), r2(k) the proportion reflected at each interaction.

Recall that, in Sec. II A, it was shown that the orthogonal basis

|k〉 diagonalizes the free Hamiltonian matrix H0. In the case

of double delta barriers, the set of states |ψs(k)〉, k ∈ [−π,π )

given in Eq. (9) diagonalizes the Hamiltonian H = H0 + Ŵ.

Outside the barrier region (i.e., j �= −1,0,L − 1,L), it can be

easily shown that

〈j |H |ψs(k)〉
〈j |ψs(k)〉

= 2(1 − cos k).

Inside the barrier region (i.e., j = −1,0,L − 1,L), the re-

lationship E(k) = 〈j |H |ψs(k)〉/〈j |ψs〉 = 2(1 − cos k) must

also hold, which leads to the following system of equations:

t1(k) + r2(k) − r1(k) = 1, (10a)

e2ik[r1(k) + t1(k)] + r2(k) + 1

eik[r2(k) + t1(k)]
− α = 2 cos k, (10b)

( − 1 + 2eik)e2ikLt1(k) − e2ik(L + 1)t2(k) − e3ik( − 2 + eik)r2(k)

ei(2kL + k)t1(k) + e3ikr2(k)

= 2(1 − cos k), (10c)

r2(k)e−2ik(L−1) + e2ikt2(k) + t1(k)

eikt2(k)
− β = 2 cos k. (10d)
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FIG. 6. Trapping probability as a function of time t for (a) CTQW

with defect potential Ŵ±15 = 5, and (b) DTQW with phase defects

φ±15 = π and initial state (|1〉 + i|0〉)/
√

2.

Equation (10) can be solved to give analytic solutions to

t1(k), t2(k), r1(k), and r2(k)—thus producing a set of states

|ψs(k)〉 which are eigenstates of H with eigenvalues E(k) =
2[1 − cos(k)]. The transmission coefficient T (k) = |t2(k)|2 of

a momentum eigenstate on an infinite line, incident on two

barriers of amplitude α and β, respectively, and separated by

distance L ∈ N0, is therefore found to be

T (k) =
[

1 +
csc2 k

4
(α2 + β2 + 2αβ cos 2kL)

+
csc3 k

4
αβ(α + β) sin 2kL +

csc4 k

4
α2β2 sin2 kL

]−1

.

(11)

We also note that a Green’s function approach involving

transmission and reflection coefficients has been applied to

study scattering quantum walks on general graphs, which were

shown to be unitarily equivalent to the discrete-time quantum

walks [35–38] with the possibility of future work extending

this framework to the continuous-time quantum walks. Never-

theless, the above analytical derivation is straightforward and

provides the transmission and reflection coefficients in simple

forms for quantum walks on the line.

The transmission coefficient is plotted in Fig. 7 over

0 � k � π and for various values of L, α, and β. Oscillating

behavior is clearly visible, with the frequency of oscillation

increasing rapidly as L increases. It is also observed that

when β = 0 and L = 0 (i.e., there is only a single barrier

of amplitude α) the resonance behavior vanishes—multiple

barriers are a necessary condition for CTQW resonance on

the infinite line. When α = 0 as well, then we are simply

observing transmission of a momentum eigenstate in the case

of no defects (H = H0) and T (k) = 1∀k.

By solving the Schrödinger equation with Hamiltonian

H = −∇2 + αδ(x) + βδ(x + L) in continuous space, it can

be shown [39,40] that the transmission coefficient is given by

T (k) =
[

1 +
α2β2

4k4
sin kL2 +

1

4k3
2αβ(α + β) sin 2kL

+
1

4k2
(α2 + β2 + 2αβ cos 2kL)

]−1

. (12)

The above equation is identical to Eq. (11) when taking the

limit csc k → 1/k (the first-order approximation of sin k). The

significance of this is twofold. First, with this transforma-

tion, the eigenvalue equation Ĥ |k〉 = 2(1 − cos k)|k〉 becomes

Ĥ |k〉 = k2|k〉, and we recover the energy of a plane wave

in continuous space. Second, this relationship highlights the

similarity of resonant behavior between quantum dynamical

systems and continuous-time quantum walks. The marked

differences between the two systems are a result of the finite

domain of k, or equivalently the discrete nature of the CTQW

position space.

Returning to discrete space, of particular interest is the case

β = |α|, where oscillating resonant behavior is now possible.

Solving for T (k) = 1 with β = |α| in Eq. (11), we find that

the distances between defects at which resonance occurs are

given by the set

L =

{

nπ/k + 2
k

tan−1
[

1
2

csc(k)(α +
√

α2 + 4 sin2 k)
]

, β = α,

nπ/k, β = −α,
(13)

where L,n ∈ N0. Resonant peaks are illustrated in Fig. 8 as a

function of barrier separation L, in the two cases α = β and

α = −β.

Special mention should be made of the case k = π/2,

corresponding to a CTQW momentum eigenstate with

the largest possible group velocity [∂E(k)/∂k = 2 sin k].

In this instance, the transmission oscillates between two

values for successive values of L. Note that when α =
β, there is never perfect transmission; the values oscillate

between T (π/2) = 1/(α2 + 1) and T (π/2) = 1/(1 + α4/4)

for even and odd L, respectively. However, when α = −β,

perfect transmission occurs for even L, with odd values

of L resulting in a reduced transmission of T (π/2) =
1/[1 + α2(α2 + 4)/4].
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FIG. 7. (Color online) Transmission coefficient vs momentum of a CTQW momentum eigenstate incident on two defects of amplitude α

and β, separated by distances L = 0 (solid, blue), L = 1 (dashed, red), L = 2 (dotted, black), and L = 5 (dot-dashed, green). The results are

shown for the cases (a) α = 1,β = 0 (i.e., a single defect), (b) α = 1,β = −1, (c) α = β = 1, and (d) α �= |β|, α,β �= 0.

Next consider the boundaries k → 0 and k → π . In this

case, if α = −β, transmission occurs only when the two

defects overlap and therefore “cancel”each other out, resulting

in a free CTQW. When α = β, we have the following: if α > 0,

then limk→π T (k) = δα,2/L and limk→0 T (k) = 0; if α < 0,

then limk→0 T (k) = δα,−2/L and limk→π T (k) = 0.

For other values of k, various forms of “enveloping” in the

transmission occur as shown in Fig. 8 for the case k = 1.45.

As the CTQW momentum eigenstates |k〉 form a com-

plete set for the discrete position space, any arbitrary ini-

tial state can be decomposed into momenta components—

opening the possibility for artificially placed multiple defects
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FIG. 8. (Color online) Transmission coefficient T (k) as a function of barrier separation L for momentum eigenstate |k〉 incident on a double

reflecting barrier. Top: α = β = 1; bottom: α = −β = 1.
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in CTQW systems to selectively control transmission and

reflection.

IV. CONCLUSIONS

The quantum walk formalism provides a powerful frame-

work to study the dynamics of quantum particles in a structured

discrete position space, while its time evolution can be

either discrete (CTQW) or continuous (DTQW). Although

the theoretical and physical models of CTQW and DTQW

are fundamentally different, their characteristic propagation

behavior are often similar. In this paper, detailed compar-

isons were made between the two models by propagating

the quantum walker in both continuous and discrete time

on an infinite line in the presence of single or double

“defects.”

As expected, the delta defect potentials in CTQW cause

localization, reflection, transmission, and trapping in a similar

way as the quantum wave-packet dynamics in a continuous

position space governed by Schrödinger’s equation. However,

there is no direct analogy of potential barriers in the theoretical

formulation of discrete-time quantum walks. In this paper,

we demonstrate that adding phase defects in the coin degree

of freedom in DTQW plays the same role as the potential

barriers in CTQW. We also demonstrate that the effect of

altering the phase parameter φ in the discrete-time quantum

walk is equivalent to changing the barrier strength (Ŵ) in

the continuous-time case. Other definitions of coin phase

defects can be equally effective, opening up a wide range

of possibilities for the design of efficient quantum-walk-based

algorithms.

Moreover, a detailed derivation of the transmission coeffi-

cient for the case of a CTQW with a double-point defect is

provided, and contrasted to the continuous-space case. It was

shown that resonance behavior well established in quantum

dynamics extends to the CTQW, with marked differences

contributed to the discrete nature of the position space; in

particular, under certain conditions only one value of defect

separation permits perfect transmission, with perfect reflection

occurring for all other integer values of separation.

The effects of disorder and defects on quantum walks

are an important field of study, highly relevant in the case

of experimental realizations—particularly those with inherent

imperfections, or quantum processes which may be unavoid-

ably affected by the environment. As a result of this research,

we hope to provide methods to control the spreading of

quantum walks, through the use of artificial defects which act

to break translational invariance; this could also prove useful

in fields such as quantum information processing.
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With the advent of physical implementations of quantum walks, a general theoretical and efficient numerical

framework is required for the study of their interactions with defects and disorder. In this paper, we derive

analytic expressions for the eigenstates of a one-dimensional continuous-time quantum walk interacting with

a single defect, before investigating the effects of multiple diagonal defects and disorder, with emphasis on its

transmission and reflection properties. Complex resonance behavior is demonstrated, showing alternating bands

of zero and perfect transmission for various defect parameters. Furthermore, we provide an efficient numerical

method to characterize quantum walks in the presence of diagonal disorder, paving the way for selective control

of quantum walks via the optimization of position-dependent defects. The numerical method can be readily

extended to higher dimensions and multiple interacting walkers.

DOI: 10.1103/PhysRevA.88.042334 PACS number(s): 03.67.Lx, 05.40.Fb, 05.45.Mt

I. INTRODUCTION

Since the seminal paper by Aharonov et al. [1] establishing

a quantum analogy of the classical walk, quantum walks

have constituted an important tool in quantum information

theory; for example, by motivating the creation of quantum

algorithms that are faster and more efficient than their classical

analogues [2–8] and by providing methods of universal

quantum computation [9–11]—a highly sought-after goal of

modern physics. This is a consequence of the markedly

different behavior exhibited by quantum walks: by taking into

account superposition, interference, and quantum correlations,

the quantum walkers propagate quadratically faster than their

classical counterpart and result in a probability distribution

drastically different from the classically expected behavior [2].

As with classical random walks, there are two related but

fundamentally different formulations of the quantum walk: the

discrete-time quantum walk (DTQW) and the continuous-time

quantum walk (CTQW). While these are related through

well-defined limits in the classical case, their relation in the

quantum realm is highly nontrivial, as shown by Strauch [12].

In this paper, we will focus on the continuous-time quantum

walk, with emphasis on its scattering behavior in the presence

of disorder and defects.

Quantum walks have proven incredibly versatile in terms of

theoretical applications, with uses ranging from implementing

quantum algorithms to modeling complex quantum systems.

In order to benefit from these newfound ideas, physical

implementations are essential; some recent approaches include

the use of waveguides and photonics [13–16] and ion lattices

[17–19]. With physical implementations of quantum walks

comes the issue of disorder and decoherence affecting the

sought after quantum behavior. In a precursor to modern

quantum walking systems, the limiting case of a single

diagonal defect in a one-dimensional molecular crystal was

explored quantitatively by Koster and Slater [20] using tight-

binding methods and difference equations, and later extended

to take into account nearest-neighbor interactions (resulting

*josh.izaac@uwa.edu.au
†wang@physics.uwa.edu.au

in very effective exciton traps) [21]. Some earlier works by

Dean [22] and Thouless [23] also looked at multiple defects

in relation to the density and distribution of eigenstates. Such

a tight-binding lattice model has found applications in a wide

variety of fields. For example, Avgin and Huber [24] applied

the one-dimensional, single impurity model to study defects

in polyfluorenes.

More recently, the theoretical effects of random disorder

in quantum walks have been considered by Yin et al. [25],

Schreiber et al. [26], and Mülken and Blumen [27] (the latter

also considering the effects of nonunitary “traps”). Disorder

and decoherence, however, may provide additional tools in

constructing quantum walks for particular applications—for

instance, Keating et al. [28] considered the application of

disorder-induced Anderson localization in quantum commu-

nication. In this work, the point-defect model of diagonal

disorder, which is similar to that of Koster and Slater [20],

will be used to derive expressions for the CTQW eigenstates

for transmission through a single defect. This will then

be extended to provide transmission amplitudes through mul-

tiple defects and, in particular, highlight resonant and bandlike

structures. Furthermore, a general numerical method will be

developed that efficiently calculates transmission information

for an arbitrary distribution of diagonal defects, allowing

a detailed study of defect-induced selective transmission of

continuous-time quantum walkers.

This paper is structured as follows. In Sec. II, we introduce

the mathematical formalism behind continuous-time quantum

walks and, in particular, the diagonal point-defect model.

Analytic expressions for the single-defect eigenstates are

presented in Sec. III. Expressions for CTQW transmission

through multiple, equally spaced defects are then derived in

Sec. IV and used to verify the results of a general numerical

method for arbitrary defect distributions, which is detailed in

Sec. V. Finally, our conclusions are provided in Sec. VI.

II. CTQW DIAGONAL DEFECT MODEL

Continuous-time quantum walks were first introduced by

Farhi and Gutmann [29] in 1998 as an extension of the

classical theory of Markov processes. While research into

continuous-time quantum walks has not been as extensive

042334-11050-2947/2013/88(4)/042334(9) ©2013 American Physical Society
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as the discrete-time case, some applications that have arisen

include efficient spatial search algorithms that achieve a

speedup of
√

N over classical counterparts [4], exploring

topological structure [30], and modeling coherent transport

on complex networks [27] (such as mass and energy trans-

port in complex molecular structures). Furthermore, recent

experimental evidence for energy transfer through quantum

coherence in photosynthetic and other biochemical systems

[31–34] suggests that continuous-time quantum walks can be

extended to model biological systems—potentially providing

new insights into the natural world.

The continuous-time quantum walk can be regarded as

a quantization of the corresponding classical continuous-

time random walk, with the system now evolving as per

the Schrödinger equation rather than the Markovian master

equation. As a result, classical probabilities are replaced

by quantum probability amplitudes. To illustrate, consider a

continuous-time random walk on the discrete graph G(V,E),

composed of unordered vertices j ∈ V and edges ei = (j,k) ∈
E connecting two vertices j and k. The transition rate matrix

H is defined as

Hjk =

⎧
⎨
⎩

−γjk for j �= k if node j is connected to node k

0 for j �= k if node j is not connected to node k

Sj for j = k,

(1)

where γjk is the probability per unit time for making a

transition from node j to node k and for H to be conservative,

Sj =
N∑

k = 1,k �= j

γjk. (2)

Classically, the state of the random walker is fully described by

the probability distribution vector P(t), with its time evolution

governed by the master equation

dP(t)

dt
= HP(t),

which has the formal solution P(t) = exp(−Ht)P(0).

Extending the above description to the quantum realm

involves replacing the real-valued probability distribution

vector P(t) with a complex-valued wave function |ψ(t)〉 and

adding the complex notation i to the evolution exponent, i.e.,

|ψ(t)〉 = exp(−iH t)|ψ(0)〉. (3)

The quantum transition matrix H , often referred to as the

system Hamiltonian, is required to be Hermitian and thus the

above time evolution is unitary—guaranteeing that the norm of

|ψ(t)〉 is conserved under CTQWs. The complex-valued state

vector |ψ(t)〉 =
∑

j aj (t)|j 〉, where aj (t) = 〈j |ψ(t)〉 ∈ C,

represents the probability amplitude of the walker being found

at node |j 〉 at time t , with |aj (t)|2 = |〈j |ψ(t)〉|2 the resulting

probability.

For CTQWs on an infinite line, if each node is assumed

to be connected only to its neighboring nodes by a constant

transition rate γ = 1, then the action of the corresponding

Hamiltonian H0 on the state vector |ψ(t)〉 leads to the inner

product relationship

〈j |H0|ψ〉 = 2〈j |ψ〉 − 〈j + 1|ψ〉 − 〈j − 1|ψ〉. (4)

Symmetries that are present in continuous-space quantum

systems, for instance invariance under spatial translation

for free particles, can also be formulated for discrete-space

systems. This symmetry allows us to define the momen-

tum eigenstate |k〉: a complete orthonormal basis of the

Hamiltonian, satisfying the eigenvalue equation H0|k〉 =
2(1 − cos k)|k〉 for −π � k < π . Analogous in function to

the momentum eigenstates encountered in continuous-space

quantum mechanics, these are an important tool in studying

scattering properties in discrete space and, as such, have been

described in detail by Childs et al. [3], Farhi et al. [10],

Mülken and Blumen [27], Childs and Gosset [11], Mülken

et al. [35], and Childs et al. [36] (albeit with slight variations in

definition). For example, consider a continuous-time quantum

walk on an infinite line, scattering off a defect placed at node

|d〉. To account for these defects, the Hamiltonian matrix is

modified in the following way:

H = H0 + Ŵ, Ŵ =
∑

m

Ŵm|m〉〈m|, (5)

where we have introduced a real diagonal matrix Ŵ, with

m ∈ Z,m ∈ {d} representing the set of vertices associated

with a defect of strength Ŵm. The probability of the walker

being found at node |j 〉 at time t can thus be given by

|〈j |e−iH t |ψ(0)〉|2.

Now, let the quantum walker be initialized in momentum

eigenstate |k〉 incident from the left; this results in a time-

independent scattered state of the form

|ψs〉 = Û |k〉 =
{
|k〉 + r(k)| − k〉, j � d

t(k)|k〉, j > d
(6)

(the Bethe ansatz), where t(k)|k〉 and r(k)| − k〉 are the trans-

mitted and reflected components, respectively. It was shown

by Childs et al. [3] in the context of algorithmic speedup that,

given |ψs(k)〉 remains an eigenstate of H = H0 + Ŵ, a pair of

linearly independent equations are produced which uniquely

determine t(k) and r(k). This was further extended by Farhi

et al. [10] in order to calculate the transmission probability

due to finite trees and semi-infinite lines attached at singular

nodes. Finally, it was demonstrated by Li et al. [37] that, in the

presence of double diagonal defects, a CTQW system exhibits

resonance behavior determined inherently by the nature of the

discrete space. In successive sections, we will determine ana-

lytic expressions for the complete set of eigenstates for a single

defect and relate this to group velocity. Moreover, we will show

through analytical derivations that this previously established

resonant behavior exists in the case of multiple sets of defects,

and describe an efficient numerical method for exploring

systems with arbitrary distributions of diagonal defects.

III. SINGLE-DEFECT EIGENSTATES

Using the diagonal defect model defined above for a

CTQW containing a single-point defect on an infinite line,

the Hamiltonian can therefore be written as

H =
∑

j

(2|j 〉〈j | − |j − 1〉〈j | − |j + 1〉〈j |) + α|d〉〈d|.

(7)

042334-2
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FIG. 1. (Color online) The numeric (orange solid line) and analytic (black dashed line) single-point-defect eigenstates are plotted for the

set of (a) odd continuous eigenstates and (b) even continuous eigenstates. (c) The value of the even states at the defect location |0〉 for defect

strength α = 1/
√

200,1,2.

For simplicity, and without loss of generality, choose d = 0.

Now let |φ〉 denote the eigenstates of the Hamiltonian,

with associated eigenvalues λ ∈ R; i.e., H |φ〉 = λ|φ〉. Ex-

panding 〈j |H |φ〉 explicitly using Eq. (7) and the position

state decomposition of the eigenstates, |φ〉 =
∑

j ′ |j ′〉〈j ′|φ〉 =∑
j ′ cj ′ |j ′〉, we arrive at the following recurrence relation:

〈j |H |φ〉 = 2cj − cj−1 − cj+1 + αc0δj0

= λcj ⇒ (2 − λ)cj − cj−1 − cj+1 = αc0δj0. (8)

We now have an inhomogeneous, linear recurrence equation

with constant coefficients—this equation fully determines the

eigenstates and eigenvalues of the system. By substituting

in the ansatz cj = rj [20], we readily see that the general

homogeneous solution is

cj = Ar
j
− + Br

j
+

= 2−jA(2 − λ −
√

λ − 4
√

λ)j

+ 2−jB(2 − λ +
√

λ − 4
√

λ)j , (9)

where A and B are as yet undetermined functions of α and

λ. Using this result as a basis to calculate inhomogeneous

solutions to Eq. (8), we must consider regimes where both

oscillatory and bound solutions exist.

A. Continuous eigenstates

To determine the continuous eigenstates, consider oscillat-

ing solutions of Eq. (9). It is clear that a necessary requirement

for oscillating solutions is |r±| � 1; this is satisfied only for

0 � λ � 4. For convenience, the parametrization λ = 2(1 −
cos k), 0 � k � π , can be used, resulting in a homogeneous

solution of the form

cj = Ae−ikj + Beikj . (10)

The method of undetermined coefficients can now be used to

calculate the inhomogeneous solutions to the system in this λ

regime. We find that two solutions exist, with odd and even

symmetry around the defect, respectively:

〈j |φodd(k)〉 =
1

√
π

sin kj, 0 � k � π,

〈j |φeven(k)〉 =
1

√
π

tα(k)

(
1

2
α csc k sin k|j | + cos kj

)
,

0 � k � π, (11)

where tα(k) = 1/[1 + 1
2
iα csc k] is simply the transmission

coefficient of the CTQW incident on a single defect. Also recall

that, by construction, both eigenstates satisfy the eigenvalue

equation

H |φ(k)〉 = λ(k)|k〉, λ(k) = 2(1 − cos k)|k〉 (12)

(as is expected, the eigenvalues are of the same form as Koster

and Slater [20] and Merrifield [21] in the case where the lattice

parameter α → 1). Comparing these results to those obtained

by numerical analysis (Fig. 1) verifies that these eigenstates do,

in fact, represent the complete set of continuous eigenstates.

Furthermore, it can be seen that setting α = 0 does, indeed,

recover the free-space eigenstates |k〉, k ∈ [−π,π ].

B. Bound states

For bound-state |φB〉 solutions to Eq. (8) to be physical,

it is required that 〈j |φB〉 → 0 as j → ±∞. Restricting

our attention to λ < 0, λ > 4, the method of undetermined

coefficients is applied in the case of odd symmetry and even

symmetry (j → |j |). As in the continuous case, both odd and

even bound states exist, with respective conditions A + B = 0

and A = B(
√

λ − 4
√

λ − α)/(
√

λ − 4
√

λ + α).

By taking into account the boundary condition, the odd

bound state turns out to be nonphysical [r−(j ) − r+(j )

diverges as j → ±∞] and must be discarded. The even bound

state, of the form

〈j |φB〉 = Ar−(|j |) + Br+(|j |)

= Br−(|j |)
√

λ − 4
√

λ − α
√

λ − 4
√

λ + α
+ Br+(|j |), (13)

contains only one divergent term [r−(|j |)] and thus represents

a physical bound state when the coefficient of r−(|j |) is zero

for all values of α; thus, λ = 2 + α
√

1 + 4/α2. Substituting

this back into Eq. (13) and normalizing, the bound state of the

system is therefore given by

〈j |φB〉 =
2−|j |√|α|

(α2 + 4)1/4

(
α − α

√
1 +

4

α2

)|j |
, (14)

satisfying the eigenvalue equation

H |φB〉 = λα|φB〉, λα = 2 + α

√
1 +

4

α2
. (15)
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FIG. 2. (Color online) Left: The numeric and analytic single-point defect bound states are plotted and compared for the cases (i) α < 0

with the analytic result in long-dashed black lines and the numerical data points in red open circles, and (ii) α > 0 with the analytic result

in short-dashed black lines and the numerical data points in green dots. Right: The complete eigenvalue spectrum of the Hamiltonian with a

single-point defect.

Some properties of the single-defect bound state that can

be ascertained from the analytic expression include (1) in

the limit |α| → ∞, 〈j − d|φB〉 → δjd and λα → ∞ (i.e.,

the contribution of the bound state to the time evolution of

a CTQW outweighs that of the continuous eigenstates for

large α) and (2) in the limit α → 0, 〈j − d|φB〉 → 0 and

limα→0− λα = 0, limα→0+ λα = 4 (i.e., the contribution of the

bound state to the time evolution of a CTQW is approximately

the trivial solution for small α and can be neglected). It should

also be noted that for α > 0, the bound-state amplitude shows

damped oscillating behavior; this is not the case for α < 0

(Fig. 2). However, in both cases, the probability distributions

|〈vj |φB〉|2 are equal.

C. Eigenstate completeness and time evolution

Using the orthogonality relations of the sine and cosine

functions, it can be shown that the eigenstates calculated

above remain orthonormal with respect to each other; that

is, for all values of 0 � k � π and α ∈ R, 〈φodd(k)|φB〉 =
0,〈φeven(k)|φB〉 = 0, and 〈φodd(k)|φeven(k)〉 = 0. Coupling

these results with the completeness of Hermitian eigenstates,

the identity operator for the single defect containing discrete

space can be written as

Î =
∫ π

0

dk (|φodd(k)〉〈φodd(k)| + |φeven(k)〉〈φeven(k)|)

+ |φB〉〈φB |, (16)

and thus the time-evolution operator Û (t) ≡ e−iH t = e−iH t Î

has the form

Û (t) =
∫ π

0

dke−2it(1−cos k)[|φodd(k)〉〈φodd(k)|

+ |φeven(k)〉〈φeven(k)|] + e−iλα t ′ |φB〉〈φB |. (17)

This integral form of the time-evolution operator now enables

us to construct an expression for the time evolution of an

arbitrary state |ψ〉 from time t to t ′,

〈j ′|e−iH t ′ |ψ(t)〉 =
∑

j

∫ π

0

dkGα,d (j ′,t ′; j ; k)〈j |ψ(t)〉,

(18)

where

Gα,d (j ′,t ′; j ; k) =
1

π
e−2it ′(1−cos k)

[
sin k(j ′ − d) sin k(j − d)

+
1

4
|tα(k)|2ǫ(j ′ − d)ǫ(j − d)

]

+ e−iλα tδ(k − 1)φB(j − d)φB(j ′ − d),

(19)

with tα(k) = 1/[1 + (iα/2) csc k], ǫ(j ) = α csc k sin k|j | +
2 cos kj , λα = 2 + α

√
1 + 4/α2, φB(j ) = 2−|j |√|α|

(α2+4)1/4 (α −
α
√

1 + 4/α2)|j |, |d〉 the location of the defect, and α the

defect amplitude.

Using this integral approach, 〈j ′|e−iH t ′ |ψ〉 is plotted in the

case of α = 1/
√

2, d = 5, |ψ〉 = |v1〉, and t ′ = 20 in Fig. 3. It

can be seen that the integral and the matrix exponential method

are in excellent agreement.

The Green’s function offers other advantages compared to

the previously considered one. For instance, it is now well

defined in the case of the initial state being at the vertex

containing the defect, and the form of the expression is the

same over all space (i.e., there are no piecewise components

and no need to separate the position space into a “transmitted

region,” “reflected region,” etc.). Numerous advantages also

exist compared to the matrix exponential method: the time

evolution can now be explored on a vertex by vertex basis

(reducing computation time as we no longer need to consider

the entire discrete subspace), numerical integration is less

computationally expensive and easier to implement, and

asymptotic approximations of the integral can be used to

characterize behavior for large or small t and α, among others.

IV. MULTIPLE DEFECTS

Using the same mathematical scaffolding discussed in

Sec. II and extending the work of Li et al. [37] to multiple

defects, the transmission coefficient for N point defects,

located at vertices d0, . . . ,di, . . . ,dN−1, can be calculated by
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FIG. 3. (Color online) (a) The time evolution of the initial state |1〉 for time t ′ = 20, with a defect placed at d = 5 with strength α = 1/
√

2,

using the matrix exponential definition (blue line) and the integral approach (18) (red data points). (b) A plot of the absolute error between both

methods.

starting with the scattered state ansatz,

|ψs(k)〉 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

|k〉 + r1(k)| − k〉, j < d0

...

ti(k)|k〉 + ri+1| − k〉, di−1 < j < di

...

tN (k)|k〉, dN−1 � j.

(20)

The Hamiltonian of the system is now given by

H =
∑

j

(2|j 〉〈j | − |j − 1〉〈j | − |j + 1〉〈j |)

+
N−1∑

i=0

αi |di〉〈di |, (21)

and so the eigenvalue condition,

〈j |H |ψs(k)〉
〈j |ψs(k)〉

= 2(1 − cos k)

(which must hold for all j ∈ Z and −π � k < π ), can then

be applied to all possible regions described by Eq. (20). As

before, this produces a set of 2N linearly independent linear

equations relating t1(k), . . . ,tN (k),r1(k), . . . ,rN (k), which can

then be solved to calculate all the transmission and reflection

amplitudes. Note that there is the added caveat that as N

increases, the complexity of the analytic form of ti(k) and

ri(k) appears to drastically increase—suggesting that for

N significantly large, analytic approximations or numerical

methods may be preferable.

Using this method, the transmission coefficient was calcu-

lated in the case of the 2, 3, 5, and 8-point defects, respectively.

For convenience, allowing di+1 − di = L and αi = α∀i (i.e.,

all barriers have equal separation and amplitude), the trans-

mission amplitude is given by

tN (k) =
1

1 + ωN

⇒ TN (k) = |tN (k)|2 =
1

1 + �N

, (22)

where

ω2 = iα csc k + 1
4
α2(e2ikL − 1) csc2 k, (23a)

ω3 = − 1
8
iαe2ikL csc3 k[2 cos 2kL(α2 − 2iα sin k − 3)

+ 4α sin k(i − 2 sin 2kL) − 3i sin 2k(L + 1)

+ 6i sin 2kL − 3i sin 2k(L − 1) + 3 cos 2k(L − 1)

+ 3 cos 2k(L + 1) − 2α2], (23b)

and thus

�2 = 1
4
α2 csc4 k(α sin kL + 2 sin k cos kL)2, (24a)

�3 = 1
16

α2 csc6 k[(α2 − 2) cos 2kL − 4α sin k sin 2kL

+ cos 2k(L − 1) + cos 2k(L + 1) + cos 2k − α2 − 1]2.

(24b)

The analytic form of T (k) for the 5- and 8-point defect is too

long and complex to be reproduced here. The transmission

coefficients for N = 2,3,5, and 8 are plotted and compared in

Fig. 4 for barrier strength α = 1 and separations of L = 0,1,2,

and 5. It can be seen that as N → ∞, the local minimums

of T (k) approach zero, while the resonant peaks widen.

Furthermore, oscillation amplitudes appear to decrease, and

the transition between regions of perfect and zero transmission

becomes much sharper. Qualitatively, this appears indicative

of the electronic band structure observed in continuous-space

models of crystal lattices. The results are also visualized

in Fig. 5, showing the effect of defect amplitude α on the

transmission coefficient for the case N = 8. It is easily seen

that, by altering α, a method is provided to control the

placement and size of the unity transmission band.

Ultimately, however, this method of calculating the trans-

mission for N defects becomes unwieldy for large N , as

the increasing number of linearly independent equations

required to calculate ri(k),ti(k) scales by O(2N ) and results in

drastically larger computation times. Further, we are usually

only interested in calculating r1(k) and tN (k); this motivates

the creation of an algorithm to more efficiently characterize

CTQW transmission through multiple arbitrary defects.

V. A GENERAL NUMERICAL APPROACH

FOR MULTIPLE DEFECTS

In the case of continuous-space quantum mechanics, the

Fourier method approach utilized by Yiu and Wang [38],
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FIG. 4. (Color online) Transmission coefficient vs momentum for a CTQW momentum eigenstate incident on an N -point defect, where

N = 2 (blue dot-dashed line), N = 3 (red dashed line), N = 5 (black dotted line), and N = 8 (green solid line). The defect-induced barriers

are constructed with unity amplitude (α = 1) and equal separation L.

Falloon and Wang [39], and Manouchehri and Wang [40]

provides an efficient method of numerically calculating the

transmission coefficient T (k) over a wide range of k. In

this section, this method will be adapted for the CTQW on

the infinite line and verified against the multibarrier analytic

solution derived in the previous section.

Consider an arbitrary initial state |ψ0〉 incident on a set of

defects or barriers, with the transmitted component denoted

|ψt 〉 and produced as per the transmission amplitude t(k).

Using the completeness of the momentum eigenstates, these

can be written as

|ψ0〉 =
1

2π

∫ π

−π

dk|k〉〈k|ψ0〉, |ψt 〉 =
1

2π

∫ π

−π

dk|k〉〈k|ψt 〉.

(25a)

Evolving the state |ψ0〉 through time via the unitary operator

Ût , which acts to separate out the transmitted component,

|ψt 〉 = Ût |ψ0〉 =
1

2π

∫ π

−π

dkÛt |k〉〈k|ψ0〉

=
1

2π

∫ π

−π

dkt(k)|k〉〈k|ψ0〉, (26)

and comparing this with Eq. (25a), it can be seen that we

require

〈k|ψt 〉 = t(k)〈k|ψ0〉 ⇒ T (k) = |t(k)|2 =
|〈k|ψt 〉|2

|〈k|ψ0〉|2
. (27)

Using position space completeness (Î =
∑

j |vj 〉〈vj |) coupled

with the inner product 〈k|vj 〉 = e−ikj , this expression can be

evaluated explicitly in terms of probability amplitudes of the

walker at each vertex:

T (k) =
|〈k|ψt 〉|2

|〈k|ψ0〉|2
=

∣∣∑
j e−ikj 〈j |ψt 〉

∣∣2

∣∣∑
j e−ikj 〈j |ψ0〉

∣∣2
. (28)

The numerical calculation of the inner product 〈j |ψt 〉 =
〈j |e−iH t |ψ0〉 is performed by expanding the matrix exponen-

tial via the Chebyshev expansion scheme, as detailed in Wang

and Scholz [41]. This method is particularly beneficial for two

major reasons: first, since the coefficients of the expansion

are Bessel functions, they vanish after a finite number of

terms, allowing for an exceptionally high level of accuracy

with a comparatively small number of terms. Second, this

is an example of a global propagator, negating the need for

iterative calculations at smaller time steps which can introduce

accumulation error.

Briefly outlining the expansion, we have

Ut ≡ e−iH t/h̄

= e−i(λmax+λmin)t/2

[
J0(η)φ0(−iH̃ ) + 2

∞∑

n=1

Jn(η)φn(−iH̃ )

]
,

(29)
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FIG. 5. (Color online) Transmission coefficient vs momentum for a CTQW momentum eigenstate incident on an evenly spaced 8-point

defect, with barrier amplitudes α = 0.1 (blue dot-dashed line), α = 0.5 (red dashed line), α = 1 (black dotted line), and α = 2 (green solid

line).

where λmax and λmin are maximum and minimum eigenvalues

of the Hamiltonian matrix H , η = (λmax − λmin)t/2, Jn(η) are

the Bessel functions of the first kind, and φn are the Chebyshev

polynomials. To ensure convergence, the Hamiltonian needs

to be normalized as

H̃ =
1

λmax − λmin

[2H − λmax − λmin]. (30)

This method can now be used to investigate the behavior of a

CTQW on an infinite line, incident on an arbitrary distribution

of diagonal defects. However, for comparison purposes, we

will restrict our attention to N equally spaced diagonal defects.

The Hamiltonian under investigation is therefore given by

H =
∑

j

(2|j 〉 − |j − 1〉 − |j + 1〉) 〈j |

+
N−1∑

n=0

αn|d + nL〉〈d + nL|, (31)

where αn ∈ R represents the amplitude of the nth defect, d ∈ Z

is the position of the first defect, and L ∈ N is the integer

spacing between defects. For convenience, the initial state is

chosen such that the walker is localized at a vertex to the left

of the double reflecting barriers, i.e., |ψ(0)〉 = |vj ′〉, j ′ < 0.

Noting that
∣∣∣∣∣
∑

j

e−ikj 〈j |j ′〉

∣∣∣∣∣

2

=

∣∣∣∣∣
∑

j

e−ikjδjj ′

∣∣∣∣∣

2

= |e−ikj ′ |2

= 1∀k ∈ [−π,π ), (32)

this allows the expression for the transmission coefficient give

by Eq. (28) to reduce to

T (k) =

∣∣∣∣∣
∑

j

e−ikj 〈j |ψt 〉

∣∣∣∣∣

2

∀k ∈ [−π,π ). (33)

Using Eq. (29), T (k) = |
∑

j e−ikj 〈j |e−iH t |j ′〉|2 is calcu-

lated for t = 300, chosen sufficiently large such that the

probability of the walker remaining located between the

defects is small, i.e.,
∑(N−1)L

j=0 |〈d + j |ψ(t)〉|2 ≈ 0. The results

are plotted in Fig. 6 for a variety of different values of L

and compared to the analytic solution derived in Sec. IV.

It is observed that the numeric results closely match the

analytic solutions, with an average absolute difference of

σT = 2.64 × 10−3. As an aside, note the presence of Gibbs

phenomenon at the boundaries of the domain due to the use of

Fourier methods. By restricting the analysis to 0.5 < k < 2.5,

the absolute difference between the numeric and analytic
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FIG. 6. (Color online) (a) Transmission coefficient vs momentum of a CTQW momentum eigenstate incident on two defects of unity

amplitude, separated by distances L = 0 (solid blue line), L = 1 (dashed red line), L = 2 (dotted black line), and L = 5 (dot-dashed green

line), and calculated via numerical Fourier methods. (b) Absolute difference between numeric and analytic results for the case L = 1.
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results reduces to σT = 3.58 × 10−7. This general numerical

approach can now be applied to situations where analytical

analysis becomes impossible, fine tuning the parameters to

increase accuracy.

It should be noted that a major source of error associated

with this method is due to a nonzero probability distribution

located between defects at measurement time. While this can

be avoided by increasing the time step t , it requires that a

larger number of vertices be included in the propagation grid,

as well as an increase in the number of Chebyshev summation

terms required for significant accuracy, potentially increasing

the computational time. The additional computational time

may prove insignificant with the accelerating availability of

computational power. If not, further refinements (such as

absorbing boundary conditions and multiple passes) may be

needed.

VI. CONCLUSIONS

In the past two decades, quantum walks have played a

pivotal role in the field of quantum information theory and

current research is suggesting potential applications across a

whole range of different fields, making them an invaluable tool

in the study of structured, discrete-space systems. Significant

advances are also constantly being made in experimental

realizations of quantum walks, providing a means to fully

utilize the computational power of quantum walkers, while

simultaneously requiring an accurate theoretical and efficient

numerical framework to provide detailed information on the

effects of disorder and scattering on a quantum walk.

In this paper, a one-dimensional continuous-time quantum

walk in the presence of multiple defects was explored

analytically, with the results highlighting resonance behavior

previously observed in the case of double diagonal defects. It

was also demonstrated that by increasing the number of defects

and by altering the defect amplitudes, “bands” of perfect

transmission (surrounded by regions of zero transmission)

can be selectively placed in momentum space, allowing for

a high level of control of quantum walking characteristics.

This provides a link between the tight-binding lattice models

widely used in condensed matter physics and the development

of quantum information applications based on continuous-time

quantum walks. Finally, we extended the Fourier-Chebychev

method utilized in the literature for continuous position

space to the discrete space of CTQWs, which provides a

general numerical approach to situations where analytical

analysis becomes impossible, such as multiple barriers, higher

dimensions, and multiple interacting walkers.

Quantum walks remain an important field of study due to

their crucial role in both quantum information processing and

the modeling of complex quantum systems. As a result of this

research, we hope to provide methods to selectively control and

efficiently characterize the time evolution of quantum walks

by taking advantage of diagonal disorder that can sometimes

be unavoidable in physical systems.
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pyCTQW: A continuous-time quantum walk simulator on distributed memory computers

Josh A. Izaac∗, Jingbo B. Wang∗∗

School of Physics, The University of Western Australia, Crawley WA 6009, Australia

Abstract

In the general field of quantum information and computation, quantum walks are playing an increasingly important role in con-

structing physical models and quantum algorithms. We have recently developed a distributed memory software package pyCTQW,

with an object-oriented Python interface, that allows efficient simulation of large multi-particle CTQW (continuous-time quantum

walk)-based systems. In this paper, we present an introduction to the Python and Fortran interfaces of pyCTQW, discuss various

numerical methods of calculating the matrix exponential, and demonstrate the performance behaviour of pyCTQW on a distributed

memory cluster. In particular, the Chebyshev and Krylov-subspace methods for calculating the quantum walk propagation are

provided, as well as methods for visualisation and data analysis.

Keywords: Continuous-time quantum walk, Multiple walkers, Padé approximant, Krylov subspace method, Chebyshev matrix

expansion

PROGRAM SUMMARY

Program Title: pyCTQW

Journal Reference:

Catalogue identifier:

Licensing provisions: none

Programming language: Fortran and Python

Computer: Workstation or cluster implementing MPI

Operating system: Any operating system with Fortran, python, and

MPI installed.

RAM: Depends on graph size and number of walkers

Number of processors used: One or more processors may be used

Keywords: Continuous-time quantum walk, Multiple walkers, Padé

approximant, Krylov subspace method, Chebyshev matrix expansion

Classification: 4.15, 14

External routines/libraries: PETSc [1–3], SLEPc [4–6], MPI, NumPy

and SciPy [7–9], Matplotlib [10], NetworkX [11]

Nature of problem: Simulates, visualises and analyzes continuous-

time quantum walks on arbitrary undirected graphs.

Solution method: Distributed memory implementations of the

matrix exponential, via a choice of Krylov-subspace and Chebyshev

expansion techniques, are used to simulate the continuous-time

quantum walkers. Visualisation ability is provided via the supplied

Python module and Matplotlib.

Restrictions: The size of the quantum walking system is lim-

ited by the amount of available memory. The current package

implements up to 3 simultaneous walkers with interactions, but it can

be readily extended.

∗Corresponding author.

E-mail address: josh.izaac@uwa.edu.au
∗∗E-mail address: jingbo.wang@uwa.edu.au

Unusual features: In addition to utilising a parallelized Krylov

subspace method and Chebyshev approximation scheme to maximise

efficiency, pyCTQW also provides functions for visualisation of the

quantum walk dynamics and calculation of multi-particle entangle-

ment, and allows for arbitrary diagonal defects to be placed on graph

nodes to explore transmission and resonance structures.

Running time: Runtime varies depending on the size of the

graph, number of processors used, and number of simultaneous

walkers.
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1. Introduction

First posited by Aharonov et al. [1] in 1993, a quantum walk

is the quantum analogue of the classical random walk, which

takes into account quantum properties such as superposition

and quantum correlations and leads to markedly different prop-

erties. For example, quantum walks propagate quadratically

faster than their classical counterparts, with propagation ballis-

tic rather than diffusive [2]. They also exhibit wave-like nature

around defects and impurities, such as interference, resonance

trapping and transmission [3–5]. As a result of their drastically

different propagation properties, there has been an abundance

of quantum walk related research in the last decade, with quan-

tum walk formulations motivating the creation of quantum al-

gorithms that are faster and more efficient than their classical

analogues [6, 7] – including so far network search and central-

ity [8, 9] and graph isomorphism analysis [10–13]. Further-

more, quantum walks on graphs have been proven to provide

methods of universal computation [14, 15], allowing quantum

walk-based systems to play a crucial role in the race to develop

a quantum computer. As such, today quantum walks constitute

an important tool in quantum information theory.

Similarly to classical random walks, there exist two similar

but fundamentally different formulations of the quantum walk:

the discrete-time quantum walk (DTQW), and the continuous-

time quantum walk (CTQW). Unlike the classical regime, their

relationship is highly non-trivial [16]; this work focuses on

multi-particle continuous-time quantum walks. In recent years,

outside the theoreticians’ office, physical implementations of

quantum walkers have been demonstrated experimentally, with

approaches including the use of waveguides and photonics

[17, 18, 20] and ion lattices [21–23]), paving the way for the

construction of devices capable of running these quantum al-

gorithms. Additionally, the demand for increasingly accurate

models of complex biochemical processes that border the quan-

tum regime (and thus exhibit some form of quantum coherence)

have led to the investigation of continuous-time quantum walk-

ers as a viable modelling candidate [24]. So far, early research

has explored their potential in analysing energy transport in bio-

logical systems [25–29], highlighting the growing versatility of

quantum walks whilst providing new insights into the natural

world.

However, with the growing number of quantum walk appli-

cations – especially those in the biochemical sciences (which

can involve numerous interacting walkers on increasingly large

and complex graphs) – the ability to efficiently simulate and

analyse quantum walk behaviour becomes essential. In this

work, we introduce pyCTQW, a software package for efficiently

simulating CTQWs, whilst taking advantage of the huge poten-

tial provided by modern High Performance Computing (HPC)

platforms. Developed using Fortran, a Python module is also

available, interfacing directly with the Fortran library via F2PY

[30]. This allows pyCTQW to take advantage of the many sci-

entific and data visualisation Python libraries available in the

much more user-friendly Python environment, whilst avoiding

the additional overhead that would be caused by implement-

ing the core algorithms in an interpreted language. As such,

pyCTQW is a valuable tool for the study, data visualisation and

analysis of CTQW based systems.

This paper is structured as follows; in section 2, we introduce

the fundamental theory underpinning continuous-time quantum

walks, before discussing numerical algorithms used to solve

such systems in section 3. The pyCTQW software package

is then detailed in section 4, with particular attention given to

the structure, usage, and installation, followed by specific ex-

amples presented in section 5, and computational performance

discussed in section 6. Finally, our conclusions are provided in

section 7.

2. Continuous-time quantum walks

Continuous-time quantum walks were first introduced by

Farhi and Gutmann [31] in 1998, as a quantization of classi-

cal Markov processes, with the system now evolving as per the

Schrödinger equation rather than the Markovian Master equa-

tion. As such, classical probabilities are replaced by quantum

probability amplitudes. To illustrate, consider a continuous-

time random walk on the arbitrary undirected graph G(V, E),

composed of unordered vertices j ∈ V in addition to edges

ei = ( j, j′) ∈ E connecting vertices j, j′ ∈ V . The transition

rate matrix H is defined as the Laplacian matrix of the graph;

that is,

H j j′ =



























−γ j j′ j , j′; ( j, j′) ∈ G

0, j , j′; ( j, j′) < G

S j, j = j′
(1)

where γ j j′ is the probability per unit time of a transition from

node j to node j′, and the elements S j satisfy the condition

S j =

N
∑

j′=1
j′, j

γ j j′ (2)

to ensure unitary behaviour. Classically, the state of the random

walker is described by a probability distribution P(t), and its

time evolution is governed by the Master equation

dP(t)

dt
= HP(t). (3)

which has the formal solution P(t) = e−HtP(0).

Extending the above formulation to the quantum realm in-

volves replacing the real valued probability vector P(t) with a
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complex valued wavefunction |ψ(t)⟩, and multiplying the expo-

nent by the complex factor i; i.e.

|ψ(t)⟩ = e−iHt |ψ(0)⟩. (4)

It can be readily seen that this is now of the same form as the

Schrödinger equation. Analogously to other continuous-space

quantum systems, the transition rate matrix is commonly re-

ferred to as the system Hamiltonian, and now must satisfy the

additional requirement of Hermiticity to ensure unitary time-

evolution, which guarantees that the norm of |ψ(t)⟩ is conserved

for all t. The complex-valued state vector |ψ(t)⟩ = ∑

j a j(t)| j⟩,
where a j(t) = ⟨ j|ψ(t)⟩ ∈ C, represents the probability am-

plitude of the walker being found at node | j⟩ at time t, with

|a j(t)|2 = |⟨ j|ψ(t)⟩|2 the resulting probability.

In the simulation of continuous-time quantum walk based

systems, often the most computationally intensive process is

the propagation algorithm itself; that is, the calculation of the

evolved state at time t from an initial state |ψ(0)⟩

|ψ(t)⟩ = ⟨ j|e−iHt |ψ(0)⟩, (5)

due to the need to efficiently and accurately calculate a matrix

exponential-vector product. In the case of single walkers or

small graphs, fast and efficient matrix exponential calculation is

readily available using modern numerical packages and toolkits

such as Mathematica, Matlab, and SciPy.

Alternatively, consider a CTQW composed of n simultane-

ous interacting walkers on an arbitrary graph G of N vertices.

In order to construct the system Hamiltonian, we take the Kro-

necker sum over all n single walker subspaces, and add on the

interaction term:

H =

n
⊕

i=1

H(i) + Γint

=
(

H(1) ⊗ I
(2)

N
⊗ · · · ⊗ I

(n)

N

)

+ · · · +
(

I
(1)

N
⊗ · · · ⊗ I

(n−1)

N
⊗ H(n)

)

+ Γint, (6)

where H(i) is the single walker N × N Hamiltonian of the ith

particle on graph G, I
(i)

N
represents the N × N identity matrix

acting on particle i, and Γint is the interaction term acting on an

arbitrary number of particles. In the development of pyCTQW,

we were mainly concerned with on-site interactions between all

walkers,

Γint(α) =
1

2
α

n
∑

i,i′=1
i,i′

N
∑

j=1

(| j⟩⟨ j|)(i) ⊗ (| j⟩⟨ j|)(i′) , (7)

where α ∈ R is the interaction constant. In the case of no in-

teractions (i.e. α = 0), the above definition of the multi-particle

Hamiltonian (Eq. 6) results in a separable time evolution oper-

ator,

Û(t) = e−iHt =

n
⊗

i=1

exp
(

−iH(i)t
)

= Û(t)(1) ⊗ Û(t)(2) ⊗ · · · ⊗ Û(t)(n), (8)

as expected; however this is not possible when interactions are

present. In this work, the Hamiltonian matrix is taken as the

same for all particles, and is simply given by the graph Lapla-

cian,

H(i) ≡ H1p ≡ ∆G ∀i ∈ {1, · · · , n}, (9)

where the superscript simply defines the subspace the Hamilto-

nian acts on.

The important thing to note from the above multi-particle

Hamiltonian is that for n simultaneous walkers on a graph con-

taining N nodes, the system Hamiltonian will have dimensions

Nn × Nn – significantly larger than the Hamiltonian for a single

walker. Thus for systems requiring multiple walkers on large

graphs, calculating the propagation using the tools mentioned

above can potentially take an excessive amount of time, war-

ranting an investigation into alternate algorithms and HPC so-

lutions.

3. Matrix exponential methods

Although published almost 35 years ago, ‘Nineteen Dubious

Ways to Compute the Exponential of a Matrix’ by Moler and

Van Loan [32] remains a heavily influential review of the vari-

ous methods of approximating the matrix exponential, even ne-

cessitating an updated revision in 2003 [33]. Of the various

methods described by Molar and Van Loan, today the two most

pervasive include the squaring and scaling method (primarily

for dense matrices) and Krylov subspace methods (for large

sparse matrices) – both commonly used in conjunction with the

Padé approximation, a high order series approximation.

An alternative algorithm that has recently found traction in

the field of computational physics and quantum chemistry is

the so-called Chebyshev series approximation, which takes its

name from the Chebyshev polynomials that occur in the series

expansion [34–39]. A huge part of what makes the Chebyshev

expansion so attractive is the use of Bessel J zero functions

as series coefficients, leading to exceptionally fast convergence

without sacrificing a high level of accuracy. In fact, recent re-

search has shown the Chebyshev approximation is an efficient

alternative to both the scaling and squaring method [40] and

Krylov subspace methods [41], which holds significant promise

in parallel computation.

The matrix exponential approximations mentioned here will

be expanded on below, with the background theory, advantages

and implementations summarised (for a more detailed sum-

mary, refer to Molar and Van Loan [33]).

3.1. Padé approximation

The Padé approximant uses a rational function of power se-

ries in order to approximate the matrix exponential; this is com-

monly defined as

eA ≈ Rpq(A) = [Dpq(A)]−1Npq(A), (10)

where

Npq(A) =

p
∑

j=0

(p + q − j)!p!

(p + q)!(p − j)!

(

A j

j!

)

(11)
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and

Dpq(A) =

q
∑

j=0

(p + q − j)!q!

(p + q)!(q − j)!

(

(−A) j

j!

)

. (12)

Note that for q = 0, p > 0, this reduces to the Taylor series ex-

pansion of eA; the Padé approximant simply matches the Taylor

series to order O(Ap+q). Rather than implementing the above

definition directly, however, in practice we typically choose the

diagonal Padé approximants p = q, as these result in similar

accuracy for significantly reduced computational cost. Eq. (10)

then reduces to

eA ≈ Rpp(A) = [Npp(−A)]−1Npp(A), (13)

with error given by

eA − Rpp(A) =
(−1)p(p!)2

(2p)!(2p + 1)!
A2p+1 + O

(

A2p+2
)

. (14)

The main advantage of the Padé approximation over other

series expansions is that for matrices where ||A||2 ≲ 1, matrix

exponentials can be computed to the same level of accuracy

with up to half the computation. However, there are important

downsides – firstly, a reasonable level of accuracy can only be

achieved for ||A||2 ≲ 1; issues also arise for large p, increasing

the risk that the denominator is ill-conditioned for inversion (al-

though this is highly dependent on the eigenvalue spread of A).

Furthermore, the evaluation of the power series Npp(A) requires

dense matrix arithmetic, foregoing any speed-ups/memory re-

ductions that may have arisen by manipulating sparse matrices.

3.2. Scaling and squaring method

In order to apply the Padé approximation to matrices of all

norms, an iterative process known as the scaling and squaring

method is used, which exploits the property eA =
(

eA/s
)s

to re-

duce the matrix norm of A before finding the Padé approximant.

Thus, the adjusted Padé approximant can be written as

eA ≈ eA+E = Rpp (A/2s)2s

, (15)

where s ∈ N, and E is a matrix signifying the deviation from the

exact value when calculating the matrix exponential of eA using

the Padé approximation. The following inequality is satisfied:

||E||
||A|| ≤

23−2p(p!)2

(2p)!(2p + 1)!
, (16)

where the parameters p and s are chosen such that ||E||/||A|| ≤ ϵ
(here ϵ is a specified parameter determining the error tolerance),

and p+ s is minimised (as the floating point operations per sec-

ond for an n × n matrix is of the order (p + s + 1/3)n3). Very

generally, p = 6 or 7 is optimal for single precision, whereas

p = 17 is optimal for double precision. For example, MAT-

LAB’s expm function uses p = 6 and max{s : ||A/2s||∞ ≤ 0.5}.
This method remains one of the most effective methods of

numerically calculating the matrix exponential of dense ma-

trices [42, 43], and as such is widely used in modern nu-

merical packages (such as MATLAB’s expm, Mathematica’s

MatrixExp, SciPy’s linalg.expm, and Expokit’s Fortran and

Matlab libraries).

3.3. Krylov subspace methods

Over the last 35 years, an alternative method has arisen which

enables us to harness the computational advantages afforded by

large sparse matrices. This is the eponymous Krylov subspace

method, which provides an effective scheme for efficiently cal-

culating the matrix-vector product eAtv – avoiding the need to

calculate and store a large intermediate matrix. Here A is a n×n

matrix, t is a scaling parameter, and v ∈ Rn is an n-element vec-

tor. Whilst not providing the matrix exponential directly, this

matrix-vector product arises often in the study of quantum sys-

tems, and as such is frequently the desired computational end-

product – this is generally the case in CTQWs, where transition

amplitudes ⟨ j|Û(t)|ψ(0)⟩ = ⟨ j|e−iHt |ψ(0)⟩ are desired.

This scheme takes its name from the process of approximat-

ing an n-dimensional problem (in this case eAtv) onto a smaller

m-dimensional Krylov subspace,

Km(At, v) = span{v, Av, A2v, . . . , Amv}, ∀t ∈ C, (17)

whereby dense matrix methods become adequately efficient

to solve the reduced problem. For example, in the case of

eAtv, we first use the Arnoldi or Lanczos methods (success-

ful Krylov-based iterative methods in their own right, used for

calculating the eigenvalues of large sparse general/symmetric

matrices respectively) to calculate the orthonormal basis set

Vm = {v1, . . . , vm} ∈ R
n×m from Km(A, v). A byproduct of this

calculation is the upper Hessenberg matrix Hm ∈ Rm×m, which

is the projection of An ∈ R
n×n onto Vm (i.e. VT

m AnVm = Hm).

Note that Hm approximates the original sparse matrix An,

AVm = VmHm + hm+1,mvm+1êT
m ≈ VmHm, (18)

allowing the large sparse matrix exponentiation-vector product

problem to be approximated via

eAtv ≈ βVmetHm ê1, (19)

since v = βv1 for some constant β. This can then be tackled via

dense matrix methods.

Krylov subspace methods are often combined with the squar-

ing and scaling method when calculating the matrix exponen-

tial of a large sparse matrix, due to the latter’s efficiency in

computing the resulting dense matrix exponential. Moreover,

the ability to achieve a high level of accuracy with a relatively

small value of m, typically around 40, combined with the fact

that successive time-steps can be computed by utilising previ-

ously constructed Krylov subspace with little-to-no extra cost,

have resulted in the Krylov method becoming a leading ap-

proach for large sparse matrices. Today, Krylov matrix expo-

nential methods are available as part of Mathematica (using the

MatrixExp[A,v] function), Expokit [44] (a collection of For-

tran and Matlab libraries designed for working with Markovian

processes), and SLEPc/slepc4py (a HPC implementation with

C, Fortran and Python bindings), amongst others.

3.4. Chebyshev approximation

Not as common as the Padé and Krylov methods, but rapidly

gaining traction in fields such as high performance computing
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and quantum mechanics, is the Chebyshev series expansion to

the matrix exponential;

etA = e(λmax+λmin)t/2















J0(α)ϕ0(Ã) + 2

∞
∑

n=1

inJn(α)ϕn(Ã)















, (20)

where λmax, λmin ∈ C are the eigenvalues of an n × n matrix A

with largest and smallest real parts respectively, α = i(λmin −
λmax)t/2, and ϕn(Ã) are the Chebyshev polynomials, satisfying

the recurrence relations

ϕ0(Ã) = I, (21a)

ϕ1(Ã) = Ã, (21b)

ϕn(Ã) = 2Ãϕn−1(Ã) − ϕn−2(Ã). (21c)

Note that for maximal convergence, we require normalisation

such that λ ∈ [−1, 1]; thus

Ã =
2A − (λmax + λmin)I

λmax − λmin

. (22)

As with the Krylov method, we can calculate the matrix-

vector product eAtv directly using the Chebyshev approxima-

tion, by post-multiplying the Chebyshev series expansion with

v. This allows us to take full advantage of sparse matrix li-

braries when calculating the sparse matrix×dense vector terms

in the summation, whilst avoiding the extra memory usage re-

quired to store intermediate matrix terms. Another attractive

property of the Chebyshev expansion is the use of Bessel func-

tion zeros as series coefficients, as Jn(α) ≈ 0 for n > |α|, allow-

ing for fast convergence and significantly high accuracy after

only |α| ∝ t terms (see Fig. 1). Whilst various definitions exist

for the relative error of the Chebyshev expansion [41], for sim-

plicity it is sufficient to instruct the series to be truncated when

the condition

|2Jn(α)| ≤ ϵ, (23)

is satisfied for a specified tolerance ϵ > 0, as subsequent

terms can be considered negligible. In pyCTQW, we nominally

choose ϵ = 10−18.

As with the Padé approximation, the Chebyshev approxima-

tion is only convergent for matrices where ||A|| < 1, thus ne-

cessitating the scaling procedure A → Ã detailed above. In

practice only λmax need be calculated, since the Laplacian for a

undirected, defect-free graph is positive-semidefinite, ensuring

λmin = 0, whilst the calculation of λmax is often computationally

much less demanding.

However, when working with large finite graphs in the pres-

ence of disorder, or infinite graphs, the density of the eigenvalue

spectrum around λ = 0 can lead to time-consuming eigenvalue

calculations, resulting in a significant bottleneck when simulat-

ing the quantum walk propagation. This issue can be avoided

in principle by implementing the scaling and squaring method,

as described in subsection 3.2, as it does not require the calcu-

lation of eigenvalues:

etA =















J0(α)ϕ0

(

tA

2s

)

+ 2

∞
∑

n=1

inJn(α)ϕn

(

tA

2s

)















s

. (24)
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Fig. 1: Absolute value of the Chebyshev coefficients |Jn(α)| for |α| = 1000,

when calculating eAt for a 3 × 3 matrix A. Note that |α| is proportional to the

numerical range of matrix A and time-step t.

Unfortunately, this approach requires the use of dense matrix

operators and functions, and also loses the ability to compute

the matrix-vector product etAv directly from a matrix-vector

product series, removing many of the properties that make the

Chebyshev series expansion so appealing.

As such, we have elected to implement the eigenvalue scal-

ing method in pyCTQW as one of the two possible propagator

methods (alongside SLEPc’s built-in Krylov methods). In or-

der to alleviate the computational expense of calculating λmin

or λmax for infinite graphs or graphs containing defects, the user

may choose to enter a value for λ̂min or λ̂max directly – by-

passing the eigenvalue calculation – or fallback to the Krylov

method. If entering eigenvalue estimates, these should be such

that 0 ≤ λ̂min ≤ λmin < λmax ≤ λ̂max, ensuring that the nu-

merical range of Ã remains within [−1, 1]. Note that estimation

of the extreme eigenvalues outside the actual numerical range

produces the same level of accuracy at the expense of a larger

value of |α|, which would then require some extra matrix-vector

terms in the series expansion to ensure accuracy. Nonetheless,

the Chebyshev expansion has been shown to exhibit very low

sensitivity to eigenvalue estimates [41], allowing this ‘semi-

empirical’ implementation to continue to be an effective alter-

nate to the Krylov method in specific circumstances.

Although the Chebyshev matrix exponentiation method is

starting to show great promise, especially in fields of quan-

tum chemistry and physics, the more established Krylov tech-

niques continue to dominate in computational applications –

today, Expokit[44] is the only well known package providing

the Chebyshev methods (albeit, only for dense matrices). By

implementing distributed memory Chebyshev methods in addi-

tion to Krylov methods, pyCTQW will be able to provide fast

and efficient CTQW propagation methods to work with multi-

ple quantum walkers.

4. Software package

The pyCTQW package provides both a Python-based object-

orientated framework (pyCTQW.MPI) as well as a library

(libctqwMPI) containing various Fortran subroutines, which
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enable the user to simulate and explore various user-defined

CTQW systems in a HPC environment. In the latter case, this

is performed via the manipulation of graph-constrained quan-

tum walk objects, whereas in the former case a more sequential

paradigm is required where the user calls various subroutines

on matrix or vector objects.

In this section, installation and dependencies will be ad-

dressed briefly, after which usage of both the Python and For-

tran components of pyCTQW will be discussed in detail.

4.1. Dependencies and installation

As the ability to readily take advantage of modern HPC sys-

tems is one of the major design goals of this package, the de-

cision was made to utilize the MPI-based PETSc [45–47] and

SLEPc [48, 49] scalable linear algebra libraries. This allowed

rapid parallelisation whilst also taking advantage of the opti-

mised data-structures and matrix operations provided by PETSc

and SLEPc.

Furthermore, in addition to requiring PETSc and SLEPc for

parallel computation, the pyCTQW Python module also makes

use of a wide variety of scientific and data visualisation li-

braries, including NumPy, SciPy, Matplotlib and NetworkX.

This provides a rich user environment, and builds on the ma-

turity and efficiency of the aforementioned libraries. It should

be noted that whilst the Python module requires the petsc4py

Python extension in order for the user to directly manipu-

late PETSc data structures and access MPI attributes (such as

rank), the quantum walking calculations are called directly

from the Fortran library, allowing the module to exploit the

speed gain afforded by Fortran.

Once these dependencies are met, the Python module can be

installed from the source code by running the following termi-

nal command:

python setup.py install

whilst the Fortran library can be compiled via the included

makefile:

make fortran

For additional installation help and compilations options, for

example building pyCTQW as a shared library, the user should

refer to the online pyCTQW documentation [50].

4.2. Fortran library libctqwMPI

Of the two interfaces available as part of the software pack-

age, the Python module is designed for an easier end-user ex-

perience, and thus is much more full featured. However, the

underlying Fortran library may still be used, and is described

briefly below.

To call functions and subroutines from the included

libctqwMPI Fortran library, the main Fortran program should

have the following basic structure:

program main

! load libctqwMPI module

use ctqwMPI

! PETSc headers

#include <finclude/petsc.h>

PetscErrorCode :: ierr

PetscMPIInt :: rank

! initialize SLEPc and PETSc

call PetscInitialize(PETSC_NULL_CHARACTER ,ierr)

call MPI_Comm_rank(PETSC_COMM_WORLD ,rank ,ierr)

! program code here

! finalise PETSc

call PetscFinalize(ierr)

end program main

Note that this structure is influenced by typical PETSc and

SLEPc Fortran programs, due to the dependence on these afore-

mentioned libraries. As such, we can take advantage of PETSc

system routines, e.g. allowing command line arguments to be

easily added, as well as code profiling capabilities (i.e. using

PETSc LogStages to create a computational summary of par-

allel code execution). For more details, refer to the PETSc and

SLEPc documentations [2, 6].

Once the libctqwMPI module has been included and PETSc

and SLEPc have been properly initialised, CTQW subroutines

can then be called directly. For example, to calculate the prop-

agation of Hamiltonian H from state psi0 to psi after time t,

call qw_cheby(psi0 ,psi ,t,H,Emin ,Emax ,rank ,n)

where psi0, psi and H are properly declared/allocated PETSc

vectors/matrices, t, Emin and Emax are PETSc reals, and rank,

n are PETSc integers. For a summary of available parallel

CTQW subroutines, see Table 1.

Once the Fortran program is complete, it can be compiled and

linked against libctqwMPI using the supplied makefile tem-

plate, and then executed by running

mpirun -np X <program> [options]

where X is the number of MPI nodes to use, and options refer

to either user defined or inbuilt PETSc/SLEPc command line

arguments used to modify program function. For further infor-

mation and additional details regarding the Fortran interface,

the user is advised to refer to the online documentation [50].

4.3. Python module pyCTQW.MPI

Once pyCTQW.MPI is installed, calculations involving

CTQWs can be called in several ways; either via an executable

Python script, or as an interactive session, for example, using

the iPython or iPython-Notebook environments. The syntax

in both cases is identical, with slight differences in execution.

Here, we will be concerned mainly with executable Python

scripts, required by most HPC job schedulers.

4.3.1. Initialisation

In order to set-up the Python environment correctly, we

must first initialize the PETSc environment, and import the

pyCTQW.MPI module:

#!/ usr/bin/env python2 .7

import sys , petsc4py
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Table 1: Summary of parallel CTQW subroutines available in the Fortran

libctqwMPI library. For more details and required arguments, refer to the

online documentation.
Hamiltonian subroutines

importadjtoh Import an adjacency matrix from a file, and

create a PETSc Hamiltonian matrix

adjtoh Convert an adjacency array to a PETSc

Hamiltonian matrix

hamiltonian p<N> line Create the Hamiltonian matrix representing

N = 1, 2 or 3 walkers on an infinite line

Statespace subroutines

p<N> init Initialise the statespace of an N = 1, 2 or 3

particle CTQW on specified graph nodes

marginal<N> Calculate the marginal probability of particle

number p ∈ N for an N = {1, 2, 3} particle

CTQW

Quantum walk propagation

min max eigs Calculate the minimum and maximum

eigenvalues of a PETSc matrix using SLEPc

qw krylov Propagate the quantum walk for time t using

Krylov subspace methods

qw cheby Propagate the quantum walk for time t using

the Chebyshev series expansion

entanglement Calculates the 2 particle Von Neumann en-

tropy S = −∑

i λi log2 λi, where λi are the

eigenvalues of the reduced density matrix

ρ2 = Tr1(|ψ(t)⟩⟨ψ(t)|)

petsc4py.init(sys.argv)

from petsc4py import PETSc

import pyCTQW.MPI

4.3.2. User defined options

PETSc can be used to create command line arguments for the

script; this is useful in HPC environments where multiple jobs

are to be submitted for a parameter exploration. For example,

the following code creates two command line options, -t and

-N, with default values of 100 and 20 respectively:

OptDB = PETSc.Options ()

N = OptDB.getInt(‘N’, 100)

t = OptDB.getReal(‘t’, 20)

When running the complete parallelised simulation, the op-

tions created are invoked as follows,

mpirun -np X <script>.py [options]

where X is the number of MPI compute nodes/processes. In the

case of the latter example,

mpirun -np X <script>.py -N 5 -t=‘0.3’

would alter the two user defined variables as indicated. Further-

more, most PETSc and SLEPc subroutines accept command

line options which modify their settings; for instance, when us-

ing the SLEPc EPS eigensolver, the eigensolver type to be used

can be changed dynamically by passing an eps type option:

mpirun -np 2 <program> -eps type=‘lapack’

For more details on built-in PETSc/SLEPc command line op-

tions, refer to the PETSc and SLEPc documentation [2, 6].

4.3.3. Rank and local operations

When running on multiple nodes, sometimes only specific

nodes are required to perform a specific calculation or opera-

tion, for instance, the I/O operations where all nodes already

have the same information. Using PETSc, the rank (i.e. the

MPI process number) can be determined for each process, and

conditional statements are used to control which node performs

the I/O operation:

rank = PETSc.Comm.Get_rank(PETSc.COMM_WORLD)

if rank == 0:

print ‘1P Line\n’

Caution is advised, however – the above should only be

utilised for user defined functions and processes, as all of

the methods and functions available in pyCTQW.MPI are de-

signed to work globally on all processes, and should not

be created or called on a subset of all available nodes;

doing so may result in unresponsive simulations. More-

over, most objects in pyCTQW.MPI contain I/O methods (e.g.

pyCTQW.MPI.Graph.exportState()), alternatively PETSc

I/O methods are also available (e.g. PETSc.Vec.view());

these are global over all nodes as mentioned above and should

be used over custom I/O methods when possible.

4.3.4. Code profiling

PETSc also allows for easy code profiling by supplying

the command line option -log summary when executing your

script. This functionality is built-in to pyCTQW.MPI with log

stages created automatically for available methods, for exam-

ple, when creating the Hamiltonian or initial statespace, finding

the eigenvalues, or CTQW propagation, etc. This provides a

wealth of important computational information, such as mem-

ory usage, communication, and timing data, allowing the user

to fine-tune simulation parameters and solvers for ultimate effi-

ciency.

Custom log stages may also be included using the following

template:

stage1 = PETSc.Log.Stage(’First Stage Title ’)

stage1.push()

# place stage 1 functions/operations here

stage1.pop()

4.4. pyCTQW framework

The pyCTQW.MPI Python module provides an object-

oriented framework for simulating CTQW systems, which in-

volves the creation of CTQW objects storing various data struc-

tures (such as Hamiltonians), which can be manipulated via

built-in methods and functions (see Table 2).

The number of available methods and attributes is too large

to detail in full here. Instead, a two particle CTQW on a Cayley

tree will be discussed in the next section to provide a feel of

the framework and its structure. For further details, refer to the

pyCTQW online documentation [50].
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Table 2: Summary of parallel CTQW classes available in pyCTQW.MPI. For

more details and required arguments, please refer to the online documentation.

CTQW submodule

ctqw.Hamiltonian Contains methods for initializing, creating and

manipulating Hamiltonian matrices

ctqw.EigSolver Contains methods for setting up and solving the

for the boundary eigenvalues of a distributed

PETSc matrix

Quantum walks on arbitrary graphs

Graph 1 particle CTQW on a user-defined graph

Graph2P 2 particle CTQW on a user-defined graph

Graph3P 3 particle CTQW on a user-defined graph

Quantum walks on infinite lines

Line 1 particle CTQW on an infinite line

Line2P 2 particle CTQW on an infinite line

Line3P 3 particle CTQW on an infinite line

5. Worked example

In this example, a two particle continuous-time quantum

walk will be performed on a 3-Cayley tree using pyCTQW.MPI.

After initialising PETSc and petsc4py, the pyCTQW module is

imported and a Graph2P object created, indicating that we will

be working on a graph containing n = 10 nodes:

walk = pyCTQW.MPI.Graph2P (10)

Next, we import a 10 × 10 adjacency matrix of the 3-Cayley

tree from a text file1 with elements delimited by either tabs or

spaces2:

d = [3,4]

amp = [2.0 ,1.5]

walk.createH(‘graphs/cayley/3-cayley.txt ’,‘txt ’,

d=d,amp=amp ,layout=‘spring ’,interaction =0.5)

In this example, defects are introduced at vertices 3 and 4 of the

graph, with amplitudes 2 and 1.5 respectively, and the particles

interact with strength 0.5 when co-located at the same vertex;

this results in a system Hamiltonian of the form

H = H(1) ⊕ H(1) + Γint(0.5) (25)

where

H(1) = L3C + 2|3⟩⟨3| + 1.5|4⟩⟨4|

=
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1Importing the adjacency matrix from a 2D PETSc binary array, specified

by filetype ‘bin’, is also supported.
2Alternative delimiters can also be passed using the delimiter keyword.

is the 1-particle Hamiltonian and L3C is the Laplacian matrix of

the 3-Cayley tree. Note that the graph layout is being stored in

‘spring’ form, which is the default if not specified with alterna-

tive layout options including circle, spectral and random. After

executing the above code, a Hamiltonian object walk.H is pro-

duced, allowing the Hamiltonian matrix and its eigenvalues to

be accessed.

Now that the system Hamiltonian has been calculated, the

initial statespace can be populated. For example, the initial

state is chosen to be |ψ(0)⟩ = 1√
2

(|0, 1⟩ + i|1, 1⟩), which is im-

plemented as follows:

init_state = [[0 ,1 ,1.0/ numpy.sqrt (2.0)] ,

[1,1,1.0j/numpy.sqrt (2.0)]]

walk.createInitState(init_state)

Note that the initial state is passed to the CTQW

object in the form of an n × 3 array with format

[[x1,y1,amp1],[x2,y2,amp2],...], which generalizes an

n × p array for a p-particle quantum walk. In more complex

cases, an initial statespace can be imported from an n × n 2D

array in text format, or an n2 element PETSc binary vector, via

PETSc.Graph2P.importInitState().

The next process involves setting the eigensolver properties,

which are then passed to the EigSolver object contained in

our walk object:

walk.EigSolver.setEigSolver(tol =1.e-2,

verbose=False ,emin_estimate =0.)

It is important to note that, since the minimum eigenvalue

of a finite graph is necessarily 0, calculation of the mini-

mum eigenvalue is avoided automatically when pyCTQW de-

tects a finite graph. To reduce computational time further,

emax estimate may also be provided, however this must be

larger than the actual maximum eigenvalue for Chebyshev con-

vergence to be ensured (with convergence time then increasing

as |emax estimate − emin estimate| increases). For addi-

tional keywords that can be passed to the eigensolver, see Ta-

ble 3.

Everything is now set up, allowing propagation to begin. The

following commands will allow a record of the calculated prob-

ability at specified nodes and/or the global entanglement3,4 to

be stored over time:

# create a probability handle for nodes 0-4,9:

walk.watch ([0,1,2,3,4,9])

# create a handle to watch the entanglement

walk.watch(None ,watchtype=‘entanglement ’,

verbose=False ,esolver=‘lapack ’)

Finally, we allow the CTQW to propagate over the 3-Cayley

tree for t = 5, using time-steps of ∆t = 0.01:

for dt in np.arange (0.01 ,t+0.01 ,0.01):

walk.propagate(dt ,method=‘chebyshev ’)

3as entanglement is a global measurement, there is a large amount of node

communication which may increase overall computation time.
4the entanglement watchtype uses an eigenvalue solver, and so accepts

EigSolver keywords detailed in Table 3.
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Table 3: pyCTQW.MPI eigensolver keyword arguments

esolver (str) The default eigensolver algorithm to use.

• ‘krylovschur’ (default) – Krylov-

Schur

• ‘arnoldi’ – Arnoldi Method

• ‘lanczos’ – Lanczos Method

• ‘power’ – Power/Rayleigh Quotient Iter-

ation

• ‘gd’ – Generalized Davidson

• ‘jd’ – Jacobi-Davidson,

• ‘lapack’ – LAPACK eigensolver sub-

routines

• ‘arpack’ – ARPACK subroutines

workType (str) The eigensolver worktype (either ‘ncv’ or

‘mpd’). The default is to let SLEPc decide.

workSize (int) Sets the work size if workType is set

tol (float) Tolerance of the eigensolver (default is to let

SLEPc decide)

maxIt (int) maximum number of iterations of the eigen-

solver (default is to let SLEPc decide)

verbose (bool) If True, writes eigensolver information to the

console

emax estimate (float) Override the calculation of the graphs maximum

eigenvalue (must be larger than or equal to the

actual maximum eigenvalue for Chebyshev con-

vergence)

emin estimate (float) Override the calculation of the graphs minimum

eigenvalue (must be smaller than or equal to the

actual minimum eigenvalue for Chebyshev con-

vergence)

In this example, we use the Chebyshev propagator, but the

Krylov propagator (which is slightly slower) may be used in-

stead. It should also be noted that, as the watch handles are

updated every time propagation occurs, the small time-step al-

lows transient data to be collected at a reasonable resolution.

However, if the end result of the CTQW propagation is all that

is required, it is equally valid to remove the loop and use a time-

step ∆t = t, without any loss of accuracy and with some saving

in computation time.

Now that the simulation is complete, raw data can be ex-

ported and visualisations can be produced, as shown by the fol-

lowing example:

# p1 and p2 marginal probabilities at t=5

walk.plot(‘plot.png ’)

# 3D graph showing of marginal probability at t=5

walk.plotGraph(output=‘plot_3D.png ’)

# p1 and p2 probability over time for node 1

walk.plotNode(‘plot_node1.png ’,1)

# p2 probability over all watched nodes

walk.plotNodes(‘plot_nodes_particle2.png ’,p=2)

# plot the entanglement vs. time

walk.plotEntanglement(‘entanglement.png ’)

# export the partial trace as a text file

walk.exportPartialTrace(‘rhoX.txt ’,‘txt ’,p=1)

# export the final state to a PETSc binary file

walk.exportState(‘output_state.bin ’,‘bin ’)

Fig. 2: (Color online) Marginal probability of particles 1 and 2 from the worked

example after CTQW propagation over a 3-Cayley tree, as plotted over a 3D

representation of the graph (top) and vs. node number (bottom).

A selection of these plots is reproduced in Fig. 2, Fig. 3 and

Fig. 4.

Finally, once the CTQW object is no longer needed, mem-

ory can be freed by destroying it together with all associated

matrices and vectors:

walk.destroy ()

Now that the simulation script is complete, it can be made ex-

ecutable and run on distributed memory systems using mpirun.

6. Scaling and performance

In order to effectively determine the performance of the

Chebyshev and Krylov exponential methods used in pyCTQW,

the following study was undertaken comparing the aforemen-

tioned algorithms across various implementations. Further-

more, as one of the main design points of pyCTQW is to pro-

vide a framework for under-the-hood parallelization of CTQW-

based simulations, the parallel scaling behaviour of pyCTQW

was also explored for a variety of input problem sets.

Note that in the following performance study, all computa-

tions were completed on a Xeon X5650 based SGI cluster with

an InfiniBand low-latency interconnect.

6.1. Library comparison

For this comparison, the problem set chosen is that of a two-

particle non-interacting CTQW along a finite line of length N,
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Fig. 3: (Color online) Probability distribution of particle 1 over time, plotted

for various graph nodes.

Fig. 4: Von Neumann entropy of the two particle CTQW propagation over a

3-Cayley tree vs. time
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Fig. 5: (Color online) The CPU walltime for a two particle non-interacting

CTQW on a finite line of N nodes, propagated for t = 10 using a variety of dif-

ferent software libraries/packages as shown by the legend. All simulations are

computed using the Chebyshev algorithm, with the exception of Mathematica

where the in-built MatrixExp[] function is used.

with vertices labelled | − N/2 + 1⟩, . . . , |0⟩, . . . , |N/2⟩. This sys-

tem can be made sufficiently large and complex, and involves

the calculation of an N × N matrix exponential, allowing per-

formance differences to be clearly visible as N scales whilst re-

ducing Hamiltonian construction overheads. To add complexity

into the system, defects are placed at vertices |3⟩ and |4⟩ of am-

plitudes 2 and 1.5, respectively. Propagation is calculated for

t = 10 from initial entangled state

|ψ(0)⟩ = 1
√

2
(|0⟩ ⊗ |0⟩ + i|1⟩ ⊗ |0⟩) .

Fig. 5 shows how the resulting walltime of the system

scales as N increases, with the propagation simulated using the

Chebyshev algorithm implemented via Intel Fortran/LAPACK,

Python/SciPy, and pyCTQW (using both a single process and

240 MPI processes on 40 6-core Intel Xeon X5650s). Also

plotted for comparison is the same propagation calculated us-

ing Mathematica’s in-built MatrixExp[] function, using the

Krylov method and sparse matrices.

It can immediately be seen that pyCTQW outperforms all

other methods, with the exception of Intel Fortran/LAPACK

for N ≲ 100. However, the dense matrix methods available

in LAPACK quickly prove unsustainable compared to the other

sparse matrix methods for N ≳ 1000. Considering the remain-

ing implementations, whilst the scaling of SciPy’s sparse ma-

trix Chebyshev algorithm scales similarly to a single process

of pyCTQW for large N (indicating perhaps overhead related

to the interpretive nature of Python), the small N behaviour is

almost an order of magnitude slower.

Thus, coupled with the two orders of magnitude speedup ex-

hibited by pyCTQW when parallelized for N ∼ 106, it can be

seen that pyCTQW easily outperforms various other implemen-

tations for large CTQW systems, whilst still remaining compet-

itive for N small.

10



10
2

10
3

10
4

10
5

10
6

10
7

0.001

0.01

0.1

1

10

100

Number of vertices HNL

W
a
ll

ti
m

e
Ht
L

1 2 5 10 20 50 100

0.005

0.010

0.050

0.100

0.500

1.000

Number of processors HpL

W
al

l
ti

m
e
Ht
L

Fig. 6: (Color online) Top: The CPU walltime for a one particle CTQW on

a finite line of N nodes, propagated for t = 5 using the Krylov (black) and

Chebyshev (blue) algorithms for 1 MPI thread (solid line) and 128 MPI threads

(dashed line). Bottom: Strong scaling behaviour for problem size N = 105

shown for the Krylov (black, dashed), Chebyshev (blue, dotted) and Krylov–

Schur eigenvalue solver (red, solid).

6.2. Parallel scaling

To analyze the scalability of pyCTQW, both one-particle and

two-particle CTQWs on a finite line of N vertices were com-

puted using p MPI threads. In both cases, the CTQW was prop-

agated for t = 5 with defect Γ = 2|0⟩⟨0| + 1.5|1⟩⟨1|. With one

particle, propagation commenced from initial state

|ψ(0)⟩ = 1
√

2
(|0⟩ + |1⟩) ,

whereas when two-particles were used, propagation com-

menced from initial state

|ψ(0)⟩ = 1
√

2
(|0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩)

with an interaction term of Γint(1).

Fig. 6 highlights the scaling results for the one-particle prob-

lem set. Similar to what was seen earlier, the Chebyshev algo-

rithm is approximately one order of magnitude faster than the

Krylov algorithm, however both algorithms exhibit analogous

scaling behaviour (∼ O(1/p)).

The two-particle problem set results are plotted in Fig. 7, this

time with parallel speedup (defined as S p = T1/Tp, where Tp is

the walltime for p MPI threads) and parallel efficiency (defined

as Ep =
T1

pTp
= S p/p) displayed. Here, it can be seen that

both the Krylov and Chebyshev algorithms demonstrate im-

pressive speedup, with little difference between them, although

the Chebyshev appears slightly more advantageous. The default
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Fig. 7: (Color online) The speedup (top) and efficiency (bottom) for a two

particle interacting CTQW on a finite line of N = 150 nodes, propagated for t =

5 using the Krylov (black, dashed) and Chebyshev (blue, dotted) algorithms,

with the Krylov–Schur eigenvalue solver also shown (red, solid). The solid

gray diagonal line indicates ideal speedup.

SLEPc eigenvalue solver, in contrast, shows a marked drop in

efficiency as the number of processors increases, indicating sig-

nificant communication overhead. This has the potential to af-

fect the pyCTQW simulation time when using the Chebyshev

algorithm in the case where the maximum eigenvalues cannot

be efficiently calculated.

An accuracy comparison of the Chebyshev and Krylov al-

gorithms has been previously presented by Bergamaschi and

Vianello [41], and so has not been reproduced here. Of partic-

ular note are their findings that the relative error of the Cheby-

shev approximation is either comparable or significantly re-

duced compared to the relative error of the Krylov algorithm,

with all errors rising with t. Furthermore, a low sensitivity to

eigenvalue estimation on the convergence of the Chebyshev se-

ries was also demonstrated, justifying the avoidance of costly

eigenvalue solvers that in some cases may result in bottlenecks.

7. Conclusions

Over the last few decades, the fields of quantum information

and computation have provided an abundance of theorems and

tools that have changed how we model and perceive many great

problems in physics. Of these, quantum walks have constituted

an important component, resulting in a plethora of quantum al-

gorithms and potential models in a diverse range of fields.

In this paper, we presented a distributed memory software

framework, with an object-oriented Python interface pyCTQW,

that allows the efficient simulation of multi-particle CTQW-

based systems. This package also provides easy methods of

11



visualisation and data analysis. We also detailed the Cheby-

shev series expansion for the calculation of the matrix expo-

nential, and provided performance data indicating the resulting

high degree of speedup achieved over other well established al-

gorithms, such as Krylov-subspace methods.

With future versions of pyCTQW, features considered for in-

clusion include open system quantum walks using superopera-

tors, and extending the allowable number of simultaneous quan-

tum walkers. Furthermore, additional code profiling and testing

is likely to result in optimisations and increased performance.
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Y. Silberberg, M. G. Thompson, J. L. OBrien, Quantum walks of corre-

lated photons, Science 329 (2010) 1500–1503.

[19] A. Peruzzo, Multiparticle quantum walks in integrated-waveguide arrays,

SPIE Newsroom (2010).

[20] L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi,

R. Osellame, Two-Particle Bosonic-Fermionic quantum walk via inte-

grated photonics, Physical Review Letters 108 (2012) 010502.

[21] M. Karski, L. Förster, J. Choi, A. Steffen, W. Alt, D. Meschede,

A. Widera, Quantum walk in position space with single optically trapped

atoms, Science 325 (2009) 174–177.

[22] H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert, M. Enderlein,

T. Huber, T. Schaetz, Quantum walk of a trapped ion in phase space,

Physical Review Letters 103 (2009) 090504.

[23] M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik,

A. G. White, Discrete Single-Photon quantum walks with tunable deco-

herence, Physical Review Letters 104 (2010) 153602.

[24] O. Mülken, A. Blumen, Continuous-time quantum walks: Models for

coherent transport on complex networks, Physics Reports 502 (2011)

37–87.

[25] M. Mohseni, P. Rebentrost, S. Lloyd, A. Aspuru-Guzik, Environment-

assisted quantum walks in photosynthetic energy transfer, Journal of

Chemical Physics 129 (2008) 174106.

[26] M. Sarovar, A. Ishizaki, K. B. Whaley, Quantum entanglement in photo-

synthetic light-harvesting complexes, nature Physics 6 (2010).

[27] G. S. Engel, T. R. Calhoun, E. L. Read, T. Ahn, T. Mančal, Y. Cheng,
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Abstract

Various quantum walk-based algorithms have been developed, aiming to

distinguish non-isomorphic graphs with polynomial scaling, within both the

discrete-time quantum walk (DTQW) and continuous-time quantum walk

(CTQW) frameworks. Whilst both the single-particle DTQW and CTQW have

failed to distinguish non-isomorphic strongly regular graph families

(prompting the move to multi-particle graph isomorphism (GI) algorithms),

the single-particle DTQW has been successfully modified by the introduction

of a phase factor to distinguish a wide range of graphs in polynomial time. In

this paper, we prove that an analogous phase modification to the single particle

CTQW does not have the same distinguishing power as its discrete-time

counterpart, in particular it cannot distinguish strongly regular graphs with the

same family parameters with the same efficiency.

Keywords: quantum walk, graph isomorphism, phase addition

1. Introduction

Graph isomorphism (GI) is an important open problem in mathematics and computer science,

with potential applications in a wide variety of fields ranging from network theory to bio-

chemistry—for example, efficient GI algorithms may provide the key to distinguishing

molecular representations in chem-informatics [1]. However, the existence of a polynomial-

time algorithm for determining GI remains a long-standing unsolved question in computa-

tional complexity theory, with the current fastest algorithm scaling as 2 n n( log ) [2]. In fact,

the complexity algorithm scaling of the GI problem has yet to be definitively ascertained,

though it is conjectured to exist in P and not NP-complete [3]. In the last couple of decades,

however, the study of quantum systems has enabled the construction of so-called quantum
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algorithms, capable of running exponentially faster than the best known classical algorithms.

Most commonly constructed via quantum circuits, an alternate framework for constructing

quantum algorithms involves propagating quantum particles on arbitrary graph structures.

Referred to as a quantum walk (QW) and proven to provide methods for universal compu-

tation [4], they have become an important keystone in the construction of quantum GI

algorithms.

The QW is an extension of the Markovian classical random walk to the quantum regime,

with the time-evolution of the system instead governed according to the Schrödinger

equation. As such, quantum walkers are able to utilize quantum effects (such as superposition

and quantum correlation) in order to display drastically differing behaviour to their classical

counterparts—for example, QWs propagate in a ballistic manner with quadratic speedup. As

with the classical walk, two similar but non-trivially related quantum walk formulations exist;

the discrete-time quantum walk (DTQW) [5] and the continuous-time quantum walk

(CTQW) [6].

The ability of QWs to distinguish or partition strongly regular graphs (SRGs) is a

problem that has been considered numerous times, however single-particle QW algorithms

have the tendency to produce identical GI ‘certificates’ for certain non-isomorphic graphs [7–

11]. To alleviate this issue, Douglas and Wang [8] developed a perturbed one-particle

DTQW-based GI algorithm that was able to successfully distinguish non-isomorphic pairs of

SRGs with up to 64 vertices. Multiparticle DTQW algorithms were further explored by Berry

and Wang [12]; non-interacting and interacting two-particle DTQWs were used to success-

fully distinguish specific SRG families. Although lacking the ‘coin flip’ operation found in

DTQWs—and thus resulting in a system with reduced degrees of freedom—two-particle

interacting CTQW GI alorithms have been proposed that successfully distinguish arbitrary

SRGs. Further, it has been proven by Gamble et al [7] that a non-interacting CTQW cannot

distinguish a pair of SRGs with the same family parameters, contrary to the discrete case.

Whilst the single-particle CTQW was discarded by Gamble et al [7] and Shiau et al [13]

as it was unable to distinguish families of non-isomorphic SRGs with the same family para-

meters, it is natural to ask: would a perturbed one-particle CTQW, modified analagously to the

process used by Douglas and Wang [8] for the DTQW, result in a similar improvement in

distinguishing power? This has not previously been explored in the literature, due in part to

ambiguities in defining the perturbed CTQW system. In this paper, we consider several possible

methods of modifying the single-particle CTQW, and prove that none of those considered is as

powerful as the phase added DTQW described in Douglas and Wang [8]. Furthermore, we also

provide an explanation for the cause of the increased distinguishing power of DTQWs.

2. Graphs and matrix algebras

Let G V E( , ) be an undirected graph with vertex set V v v{ , ,...}1 2= and edge set

E v v{( , ) ,...}i j= consisting of unordered pairs of connected vertices. A graph G with N

vertices is described by its adjacency matrix A, which is an N × N matrix satisfying

A
u v E1, if ( , )

0, otherwise
.uv =

∈⎧
⎨
⎩

For completeness, we define a number of distance related measures of the graph:

• The diameter of a graph is the largest number of vertices which must be traversed in

order to travel from one vertex to another, and is denoted by d.

J. Phys. A: Math. Theor. 48 (2015) 265301 A Mahasinghe et al
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• The distance between two vertices u and v is defined as the number of edges in the

shortest path connecting them and is denoted by u vdist( , ).

• A graph is said to be distance regular, if, for any pair of vertices u and v, the number of

vertices at distance i from vertex u and the number of vertices at distance j from vertex v

does not depend on the choice of u and v, just the distance between u and v. Thus, letting

k u vdist( , )= , we can then define the intersection number p
ij
k( ).

2.1. The Bose–Mesner Algebra

The Bose–Mesner algebra of a graph G can be constructed as follows. Let MV denote the

algebra of all complex matrices of size N × N, with rows and columns indexed by V, the

vertex set of G. Now, define the set of N × N matrices i such that

( )
u v i

i d
1, if dist( , ) ,

0, otherwise,
0, 1 ,..., .i uv

 =
=

=
⎧
⎨
⎩

The Bose–Mesner algebra of G is thus the d-dimensional subalgebra of MV generated by

linear combinations of , , , d0 1  … . In particular, note that:

• I0 = (the N × N identity matrix)

• A1 = (the adjacency matrix of the graph)

• Jd0 1  + + … + = (the N × N all ones matrix)

Furthermore, the relation

p , (1)i j

k

d

ij
k

k

0

  ∑=
=

where p k
ij is the relevant intersection number, holds for the basis matrices of this Bose–Mesner

algebra [14].

The dual Bose–Mesner algebra at vertex vr can be constructed in a similar fashion.

Define the diagonal matrices F F F, , , d0 1 … as follows:

( )F
v u i1, if dist( , ) ,

0, otherwise.
(2)i uu

r=
=⎧

⎨
⎩

The diagonal matrices F F F, , , d0 1 … form a subalgebra of MV, referred to as the dual Bose–

Mesner algebra of G with respect to the reference vertex vr [14–16]. It can be observed that

this algebra behaves similarly to the Bose–Mesner algebra; for example, the relations

F F F Id0 1+ + … + = and FF Fi j ij iδ= hold for the dual Bose–Mesner algebra of G with

respect to vr.

2.2. Strongly regular graphs

We can now consider a particular type of graph, known as SRGs. Let G be a k-regular

graph on N vertices that is neither a complete graph nor null graph; G is then said to be

strongly regular with parameters N k( , , , )λ μ if

• every pair of adjacent vertices (AV) have exactly λ common neighbours,

• every pair of non-AV have exactly μ common neighbours.

As a result of these conditions, it can be seen that the diameter of an SRG is equal to two.

Thus, the Bose–Mesner algebra of an SRG has a significantly simpler basis, consisting simply

J. Phys. A: Math. Theor. 48 (2015) 265301 A Mahasinghe et al
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of 0 , 1 , and 2 . Following from the definition of i above, we have the following

relations: I0 = , A1 = , and J J I A2 0 1  = − − = − − . Likewise, the dual Bose–

Mesner algebra with respect to reference vertex vr has three basis elements, the diagonal

matrices F0, F1, and F2, with each Fi containing the vrth row (or equivalently the vr th column)

of i along the diagonal.

3. Quantum walks

QWs are the quantum analogue of classical random walks, with time-evolution governed by

the Schrödinger equation rather than the Markovian master equation. Over the last decade,

QWs have received a significantly increased research focus, due in part to its applicability as a

computational model in quantum computation, as well as a wide range of potential appli-

cations—including network theory, computer science, quantum information and biochem-

istry. In particular, the application of QWs in GI testing has been especially noteworthy.

3.1. Discrete-time QWs

The quantum analogue of the discrete-time classical random walk, the DTQW, takes place in

the Hilbert space , comprised of the tensor product of the space spanned by orthonormal set

of vertex states v i N{ : 1, 2 ,..., }i∣ 〉 = and the coin Hilbert space spanned by orthonormal set

of coin states c i d{ : 1, 2 ,..., }i i∣ 〉 = , with di the degree of vertex vi. The DTQW on the

graph is then achieved via repeated application of the unitary time-evolution operator

( )U S Cˆ ˆ · 1 ˆ= ⊗ , where C is the coin operator, and S is the shift operator acting on the

Hilbert space  as S v c v cˆ , ,i j j i∣ 〉 = ∣ 〉.
The DTQW unitary operator can alternatively be expressed on the space of all directed

edges of the graph; i.e. the space formed by all ordered tuples of vertices in the graph, and

hence this representation is by a matrix of dimensions N N2 2× . For example, in the case of a

d-degree Grover coin (ĈG
d d d( )

∈ × , C d( ˆ ) 2G

d

ij ij

( )
δ= − ) applied to a d-degree regular graph,

the DTQW unitary time-step operator is expressible as follows:

( )U S C d
j k

( ) ˆ · 1 ˆ

2
, if ,

0, otherwise.

(3)ij kl G

d

ij kl
j

il
,

( )

,

δ
= ⊗ =

− =⎡
⎣⎢

⎤
⎦⎥

⎧

⎨
⎪

⎩
⎪

where i j k l E( , ), ( , ) ∈ and dj denotes the degree of the jth vertex. This form, which is

equivalent to the above definition, has been adopted by Emms et al [9] and Smith [17].

Various methods have been previously used in the construction of graph certificates

(certificates used to uniquely identify a graph and its isomorphisms) in DTQW-based GI

algorithms. It has been observed that U andU ́ , the two unitary time evolution operators for a

pair of non-isomorphic SRGs with same family parameters, share a number of common

properties, with the most explicit example being cospectrality. One such method is shown by

Emms et al [9], whereupon U n and U
ń are calculated and the resulting spectra compared,

successfully distinguishing certain pairs of SRGs. Alternatively, using a phase-added DTQW

modification, Douglas and Wang [8] compared the resulting probabilities at timestep t N 2= ,

and successfully distinguished certain pairs of SRGs with the same family parameters.
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3.2. Continuous-time QWs

A separate but non-trivially related QW formulation is the CTQW, itself based on continuous-

time classical random walks. As with the DTQW, the CTQW has also been used for GI

testing, most commonly by constructing an unbiased graph certificate based on the CTQWs

time evolution operator acting on the graph Hamiltonian. Amongst the literature, there are

several competing definitions of the Hamiltonian, the most popular including H A= ± and

H L= ± , where A is the adjacency matrix and L is the Laplacian of the graph (constructed via

L D A= − , with D the diagonal matrix defined by D Ai
j

N

ij
0

∑=
=

). Note that in the case of

regular graphs of degree λ, the Laplacian can be written L D A I Aλ= − = − , and thus the

time evolution operator becomesU t( ) e e e eLt I A t t Ati i( ) i i= = =λ− − − − −
—proportional to eiAt up

to a global phase factor. Therefore, as we are working with SRGs, selecting H = A for

simplicity and without loss of generality, the time evolution operator of the CTQW is

determined by solving the Schrödinger equation, and is expressed as U t( ) e Hti= − .

Due to the unknown vertex-labelling permutation relation between two isomorphic

graphs, the graph certificate is generally constructed by performing a frequency measurement

on the resulting probability distribution of the evolved QW—i.e. producing an ordered list.

This approach has been adapted by Shiau et al [13], Rudinger et al [11], Rudinger et al [10],

Gamble et al [7], Douglas and Wang [8], and Berry and Wang [12], all aiming at solving the

GI problem in polynomial time by exploiting massive quantum parallelism. These algorithms

construct the GI certificates by essentially flattening the matrix of transition amplitudes and

discarding detailed structural information, which are therefore efficient (i.e. in polynomial

time) but not proven to be universal. In other words, they may ultimately fail to distinguish

certain families of non-isomorphic graphs. As such, they only provide a necessary condition

of isomorphism, but not a necessary and sufficient condition that the sets of elements of two

isomorphic graphs are equivalent.

Of course, modifying the algorithm to account for the detailed structure of i U t j( )〈 ∣ ∣ 〉
would most likely be advantageous, and may be able to distinguish non-isomorphic graphs

that produce CTQW time-evolutions with the same list of elements. However, to our

knowledge, there does not exist any proposed CTQW GI algorithm that makes use of the

structural information in an efficient manner, due to the unknown vertex-labelling permuta-

tion relation between two graphs. One could always test all possible permutations of rows and

columns between the two i U t j( )〈 ∣ ∣ 〉 matrices, but this would require factorial/exponential

time and thus offers no advantage over classical algorithms.

4. QWs with phase

In order to determine whether a QW will be successful in distinguishing two non-isomorphic

graphs, it is sufficient to prove that the resulting GI certificates (for example the produced sets

of transition amplitudes as described above) do not contain the same elements. In the case of

the CTQW and SRGs, it can be demonstrated from the Bose–Mesner algebra of SRGs

(section 2.2) that the exponentiated adjacency matrices for two graphs within the same

N kSRG( , , , )λ μ family produce the same sorted list of entries—and hence the time evolu-

tions are identical and the graphs are indistinguishable. In order to address this problem, we

will attempt to modify the QW evolution in an manner analogous to that performed by

Douglas and Wang [8] in the discrete case.

Douglas and Wang [8] considered the possibilities of modifying the DTQW without

extending the system to two particles in order to increase its distinguishing power.
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Consequently, they successfully modified the single particle DTQW by adding a phase,

distinguishing several non-isomorphic SRGs with the same family parameters. In their

algorithm, a vertex is selected as the reference vertex and a local phase is applied to all

vertices adjacent to it; i.e. S v c v c, e ,i j j i
i∣ 〉 = ∣ 〉θ . The graph certificate is then taken as the

probabilities at the pairs of vertices u v{ , } of the graph, which makes it uniform up to a vertex

permutation.

It is natural to ask whether the continuous counterpart of this phase addition could be

successfully used for GI testing. We consider several possible algorithms for CTQW phase

additions, restricting ourselves to those which are uniform for permutations of the vertices. To

construct the graph certificate, we then utilize transition amplitudes between all pairs of

vertices. It should be noted that this is equivalent to the DTQW graph certificate construction

as used by Douglas and Wang [8]—thus assuming this follow through in continuous time, we

conclude that whenever the method used by Douglas and Wang [8] can distinguish two vertex

transitive graphs (for example the first few distinct pairs of SRGs within the same family), so

should the method of CTQW phase additions.

We will begin by proving, using the Bose–Mesner algebra, that two non-isomorphic

SRGs with the same family parameters cannot be distinguished, before arriving at the explicit

continuous counterpart of the phase added DTQW. Finally we consider general phase

additions, and compare and contrast the two methods.

Lemma 1. The ordered transition amplitude lists of a single-particle CTQW are identical

for two non-isomorphic SRGs with the same family parameters.

Proof. Recall that the Hamiltonian is expressible as H = A. Since the basis elements of the

Bose–Mesner algebra obey the relations

p , (4)i j

k

ij
k

k

0

2
( )

  ∑=
=

and I0 = , A1 = and J I A2 = − − , the time evolution operator can be written as

U t
n

t( ) e
1

!
( i ) , (5)At

n

n ni

0

0 1 2   ∑ α β γ= = − = + +−

=

∞

where α, β and γ are time dependent and depend only upon the family parameters N k( , , , )λ μ

of the SRG. The graph certificate is thus given by i U t j i j V{ ( ) : , }〈 ∣ ∣ 〉 ∈ , i.e. the list of

elements of the matrix U(t). We can now calculate the diagonal and off-diagonal elements

of U:

• Diagonal elements (i.e. i = j): as ( ) ( ) 0jj jj1 2 = = and j( ) 1jj0 = ∀ , we therefore

have N diagonal elements equal to α.

• Off-diagonal elements (i j≠ ): we have i j( ) 0 ,ij0 = ∀ , whilst 1 and 0 contains a

mixture of zeros and ones. Since the SRG is k-regular, the adjacency matrix will contain

k non-zero elements for each N vertex. Thus, there will be kN off-diagonal elements equal

to β, and N N kN2 − − off-diagonal elements equal to γ.

Thus, i U t j i j V{ ( ) : , }〈 ∣ ∣ 〉 ∈ contains N elements of α, kN elements of β, and

N N kN2 − − elements of γ. As α, β and γ depend only on N k( , , , )λ μ , two non-isomorphic

SRGs with identical family parameters will produce the same time evolution and therefore GI
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certificate. Hence, two SRGs with same family parameters are not distinguished the

CTQW. □

As expected, the Bose–Mesner approach provides the same conclusion as previously

shown by Gamble et al [7].

4.1. SV-phase addition

The first possible option for phase addition includes adding a local phase factor at a selected

vertex. We shall call this SV (selected vertex) phase addition. The Hamiltonian in this case is

simply the adjacency matrix with phase added along the diagonal at a single vertex (the

reference vertex); this can be expressed as H A F0θ= + , and hence the time evolution

operator isU t( , ) e A F t
SV

i( )0θ = θ− + . Note that it follows that if the two graphs to be tested are

vertex transitive, comparing the transition amplitudes at the vertices is sufficient to measure

the strength of the SV-phase added CTQW.

Considering pairs of SRGs with same family parameters, the Shrikhande graph and the

(4, 4)-lattice graph provide the non-isomorphic pair of N kSRG( , , , )λ μ with minimum N. For

these graphs, the family parameters are given by N k16, 6, 2λ μ= = = = , and both these

graphs are vertex transitive. Therefore, the transition amplitudes will provide an unbiased

graph certificate. The effect of SV-phase added CTQW on this pair is described in lemma 2.

Lemma 2. The ordered transition amplitude lists of the SV-phase added CTQW are

identical for two non-isomorphic SRGs with parameters (16, 6, 2, 2).

Proof. Recall the Hamiltonian for SV-phase added CTQW is given by A F0θ+ . Consider

the terms in the expansion of the SV time evolution operator:

( ) ( ) ( )U
n

t A F I t F
t

F
1

!
( i ) i

( i )

2!
. (6)

n

n n
SV

0

0 1 0

2

1 0
2

 ∑ θ θ θ= − + = − + +
−

+ + …
=

∞ ⎡

⎣
⎢

⎤

⎦
⎥

Let us use mathematical induction on n to prove the following result

( )A F F F

F F F F , (7)

n

j

j
n

j

j

j
n

j

j k

j k
n

j k

n n n n

0

0

2
( )

0

2
( )

, 0

2

,
( )

( )
1 0

( )
2 0

( )
1 0 1

( )
2 0 1

 

     

∑ ∑ ∑θ α β γ

χ ϵ ζ η

+ = + +

+ + + +

= = =

where j
n( )α ,

j
n( )β ,

j k
n
,
( )γ , n( )χ , n( )ϵ and n( )ζ are coefficients depending only upon the family

parameters of the SRG. By requiring 11
(1)α = ,

0
(1)β θ= , and j k,

(1) (1) (1)γ χ ϵ= = =

0(1) (1)ζ η= = , it can be seen that for the case n = 1, (7) reduces to

A F F . (8)0 1 0θ θ+ = +

Thus (7) holds true for n = 1.

Now, assuming it is true for n, consider the case n 1+ . The terms of the expansion of

A F( )n0
1θ+ + are derived by right-multiplying each term in (7) by 1 and F0 respectively.

Since{ , , }0 1 2   form the basis of the Bose–Mesner algebra of SRGs, we can make use of

the multiplication closure relation pi j
k

d

ij
k

k
0

  ∑=
=

. Thus, multiplying the first term by

1 , we get
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, (9)

j

j
n

j

j

j
n

j

0

2
( )

1

0

2
( 1)

  ∑ ∑α α=
= =

+
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

where j
n( 1)α + denotes a new coefficient signifying its continued contribution to the first term in

the expansion (7). Similarly, right-multiplying the second and third terms of the expansion by

1 , we find that they contribute to the Fj k double summation term:

F F a(10 )

j

j
n

j

j

a
n

j

0

2
( )

1

0

2
( 1)

1
j,1

 ∑ ∑β γ=
= =

+
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

F F b, (10 )

j k

j
n

j k

j k

b
n

j k

, 0

2
( )

1

, 0

2
( 1)

j k,
  ∑ ∑γ γ=

= =

+
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

where
a
n

b
n

c
n

j k
n( 1) ( 1) ( 1)
,
( 1)

j k j k j k, , ,
γ γ γ γ+ + =+ + + + ( c j k,γ , the final contribution to

j k
n
,
( 1)γ + , will be defined

later). Similarly, after right-multiplication by 1 the fourth and fifth terms can now be written

in terms of the sixth and seventh terms of (7), respectively:

( )F F a(11 )n n( )
1 0 1

( 1)
1 0 1   χ ζ= +

( )F F b. (11 )n n( )
2 0 1

( 1)
2 0 1   ϵ η= +

For the case SRG (16, 6, 2, 2), it can be shown that

( )F F F F F a2 2 (12 )1 0 1
2

1 1 1 2 1 0 1    = + + +

( )F F F F F b2 2 . (12 )2 0 1
2

2 1 2 2 2 0 2    = + + +

Thus, multiplying the sixth term of (7) by 1 in the case of SRG (16, 6, 2, 2), and expanding

in terms of the basis elements

( )F F F F F

a

2

(13 )

n
a
n

c
n

c
n

a
n

1 0 1 1
( 1)

1
( 1)

1 1
( 1)

1 2
( 1)

1 0
1 1,1 1,2

     ζ β γ γ χ= + + ++ + + +

( )F F F F F b2 . (13 )n
a
n

c
n

c
n

a
n

2 0 1 1
( 1)

2
( 1)

2 1
( 1)

2 2
( 1)

2 0
2 2,1 2,2

     ζ β γ γ ϵ= + + ++ + + +

We now return to the general case of an arbitrary SRG, and repeat the previous procedure—

this time right-multiplying the terms in (7) by 1 :

F F F F . (14)

j

j
n

j a
n

b
n

b
n

0

2
( )

0
( 1)

0
( 1)

1 0
( 1)

2 0
0

  ∑α β χ ϵ= + +
=

+ + +
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Now we make use of the property F F Fj k jk jδ= of the dual Bose–Mesner algebra at the

reference vertex vr, and establish the following:

F F F . (15)

j

j
n

j b
n

0

2
( )

0
( 1)

0
0

∑β β=
=

+
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Considering the three-fold products of the form F Fj k l , we can now make use of the fact that

the u v( , )th entry of this three-fold product is expressible as
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( )F F
u X x v X x u X v1, if ( ), ( )and ( ),

0, otherwise,
(16)j k l

uv

j l k
 =

∈ ∈ ∈⎧
⎨
⎩

(where X x( )j denotes the set of vertices in the graph located at a distance j from the vertex x

[18, 19]) to deduce the following:

F F F F F F F F O. (17)0 1 0 2 1 0 0 2 0 1 2 0   = = = =

Further, since

( )F
u v j v x k1, if dist( , ) , and dist( , ) ,

0, otherwise,
(18)j k

uv
 =

= =⎧
⎨
⎩

we deduce that

F F F a(19 )1 1 0 1 0 =

F F F b. (19 )2 2 0 2 0 =

Recall that I0 = ; it follows that

F F F F
F j

O j

, 0,

, 1, 2.
(20)j j0 0 0

0
 = =

=

=

⎧
⎨
⎩

Using this fact with (17) and (19), we establish the following:

F F F F F . (21)

j k

j k
n

j k c
n

c
n

c
n

, 0

2

,
( )

0
( 1)

0
( 1)

1 0
( 1)

2 0
0

  ∑ γ β χ ϵ= + +
=

+ + +
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Since F F Fj k jk jδ= , the terms F1 0 and F2 0 undergo only a change of coefficients when

right-multiplied by F0. Finally, in the specific case of SRG (16, 6, 2, 2), it can be shown that

F F F F O. (22)1 0 1 0 2 0 1 0   = =

Now, using equations (9–11), (13–15), (21, 22), we establish that

( )A F F F

F F F F . (23)

n

j

j
n

j

j

j
n

j

j k

j k
n

j k

n n n n

0
1

0

2
( 1)

0

2
( 1)

, 0

2

,
( 1)

( 1)
1 0

( 1)
2 0

( 1)
1 0 1

( 1)
2 0 1

 

     

∑ ∑ ∑θ α β γ

χ ϵ ζ η

+ = + +

+ + + +

+

=

+

=

+

=

+

+ + + +

Therefore, by the principle of mathematical induction, we establish (7). Next, we consider the

term F2 0 1  ; this three-fold product is expressible as a combination of singeltons, two-fold

products and the three-fold product F1 0 1  :

F F F F F F . (24)2 0 1 1 1 1 2 2 0 1 1 0 1      = + + − −

Observe that the singletons can be expressed as two-fold products, as F F F I0 0 1 2 = + + = .

Thus, it follows that ( )A F
n

0θ+ is expressible as a linear combination of two-fold products

and the single three-fold product F1 0 1  ; and therefore we express t A F( i ) ( )n n
0θ− + as

follows;

( )( )t A F F F F( i ) . (25)n n

j k

j k
n

j k j k
n

j k
n

0

, 0

2

,
( )

,
( ) ( )

1 0 1   ∑θ α β γ− + = + +
=
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Hence, summing over all n, the SV time evolution operator is expressible as

( )U t F F F( , ) , (26)

j k

j k j k j k j kSV

, 0

2

, , 1 0 1   ∑θ α β γ= − + +
=

where j k,α , j k,β and γ depend on the family parameters of the SRG, and implicitly on time t

and phase θ.

Now we calculate the contribution of each term in this summation. Since each matrix is

comprised solely of ones and zeros, an entry of the matrix U is a summation of j k,α , j k,β , and

γ. The contribution of each element can be determined both combinatorially and

computationally. Table 1 provides a list of all possible elements in the USV expansion of

graphs in the SRG (16, 6, 2, 2) family. As expected, since j k,α , j k,β and γ depend only on

N k( , , , )λ μ , each element in the table occurs an equal number of times in the summation for

both USV and USV
́ . Thus it follows that the two SRGs with parameters (16, 6, 2, 2) are not

distinguishable by the SV-phase added CTQW. □

4.2. AV-phase addition

In this section, a phase θ will be added to all vertices adjacent to a selected reference vertex;

let us refer to this method as the AV phase added CTQW. Note that this is the continuous

analogue of the perturbed DTQW GI algorithm by Douglas and Wang [8], which successfully

distinguished all members of SRGs tested.

Mathematically, the AV-phase added CTQW can be achieved by replacing the ones in

the vrth row and column of the Hamiltonian by the phase θ. Consequently, the Hamiltonian

for the AV-phase added CTQW is expressible as

( )H
A u v v v

A

if or ,

otherwise.
(27)AV uv

uv r r

uv

θ
=

= =⎧
⎨
⎩

An alternative form of expressing the Hamiltonian is through the use of the elements of

the Bose–Mesner algebra and its dual at the reference vertex as discussed in the previous

section. This allows us to express the AV-phase added Hamiltonian via the expansion

( )H F F . (28)AV 1 0 1 1 0  θ= + +

Since the two graphs are vertex transitive, we again take the transition amplitudes over all

vertices as the graph certificate. We then prove that the AV-phase added CTQW is not as

powerful as its discrete time equivalent, the phase-added DTQW used by Douglas and Wang

[8]. Lemma 3 gives the desired result.

Lemma 3. The ordered transition amplitude lists of the AV-phase added CTQW are

identical for two non-isomorphic SRGs with parameters (16, 6, 2, 2).

Proof. Recall that the AV unitary operator is expressible as

U t( , ) e , (29)( )
AV

F F ti 1 0 1 1 0  θ = θ− + +⎡⎣ ⎤⎦
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therefore

( ) ( )U t I t F F
t

F F( , ) i
( i )

2!

(30)

AV 1 0 1 1 0

2

1 0 1 1 0
2

     θ θ θ= − + + +
−

+ + + …⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

Similar to the SV-phase added CTQW, all the higher powers cancel out, reducing to a linear

combination of singletons, two-fold products and a single three-fold product again;

( )U t F F F( , ) ˆ ˆ ˆ , (31)AV

j k

j k i j j k i j

, 0

2

, , 1 0 1   ∑θ α β γ= + +
=

where, as before, ˆ j k,α , ˆ
j k,β and γ̂ depend on the family parameters of the SRG, and implicitly

on time t and phase θ. Therefore, following the same argument as detailed in the proof of

lemma 2, the set of transition amplitudes and thus the graph certificates for two non-

isomorphic graphs within SRG (16, 6, 2, 2) are identical. □

5. Discussions and conclusion

It is well known that a standard single-particle DTQW or CTQW cannot distinguish a pair of

SRGs with the same family parameters, and furthermore it has been proven by Gamble et al

[7] that a two particle CTQW with no interaction cannot distinguish such a pair. In the case of

the single particle DTQW, variations (such as the addition of phases at a reference vertex)

lead to an increased distinguishing power, providing single-particle DTQWs with the ability

to distinguish the aforementioned SRGs [8]. However, no analogous modifications had been

Table 1. Number of occurrences of all possible coefficients in the expansion of the
selected vertex (SV) CTQW unitary operator (26) of two non-isomorphic graphs G and

G ́ in the SRG(16, 6, 2, 2) family.

Element Occurrences in USV Occurrences in USV
́

00 00α β+ 1 1

11 01α β+ 6 6

22 02α β+ 9 9

10 11α β+ 6 6

12 11α β+ 18 18

22 12α β+ 36 36

02 20α β+ 9 9

11 21α β+ 18 18

12 21α β+ 36 36

20 22α β+ 9 9

21 22α β+ 36 36

22 22α β+ 36 36

01 10α β γ+ + 6 6

11 11α β γ+ + 12 12

21 12α β γ+ + 18 18
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previously explored in the case of the single particle CTQW; whilst considered unlikely, it

was hitherto unknown for sure whether the continuous counterpart of a single-particle DTQW

could be modified to produce a similar increase in distinguishing ability.

In this study, it was proven that various phase-added CTQWs are unable to distinguish

non-isomorphic SRGs with family parameters (16, 6, 2, 2), the smallest such set of family

parameters with a distinct disadvantage compared to the equivalent DTQW algorithm. Note

that although the two-fold and singleton Bose–Mesner products derived in lemma 2 are

specific to SRG (16, 6, 2, 2), equivalent relations continue to hold in the case of general SRG

parameters—allowing the exponentiated Hamiltonian to remain written as linear combina-

tions of k-fold products. Consequently, the time evolution will persist in producing identical

graph certificates for two non-isomorphic SRGs with same parameters; this inference has

been supported by numerical computation.

Instead of the phase additions discussed here, one may consider a general phase addition

to the single particle CTQW. The corresponding adjacency matrix is expressible as

A P P Pk1 2◦ ◦ ◦ … ◦ , where A is the adjacency matrix, Pi is the ith phase matrix (produced by

adding 1iθ − to specified elements of J), and ◦ is the Hadamard product of matrices (defined

as A B A B( )ij ij ij◦ = ). As long as this belongs to the subalgebra of MV generated by the basis

elements of the Bose–Mesner algebra and the dual Bose–Mesner algebra at the reference

vertex vr, the general phase-modified CTQW will be of similar form to the phase mod-

ifications described in this paper. This particular algebra A F F F, , , , ,d d0 1 0 1  … … was

first studied by Terwilliger [18], and is therefore referred to as the Terwilliger algebra of the

graph with respect to vr. It should be noted that in most studies the dual Bose–Mesner algebra

is analyzed in conjunction with the Bose–Mesner algebra, thus leading towards the Terwil-

liger algebra [14–16]. Considering the general phase addition, whenever A P P Pk1 2◦ ◦ ◦ … ◦
does not belong to the Terwilliger algebra, the exponentiated Hamiltonians of SRGs with

same parameters are expected to be distinguishable. Therefore, for a pair of SRGs to be

distinguishable, the CTQW has to be phase-modified in a way that A P P Pk1 2◦ ◦ ◦ … ◦ does

not belong to the Terwilliger algebra.

In order to explain the reduced distinguishing power of the single-particle phase-added

CTQW compared to the discrete case, it is worth mentioning that the two QWs evolve in

different spaces; even confined to a single-particle system, the Hamiltonian of the CTQW is

simply the adjacency matrix of the graph, whilst the discrete-time Hamiltonian is a sig-

nificantly more complicated expression given by

( )H
k
J I A I A I

2
· · , (32)IΔ= + ◦ ⊗ ⊗⎜ ⎟

⎛

⎝

⎞

⎠

where IΔ has the same dimensions as A I⊗ , and the ij kl( )( )th element is given by

( )
i j k l1 if ,

0 otherwise
(33)I ij kl,

Δ =
= = =⎧

⎨
⎩

and ◦ is the Hadamard product [17]. Thus, it can be seen that the DTQW evolves in a higher

dimensional space compared to the CTQW, allowing it to possess extra distinguishing power.

Hence, it follows that a phase addition to the DTQW Hamiltonian is not reducible, as is the

case for the CTQW—the complexity contributed to the structure of the DTQW Hamiltonian

by the IΔ term seemingly greatly affects the time evolution of the discrete time walk.

Considering these results, we conclude that the DTQW is significantly more powerful

than CTQWs for distinguishing non-isomorphic graphs. Although the DTQW has its own

limitations (as shown in [9] and [17]), it has intrinsic extra power compared to the CTQW,

due to its time evolution occurring in a larger dimensional Hilbert space.
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Abstract The quantum Fourier transform, with exponential speed-up compared to
the classical fast Fourier transform, has played an important role in quantum compu-
tation as a vital part of many quantum algorithms (most prominently, Shor’s factoring
algorithm). However, situations arise where it is not sufficient to encode the Fourier
coefficients within the quantum amplitudes, for example in the implementation of
control operations that depend on Fourier coefficients. In this paper, we detail a new
quantum scheme to encode Fourier coefficients in the computational basis, with fidelity
1 − δ and digit accuracy ǫ for each Fourier coefficient. Its time complexity depends
polynomially on log(N ), where N is the problem size, and linearly on 1/δ and 1/ǫ. We
also discuss an application of potential practical importance, namely the simulation
of circulant Hamiltonians.

Keywords Quantum algorithm · Quantum Fourier transform · Computational basis
state · Controlled quantum gates

1 Introduction

Since the milestone introduction of Shor’s quantum factoring algorithm [1] allows
prime number factorization with complexity O(polylogN )—an exponential speed-
up compared to the fastest known classical algorithms—there has been an increasing
number of quantum algorithm discoveries harnessing the unique properties of quantum
mechanics in order to achieve significant increases in computational efficiency. The use
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82 Page 2 of 19 S. S. Zhou et al.

of the quantum Fourier transform (QFT) [2] in Shor’s factoring algorithm is integral
to the resulting speed-up.

The fast Fourier transform (FFT), an efficient classical implementation of the dis-
crete Fourier transform (DFT), is a hugely important algorithm, with classical uses
including signal processing and frequency analysis [3]. Due to its ubiquity and effi-
ciency (with scaling O(N log N )), it has been regarded to be one of the most important
non-trivial classical algorithms [4].

The QFT [with complexity O((log N )2)] algorithm is the natural extension of the
DFT to the quantum regime, with exponential speed-up realized compared to the FFT
(O(N log N )), due to superposition and quantum parallelism. The QFT is essentially
identical to the FFT in that it performs a DFT on a list of complex numbers, but
the result of the QFT is stored as amplitudes of a quantum state vector. In order to
extract the individual Fourier components, measurements need to be performed on
the quantum state vector. As such, the QFT is not directly useful for determining the
Fourier-transformed coefficients of the original list of numbers. However, the QFT is
widely used as a subroutine in larger algorithms, including but not limited to Shor’s
algorithm [1], quantum amplitude estimation [5] and quantum counting [6,7].

Typically, there are two methods of encoding the result of a quantum algorithm:
encoding within the computational basis of the quantum state [5] and encoding within
the amplitudes of the quantum state [2]. The QFT fits the latter category and has been
successfully used as a foundation for a plethora of other quantum algorithms—for
example in the fields of quantum chemistry and simulations [8–10], signal and image
processing [11,12], cryptography [13] and computer science [4,14]. However, situa-
tions arise where we need the Fourier coefficients in the computational basis, for exam-
ple in order to efficiently implement circulant Hamiltonians with quantum circuits [15].

In this paper, we introduce a new quantum scheme for computing the Fourier
transform and storing the results in the computational basis, namely quantum Fourier
transform in the computational basis (QFTC). We begin in Sect. 2 by defining the
notations and chosen conventions, before detailing the QFTC algorithm for computing
the DFT in the computational basis in Sect. 3. This section also includes a thorough
analytic derivation of the complexity and error analysis. One possible application
of this algorithm, the implementation of circulant Hamiltonians, is then discussed
in Sect. 5. In addition, we have provided supplementary material in the appendices,
detailing the quantum arithmetic necessary for the QFTC algorithm in Appendix 1
and the implementation of circulant matrix operators in Appendix 2.

2 Definitions and notations

The DFT, applied to a unit vector x = (x0 x1 · · · xN−1) ∈ CN , outputs a unit vector
y = (y0 y1 · · · yN−1), where

yk =
1

√
N

N−1
∑

j=0

e2π i jk/N x j , k = 0, 1, . . . , N − 1. (1)

In the following sections, we assume that N = 2L , where L is some integer, as in
the conventional FFT and QFT algorithms. The QFT performs the discrete Fourier
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transform in amplitudes:
N−1
∑

j=0

x j | j〉 →
N−1
∑

k=0

yk |k〉 . (2)

The QFTC, on the other hand, enables the Fourier-transformed coefficients to be
encoded in the computational basis:

|k〉 QFTC−−−→ |k〉 |yk〉 (3)

where |yk〉 corresponds to the fixed-point binary representation of yk ∈ (−1, 1) using
two’s complement format. Without loss of generality, we will assume the yk coeffi-
cients are real in the following sections. If this is not the case, we can always redefine
the inputs as the following:

x ′
j =

x j + x∗
N− j

2
(where xN = x0 and x∗

j is the complex conjugate of x j ) (4)

for all j . Applying the DFT to x
′ then produces a purely real result, y′

k = Re(yk). The
imaginary components Im(yk) can be derived analogously, by applying the DFT to

x ′
j =

x j − x∗
N− j

2
. (5)

In the proposed QFTC algorithm, the input vector x is provided by an oracle Ox

such that

Ox |0〉 =
N−1
∑

j=0

x j | j〉 , (6)

which can be efficiently implemented if x is efficiently computable [16,18] or by
using the qRAM that takes complexity log N under certain conditions [17,19–22].
The number of calls to Ox and O

†
x will be included in the overall complexity of the

QFTC algorithm. It is worth noting that this algorithm would not work if we do not
know how the input vector x is generated.

3 Quantum Fourier transform in the computational basis

The steps involved in the QFTC algorithm are detailed below (with Fig. 1 depicting
the circuit for Step 1–Step 5 and Fig. 3 for Step 6–Step 10). We use 14 registers in
our algorithm labelled A, B1, B1’, B2, B2’, C, C’, D, D’, E, E’, F, F’ and G, among
which Reg A stores the subscript k in the Fourier coefficients, Reg G stores the value
of yk , and others are all ancillas. There are p0 + 1 qubits in Reg G (meaning accuracy
ǫ = 2−p0 ).

Step 0 Intialize all qubits, including ancillas, to |0〉.
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Step 1 Prepare Reg A of L qubits into a superposition of its computational basis
states. Here we take |k〉 as an example:

∣

∣

∣
0L

〉

→ |k〉 , (7)

where k is represented in binary as k1k2 · · · kL with L qubits. Note that sub-
sequent steps can be trivially extended for arbitrary linear combinations, for
example of the form

∑

k uk |k〉.

Step 2 Prepare an ancillary qubit in Reg B1 as:

|0〉 H−→
1

√
2
(|0〉 + |1〉). (8)

Step 3 Apply Ox to Reg B2 of L qubits controlled by Reg B1:

∣

∣

∣
0L

〉 1
√

2

(

|1〉 + |0〉
) Ox ⊗|1〉〈1|+I⊗|0〉〈0|−−−−−−−−−−−→

1
√

2

⎛

⎝

N−1
∑

j=0

x j | j〉 |1〉 +
∣

∣

∣
0L

〉

|0〉

⎞

⎠ , (9)

where j is represented in binary as j1 j2 · · · jL with L digits.

Step 4 Apply H⊗L to Reg B2 of L qubits controlled by Reg B1:

1
√

2

⎛

⎝

N−1
∑

j=0

x j | j〉 |1〉 +
∣

∣

∣
0L

〉

|0〉

⎞

⎠

H⊗L⊗|0〉〈0|++I⊗|1〉〈1|−−−−−−−−−−−−−−→

N−1
∑

j=0

1
√

2

(

x j | j〉 |1〉 +
1

√
N

| j〉 |0〉
)

. (10)

Step 5 Apply a controlled phase operator on Reg A, B1, B2 (with details given in
Fig. 1b):

|k〉
N−1
∑

j=0

1
√

2

(

x j | j〉 |1〉 +
1

√
N

| j〉 |0〉
)

(

∑

j,k′ e2π i jk′/N |k′〉〈k′|⊗| j〉〈 j |
)

⊗|1〉〈1|+I⊗|0〉〈0|
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ |k〉 |φk〉 , (11)

in which we define |φk〉 := 1√
2

(

x j e2π i jk/N | j〉 |1〉 + 1√
N

| j〉 |0〉
)

for sim-
plicity. The function of the controlled phase operator is to add a phase factor
e2π i jk/N to the quantum state |k〉 | j〉 |1〉 for arbitrary k and j and leave it
unchanged when the ancillary qubit is |0〉.
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A |k / •

B2 |0 / Ox H⊗L R

B1 |0 H • •

(a)

|k1 •
|k2 • • · · · A |k

...
...

...
|kL • • · · · •

|j1 R1

|j2 · · · R2 B2 |j

... R1 · · · · · ·

|jL R1 R2 RL

|0 + |1 • • • · · · • • · · · • B1 |0 + e2πijk/N |1

























































(b)

Fig. 1 a Quantum circuit for Step 1–Step 5; b Detailed quantum gates to implement the controlled phase

operator in Step 5. Here Rℓ = |0〉 〈0| + e2π i/2ℓ |1〉 〈1|

Using the Hadamard gate and the pauli-Z gate, we can prepare Reg C, C’ in the
quantum states

∣

∣φ±〉

:

∣

∣

∣0L+1
〉

(+): H⊗L⊗H ; (−): H⊗L⊗Z H−−−−−−−−−−−−−−−−−−→
∣

∣φ±〉

=
1

√
2

⎛

⎝

N−1
∑

j=0

±1
√

N
| j〉 |1〉 +

N−1
∑

j=0

1
√

N
| j〉 |0〉

⎞

⎠ . (12)

We have
∣

∣

〈

φ±|φk

〉∣

∣

2 =
1

4
(y2

k + 1) ±
yk

2
, (13)

and
∣

∣

〈

φ+|φk

〉∣

∣

2 −
∣

∣

〈

φ−|φk

〉∣

∣

2 = yk, (14)

which leads to the following steps (as detailed in Fig. 3).

Step 6 Prepare
∣

∣φ+〉

in Reg C and perform the swap test (Fig. 2) with |φk〉 in Reg B
(= B1 + B2). We get

∣

∣ψ+
k

〉

=
1

2
|0〉

(

|φk〉
∣

∣φ+〉

+
∣

∣φ+〉

|φk〉
)

+
1

2
|1〉

(

|φk〉
∣

∣φ+〉

−
∣

∣φ+〉

|φk〉
)

. (15)
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|0 H • H

|φ̃ /
SWAP

|
˜̃
φ /

Fig. 2 Swap test. Here SWAP
∣

∣

∣φ̃
〉 ∣

∣

∣

˜̃
φ
〉

=
∣

∣

∣

˜̃
φ
〉 ∣

∣

∣φ̃
〉

. The probability to finally obtain |0〉 and |1〉 in the first

register is (1/2)

(

1 + |
〈

φ̃| ˜̃φ
〉

|2
)

and (1/2)

(

1 − |
〈

φ̃| ˜̃φ
〉

|2
)

, respectively. This procedure is often utilized

to estimate the inner product of two quantum states
∣

∣

∣
φ̃
〉

and
∣

∣

∣

˜̃
φ
〉

[23]

F |0
2 sin2(π·) − 1

Σ−

φ+|φk
2

E |0 / H⊗p0 •
|

QFT†

D |0 H • H

(Q+
k )B |φk /

SWAP
C |φ+ /

F |0
2 sin2(π·) − 1

φ−|φk
2

E |0 / H⊗p0 •
|

QFT†

D |0 H • H

(Q−
k )B |φk /

SWAP
G |0 |yk

C |φ− /

amplitude estimation

Fig. 3 Quantum circuit for Step 6–Step 10. The �− gate transforms |α〉 |β〉 |0〉 into |α〉 |β〉 |α − β〉 (see
Appendix 1)

Step 7 Run amplitude estimation for all k on state
∣

∣ψ+
k

〉

and store the phases in Reg E:

∣

∣ψ+
k

〉

→
∣

∣

∣

∣

θk

π

〉

∣

∣

∣ψ
↑
k

〉

+
∣

∣

∣

∣

1 −
θk

π

〉

∣

∣

∣ψ
↓
k

〉

, (16)

where
∣

∣ψ+
k

〉

can be decomposed into the sum of
∣

∣

∣
ψ

↑
k

〉

and
∣

∣

∣
ψ

↓
k

〉

which are a

pair of un-normalized orthogonal bases (corresponding to two distinct phases
in the amplitude estimation procedure detailed below).

Step 8 Compute
∣

∣

〈

φ+|φk

〉∣

∣

2 = (y2
k + 1)/4 + yk/2 using the quantum multiply–adder

and sine gate (see Appendix 1 for details), for all values of k:

∣

∣

∣

∣

θk

π

〉

∣

∣

∣ψ
↑
k

〉

+
∣

∣

∣

∣

1 −
θk

π

〉

∣

∣

∣ψ
↓
k

〉

→
∣

∣

∣

∣

∣

〈

φ+|φk

〉∣

∣

2
〉

(∣

∣

∣

∣

θk

π

〉

∣

∣

∣ψ
↑
k

〉

+
∣

∣

∣

∣

1 −
θk

π

〉

∣

∣

∣ψ
↓
k

〉

)

,

(17)
where the value of

∣

∣

〈

φ+|φk

〉∣

∣

2 = 2 sin2 θk − 1 is stored in Reg F.
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In the above description of Step 6–Step 10,

∣

∣ψ+
k

〉

= sin θk

∣

∣

∣
ψ0

k

〉

+ cos θk

∣

∣

∣
ψ1

k

〉

(18)

where
∣

∣ψ0
k

〉

corresponds to the part of
∣

∣ψ+
k

〉

whose first qubit is |0〉,
∣

∣ψ1
k

〉

corresponds
to the part of

∣

∣ψ+
k

〉

whose first qubit is |1〉. We can choose θk ∈ [0, π/2] without loss of

generality. It can be easily calculated from Eq. 15 that sin2 θk = (1 +
∣

∣

〈

φ+|φk

〉∣

∣

2
)/2.

We define Q+
k := −A

+
k S0(A

+
k )†Sχ , where A

+
k is the unitary operator performing

|0〉DBC
A

+
k−−→

∣

∣ψ+
k

〉

, S0 = I − 2 |0〉DBC 〈0|DBC and Sχ = I − 2 |0〉D 〈0|D (subscripts
denote labels of registers). According to the amplitude estimation algorithm [7],

(

Q+
k

)ℓ ∣

∣ψ+
k

〉

= sin(2ℓ + 1)θk

∣

∣

∣ψ
0
k

〉

+ cos(2ℓ + 1)θk

∣

∣

∣ψ
1
k

〉

. (19)

For any ℓ ∈ N, Q+
k acts as a rotation in two-dimensional space Span{

∣

∣ψ0
k

〉

,
∣

∣ψ1
k

〉

}, and

it has eigenvalues e±i2θk with eigenstates
∣

∣

∣ψ
↑,↓
k

〉

(un-normalized). Therefore, we can

generate the state

∣

∣ψ+
k

〉

=
∣

∣

∣ψ
↑
k

〉

+
∣

∣

∣ψ
↓
k

〉 phase estimation−−−−−−−−−→
∣

∣

∣

∣

θk

π

〉

∣

∣

∣ψ
↑
k

〉

+
∣

∣

∣

∣

1 −
θk

π

〉

∣

∣

∣ψ
↓
k

〉

, (20)

by running amplitude estimation of A
+
k on

∣

∣ψ+
k

〉

and obtain
∣

∣

∣

∣

∣

〈

φ+|φk

〉∣

∣

2
〉

=
∣

∣2 sin2 θk − 1
〉

using the quantum multiply–adder and sine gate (see Appendix 1).
The quantum circuit of amplitude estimation procedure is shown in Fig. 3.

Step 9 Repeat Step 2–Step 8 in Reg B’, C’ ,E’, F’, with
∣

∣φ+〉

and A
+
k replaced by

∣

∣φ−〉

and A
−
k , we obtain

∣

∣

∣

∣

∣

〈

φ+|φk

〉∣

∣

2
〉

|0〉 →
∣

∣

∣

∣

∣

〈

φ+|φk

〉∣

∣

2
〉 ∣

∣

∣

∣

∣

〈

φ−|φk

〉∣

∣

2
〉

(21)

in Reg F, F’, where the quantum states in Reg A, B, B’, C, C’, E, E’ are not
written out explicitly for simplicity, because they remain unchanged in the
following steps.

Step 10 Calculate
∣

∣

〈

φ+|φk

〉∣

∣

2
minus

∣

∣

〈

φ−|φk

〉∣

∣

2
and encode the result in Reg G, using

the quantum adder described in Appendix 1:

∣

∣

∣

∣

∣

〈

φ+|φk

〉∣

∣

2
〉 ∣

∣

∣

∣

∣

〈

φ−|φk

〉∣

∣

2
〉

|0〉 →
∣

∣

∣

∣

∣

〈

φ+|φk

〉∣

∣

2
〉 ∣

∣

∣

∣

∣

〈

φ−|φk

〉∣

∣

2
〉

|yk〉 . (22)

Step 11 Uncompute the ancillas using the inverse algorithm of Step 2–Step 9:

|k〉
∣

∣

∣
ancilla
k

〉

|yk〉 → |k〉 |0〉 |yk〉 . (23)
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4 Complexity analysis

Theorem 1 (QFTC) Given an input
∑

k uk |k〉, the required quantum state
∑

k

uk |k〉 |yk〉 can be prepared to digit accuracy ǫ1 with fidelity 1 − δ2 using

O
(

(log N )2/(δǫ)
)

one- or two-qubit gates, and O
(

1/(δǫ)) calls of controlled-Ox

and its inverse.

Proof First, we consider the complexity involved in A
+
k (described in Step 2–Step

6). It contains Hadamard gates, controlled phase operators and swap gates which
can be constructed using O

(

(log N )2
)

one- or two-qubit gates and only one call of
controlled-Ox .

The subsequent amplitude estimation block needs O(1/(δε)) applications of Q+
k =

−A
+
k S0(A

+
k )†Sχ to obtain accuracy ε with fidelity at least 1 − δ [7,24]. We then use

the quantum multiply–adder and sine gate to obtain the value of
∣

∣

〈

φ+|φk

〉∣

∣

2 = 1
4 (1 +

y2
k ) + yk/2 for different |k〉’s in the computational basis. Using a similar procedure to

obtain
∣

∣

〈

φ−|φk

〉∣

∣

2
, we obtain yk =

∣

∣

〈

φ+|φk

〉∣

∣

2 −
∣

∣

〈

φ−|φk

〉∣

∣

2
finally. Since the derivative

of sin x is always smaller than one, we set ε = �(ǫ) in order to guarantee accuracy
ǫ in yk . As detailed in Appendix 1, the quantum multiply–adders and sine gates have
complexity O(polylog(1/ε)) which is smaller than O(1/ǫ) in amplitude estimation.
Therefore, the complexity of these gates can be omitted.

The total complexity of the proposed circuit will be O
(

(log N )2/(δǫ)
)

one- or
two-qubit gates, and O

(

1/(δǫ)
)

calls of controlled-Ox and its inverse. ⊓⊔

Throughout the proposed QFTC algorithm, |k〉 in Reg A is used to control the
application of quantum operators acting on other registers, giving us the advantage of
parallel calculating yk for all k. Though values of yk’s cannot be obtained by a single
measurement of

∑

k |k〉 |yk〉, they can be used in subsequent quantum computation
once they are encoded in the computational basis.

The disadvantage of the QFTC algorithm to provide the value of |yk〉 (as discussed
in Sect. 5) compared to the corresponding classical algorithm lies in its accuracy.
In the FFT, ‖ỹ − y‖ < �(log N ) × ǫ [25,26]; in the QFTC, however, ‖ỹ − y‖ <

�(
√

N )×ǫ. Precision at this level would be sufficient for example in Fourier transform
spectroscopy when only a small set of frequencies dominate the behaviour of the
vectors [27]. However, when high precision is needed, in order to achieve similar
precision ‖ỹ − y‖ < ǫ like the FFT, we will need

√
N times the complexity in

Theorem 1. Then we only have a quadratic, not exponential, speed-up in this case
compared to the classical algorithm.

5 Application

One important family of operators is the circulant matrices which have found important
applications in, for example, quantum walks on Moöbius strips [28], investigation on

1 |yk − ỹk | < ǫ, where ỹk is the truncated value of yk with accuracy ǫ = 2−p0 .
2

∣

∣

∣

〈

final
∣

∣

∣

(

1√
N

∑N−1
k=0 |k〉 |ỹk 〉

)∣

∣

∣ ≥ 1−δ, where
∣

∣

∣final
〉

is the state obtained through the QFTC algorithm.
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quantum supremacy [15], biochemical modelling [29], vibration analysis [30] and
parallel diagnostic algorithm for super-computing [31].

Circulant matrices are defined as follows [32]:

C =

⎛

⎜

⎜

⎜

⎝

c0 c1 · · · cN−1
cN−1 c0 · · · cN−2

...
...

. . .
...

c1 c2 · · · c0

⎞

⎟

⎟

⎟

⎠

, (24)

using an N -dimensional vector c = (c0 c1 · · · cN−1). Such matrices are diagonalizable
by the discrete Fourier transform (DFT), i.e.

C = F�F†, (25)

where F is the Fourier matrix with Fk j = e2π i jk/N /
√

N , and � is a diagonal matrix of
eigenvalues given by �k =

√
N

(

F(c0 c1 · · · cN−1)
†
)

k
≡

√
N Fk . Note that the condi-

tion that C is Hermitian (in order to be a Hamiltonian) is equivalent to our assumption
in Sect. 2 that the Fourier coefficients Fk are real. Since the eigenvalues of a circulant
matrix are Fourier transform of its parameters, we are able to implement circulant
quantum operators (non-unitary in general) using the conventional QFT through the
manipulation of amplitudes, as detailed in Appendix 2.

This approach cannot be used directly for simulation of (non-sparse) circulant
Hamiltonians, where we need to implement e−iCt instead of C . Simulation of circu-
lant Hamiltonians is equivalent to the implementation of continuous-time quantum
walks on a weighted circulant graph [33]. Circulant matrices are adjacency matrices
of circulant graphs, and c j characterizes the probability for the walker to transfer from
vertex ℓ to vertex ℓ − j .

In order to simulate e−iCt , we decompose it into Fe−i�t F†, where e−i�t can be
simulated with the aid of the quantum circuit given in simulating diagonal Hamilto-
nians [34]. If the Fourier coefficients �k are encoded in the computational basis, as
performed by the QFTC algorithm, they can then be used to control the phase fac-
tor e−i�k t added to different eigenstates of the circulant matrix, for the purpose of
implementing the diagonal Hamiltonian e−i�t .

In the following, we will demonstrate how the QFTC algorithm can be used to
simulate Hamiltonians with a circulant matrix structure, as shown in Fig. 4:

Step 1 Perform the inverse QFT on |s〉:

|s〉 =
N−1
∑

k=0

sk |k〉 →
N−1
∑

k=0

sk |k〉 . (26)

Step 2 Apply the QFTC algorithm (Step 2–Step 11 in Sect. 3) for c:

N−1
∑

k=0

sk |k〉 →
N−1
∑

k=0

sk |k〉 |Fk〉 . (27)
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|s QFT† • • QFT e−iCt |s

|0

QFTC

e+2L/2it|1 1|

QFTC†

|0

|0 e−2L/2−1it|1 1| |0

|0 e−2L/2−2it|1 1| |0

...
...

...

|0 e−2L/2−p0 it|1 1| |0

Fig. 4 Simulation of circulant Hamiltonians. p0 + 1 is the number of digits of the resulting Fourier
coefficients, and Fk was encoded in the form f0. f1 f2 · · · f p0 as the complemental code for a number
between −1 and 1. Here we define QFTC |k〉 |0〉 = |k〉 |Fk 〉 (detailed in Step 2–Step 11 in Sect. 3)

Step 3 Do controlled phase gate e+2L/2i t |1〉〈1| on the first digit (qubit) of |Fk〉 and
e−2L/2−p+1i t |1〉〈1| on the pth digit (qubit) of |Fk〉 for all p > 1:

N−1
∑

k=0

sk |k〉 |Fk〉 →
N−1
∑

k=0

ske−i�k t |k〉 |Fk〉 . (28)

Step 4 Undo the QFTC for every |k〉:

N−1
∑

k=0

ske−i�k t |k〉 |Fk〉 →
N−1
∑

k=0

ske−i�k t |k〉 . (29)

Step 5 Perform the QFT:

N−1
∑

k=0

ske−i�k t |k〉 → e−iCt |s〉 . (30)

Theorem 2 (Simulation of Circulant Hamiltonians) The simulation of a circulant

Hamiltonian e−iCt can be performed within error δ using O
(√

Nt (log N )2/δ3/2
)

one-

or two-qubit gates, as well as O
(√

Nt/δ3/2) calls of controlled-Ox and its inverse,

where x = c is a unit vector in CN and C is Hermitian.3

Proof The error present in the Hamiltonian simulation is fully determined by the
precision of the QFTC algorithm. According to the above QFTC complexity analysis,
we need O

(

(log N )2/(δε)
)

one- or two-qubit gates, as well as O
(

1/(δε)) calls of

3 ‖e−iCt − ẽ−iCt ‖ ≤ δ, where ẽ−iCt represents the operator that is actually performed by this algorithm.
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controlled-Ox and its inverse, to achieve accuracy ε in Fk . The fidelity achieved for
the Hamiltonian simulation, as defined by the squared modulus of inner product, is

(1−δ)2
∣

∣

∣
〈e−i C̃ t |s〉 , e−iCt |s〉〉

∣

∣

∣
=(1−δ)2

∣

∣

∣

∣

∣

N−1
∑

k=0

ei(�̃k−�k )t |sk |2
∣

∣

∣

∣

∣

> 1−O((
√

Ntε)2+δ),

(31)
where the last inequality is derived using

∣

∣

∣eiγ1 + |Ŵ| eiγ2

∣

∣

∣ =
(

1+|Ŵ|2+2 |Ŵ| cos(γ1−γ2)
)1/2

> (1+|Ŵ|)
∣

∣

∣

∣

cos
γ1 − γ2

2

∣

∣

∣

∣

, (32)

and �̃k are the estimated (truncated) eigenvalues calculated via the QFTC algorithm.
For a fixed δ in the QFTC algorithm, if we choose ε =

√
δ/(

√
Nt), the fidelity will be

1−O(δ). We then need O
(

(log N )2/(δε)
)

= O
(√

Nt (log N )2/δ3/2
)

one- or two-qubit
gates, as well as O

(√
Nt/δ3/2) calls of controlled-Ox and its inverse. ⊓⊔

The complexity in simulation of circulant Hamiltonians would depend linearly on

the value of
√

|c0|2 + · · · + |cN−1|2 which was assumed to be 1. This value is always
smaller (and normally much smaller) than the spectral norm of the circulant matrix
C , which is often used to characterize the complexity in the simulation of dense
Hamiltonians [35].

6 Conclusion

In this paper, we proposed a new QFTC algorithm, an efficient quantum scheme to
encode the results of the discrete Fourier transform in the computational basis. This
algorithm allows us to overcome a main shortcoming of the conventional quantum
Fourier transform—the inability to perform operations controlled by the Fourier coef-
ficients. In short, the QFTC utilizes swap tests to obtain a function of the Fourier
coefficients in the amplitudes, with individual coefficients then extracted via ampli-
tude estimation and quantum arithmetic.

Secondly, a detailed complexity analysis of the QFTC algorithm was performed,
finding it requires O

(

(log N )2/(δǫ)
)

calls of one- or two-qubit gates, as well as
O

(

1/(δǫ)
)

calls of controlled-Ox and its inverse, in order to achieve fidelity 1 − δ

and precision ǫ. Note that the overall complexity depends polylogarithmically on N ,
similarly to the conventional QFT, and we require only controlled phase gates and
Hadamard gates. The inverse proportionality with the desired accuracy, ǫ, occurs due
to the application of amplitude estimation within the algorithm.

Finally, we detailed an application of the QFTC algorithm in the simulation of cir-
culant Hamiltonians, which requires O

(√
Nt (log N )2/δ3/2

)

one- or two-qubit gates,
as well as O

(√
Nt/δ3/2) calls of controlled-Ox and its inverse to achieve fidelity 1−δ.

This paves the way for a quantum circuit implementation of continuous-time quantum
walks on circulant graphs, with potential applications in a wide array of disciplines.
Further applications of the QFTC algorithm are expected.
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Appendix 1: Quantum arithmetic

Addition and multiplication are basic elements of arithmetic in classical computer.
There have been several proposals on how to build quantum adders and multipliers [36–
39], constructed predominately using CNOT gates and Toffoli gates. Draper’s addition
quantum circuits, however, utilize the quantum Fourier transformation (QFT) [40].
QFT-based multiplication and related quantum arithmetic have also been proposed
[41–44]. In this appendix, for completeness, we outline the construction of the quantum
arithmetic gates required for the QFTC algorithm in detail.

We show here, using QFT-based circuits and fixed-point number representation, all
elementary quantum arithmetic gates used to construct the QFTC circuit (including
adders, multipliers and cosine gates) have O(poly(n)) complexity, where n is the
number of qubits (number of digits) representing the number. With accuracy ǫ, this
results in O(polylog(1/ǫ)) complexity.

QFT multiply–adder

We begin by describing a quantum multiply–adder for real inputs a and b between 0
and 1. Let |a〉 = |a1〉 |a2〉 · · · |am〉 represent the fixed-point number a = 0.a1a2 · · · am

(same for b). Using this representation, the quantum multiply–adder (QMA), as shown
in Fig. 5a, can realize the following transformation,

�±
m,n |a〉 |b〉 |c〉 = |a〉 |b〉 |c ± a × b〉 , (33)

where m and n denote the number of digits of a and b, respectively.
In quantum multiply–adders, the outputs, unlike the inputs, can be negative and we

use the complemental code c(C) = c0.c1c2 · · · cm+n ∈ [0, 2) to represent the output
c ∈ (−1, 1) and c = c(C) if c is non-negative and c = c(C) − 2 if c is negative. |c〉 is
composed of |c0〉 |c1〉 · · · |cm+n〉. Note that this quantum multiply–adder also applies
to any fixed-point-represented numbers by cleverly choosing the appropriate positions
of the fractional points.

The quantum multiply–adder can be decomposed into the following form, as shown
in Fig. 5b:

�±
m,n = (I ⊗ I ⊗ QFT†) × π±

m,n × (I ⊗ I ⊗ QFT), (34)

where π±
m,n represents an intermediate quantum multiply–adder,

π±
m,n |a〉 |b〉 |φ(c)〉 = |a〉 |b〉 |φ(c ± a × b)〉 (35)

with |φ(c)〉 := QFT |c〉 and |φk(c)〉 = 1√
2
(|0〉+e2π ic×2m+n−k |1〉), k = 1, 2, · · · , m +

n + 1.
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m-qubit |a

Π±
m,nn-qubit |b

(m+n)-qubit |c

≡ π±
m,n

|a

|b

QFT QFT† |c ± a · b

(a)

(b)
|a

π±
m,n

|a

|b |b

|φ(c) |φ(c ± a · b)

Fig. 5 Quantum circuit of the multiply–adder, a quantum multiply–adder, b intermediate multiply–adder

Figure 6 shows a detailed quantum circuit construction of π±
m,n , using the QFT

adders 2−l�±
m,n , which act as follows:

2−l�±
m,n |b〉 |φ(c)〉 = |b〉

∣

∣

∣φ(c ± 2−lb)

〉

. (36)

The QFT adders are constructed via controlled phase operations, as shown in Fig. 6c.
After applying the QFT adder 2−m�±

m,n (controlled by |am〉) in Fig. 6, we obtain

|φ(c)〉 −→
∣

∣φ(c ± am2−mb)
〉

. (37)

Proceeding in a similar fashion, it can be seen that the final output state of the inter-
mediate multiply–adder is

∣

∣

∣
φ(c + am2−mb + · · · + a12−1b)

〉

= |φ(c ± a × b)〉 . (38)

To illustrate how the circuit works, take for example the evolution of φm+n−l(c)

after R±
1 , . . . , R±

n :

|0〉 + e2π ic×2l |1〉 −→ |0〉 + e2π ic×2l±b |1〉 . (39)

We then have

|φk(c)〉 →
∣

∣

∣φk(c ± 2−lb)

〉

.

It is clear from Fig. 6c that the QFT adder uses O
(

(m+n)n
)

one- or two-qubit gates.
Hence, the total complexity of the intermediate QFT multiply–adders isO

(

(m+n)mn
)

.
Thus, with QFT scaling O

(

(m + n)2
)

, the total complexity of the quantum multiply–
adder �±

m,n is max{O(mn2),O(nm2)}.
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|a1 • |a1

|a2 • |a2

...
...

|am−1 • |am−1

|am • |am

|b
2−mΣ±

m,n 2−m+1Σ±
m,n

· · ·
2−2Σ±

m,n 2−1Σ±
m,n

|b

|φ(c) · · · |φ(c ± a · b)

(a)

|b
2−lΣ±

m,n

|b

|φ(c) φ(c ± 2−lb)

(b)

(c)
|b1 • · · · • |b1

|b2 · · · · · · |b2
...

...
|bn−1 · · · · · · • |bn−1

|bn • · · · • · · · • • |bn

|φm+n+1(c) R±
l+2 · · · R±

n+l+1 φm+n+1(c ± 2−lb)

...
...

|φm+n−l(c) R±
1 · · · R±

n φm+n−l(c ± 2−lb)

|φm+n−l−1(c) φm+n−l−1(c ± 2−lb)
...

...

|φm−l+2(c) R±
1 R±

2 φm−l+2(c ± 2−lb)

|φm−l+1(c) R±
1 φm−l+1(c ± 2−lb)

...
...

|φ1(c) φ1(c ± 2−lb)

Fig. 6 Quantum circuit of π±
m,n , (a), π±

m,n gate (b), QFT adder, (c) detailed quantum circuit construction

of the QFT adder 2−l�±
m,n , R±

k
= |0〉 〈0| + e±2π i/2k |1〉 〈1|

Note that if we choose l = 0 in 2−l�±
m,n and perform a QFT and an inverse QFT

before and after the application of the QFT adder in Eq. 36, we have a quantum adder

|b〉 |c〉 → |b〉 |c ± b〉 . (40)

We can also add (or subtract) two numbers without having to destroy their original
values encoded in the computational basis, i.e.

|b〉 |c〉 |0〉 → |b〉 |c〉 |b〉 → |b〉 |c〉 |b ± c〉 (41)

by using Eq. 40 twice.
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|x •

Π+

|x

|0

X

|x

|0

Π+

Π+

· · ·

Π+

x2

|0 |x

|0

π−

x3

|0

π+

· · · x2t−3

|0

π(−1)t

x2t+1

π3

3!
π3

3!
π5

5!
π5

5!
π2t+1

(2t+1)!
π2t+1

(2t+1)!

|0 QFT · · · QFT† |sin πx

(a)

(b)

|x •

Π+

|x

|0

X

|x

|0

Π+

Π+

· · ·

Π+

x2

|0

Π+

|x

|0 |x

|0

π+

x2

|0

π−

x4

|0

π+

· · · x2(t−1)

|0

π(−1)t+1

x2t

π2

2!
π2

2!
π4

4!
π4

4!
π6

6!
π6

6!
π2t

(2t)!
π2t

(2t)!

|0 QFT · · · QFT† X |cos πx

Fig. 7 Quantum circuits of the sine and cosine gates (|0〉 represents a number of qubits in above circuits
where the numbers are omitted). Pauli-X gates are used to transform |0〉 into |x〉, and the subscript for all
the quantum multiply–adders in above circuits is (p′, p′), a sine gate, b cosine gate

Quantum sine and cosine gate

By implementing the Taylor series using the quantum multiply–adder, we are able to
build a quantum sine (and cosine) gate. Suppose x = 0.x1x2 · · · xn and x ∈ [0, 1). We
aim to build a sine gate calculating the value of sin πx , performing |x〉 |0n〉 |0m〉 →
|x〉 |sin πx〉

∣

∣ancilla
〉

.
We now consider the error in the truncated Taylor series. First, the error introduced

by imprecision in the n-digit representation of x is O(2−n), since the derivative of
sin πx is bounded. The Taylor series of sin πx at around x = 0 is

sin πx = πx −
(πx)3

3!
+

(πx)5

5!
−· · ·+(−1)t (πx)2t+1

(2t + 1)!
+

(−1)t+1 cos π z

(2t + 3)!
(πx)(2t+3).

(42)

The remainder term for the kth term in the expansion is f (k+1)(z)
(k+1)! xk+1, where z ∈ (0, x),

according to Taylor’s Theorem [45]. As a result, in Eq. (42), the reminder term (error)

is (−1)t+1 cos π z
(2t+3)! (πx)(2t+3) and is obviously bounded by O(2−n) for t = n.
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Fig. 8 Implementation of
circulant matrices. Here
R |k〉 | j〉 = e2π ik j/N |k〉 | j〉

|s / QFT† • QFT C |s

|0 / Ox R H⊗L
|0L

In the sine gate, the t +1 terms
{

πx,
(πx)3

3! , · · · , (−1)t (πx)2t+1

(2t+1)!

}

are first calculated

and then added (or subtracted) together. Suppose each of the t + 1 terms has an error
within 2−p. Taking p = n + ⌈log n⌉ = O(n), the error introduced by adding and
subtracting will be O(t × 2−p) = O(2−n). Suppose all multiply–adders have p′

digits inputs. When errors in y1, y2 are within 2−(ℓ+1) and y1, y2 ≤ 1 − 2−(ℓ+1),
(y1 + 2−(ℓ+1))(y2 + 2−(ℓ+1)) = y1 y2 + 2−ℓ(y1 + y2)/2 + 2−2ℓ−2 ≤ y1 y2 + 2−ℓ. It
means that by applying the multiply–adders 2t times, the error will be 22t times larger.
Thus, we can choose a p′ = O(p + 2t) = O(n) which guarantees accuracy 2−p in
all the powers of x and also all the t + 1 terms in the Taylor series.

We conclude that we can choose t = O(n) and p′ = O(n) so that the total accuracy
of the sine gate is bounded by 2−n . Figure 7 shows the quantum circuit for the sine
and cosine gate. The complexity of the quantum sine gate can be calculated based on
the scaling of quantum multiply–adders which equals to O(p′3). The total complexity
of the quantum sine gate is O(tp′3) = O(n4) for accuracy 2−n . To put it in another
way, O(polylog(1/ǫ)) one- or two-qubit gates are required to achieve accuracy ǫ.

Appendix 2: Implementing circulant operators

Consider an arbitrary state |s〉. We wish to obtain C |s〉, where C is an arbitrary
circulant matrix. Below, we present a possible algorithm for implementing a circulant
matrix quantum operator (see Fig. 8).

Step 1 Perform the inverse QFT on |s〉:

N−1
∑

k=0

sk |k〉 →
N−1
∑

k=0

sk |k〉 . (43)

Step 2 Add another register prepared to
∑N−1

j=0 c j | j〉 using Ox (x = c in Eq. 6):

N−1
∑

k=0

sk |k〉 →
N−1
∑

j,k=0

skc j |k〉 | j〉 . (44)

Step 3 Apply the controlled phase gate so that |k〉 | j〉 → e2π ik j/N |k〉 | j〉:

N−1
∑

j,k=0

skc j |k〉 | j〉 →
N−1
∑

j,k=0

skc j e
2π i jk/N |k〉 | j〉 . (45)
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Step 4 Apply Hadamard gates to | j〉:

N−1
∑

j,k=0

skc j e
2π i jk/N |k〉 | j〉 →

N−1
∑

j,k=0

sk |k〉
(

Fk

∣

∣

∣
0L

〉

+
√

1 − F2
k

∣

∣

∣
0⊥

〉

)

, (46)

where
∣

∣0⊥〉

represents any states perpendicular to
∣

∣0L
〉

.
Step 5 By post-selecting the ancillary qubit state

∣

∣0L
〉

, the quantum state in the first
register collapses to

1
√

∑

k |Fksk |2

N−1
∑

k=0

Fksk |k〉 . (47)

Step 6 Perform the QFT:

QFT
N−1
∑

k=0

sk Fk |k〉 ∝ C |s〉 . (48)

Note that the post-selection probability of obtaining the correct state in Step 5 is

p =
N−1
∑

k=0

|sk Fk |2 , (49)

and p equals to 1/N when C is unitary. Therefore, using amplitude amplification
[7], O((log N )2/

√
p) one- or two-qubit gates, as well as O(1/

√
p) calls of Ox , Os

and their inverses, are needed to implement a circulant matrix operation C , where
Os

∣

∣0L
〉

=
∑N−1

k=0 sk |k〉.
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Network centrality has important implications well beyond its role in physical and information transport

analysis; as such, various quantum-walk-based algorithms have been proposed for measuring network vertex

centrality. In this work, we propose a continuous-time quantum walk algorithm for determining vertex centrality,

and show that it generalizes to arbitrary graphs via a statistical analysis of randomly generated scale-free and

Erdős-Rényi networks. As a proof of concept, the algorithm is detailed on a four-vertex star graph and physically

implemented via linear optics, using spatial and polarization degrees of freedoms of single photons. This paper

reports a successful physical demonstration of a quantum centrality algorithm.

DOI: 10.1103/PhysRevA.95.032318

I. INTRODUCTION

Since the seminal paper by Aharonov et al. [1], quantum

walks have become a fundamental tool in quantum information

theory [2], allowing us to bridge the often more esoteric world

of quantum computation and algorithms [3–7] with real-life

graph and network theory [8–10] and dynamical quantum

modeling applications [11–14]. This is due, in part, to the

markedly differing behavior of the quantum walk compared to

its classical analog. Harnessing the effects of superposition,

quantum coherence, and entanglement, the quantum walk

propagates quadratically faster, providing a key source for

new quantum algorithms and a platform for universal quantum

computation [15–17].

Like the classical case, quantum walks are divided by

two distinct approaches: the discrete-time quantum walk

(DTQW), which introduces spin states and a quantum coin

operation with discrete time-evolution operators; and the

continuous-time quantum walk (CTQW), which evolves the

walker continuously in time [18]. Due to the enlarged Hilbert

space and higher degrees of freedom of the DTQW, the

relationship between these two formulations is inherently

nontrivial; regardless, an equivalency has been explored using

both a limiting approach [19] and percolation theory [20].

One potential application of the quantum walk is in

providing an efficient quantum algorithm for vertex centrality

ranking in network analysis. Previous studies have proposed

algorithms built on the standard discrete-time quantum walk

[21], the Szegedy discrete-time quantum walk [22–24], or the

continuous-time quantum stochastic walk (QSW) [24–26].

However, while comparing well to classical centrality mea-

sures, these have the distinct disadvantage of requiring

expanded Hilbert spaces (up to N2 dimensions for a graph

of N vertices) or, in the case of the QSW, muting the quantum

behavior due to decoherence.

In this study, we propose an alternative quantum walk

centrality algorithm based on the CTQW, allowing us to

preserve the full quantum behavior of the walker while limiting

the dimension of the Hilbert space to N . Furthermore, we have

*jingbo.wang@uwa.edu.au
†gnep.eux@gmail.com

experimentally implemented this algorithm in the case of the

four-vertex star graph.

This paper is structured as follows. In Sec. II, we describe

the continuous-time quantum walk and its relationship to clas-

sical random walks. We then briefly discuss graph centrality

measures in Sec. III, before introducing our CTQW-based

quantum centrality scheme in Sec. IV. A thorough statistical

analysis using ensembles of randomly generated graphs is

presented in Sec. V, highlighting the suitability of the quantum

centrality scheme for general graphs. Then we discuss our

experimental implementation via linear optics in Sec. VI,

before finally presenting our conclusions in Sec. VII.

II. CLASSICAL AND QUANTUM WALKS

A. Classical random walks

Consider an arbitrary undirected graph G(V,E), composed

of vertices j ∈ V and edges (i,j ) ∈ E, with |V | = N . The

adjacency matrix of G is a symmetric matrix defined by

Aij =
{

1, (i,j ) ∈ E,

0, (i,j ) /∈ E.
(1)

A discrete-time random walk (DTRW) over G is a stochastic

Markovian process that evolves as

P(n+1) = T P(n), (2)

where P
(n)
i represents the probability of finding the walker at

vertex i at time step n, and T the transition matrix. As per

convention, the transition matrix is normally taken to be

T = AD−1, (3)

with Dij = δij

∑

k Aki a diagonal matrix containing the vertex

degrees of the graph. This ensures that T is stochastic

(
∑

k Tki = 1), preserving the probability of the walker. The

steady-state limiting probability distribution of the walker,

lim
n→∞

T n
P

(0) = π , (4)

must satisfy the equation T π = π . Thus, the limiting distri-

bution is simply the eigenvector of T with eigenvalue λ = 1.

It is trivial to show that the limiting distribution is therefore

2469-9926/2017/95(3)/032318(11) 032318-1 ©2017 American Physical Society
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proportional to the vertex degree and given by

π j =
Djj

Tr(D)
=

∑

i Aij
∑

i

∑

j Aij

. (5)

Note that in cases where a graph only has even-length closed

loops, the walker will only occupy sites an even distance from

the initial state at even time-steps—causing the walker never

to converge to its stationary distribution π . In such cases, it

is useful to redefine the DTRW so that at every time step, the

walker has only a ǫ probability of moving per the transition

matrix:

P(n+1) = ǫT P(n) + (1 − ǫ)P(n)

= ǫ(T − I )P(n) + P(n) (6)

This is known as the lazy random walk and is sufficient to

break the periodicity and ensure convergence to the limiting

probability distribution π .

We can interpret each time step of the lazy random walk as

corresponding to a time of ǫ [27]. Thus, by rearranging this

equation and taking the limit ǫ → 0,

lim
ǫ→0

P(n+1) − P(n)

ǫ
= −(I − T )P(n), (7)

we arrive at the master equation, a stochastic Markovian

process governing the time evolution of the continuous-time

random walk (CTRW),

d

dt
P(t) = −LP(t) (8)

with solution P(t) = e−LtP(0), where L is the normalized

graph Laplacian,

L = I − T = (D − A)D−1, (9)

such that e−Lt is stochastic, and the walk is probability con-

serving. For the CTRW, the steady-state limiting probability

distribution,

π = lim
t→∞

e−LtP(0), (10)

must satisfy the equation e−Lt
π = π . After expanding the

matrix exponential as a Taylor series, it can be seen that this

is equivalent to Lπ = 0; i.e., π is the null space of L. Note

that since L = I − T , Lπ = (I − T )π = 0 ⇒ T π = π , and

thus the CTRW limiting distribution and the DTRW limiting

distribution [Eq. (5)] are identical.

B. Continuous-time quantum walks

The CTRW’s quantum analog,1 the continuous-time quan-

tum walk on graph G, has its time evolution governed instead

1We do not describe the quantum analog of the DTRW here—the

discrete-time quantum walk DTQW— as, unlike the classical case,

it has a highly nontrivial relationship with the CTQW due to the

existence of an additional ‘coinspace.’ For a good introduction to

the coined DTQW, see Kempe [2] or Manouchehri and Wang [6],

while Szegedy [28] offers a good introduction to the Szegedy DTQW

formalism.

by the Schrödinger equation [18],

ih̄
d

dt
|ψ(t)〉 = H |ψ(t)〉, (11)

where H is the system Hamiltonian, encoding the discrete

structure of the underlying graph G, and |ψ(t)〉 =
∑

j αj (t)|j 〉
the complex-valued state vector. We use atomic units hence-

forth and, thus, set h̄ = m = e = 1. The general solution to the

system is

|ψ(t)〉 = U (t)|ψ(0)〉 = e−iH t |ψ(0)〉. (12)

Consistent with standard quantum formalism, αj (t) =
〈j |ψ(t)〉 ∈ C is the probability amplitude, and |αj (t)|2 the

corresponding probability, of the walker found at node j

after time t . Unlike the classical CTRW, the CTQW gains

properties characteristic of quantum systems—including time

reversibility (hence, no limiting state) and superposition,

allowing propagation through networks quadratically faster

than its classical counterpart [18,29]. However, the CTQW is

no longer a stochastic process but, rather, deterministic; the

probabilistic nature of the walk comes from measuring the

quantum state, rather than the walk’s dynamics [30].

It is important to note that there are two competing con-

ventions for the CTQW Hamiltonian that are ubiquitous in the

field: the adjacency matrix (H = A) and the (combinatorial)

Laplacian (H = D − A) [31]. Both provide similar dynamics

(and are identical for degree regular graphs), with each being

preferred for particular applications—the adjacency matrix

for simplicity in quantum computation calculations and the

Laplacian for its discrete approximation to the kinetic energy

operator of quantum mechanics. In this study, we use H = A,

for reasons that become clear in subsequent sections.

III. GRAPH CENTRALITY

In the study of network structure and graph theory,

centrality measures are an integral tool, allowing determination

and ranking of vertices deemed to be most important. Due to

the large number of physical systems that can be modeled

as networks, this has seen wide application across multiple

disciplinary fields, including technology (ranking websites

for search engines [32], power distribution [33]), business

(organizational management [34–36]), biology (grooming

networks in macaques [37]), and biochemistry (finding active

sites in proteins [38]).

At its most basic, a graph centrality measure C satisfies the

following properties:

(i) C : G(V,E) → R
|V | is a function or algorithm that

accepts a graph and returns a real-valued vector over the set of

vertices V .

(ii) Higher values are provided to vertices deemed more

‘important’ or ‘central’ to the graph structure, with lower

values provided to vertices with a reduced ‘importance’ or

‘centrality.’

However, what constitutes importance is subjective; it

depends on the application or model to be analyzed and

how information ‘flows’ throughout the network [39]. For

example, information might flow predominantly though paths

(a sequence of unique edges and vertices, characteristic of

bacterial and viral infections [40]), trails (vertices can be
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revisited but each edge is only traversed once—the flow of

gossip in social networks [41]), and walks (where there is

no restrictions on edge and vertex sequences, for example,

banknote exchange in a population). Moreover, this flow can

occur through serial duplication (traveling via one edge at each

time step: gift exchange) or parallel duplication (traversing

multiple edges simultaneously: radio broadcasting).

Thus, it is important to apply a centrality measure that

models information flow corresponding to the network under

study; failure to do so may result in poor results and even

the inability to correctly interpret the results [39]. To deal with

this plethora of scenarios, various classical centrality measures

have been introduced: degree centrality, eigenvector centrality,

betweenness centrality, closeness centrality, and PageRank,

among others. Of these, degree, eigenvector, and PageRank

centrality are what is known as radial parallel duplication

measures, which measure network flow via walks emanating

from or terminating at particular nodes [42].

A. Degree centrality

The degree centrality measure, calculated via the row sums

of the adjacency matrix,

C
(deg)

j =
deg(vj )

∑

k deg(vk)
=

∑

i Aij
∑

i

∑

j Aij

, (13)

is based on walks of length 1 emanating from each vertex

and is useful in cases dealing with direct and immediate

influence between nodes. Further, it can be seen that the

limiting probability distribution of classical random walks is

proportional to the node degree, allowing the degree centrality

to be simulated via a Markovian process.

B. Eigenvector centrality

Eigenvector centrality, on the other hand, is given by

C
(ev)
j = vj , where v is an eigenvector of the adjacency matrix

Av = λv corresponding to the maximum eigenvalue to ensure,

via the Perron-Frobenius theorem, that the ranking remains

strictly positive. It has been shown by Bonacich [43] that the

eigenvector centrality is proportional to the row sums of matrix

S, vj ∝
∑

i Sij , where

S = A +
1

λ
A2 +

1

λ2
A3 + . . . =

∞
∑

n=1

λ1−nAn, (14)

i.e., the eigenvector centrality counts walks of all lengths,

weighted inversely by length, from each node. Thus, unlike

the degree centrality, the eigenvector centrality considers long-

term ‘indirect’ influence: if a vertex is connected to another

node with a high number of connections, the first vertex will

likewise have a high centrality measure. Consequently, rather

than model the eigenvector centrality via the DTRW—which

may only sample adjacent vertices at each time step—we can

instead use the continuous-time random walk. Due to its matrix

exponential time propagator, the CTRW performs walks of all

lengths at each infinitesimal time step dt .

C. PageRank

One final classical centrality measure which necessitates

introduction is the Google PageRank [32]. A variation of

the eigenvector centrality, PageRank was developed as a

ranking algorithm for sites on the World Wide Web and

has accumulated significant prestige as the algorithm behind

the Google search engine. In this context, vertices represent

websites, with directed edges the links between them. Due

to the need to take direction into account, issues arise with

eigenvector centrality, namely, nodes with in-degree but no

out-degree (‘dangling nodes’) accumulate probability, due to

the adjacency matrix’s being nonstochastic. To address this

issue, the eigenvector centrality method is instead applied to

the Google matrix G,

G = αE +
1

N
(1 − α)J, 0 � α � 1, (15)

where N is the number of vertices in the graph, E is the

patched adjacency matrix, column-normalized to ensure that

G is stochastic,

Eij =

{

Aij/
∑

k Akj ,
∑

k Akj 	= 0,

1/N,
∑

k Akj = 0,
(16)

and J is the all 1’s matrix. The addition of J is to provide a

small ‘random surfer effect,’ i.e., a nonzero uniform probability

that a walker at a particular vertex can jump to any other vertex,

even in cases of nonadjacency. In practice, α is generally

chosen to be 0.85, providing a good compromise between

information flow via hyperlinks and the random surfer effect.

Once the Google matrix is calculated, the PageRank

centrality measure is then applied by solving the eigenvector

equation

Gx = x, (17)

as, per the Perron-Frobenius theorem, the eigenvector corre-

sponding to the largest eigenvalue (λ = 1 for PageRank, as G

is stochastic) will be strictly positive. Note that this equation

is identical to that of a DTRW; thus, the PageRank can be

modeled as a DTRW with G taken to be the transition matrix.

Nevertheless, when α < 1, PageRank continues to model its

centrality measure on walks of all lengths, due to the random

surfer effect. To see this explicitly, it can be easily shown that,

in the case 0 � α < 1,

Gx = x

⇒ αEx +
1

N
(1 − α)J x = x

⇒ (I − αE)x =
1

N
(1 − α)J x (18)

has the exact solution

x = (I − αE)−1 1

N
(1 − α)J x

= (1 − α)

( ∞
∑

k=0

αkEk

)

N
∑

j=1

ej

N

∴ xi =
1

N
(1 − α)

N
∑

j=1

( ∞
∑

k=0

αkEk

)

ij

, (19)
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and therefore x is calculated using walks of k lengths for all

k ∈ N, weighted by αk [44].

D. Random walk centrality

The random walk centrality (RWC), unlike the centralities

previously discussed, is not a radial-volume-based measure

(counting the number of walks between each pair of nodes)

but rather a radial length-based measure, quantifying the length

of the walks between nodes [42]. Alternatively, this can be

interpreted as a measure of the expected time for information

to arrive at a particular node, i.e., the effectiveness or speed of

communication [39]. The RWC measure, introduced by Noh

and Rieger [45] and based on a DTRW, is given by

C
(RWC)
j =

π j

τj

, (20)

where π is the random walk limiting distribution, and

τj =
∞

∑

n=0

(

T n
jj − π j

)

(21)

is the characteristic relaxation time of vertex j .

E. Quantum centrality measures

The above-described walk-based centrality measures are

classical in nature. However, in recent years several quan-

tum centrality measures have been proposed—ranging from

quantizations of the aforementioned classical measures to

wholly new proposals—that take advantage of the exponential

speedups offered by quantum computation. For example,

Quantum PageRank (introduced by Paparo et al. [22,23] and

extended by Loke et al. [24]) utilizes the Szegedy quantum

walk [28] (a DTQW formulation) to quantize the directed

Markov chains encoded by the Google matrix, before taking

the long-time average of the walk’s probability distribution: in

essence, providing a quantum analog of PageRank centrality.

The quantum stochastic walk is another approach, which

makes use of the Lindblad master equation to introduce envi-

ronmental decoherence to a CTQW [24–26]. In practice, this

has the effect of creating a continuous-time walk continuum

parametrized by ω, with ω = 0 (no dephasing) corresponding

to a purely quantum walk (CTQW) on an undirected graph and

ω = 1 (complete dephasing) corresponding to a purely clas-

sical walk (CTRW) over a digraph. By restricting the domain

to 0 < ω ≪ 1, quantum dynamics and the resulting quantum

speedup are retained, however, the walker will eventually

converge to the CTRW limiting probability distribution [30].

Similarly to Quantum PageRank, the centrality measure is then

given by the long-time average of the probability distribution.

Finally, Berry and Wang [21] proposed a novel method,

in which the quantum search algorithm is applied to graph

structures via the DTQW; the resulting frequency of successful

search probability was shown to correlate with the (lazy)

random walk centrality of Noh and Rieger [45]. Thus, the

quantum centrality scheme of Berry and Wang [21] differs

from the two previous quantum centrality schemes, as it

considers the mean speed of the walker in transmitting

information over the network: it is a form of quantum closeness

centrality.

Unfortunately, when it comes to physically implementing

these quantum centrality measures, we run into various issues.

In all three cases, due to the use of either a coin state (DTQW)

or an environment (QSW), the size of the state space must

be significantly increased, taking us beyond the experimental

ability to simulate quantum graph centrality of even simple

graph structures. For example, for a graph of N vertices, the

Szegedy DTQW formulation used in the Quantum PageRank

scheme requires a state space of size N2. As such, the ability

to physically realize these quantum centrality measures is

currently beyond our reach.

Instead, in the following section we propose a CTQW-based

centrality measure—building on the foundation of classical

radial centrality measures such as eigenvector centrality while

allowing us to take advantage of the quantum speedup afforded

versus the CTRW and utilizing a significantly smaller state

space than the QSW and DTQW.

IV. CTQW-BASED CENTRALITY MEASURE

Similarly to the Quantum PageRank and the QSW centrality

measures, as the time evolution of the CTQW is determined by

the Hamiltonian—and thus the underlying network structure—

one method for extracting the centrality information is to

simply start the walker in an equal superposition of all

vertex states, |ψ(0)〉 = 1√
N

∑

j |j 〉 (so as not to bias any one

particular vertex) and compare the time-average probability of

locating the walker at each vertex.

Now, convention allows for two choices for the Hamil-

tonian: we may choose either the adjacency matrix A or

the graph Laplacian L (given by Lij = δij

∑

k Aik − Aij , a

discrete approximation to the continuous-space Laplacian).

However, the construction of the Laplacian ensures that an

equal superposition state is always an eigenvector, resulting in

a stationary time evolution:

U |ψ(0)〉 = e−iLt

⎛

⎝

1

N

∑

j

|j 〉

⎞

⎠ =
1

N

∑

j

|j 〉 ∀t. (22)

As such, the Laplacian is ill suited for a CTQW centrality

measure, as it will be unable to distinguish vertices more

central to the network structure. This is not the case for the

adjacency matrix; thus, for the remainder of this work, we set

H = A.

To briefly summarize, the proposed CTQW centrality

scheme works as follows:

(1) Prepare the quantum walker in an initial equal super-

position over all vertex states: |ψ(0)〉 = 1
N

∑

j |j 〉.
(2) Propagate the walker for time t ≫ 0: |ψ(t)〉 =

e−iH t |ψ(0)〉, where H = A is the graph adjacency matrix.

(3) Calculate the long-time average probability distribu-

tion of finding the walker at each vertex:

C
(CTQW)
j = lim

τ→∞

1

τ

∫ τ

0

|〈j |ψ(t)〉|2dt. (23)

To fully ascertain the reliability of the proposed CTQW cen-

trality measure, we consider both a simple example (allowing

us to qualitatively assess the measures performance) and a

rigorous statistical analysis comparing the CTQW measure to

the PageRank over an ensemble of randomly generated graphs.
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FIG. 1. Four-vertex star graph.

Freeman [46], in his discussion of the canonical formulations

of centrality measures, noted that the degree, closeness, and

betweenness centralities all attain their highest values for the

central node of the star graph; Borgatti and Everett [42], in

reviewing Freeman’s work, suggested that this may serve as a

defining characteristic of a ‘proper’ centrality measure. Thus,

let us consider a four-vertex star graph as an example of the

proposed CTQW centrality measure.

For the four-vertex star graph shown in Fig. 1, the adjacency

matrix is

A =

⎡

⎢

⎣

0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0

⎤

⎥

⎦
, (24)

with the first vertex (vertex 0) the central node. In this case,

the time-evolution operator is given by

U (t) =
1

3

⎡

⎢

⎣

3c(t) s(t) s(t) s(t)

s(t) c(t) + 2 c(t) − 1 c(t) − 1

s(t) c(t) − 1 c(t) + 2 c(t) − 1

s(t) c(t) − 1 c(t) − 1 c(t) + 1

⎤

⎥

⎦
, (25)

where c(t) = cos(
√

3t) and s(t) = −i
√

3 sin(
√

3t). Using this

operator to propagate from an initial equal superposition of

vertex states |ψ(0)〉 = 1
4

∑

j |j 〉, the probability of locating

the walker on vertex j at time t is

|〈j |ψ(t)〉|2 = |〈j |U (t)|ψ(0)〉|2

=
[

1

2
−

1

4
c(2t)

]

δj0 +
[

1

6
+

1

12
c(2t)

] 3
∑

j ′=1

δjj ′

(26)

(Fig. 2). Noting that this probability distribution is periodic

with period T = π/
√

3, the CTQW centrality measure be-

comes

C
(CTQW)
j = lim

τ→∞

1

τ

∫ τ

0

|〈j |ψ(t)〉|2dt

=
1

T

∫ T

0

|〈j |ψ(t)〉|2dt, (27)

yielding values of 1/2 for j = 0 and 1/6 for j = 1,2,3. This

fits well with what would be expected intuitively: the central

vertex (vertex 0) has the highest time-averaged probability,

indicating a high centrality measure, while the remaining

vertices (1–3) are equivalent and have an equal and lower

ranking. The proposed CTQW centrality measure therefore

FIG. 2. CTQW probability at vertex 0 (solid black curve) and

vertices 1, 2, and 3 (dashed red curve) on a four-vertex star graph.

The initial state is an equal superposition of all vertex states. Dotted

horizontal lines show the respective long-time averaged probabilities

of the respective vertices, with the vertical blue line denoting one

period (T = π/
√

3).

satisfies one of the defining properties of centrality measures;

however, a detailed statistical analysis is required to properly

assess its behavior for general graphs.

V. STATISTICAL ANALYSIS

To investigate the reliability of this newly proposed quan-

tum centrality algorithm, it is pertinent to compare its ranking

results to classical algorithms on large random graphs. To do

so, we consider two classes of random graphs: Erdős-Rényi

networks and scale-free networks. A random Erdős-Rényi

graph, denoted G(N,p), is comprised of N vertices with

edges randomly distributed per the Bernoulli distribution, with

probability p [47,48]. For such a network, the vertex degree

distribution P (k) (the fraction of vertices with degree k) is

binomial in form, resulting in most vertices having a degree

close to np, the mean number of connections. Scale-free

networks, on the other hand, are characterized by a power-law

vertex distribution P (k) ∼ k−γ , due to the presence of a

small number of highly connected ‘hubs’—with a majority

of vertices exhibiting a significantly lower degree [49,50].

As such, they form an important tool in modeling real-life

networks with similar characteristics, such as social networks,

the World Wide Web, and biochemical molecules [51,52].

A. Correlation to classical measures

First, let us investigate the correlation between the CTQW

centrality measure and classical measures. As centrality

measures only provide useful information for the top five or

so valued vertices (with noise growing successively larger for

lower ranked nodes [53]), we consider a randomly generated

20-vertex Erdős-Rényi graph G(20,0.3) and use this as the

basis of our correlation test. The graph generated and its

respective vertex centrality values (calculated using the degree

centrality, PageRank, eigenvector centrality, CTQW centrality,

and RWC centrality) are shown in Fig. 3. Qualitatively, it

can be seen that all centrality measures strongly agree on the

top-ranked vertices, with slight variations for the lower ranked

vertices, as expected.
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Cj Cj Cj

Cj Cj

j

FIG. 3. Left: Randomly generated Erdős-Rényi graph G(20,0.3). Right: Normalized vertex centrality values for vertex j on G(20,0.3).

Measures shown are the degree centrality, PageRank, eigenvector centrality, CTQW centrality, and RWC centrality.

To get a more quantitative understanding of the correlation,

we employ Kendall’s tau rank correlation coefficient [54] (τ ∈
[−1,1], where τ = 1 indicates a perfect correlation between

ranked lists, τ = 0 indicates no correlation, and τ = −1

indicates a perfect anticorrelation). Kendall’s tau correlation

coefficients for Fig. 3 are listed in Table I; for additional

robustness, this analysis is repeated and averaged over an

ensemble of 100 randomly generated G(20,0.3) graphs. It

can be seen that there is a significant correlation between

the CTQW centrality ranking and the eigenvector centrality

ranking (τ = 0.592 averaged across the ensemble). If we recall

that the CTQW propagator is the matrix exponential, this

is perhaps not so surprising; the CTQW centrality scheme

appears to be ranking the graph vertices in a similar fashion to

the eigenvector centrality, by considering walks of all lengths

emanating from each vertex weighted inversely by length.

Note that Kendall’s tau coefficient tells us how correlated

the entire ranked lists are, allowing us to classify the centrality

measures based on how they encode information flow through

the network. However, beyond the topmost-ranked vertices,

centrality measures convey very little useful information

regarding remaining vertices; this is more the domain of

TABLE I. Kendall’s tau coefficient comparing the vertex rankings

for the labeled centrality measures; (top table) calculated for the

Erdős-Rényi graph shown on the left in Fig. 3, and (bottom table)

averaged over an ensemble of 100 random Erdős-Rényi graphs

G(20,0.3).

Degree PageRank Eigenvector CTQW RWC

Degree 1. 0.316 0.232 0.232 0.411

PageRank 0.316 1. 0.011 0.011 0.189

Eigenvector 0.232 0.011 1. 1. 0.568

CTQW 0.232 0.011 1. 1. 0.568

RWC 0.411 0.189 0.568 0.568 1.

Degree PageRank Eigenvector CTQW RWC

Degree 1. 0.276 0.163 0.15 0.236

PageRank 0.276 1. 0.107 0.076 0.12

Eigenvector 0.163 0.107 1. 0.592 0.277

CTQW 0.15 0.076 0.592 1. 0.228

RWC 0.236 0.12 0.277 0.228 1.

influence measures [53,55]. As such, Kendall’s tau coefficient

is not useful for determining general agreement between

centrality measures on the location of the most central nodes.

For example, in Fig. 3 it can be seen that the PageRank (a radial

volume measure) and random walk centrality (a radial length

measure) are in total agreement on the location of the top

three most central vertices while exhibiting a low correlation

(τ = 0.189).

B. Agreement on top-ranked vertices

Here, we consider ensembles of larger Erdős-Rényi and

scale-free graphs and compare the CTQW centrality to the

eigenvector centrality (its closest classical analog) and to

the PageRank (the classical centrality measure with arguably

the most impact in the last decade). This analysis will allow us

to verify the behavior of the CTQW centrality for large graphs

of varying degree distributions.

We begin by generating an ensemble of 200 Erdős-Rényi

and scale-free graphs (the latter by way of the Barabási-Albert

algorithm) and calculating the average PageRank, eigenvector,

and CTQW centrality measures over the ensemble. These

results are shown in Fig. 4. It can be seen that, on average,

the CTQW ranking agrees with the classical algorithms on

the location of the five most central vertices, while also

following the following the same general trend line (binomial

for the Erdős-Rényi, power law for the scale-free). In fact,

the CTQW measure for the top five vertices outperforms

that of the PageRank and eigenvector centrality, by assigning

a higher centrality measure, perhaps allowing for greater

distinguishability when sampled experimentally. However, it

appears that this comes at the cost of larger measure variance

compared to PageRank.

We now attempt to quantify the ‘agreement’ regarding the

top-ranked vertices between the quantum and the classical

measures. Previously Kendall’s tau ranked-list coefficient was

used; while this works well for determining correlations

between various ranked lists, it is less useful for quantifying

how often the ranked lists agree on their first few values.

Thus, we detail an alternative approach. For each graph in the

ensemble, unordered sets containing the n most central vertices

according to each measure were compared—the fraction

of matching vertices providing a quantitative value for the
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(a)The average CTQW centrality measure (black) compared to
the average PageRank measure (red, dashed)

(b)The average CTQW centrality measure (black) compared to
the average eigenvector centrality measure (blue, dashed)

FIG. 4. The average CTQW centrality measure compared to classical centrality measures for vertices in an ensemble of 200 Erdős-Rényi

graphs (left) and 200 scale-free graphs (right). The Erdős-Rényi graphs have parameters N = 100, p = 0.3. The scale-free networks are

constructed via the Barabási-Albert algorithm with N = 100 and m = 2 edges added at every generation. The shaded areas represent one

standard deviation from the average centralities, and the top five ranked vertices are shown by the symbols.

agreement between the two measures (termed the agreement

factor). These agreement factors were then averaged over

the entire ensemble, with the uncertainty approximated by

calculating the Agresti-Coull 95% confidence interval; the

results are presented in Fig. 5.

It can be seen that the eigenvector and CTQW centrality

measures are in near-perfect agreement—agreeing on the most

central node 99% of the time for Erdős-Rényi networks and

96% of the time for scale-free networks. This is likely due to

the strong correlation between the CTQW and the eigenvector

FIG. 5. Charts showing the agreement between the CTQW

centrality ranking and (a) the PageRank and (b) the eigenvector

centrality ranking for an ensemble of 100 Erdős-Rényi and 100

scale-free graphs. Each bar represents the unordered set containing

the n most central vertices as determined by the PageRank and

CTQW measures, while the vertical axis gives the average fraction

of matching vertices between the two sets. Error bars indicate the

Agresti-Coull 95% confidence interval.

centralities noted previously and indicates that this strong

correlation continues to hold for larger graphs of varying

degree distributions.

Turning our attention to PageRank, we find a strong

agreement with the CTQW measure, albeit not as strong as

the eigenvector centrality; regarding the location of the most

central vertex, they named the same vertex 88% of the time for

scale-free graphs, dropping to 70% for Erdős-Rényi graphs.

As the number of vertices compared increases, the agreement

factors decrease slightly for the scale-free and increase slightly

for the Erdős-Rényi graphs, before both ending at around

80% by the time the top five vertices are compared. This

discrepancy might be partially explained by considering the

CTQW measure variance in Fig. 4:

(i) For the Erdős-Rényi graphs, a majority of vertices

have a degree close to the mean, leading to the top-ranked

vertices having similar centrality measures. The average

CTQW centrality measure of the second- and third-ranked

vertices lies within the uncertainty region of the most central

vertex; so even as the top five are easily distinguished, changes

in their initial ordering might appear.

(ii) For the scale-free graphs, with a small number of

connected hubs, the hubs are easily distinguished by both

measures. However, beyond the hubs, most vertices have

similar degrees due to the power-law distribution, leading to

small discrepancies between the measures as more vertices are

ranked.

Nonetheless, our results here show that the CTQW measure

proposed works excellently as a centrality measure—it assigns

higher values to the central node of a star graph and equal

lower values to the surrounding nodes, correlates well with

the classical eigenvector centrality (allowing us to posit that

the CTQW measure extracts centrality in a similar fashion

to the eigenvector centrality, namely, via weighted walks

of all lengths), and generalizes to arbitrary random scale-

free and Erdős-Rényi graphs. Thus, the proposed quantum

scheme sufficiently determines the node centrality, and in

contrast to the Quantum PageRank algorithm (which requires
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computation of the dense Google matrix), preserves the sparse

structure of the network in the Hamiltonian: a property that

allows for known efficient quantum implementation [56].

In the following section, we build off this result to

experimentally implement the CTQW centrality scheme for a

star graph using linear optics—a proof-of-concept experiment

and the first physical implementation (to our knowledge) of

quantum centrality.

VI. EXPERIMENTAL REALIZATION

Linear optics enables the efficient implementation of

an arbitrary unitary transformation on various degrees of

freedoms of single photons. For example, any 2 × 2 unitary

transformations on the polarizations of single photons can be

realized by a set of half-wave plates (HWPs) and quarter-wave

plates (QWPs) [57]. Here we aim to devise a linear optics

realization of a 4 × 4 unitary transformation using spatial and

polarization degrees of freedom of single photons.

In this experiment, we first prepare a four-dimensional

equal superposition quantum state |ψ(0)〉 = 1
2

∑3
j=0 |j 〉 and

then perform 4 × 4 unitary transformations on the state.

We obtain the probability distribution through projective

measurement on the state. The unitary transformations applied

to the initial state |ψ(0)〉 are U (k�t), where k ∈ {1,2, . . . ,8}.
An arbitrary 4 × 4 unitary transformation can be decom-

posed using the cosine-sine decomposition method [58–63].

For each unitary transformation in U (k�t), there exist unitary

matrices L, S, and R, such that U = LSR, where L and R are

block-diagonal,

L =
[

L 0

0 L′

]

, R =
[

R 0

0 R′

]

, (28)

and S is an orthogonal cosine-sine matrix,

S =

⎡

⎢

⎣

cos θ 0 sin θ 0

0 1 0 0

− sin θ 0 cos θ 0

0 0 0 1

⎤

⎥

⎦
, (29)

where L, L′, R, and R′ are arbitrary 2 × 2 unitary transforma-

tions on two modes. This matrix S can be further decomposed

by a 2 × 2 unitary transformation S = [ cos θ sin θ
− sin θ cos θ

] in the

subspace spanned by modes {|0〉,|2〉} and I = [1 0
0 1

] in the

subspace spanned by modes {|1〉,|3〉}.
This decomposition method can be used to decompose

any higher dimensional unitary operations into series of

two-dimensional unitary operations, and thus our technology

can be used to realize, in principle, any dimensional unitary

operations. However, it is noteworthy that the numbers of

beam displacers (BDs) used to prepare a d-dimensional

state and to realize a d-dimensional unitary operation are

d/2 − 1 and 2d/2 − 2, respectively, where d is an even positive

integer. In other words, the number of optical elements grows

exponentially with the dimension of the unitary operation, and

decoherence in cascaded interferometers also increases.

For convenience, we encode the four-dimensional quantum

states by two-qubit states as {|0〉 = |0̃0̃〉, |1〉 = |0̃1̃〉, |2〉 =
|1̃0̃〉, |3〉 = |1̃1̃〉}. The unitary transformations L, S, and R can

FIG. 6. The quantum circuit for implementing the 4 × 4 unitary

transformation U on a two-qubit system.

be rewritten as

L = |0̃〉〈0̃| ⊗ L + |1̃〉〈1̃| ⊗ L′,

S = S ⊗ |0̃〉〈0̃| + I ⊗ |1̃〉〈1̃|,

R = |0̃〉〈0̃| ⊗ R + |1̃〉〈1̃| ⊗ R′. (30)

Then the 4 × 4 unitary transformations U (k�t) can be imple-

mented by these three controlled two-qubit transformations in

Fig. 6.

A schematic of our experimental setup is depicted in Fig. 7.

The two qubits are encoded by spatial and polarization modes

of single photons. The first qubit |0̃〉 (|1̃〉) represents the upper

(lower) spatial mode of photons, and the second qubit |0̃〉 (|1̃〉)
represents the horizontal (vertical) polarization of photons.

Polarization-degenerated photon pairs are generated by

type I spontaneous parametric down-conversion in a 0.5-

mm-thick nonlinear β-barium-borate crystal pumped by a

400.8-nm CW diode laser with 90 mW of power. The

single photon is generated by triggering of the other photon.

Interference filters are used to restrict the photon bandwidth to

3 nm. The photons are in horizontal polarization after the first

polarizing beam splitter. The initial state is prepared in two

FIG. 7. Conceptual experimental setup, with three controlled

unitary transformations, L, S, and R. Red lines represent the optical

modes (beams) of single photons. (a) Realization of L (R) as a

transformation on two spatial modes and two polarization modes

of single photons. The spatial mode works as the control qubit and

the 2 × 2 unitary transformation L (R) and L′ (R′) applied to the

polarizations of the photons in different modes can be realized by

a set of wave plates. A phase shifter is used to keep the global

phase unchanged during the transformation. (b) Realization of S.

The polarization is the control qubit. After the first HWP at 45◦ and

a BD, the horizontally polarized photons in both spatial modes are

propagating in the same spatial mode (the middle one) and then

the transformation S is applied by using an HWP at θ/2 in the

middle mode. Meanwhile, the vertically polarized photons in upper

or lower modes are not affected, and after the second BD they are still

propagating in upper or low modes. The other HWPs are all set to 45◦;

they are used to flip the polarizations and to change the propagating

modes of photons after they pass through the BD.
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steps. First, after passing through a half-wave plate (HWPa)

at 22.5◦, which rotates the polarization of single photons to

equal the superposition of horizontal and vertical polarizations,

the photons are split into two parallel paths by a birefringent

calcite BD, which transmits the vertically polarized photons

directly and displaces horizontally polarized photons by 3 mm.

Second, two HWPs (HWPb and HWPc), at −22.5◦ and 22.5◦,

are inserted into the upper and lower modes, respectively, to

flip the polarizations. Thus the state of the single photons is

prepared with |ψ(0)〉 = 1
2

∑3
j=0 |j 〉.

For the controlled two-qubit transformations L and R, the

spatial mode of photons serves as the control qubit and the

polarization is the target qubit. In the upper and lower modes,

the 2 × 2 unitary transformations L (R) and L′ (R′) are applied

to the polarization degrees of freedom, which can be realized

by a combination QWP and HWP sequence inserted into the

corresponding spatial mode.

For the 4 × 4 unitary transformation S, the polarization of

photons serves as the control qubit. An HWP at 45◦ inserted

into the lower input mode flips the polarization of photons.

After the first BD, the horizontally polarized photons in both

the upper and the lower input modes are propagating in the

same path (the middle one), and then the transformation S is

applied by using an HWP at θ/2 in the middle path. Hence

S ⊗ |0̃〉〈0̃| is applied to |0̃0̃〉 and |1̃0̃〉. The vertically polarized

photons in the upper or lower input mode are not affected and

after the second BD they are still propagating in the upper

or lower output modes. That is, I ⊗ |1̃〉〈1̃| is applied to |0̃1̃〉
and |1̃1̃〉. Two HWPs at 45◦ inserted into the other two paths

(the propagating paths between two BDs) are used to flip the

polarizations of photons in the paths and then the propagating

modes change after the photons pass through the following

BD. After the second BD, an HWP at 45◦ is inserted into the

upper output mode to compensate for the effect of the first

HWP in the lower input mode and flip the polarizations of

photons back.

Our actual experimental setup is shown in Fig. 8, which

takes into consideration the compensation of optical delay

FIG. 8. Practical experimental setup with consideration of both

compensation of optical delay between different spatial modes and

simplification. BBO, β-barium-borate; BD, beam displacer; HWP,

half-wave plate; IF, interference filter; PBS, polarizing beam splitter;

QWP, quarter-wave plate.

between different spatial modes. The simplified set of wave

plates for the realizations L and R of the eight 4 × 4 unitary

transformations U (k�t) is listed in Table II, including the

setting angles of wave plates. Two BDs and six HWPs (HWP1–

HWP6) are used to realize S and compensate for the optical de-

lay. The setting angles of HWP1–HWP6 are listed in Table III.

In order to implement the proposed centrality algorithm

experimentally, we discretize the CTQW time-evolution op-

erator U (t) = e−iLt given by Eq. (25) for the four-vertex

star graph, using eight time steps of �t = 9/40 to ensure

that we sample the probability distribution adequately over

one period (note that T = π/
√

3 ≈ 8�t). After application

of the unitary time-evolution operator U (k�t) with k ∈
{1,2, . . . ,8}, the quantum state is measured by a two-qubit

projective measurement. A polarizing beam splitter is used

to perform the projective measurement on the photons with

the computational basis {|0̃0̃〉,|0̃1̃〉,|1̃0̃〉,|1̃1̃〉}. The photons

are detected by avalanche photon diodes in coincidence with

the trigger with a coincident window of 3 ns. The clicks of

detectors D0, D1, D2, and D3 correspond to the probabilities

of the final state projected onto the basis {|0̃0̃〉,|0̃1̃〉,|1̃0̃〉,|1̃1̃〉}.
We record the clicks for 5 s, and more than 18 000

coincidence counts are detected in the overall measurement

time. The measured probability distributions are shown in

TABLE II. The simplified sets of wave plates with certain setting angles for realization of eight 4 × 4 unitary transformations. The subscript

k to L, L′, R and R′ corresponds to the kth unitary transformation U (k�t). Q, quarter-wave plate; H, half-wave plate; WP, wave plate.

L/R WPs Angles (deg) L′/R′ WPs Angles (deg)

L1 Q-H-H 90, 0, −3.3 L′
1 H-H-H 90, 0, 157.5

R1 H-H-Q 0, 48.4, 90 R′
1 H-Q-Q 0, 22.5, 22.5

L2 Q-H-H 90, 0, −6.7 L′
2 H-H-H 90, 0, 157.5

R2 H-H-Q 0, 51.7, 90 R′
2 H-Q-Q 0, 22.5, 22.5

L3 Q-H-H 90, 0, −10.5 L′
3 H-H-H 90, 0, 157.5

R3 H-H-Q 0, 55.5, 90 R′
3 H-Q-Q 0, 22.5, 22.5

L4 Q-H-Q 90, 14.9, 0 L′
4 H-H-H 90, 0, 157.5

R4 Q-H-H-Q 0, 0, 30.1,0 R′
4 Q-Q-Q-Q 0, 0, 22.5, 22.5

L5 Q-H-H 90, 0, −20.2 L′
5 H-H-H 90, 0, 157.5

R5 H-H-Q 0, 65.2, 90 R′
5 H-Q-Q 0, 22.5, 22.5

L6 Q-H 90, 0, 26.8 L′
6 H-H 90, 22.5

R6 H-H-Q 0, −18.2, 90 R′
6 H-Q-Q 0, 22.5, 22.5

L7 Q-H-H 90, 0,−35.0 L′
7 Q-Q-H 0, 0, 112.5

R7 H-Q 100.0, 90 R′
7 H-H 0, 22.5

L8 Q-H-H-Q 90, 0, −44.4, 0 L′
8 Q-Q-Q-Q −22.5,−22.5, 90, 90

R8 Q-H-H-Q 0, 0, 90.6, 0 R′
8 Q-Q-Q-Q 0, 0, 22.5, 22.5
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TABLE III. Setting angles of HWP1 and HWP2 for realization of

the eight 4 × 4 unitary transformations. The setting angles of HWP3,

HWP4, and HWP5 are set to be −45◦, and that of HWP6 is set to be

45◦ for all eight U (k�t) values.

k

1 2 3 4 5 6 7 8

HWP1 (deg) 54.1 63.1 71.8 80.0 87.5 86.3 82.0 80.3

HWP2 (deg) 144.1 153.1 161.8 170.0 177.5 176.3 172.0 170.3

Fig. 9, which are in excellent agreement with the theoretical

predictions given by Eq. (26). Here we use the norm 1 distance

d = 1
2

∑

x=0,1,2,3 |P exp(x) − P th(x)| to evaluate the quality of

experimental demonstration. For all eight U ’s, we obtain

d1 = 0.003, d2 = 0.020, d3 = 0.026, d4 = 0.039, d5 = 0.031,

d6 = 0.031, d7 = 0.017, and d8 = 0.009. The distances are all

smaller than 0.04, which indicates successful experimental

demonstrations of the 4 × 4 unitary transformations.

VII. CONCLUSION

In this study, we have proposed a CTQW-based quantum

centrality algorithm, shown that it correlates well with classical

measures, and verified its performance on general random

graphs. The proposed quantum measure was then successfully

implemented experimentally for a four-vertex star graph. No-

tably, this algorithm requires an N -dimensional Hilbert space,

compared to discrete-time quantum-walk-based algorithms,

which require N2 dimensions for the same graph. Furthermore,

this algorithm preserves the full quantum behavior of the

walker, unlike the QSW, which mutes the quantum behavior

of the walker due to decoherence.

In our physical implementation of the proposed CTQW

centrality algorithm, the unitary operation of the walker on

the graph is decomposed into unitary transformations in a

two-dimensional subspace and realized by operating in the

FIG. 9. Photon probability distributions after eight unitary trans-

formations. Red bars represent experimental results. Blue borders

represent theoretical predictions. Errors are estimated via propagated

Poissonian statistics. A small additional uncertainty may be present

in the measurement of nodes 0 and 1 due to the photon’s representing

the two states with different polarizations but inhibiting the same

spatial mode.

polarization and spacial modes of single photons. This method

can be used to decompose, in principle, any dimensional

unitary operations into series of two-dimensional unitary

operations. By making use of the coherent property of photons,

the technology in our experiment is a competitive candidate for

demonstrating arbitrary unitary operations, allowing it to be

utilized for a wide array of quantum algorithms and quantum

information processes. This paper reports the successful

physical demonstration of a quantum centrality algorithm on

a four-vertex star graph.
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APPENDIX: EXPLICIT EXPRESSIONS

FOR L, R, L
′, AND R

′

For clarity, we provide here the explicit expressions for Lk ,

Rk , L′
k , and R′

k , where the subscript k corresponds to the kth

unitary transformation U (k�t):

L1 =
[

−0.9936i −0.1132i

−0.1132 0.9936

]

, L′
1 =

[

0.7071 −0.7071

0.7071 0.7071

]

,

R1 =
[

0.9936i 0.1132

−0.1132i 0.9936

]

, R′
1 =

[

0.7071 0.7071

−0.7071 0.7071

]

,

L2 =
[

−0.9730i −0.2307i

−0.2307 0.9730

]

, L′
2 = L′

1,

R2 =
[

0.9730i 0.2307

−0.2307i 0.9730

]

, R′
2 = R′

1,

L3 =
[

−0.9341i −0.3569i

−0.3569 0.9341

]

, L′
3 = L′

1,

R3 =
[

0.9341i 0.3569

−0.3569i 0.9341

]

, R′
3 = R′

1,

L4 =
[

−0.8686i 0.4955

−0.4955 0.8686i

]

, L′
4 = L′

1,

R4 =
[

0.8686i 0.4955

−0.4955 −0.8686i

]

, R′
4 = R′

1,

L5 =
[

−0.7618i −0.6478i

−0.6478 0.7618

]

, L′
5 = L′

1,

R5 =
[

0.7618i 0.6478

−0.6478i 0.7618

]

, R′
5 = R′

1,

L6 =
[

0.5926i 0.8055i

0.8055 −0.5926

]

, L′
6 = L′

1,

R6 =
[

0.5926i 0.8055

0.8055i −0.5926

]

, R′
6 =

[

−0.7071 −0.7071

−0.7071 0.7071

]

,
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L7 =
[

0.3415i −0.9399i

0.9399 0.3415

]

, L′
7 = L′

1,

R7 =
[

0.3415i 0.9399

−0.9399i 0.3415

]

, R′
7 = R′

6,

L8 =
[

0.0207i −0.9998

0.9998 −0.0207i

]

, L′
8 = L′

1,

R8 =
[

0.0207i 0.9998

0.9998 0.0207i

]

, R′
8 = R′

6.
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Although often important for domain wall device applications, reproducible fabrication of pinning

sites at the nano-scale remains challenging. Here, we demonstrate that the stray magnetic field

generated beneath magnetic vortex cores can be used to generate localized pinning sites for

magnetic domain walls in an underlying, perpendicularly magnetized nanostrip. Moreover, we

show that the pinning strength can be tuned by switching the vortex core polarity: switching the

core polarity so that it is aligned with the magnetization of the expanding domain (rather than

against it) can reduce the vortex-mediated wall depinning field by between 40% and 90%, depend-

ing on the system geometry. Significant reductions in the depinning field are also demonstrated in

narrow strips by shifting the core away from the strips’ centers. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4982237]

Control of magnetic domain wall (DW) motion is critical

for the realization of DW devices such as logic circuits and

(multi-state) memories.1–6 Such devices are typically based

upon ferromagnetic strips through which DWs propagate. In

strips, stable positions for DWs have traditionally been

achieved by structural modifications, often via the creation of

local constrictions or protrusions7 (local modifications to

anisotropy have also been employed, e.g., Ref. 8). However,

uniform fabrication of structural pinning sites at the nano-

scale can be challenging. Another challenge is the need to

balance the positional stability afforded by strong pinning

sites (critical for data endurance) with a technological

requirement for low power domain wall motion/depinning.9

A potential solution to the latter challenge is to use pinning

sites whose strength can be dynamically modified, enabling, for

example, the pinning strength to be (momentarily) reduced

when the domain wall position has to be changed. Voltage-

induced domain wall gating is one potential route to realize

such pinning.11,12 However, reconfigurable pinning can also be

generated using stray magnetic fields from neighboring ferro-

magnetic elements.13–18 Using ferromagnetic elements in this

way also enables nonvolatile reconfigurability since the mag-

netic state of the element can be switched, modifying the stray

field profile and thus the strength of the resulting pinning site.

Previous studies of stray-field-mediated pinning have

focused primarily on the use of (quasi-)uniformly magne-

tized, bistable ferromagnetic elements.4,13,15,18 In this letter,

we use micromagnetic simulation to demonstrate the poten-

tial of magnetic vortices19–21 for DW pinning (see also Ref.

22). Like DWs,23 magnetic vortices are inherently reconfig-

urable and non-uniform magnetization configurations. They

can exist within ferromagnetic disks and consist of an

in-plane curling magnetization with an out of plane magne-

tized nano-scale core. Here, we use the highly localized stray

magnetic field which exists around the core (and which is

parallel to the core magnetization20,21,24) to pin domain walls

in an underlying strip. We show that by switching the core

magnetization (which is perpendicular to the disk plane and

can be (rapidly) switched25–29), it is possible to toggle

between strong and weak DW pinning sites. However, we

also show that the pinning strength can also be varied by

shifting the core away from the center of the strip, adding an

additional degree of tunability without requiring a reversal

of the core magnetization. Finally, we note that this approach

to pinning enables one to create a pinning site with a reliable

characteristic width and strength without the need to accu-

rately and reproducibly fabricate similar nano-scaled struc-

tural features. This is because the core size is largely

independent of the disk width (for those disks which exhibit

a single vortex state: �100 nm up to the micrometer scale).30

Vortex-mediated DW pinning was studied in a 3 nm thick

strip with perpendicular magnetic anisotropy. Two vortex-

containing disks with a diameter of 192 nm and a thickness of

12 nm lie above the strip [Fig. 1(a)]. There is a vertical separa-

tion, d, between the bottom of the disks and the top of the strip

[Fig. 1(b)]. The 768 nm long strip is CoPtCr-like31 with satura-

tion magnetization MS¼ 300 kA/m, out-of-plane uniaxial

anisotropy K¼ 0.2MJ/m3, and exchange stiffness Aex¼ 10 pJ/

m. The disks are NiFe-like with MS¼ 860 kA/m, Aex¼ 13 pJ/

m, and negligible intrinsic anisotropy. The damping parameter

FIG. 1. System schematics. (a) 2 vortices above a DW-containing strip in

the zero external field (visualized using Muview210). (b) Side view sche-

matic (not to scale) showing the finite separation, d, between the lower

surface of the disks and the upper surface of the strip.a)Electronic mail: peter.metaxas@uwa.edu.au

0003-6951/2017/110(18)/182404/5/$30.00 Published by AIP Publishing.110, 182404-1
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is 1 everywhere since we consider relaxed states only. No tem-

perature effects were included nor was inter-element exchange

coupling, meaning that the disk-layer interaction is purely

magnetostatic. The disks are symmetrically spaced either side

of the center of the strip along the strip’s long axis. The major-

ity of the presented data has been obtained with MuMax332

using 3� 3� 3 nm3 discretization cells. Good consistency

with OOMMF33 results was also found, which is mentioned

below. For both approaches, the system was initialized with a

DW-like transition at the middle of the strip and trial vortex

configurations in the disks (the vortex chiralities are anti-

clockwise unless otherwise specified). The magnetization was

then allowed to relax in the zero external field using

MuMax3’s “minimize” routine (or OOMMF’s “relax” rou-

tine). Both routines employ a conjugate gradient method to

find the ground state magnetization. From this point, the simu-

lation was progressed in a quasi-static manner. An external

magnetic field, Hext ¼ 0; 0;Hð Þ [Fig. 1(b)], was applied and

increased in steps of DH starting at the zero field. The mini-

mize/relax routine was run at each field value, starting from

the relaxed configuration obtained at the previous field. The

system’s relaxed configuration was recorded after each step.

Note that H was always positive, driving the DW toward

the right hand disk [i.e., expanding the left hand domain;

Fig. 1(b)].

We will concentrate first on pinning induced by a vortex

which has a negative core polarity, p¼ –1. Directly beneath

the p¼ –1 core, there is a significant negative out-of-plane

field, Hz
vortex [Fig. 2(a)]. This field “peak” has a width (full

width half maximum) on the order of 20 nm and results in

there being a localized region in the strip where there is a

negative Hz
vortex which is strong and opposes the positive H

that is used to drive the DW displacement. This localized

field acts as a barrier to DW motion, as can be seen in Fig.

2(b) which shows a snapshot of a DW being pinned just to

the left of the core center (w¼ 48 nm).

In Fig. 2(c), we follow the normalized z–component of

the magnetization within a 36 nm wide strip (d¼ 21 nm) as

H is increased by steps, DH, enabling us to pass from the

pinned state to the depinned state. At very low external fields

(l0H < 1 mT), the DW moves towards the disk where it is

pinned near the vortex core [as in Fig. 2(b)]. At the depin-

ning field, Hdep, the wall depins, moves past the vortex, and

annihilates at the end of the strip. Note that while the wall is

pinned at the core, the x–component of the magnetization

within the vortex increases [also shown in Fig. 2(c)]. This

increase corresponds to a shift of the core in the þy direction

[Fig. 2(b)] and is driven by the in-plane component of the

stray magnetic field (þx–oriented) which exists above the

domain wall34–37 [Fig. 2(d)]. This field acts on the vortex’s

curling magnetization [Fig. 2(e)], inducing a core shift. The

direction of this shift depends on the vortex chirality [Figs.

2(f) and 2(g)] since the chirality determines the at-

equilibrium core displacement for a given in-plane magnetic

field.38

We now look at the dependence of the depinning field

on the system geometry for the same p¼ –1 vortex configu-

ration. In Figs. 3(a) and 3(b), we show that increasing the

strip width, w, or the disk-strip separation, d, will reduce

Hdep. The latter d-dependence occurs because as d is

increased, the strip will be further from the disk and thus

subject to a weaker Hz
vortex. Since the pinning is Hz

vortex-medi-

ated, this leads to a smaller Hdep. The w-dependence can be

understood as follows: For very narrow strips, the entire strip

width is subject to a strong, negative Hz
vortex [as can be

inferred from Fig. 2(a)], which generates a high Hdep. In con-

trast, for a wide strip, only the central portion of the strip

will be subject to the strong Hz
vortex which exists directly

below the core. As such, the average Hz
vortex acting across the

strip is lower, leading to a reduced Hdep. Indeed, Hdep can be

shown to closely match the width-averaged Hz
vortex both

when varying d [Fig. 3(c); w¼ 36 nm] and w [Fig. 3(d);

d¼ 9 nm]. Note that Hz
vortex was calculated in each case for

an isolated vortex subject to Hdep � DH (i.e., at the field pre-

ceding that which generated depinning). We also note that

the above results were checked with OOMMF33 for d¼ 9

FIG. 2. (a) z�component of the stray field generated by a p¼ –1 vortex,

Hz
vortex, calculated 10.5 nm below the vortex-containing disc. The (red)

shaded region shows where Hz
vortex < 0 and thus opposes H, generating DW

pinning. (b) Bottom-up visualization of a pinned DW (w¼ 72 nm) with gray

level mapping of the out-of-plane magnetization component. The DW is at

the right hand disk, pinned at the down-magnetized (p¼ –1) vortex core (its

position is visible as a dark gray dot). (c)Mz in a w¼ 36 nm strip (d¼ 21 nm)

and Mx in the right hand disk (i.e., in the disk at which the DW becomes

pinned) as H is increased in steps. (d) An in-plane stray field (arrow) is gen-

erated above the DW. (e) Vortex state with a centered core (i.e., negligible

in-plane field). The circular arrow indicates the chirality. When the DW is

pinned at the vortex, the DW’s in-plane stray field (gray arrow) shifts the

core in the (f) þy direction for an anti-clockwise vortex or (g) the –y direc-

tion for a clockwise vortex. The black dotted line across (e)–(g) marks the

position of the unshifted core, and the small dotted arrows in (f) and (g)

show the core shift direction.

182404-2 Hurst et al. Appl. Phys. Lett. 110, 182404 (2017)



and 15 nm which yielded agreement with the MuMax3-

calculated Hdep values to within 1mT. Smaller discretization

lengths were also examined using MuMax3 as a further

check where reducing the in-plane discretization from 3 nm

to 2 nm was found to result in a weak change in the

depinning fields (þ2.9%).

Switching the polarity of the core to p ¼ þ1 (achieved

by changing the polarity of the pre-relaxation trial vortex

state) switches the sign of the vortex stray field, resulting in

Hz
vortex now being negative (and thus opposing DW motion)

in the regions surrounding the core position (rather than

the region directly beneath the core) [Fig. 4(a); compare to

Fig. 2(a) which shows the stray field for p¼ –1]. As a result,

the DW now becomes pinned well before it reaches the core

[Fig. 4(b)] rather than being pinned at the core location [Fig.

2(b)]. The part of the Hz
vortex profile causing pinning for

p ¼ þ1 [Fig. 4(a)] is also much weaker than the part of the

profile directly beneath the vortex core, which generates pin-

ning for the p¼ –1 case. This results in Hdep being reduced

for p ¼ þ1. This can be seen in Fig. 4(c) where Hdep has

been plotted versus d for both core polarities (w¼ 36 nm).

Switching the core polarity (which can be achieved rapidly

for quick gate modification25,26,28,29) reduces the depinning

field by �80% over a wide range of d [Fig. 4(d)]. As can be

seen in Fig. 4(e), however, Hdep for p ¼ þ1 is almost inde-

pendent of w (tested for d¼ 9 nm). This is consistent with

the weak lateral spatial gradient in Hz
vortex in the region away

from the core [i.e., the part of the vortex-generated field dis-

tribution which generates pinning is relatively uniform in

space; Fig. 4(a)]. As a result, the %-reduction in Hdep when

FIG. 3. p¼ –1 depinning field versus (a) disk-strip separation, d, and (b) strip-

width, w, for various values of w and d. Black lines in (a) are fits of the form

aþ b

cþdð Þ3
. Lines in (b) are guides to the eye. Depinning fields for various val-

ues of (c) d (w¼ 36nm) and (d) w (d¼ 9 nm) plotted against the absolute value

of the w-averaged z� component of an isolated vortex’s stray magnetic field in

the region of the DW. The latter was calculated for an isolated disk in the pres-

ence of an out of plane field with magnitude H ¼ Hdep � DH (i.e., the field

preceding depinning for that particular geometry).

FIG. 4. (a) z�component of the stray field generated by a p ¼ þ1 vortex,

Hz
vortex, calculated 10.5 nm below the vortex-containing disc. The (red)

shaded region shows where Hz
vortex < 0 and thus opposes H, generating DW

pinning. (b) Visualization of a pinned DW with gray level mapping of the

out-of-plane magnetization component and superposition of the core mag-

netizations (gray and white dots). The DW is at the right hand disk, pinned

well to the left of the right hand vortex core. Lower panels show compari-

sons of depinning fields for polarities opposing (p¼ –1) and aligned with

(p ¼ þ1) the external field versus (c) d (w¼ 36 nm) and (e) w (d¼ 9 nm).

Corresponding percentage reductions in the depinning fields by switching

from p ¼ þ1 to p¼ –1 are shown in (d) and (f).

182404-3 Hurst et al. Appl. Phys. Lett. 110, 182404 (2017)



going from p¼ –1 to p ¼ þ1 is largest for small w [Fig. 1(f)]

since Hdep for p¼ –1 becomes weak at high w due to the

averaging effect discussed above [Fig. 3(d)].

We now examine the effect that shifting the core has on

domain wall depinning (p¼ –1). To induce a core shift, we

apply an in-plane magnetic field which is constant in time,

HIP. HIP is aligned along the strip’s long axis (þx), acting to

shift the core perpendicular to that axis (þy). Hdep versus HIP

is plotted for four strip widths in Fig. 5 together with a visu-

alization of the out-of-plane component of the disk’s stray

field (l0HIP ¼ 21 mT).

In terms of the HIP-dependence of Hdep, two clear

regimes are seen for the three narrowest strips. For low HIP

(below 12mT in Fig. 5), Hdep initially decreases with the

in-plane field. In this regime, shifting the core away from the

narrow strips’ centers reduces the average Hz
vortex that acts on

the strip, thereby reducing Hdep. The initial drop-off in Hdep

is the steepest for the narrower strips since the core-displace-

ment-driven change in the strip-width-averaged Hz
vortex for

small core displacements will be the highest. At higher

HIP; Hdep begins to increase with HIP. In this regime, the

core becomes pinned at the vortex core and then again at

the disk’s right edge. This second pinning event arises due to

the þx in-plane field transitioning the disk toward a þx-mag-

netized state. This induces edge magnetic charges on the 6x

sides of the disk which generate out-of-plane stray fields that

act on the strip (inset of Fig. 5). The out-of-plane compo-

nents of the edge fields are negative on the disk’s right hand

side and can thus pin the domain wall. Furthermore, the

strength of these edge fields grows with HIP as the disk

acquires a higher þx magnetization. The edge pinning mech-

anism dominates core-induced pinning at large HIP, leading

to an increasing Hdep. Note that compared to the core stray

field, these edge fields are relatively uniform in the y-direc-

tion (Fig. 5), which results in similar Hdep values for each

strip width. Finally, we note that Hdep in the 192 nm strip

exhibits a monotonically increasing trend with the in-plane

field, which is similar to that seen for the narrow strips at

high fields where depinning requires the wall to move past

the edge-charge-generated pinning. Indeed, from 6mT

onwards, in the w¼ 192 nm strip, pinning due to edge

charges dominates the core-mediated pinning, the latter

being intrinsically weak at large w [Fig. 3(b)].

In summary, this work demonstrates the potential to use

localized stray magnetic fields generated by vortex states to

reliably generate reconfigurable, nano-scale domain wall

pinning sites in an underlying perpendicularly magnetized

ferromagnetic strip. The domain wall pinning strength can

be tuned by switching the vortex core polarity or by shifting

the core across the strip (done here via in-plane magnetic

fields). This approach enables the development of controlla-

ble gates for domain wall motion and logic. These findings

also open possibilities for further investigations on harness-

ing magnetostatic interactions between skyrmions39 and

domain walls (or skyrmions and vortices). Extensions to

current-induced manipulation of magnetic textures may also

be envisaged. There will also be interesting effects to exam-

ine full dynamic simulations where one can aim to (e.g.) rap-

idly toggle the pinning strength (via a switch in the core

magnetization or a well-timed core displacement) or dynami-

cally study core displacements (or core-polarity-switching40)

driven by domain-wall-vortex interactions.

This work was supported by resources provided by the

Pawsey Supercomputing Centre with funding from the

Australian Government and the Government of Western

Australia. The preliminary work was supported by iVEC

through the use of advanced computing resources located at

iVEC@UWA. P.J.M. acknowledges support from the

Australian Research Council’s Discovery Early Career

Researcher Award scheme (Grant No. DE120100155) and

the University of Western Australia (Research Development

Award and Early Career Researcher Fellowship

Support schemes). A.C.H.H. and J.A.I. were supported by

internships from the Pawsey Supercomputing Centre and

iVEC, respectively. The authors thank H. Fangohr, M.

Albert, R. L. Novak, M. Kostylev, and J. P. Fried for useful

discussions.

1D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P.

Cowburn, Science 309, 1688 (2005).
2S. Fukami, T. Suzuki, K. Nagahara, N. Ohshima, Y. Ozaki, S. Saito, R.

Nebashi, N. Sakimura, H. Honjo, K. Mori, C. Igarashi, S. Miura, N.

Ishiwata, and T. Sugibayashi, in 2009 Symposium on VLSI Technology

(2009), p. 230.
3J. Jaworowicz, N. Vernier, J. Ferr�e, A. Maziewski, D. Stanescu, D.

Ravelosona, A. S. Jacqueline, C. Chappert, B. Rodmacq, and B. Di�eny,

Nanotechnology 20, 215401 (2009).
4S. Breitkreutz, I. Eichwald, J. Kiermaier, G. Hiblot, G. Csaba, W. Porod,

D. Schmitt-Landsiedel, and M. Becherer, J. Appl. Phys. 115, 17D506

(2014).
5S. Lequeux, J. Sampaio, V. Cros, K. Yakushiji, A. Fukushima, R.

Matsumoto, H. Kubota, S. Yuasa, and J. Grollier, Sci. Rep. 6, 31510

(2016).
6J. A. Currivan-Incorvia, S. Siddiqui, S. Dutta, E. R. Evarts, J. Zhang, D.

Bono, C. A. Ross, and M. A. Baldo, Nat. Commun. 7, 10275 (2016).
7O. Boulle, G. Malinowski, and M. Kl€aui, Mater. Sci. Eng., R 72, 159

(2011).
8J. H. Franken, H. J. M. Swagten, and B. Koopmans, Nat. Nanotechnol. 7,

499 (2012).
9S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).

FIG. 5. Depinning field versus in-plane field for four strip widths at

d¼ 9 nm. The field is applied in the þx direction, shifting the core in the þy

direction. The inset shows the z-component of the stray field below a shifted

vortex core (p¼ –1) in an isolated disk, as calculated at the vertical center of

the strip region for d¼ 9 nm in a þx-oriented in-plane magnetic field of

þ21mT (color scale bar for the out-of-plane field is also shown in mT). The

position of the þy shifted core can be identified by its localized negative

field. Stray fields are also generated below the disk’s6x edges.

182404-4 Hurst et al. Appl. Phys. Lett. 110, 182404 (2017)



10G. Rowlands, see https://github.com/grahamrow/muview2 for “Muview2

micromagnetic viewer”.
11J. H. Franken, Y. Yin, A. J. Schellekens, A. van den Brink, H. J. M.

Swagten, and B. Koopmans, Appl. Phys. Lett. 103, 102411 (2013).
12A. Bernand-Mantel, L. Herrera-Diez, L. Ranno, S. Pizzini, J. Vogel, D.

Givord, S. Auffret, O. Boulle, I. M. Miron, and G. Gaudin, Appl. Phys.

Lett. 102, 122406 (2013).
13P. J. Metaxas, P. J. Zermatten, J. P. Jamet, J. Ferr�e, G. Gaudin, B. Rodmacq,

A. Schuhl, and R. L. Stamps, Appl. Phys. Lett. 94, 132504 (2009).
14L. O’Brien, D. Petit, E. R. Lewis, R. P. Cowburn, D. E. Read, J. Sampaio,

H. T. Zeng, and A. V. Jausovec, Phys. Rev. Lett. 106, 087204 (2011).
15R. Hiramatsu, T. Koyama, H. Hata, T. Ono, D. Chiba, S. Fukami, and N.

Ishiwata, J. Korean Phys. Soc. 63, 608 (2013).
16P. J. Metaxas, P. J. Zermatten, R. L. Novak, S. Rohart, J. P. Jamet, R.

Weil, J. Ferr�e, A. Mougin, R. L. Stamps, G. Gaudin, V. Baltz, and B.

Rodmacq, J. Appl. Phys. 113, 073906 (2013).
17J. H. Franken, M. A. J. van der Heijden, T. H. Ellis, R. Lavrijsen, C.

Daniels, D. McGrouther, H. J. M. Swagten, and B. Koopmans, Adv.

Funct. Mater. 24, 3508 (2014).
18R. A. van Mourik, C. T. Rettner, B. Koopmans, and S. S. P. Parkin,

J. Appl. Phys. 115, 17D503 (2014).
19R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, and M. E. Welland, Phys.

Rev. Lett. 83, 1042 (1999).
20T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, Science 289,

930 (2000).
21A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, and R.

Wiesendanger, Science 298, 577 (2002).
22R. L. Novak and L. C. Sampaio, e-print arXiv:1702.02451.
23L. O’Brien, D. Petit, H. T. Zeng, E. R. Lewis, J. Sampaio, A. V. Jausovec,

D. E. Read, and R. P. Cowburn, Phys. Rev. Lett. 103, 077206 (2009).
24L. Rondin, J. P. Tetienne, S. Rohart, A. Thiaville, T. Hingant, P.

Spinicelli, J. F. Roch, and V. Jacques, Nat. Commun. 4, 2279 (2013).
25K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, and T. Ono, Appl. Phys.

Lett. 93, 152502 (2008).

26M. Noske, A. Gangwar, H. Stoll, M. Kammerer, M. Sproll, G. Dieterle, M.

Weigand, M. F€ahnle, G. Woltersdorf, C. H. Back, and G. Sch€utz, Phys.

Rev. B 90, 104415 (2014).
27T. Okuno, K. Shigeto, T. Ono, K. Mibu, and T. Shinjo, J. Magn. Magn.

Mater 240, 1 (2002).
28B. Van Waeyenberge, A. Puzic, H. Stoll, K. W. Chou, T. Tyliszczak, R.

Hertel, M. F€ahnle, H. Br€uckl, K. Rott, G. Reiss, I. Neudecker, D. Weiss,

C. H. Back, and G. Sch€utz, Nature 444, 461 (2006).
29K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno, A. Thiaville,

and T. Ono, Nat. Mater. 6, 270 (2007).
30N. Usov and S. Peschany, J. Magn. Magn. Mater. 118, L290 (1993).
31E. Martinez, L. Torres, and L. Lopez-Diaz, Phys. Rev. B 83, 174444

(2011).
32A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez,

and B. Van Waeyenberg, AIP Adv. 4, 107133 (2014).
33M. J. Donahue and D. G. Porter, “OOMMF user’s guide, version 1.0, inter-

agency report NISTIR 6376,” Technical Report NISTIR 6376 (National

Institute of Standards and Technology, Gaithersburg, MD, 1999).
34S. Wiebel, J. P. Jamet, N. Vernier, A. Mougin, J. Ferr�e, V. Baltz, B.

Rodmacq, and B. Dieny, Appl. Phys. Lett. 86, 142502 (2005).
35S. Wiebel, J. P. Jamet, N. Vernier, A. Mougin, J. Ferr�e, V. Baltz, B.

Rodmacq, and B. Dieny, J. Appl. Phys. 100, 043912 (2006).
36A. Bellec, S. Rohart, M. Labrune, J. Miltat, and A. Thiaville, Europhys.

Lett. 91, 17009 (2010).
37P. J. Metaxas, R. L. Stamps, J. P. Jamet, J. Ferr�e, V. Baltz, and B.

Rodmacq, J. Phys.: Condens. Matter 24, 024212 (2012).
38M. Schneider, H. Hoffmann, and J. Zweck, Appl. Phys. Lett. 79, 3113

(2001).
39J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nature

Nanotechnol. 8, 839 (2013).
40P. Wohlh€uter, M. T. Bryan, P. Warnicke, S. Gliga, S. E. Stevenson, G.

Heldt, L. Saharan, A. K. Suszka, C. Moutafis, R. V. Chopdekar, J. Raabe,

T. Thomson, G. Hrkac, and L. J. Heyderman, Nat. Commun. 6, 7836

(2015).

182404-5 Hurst et al. Appl. Phys. Lett. 110, 182404 (2017)


	Abstract
	Acknowledgements
	Statement of Contribution
	List of Publications
	Contents
	List of Figures
	List of Tables
	Introduction
	I   BACKGROUND  
	Graph theory
	Graph theory and definitions
	Important graph classes

	Classical and quantum walks
	Classical random walks
	Quantum walks


	II   SIMULATION  
	Efficient numerical simulation
	Introduction
	Matrix exponential methods
	Software package
	Worked example
	Scaling and performance
	Conclusions
	Acknowledgements

	Multiple fermion simulation
	Introduction
	Indistinguishable particles
	The antisymmetrized CTQW Hamiltonian
	Constructing the reduced fermionic adjacency matrix
	Interacting fermions
	Computational resources and analysis
	Conclusion


	III   APPLICATION  
	CTQW and graph isomorphism
	Introduction
	Graphs and matrix algebras
	Quantum walk-based graph isomorphism algorithms
	Single particle CTQW with phase
	Multi-particle CTQW with interactions
	Conclusion

	Network centrality
	Introduction
	Classical centrality measures
	Quantum centrality measures

	CTQW centrality on undirected graphs
	Introduction
	CTQW-based centrality measure
	Statistical analysis
	Experimental realization
	Conclusion
	Acknowledgments

	CTQW centrality on directed graphs
	Introduction
	CTQWs on directed graphs
	PT-symmetry
	Pseudo-Hermitian continuous-time quantum walks
	Centrality testing
	Conclusion
	Acknowledgments


	Conclusion
	References
	Appendices
	Linear algebra
	Similar matrices have the same eigenvalues
	An nn matrix is diagonalizable iff it has n linearly independent eigenvectors
	All diagonalisable matrices have a biorthonormal eigenbasis
	The redefined pseudo-Hermitian inner product preserves the eta-CTQW norm

	Wolfram Demonstration
	PT-symmetric Quantum Walks and Centrality Testing on Directed Graphs

	Published articles
	Position-defect-induced reflection, trapping, transmission, and resonance in quantum walks
	Continuous-time quantum walks with defects and disorder
	pyCTQW: A continuous-time quantum walks simulator on distributed memory computers
	Phase-modified CTQW unable to distinguish strongly regular graphs efficiently
	Quantum Fourier transform in computational basis
	Centrality measure based on continuous-time quantum walks and experimental realization
	Reconfigurable magnetic domain wall pinning using vortex-generated magnetic fields



