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Abstract

We present the construction of a continuous time stochastic process which has
moments that satisfy an exact scaling relation, including odd order moments.
It is based on a natural extension of the MRW construction described in [3].
This allows us to propose a continuous time model for the price of a financial
asset that reflects most major stylized facts observed on real data, including
asymmetry and multifractal scaling.
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1. Introduction

A striking feature of the prices of financial assets resides in that a certain amount of
statistical properties, generally referred to as ”stylized facts”, appear to be universal.
Indeed, it is for instance well known that for any considered asset, and for any time
scale from few minutes to few months or years, the log-returns are a centered and
uncorrelated time series with a heavy-tailed distribution, and that the absolute or
squared log-returns time series presents long memory and persistence. We refer to [10]
and [6] for a thorough review of the various statistical properties that can be observed
on financial data. Formulating a probabilistic, continuous-time model that reflects
most of these stylized facts is naturally of first importance, both from a theoretical
and practical point of view, and has been the motivation of a considerable number of
research papers.

Many recent empirical studies have also suggested that financial data share statis-
tical properties with turbulent intermittent velocity fields [2, 6, 11]: areas of rapid
and violent activities alternate with more peaceful ones, and this phenomenon repeats
itself at any time-scale in the ”same” way. So as to take this elaborate scale invariance
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into account, a natural approach is then to suppose that the local Hölder regularity
of the underlying continuous signal is itself random, which also translates into a
”multiscaling” or a ”multifractal scaling” of price return fluctuations, see [13, 12] .
A process X with stationary increments is said to have a multifractal scaling if it
satisfies

E
[

|X(t)|q
]

∼ cqt
ζq as t → 0, (1)

for all q’s in some real interval, some positive constants cq, and a scaling exponent q 7→
ζq that is nonlinear. Since the pioneering work of Mandelbrot [15], the phenomenology
of such multifractal models has provided new concepts and tools to analyze market
fluctuations. It notably inspired the family of so-called ”cascade” random processes
that account for the main statistical properties of financial prices in an elegant and
parsimonious way [7, 16] (see also [4] for a non financial approach). Moreover, these
models are amenable to many analytical computations: they are easy to estimate and
they lead to simple and yet very competitive solutions to the problem of conditional
risk (volatility or VaR) forecasting (see [7, 2, 11]). However, although these multifractal
models reproduce all the stylized facts we have already mentioned, we would like to
point out one stylized fact that is not taken into account by them and actually neither
by most mathematical models, namely the leverage effect.

The so-called leverage effect is a feature that is mostly present on stock and index
prices: the variation of the log-return in the past is found to be negatively correlated
to the volatility in the future (see [5]). Here, the volatility may be defined for instance
as the squared or absolute log-return. So, basically, this effect quantifies the ”panic”
effect that takes place after a large downward move of the price which tends to increase
the volatility much more than a large upward move would. Let us note that this effect
induces two types of asymmetry in the price process. The first one (time asymmetry) is
that the price process is not invariant under reversion of time. Indeed, the variation of
the volatility in the past is not correlated to the variation of the log-return in the future
(if it were true, then a simple arbitrage could actually be performed). The second one
(return asymmetry) is that this effect implies a negative skewness of the distribution
of log-returns. The higher the leverage effect, the higher the skewness, the higher the
asymmetry of the implied volatility smile (see [6]).

Thus, it appears clearly important to incorporate these asymmetries in a proba-
bilistic model of log-returns. Let us note that it has already been done in a non
multifractal setting for instance by [5, 17, 18, 9]. However, explicitly constructing
a skewed multifractal process with leverage effect has not yet been done, though we
should mention two very interesting works. In the first one [19] the authors built a
skewed model with some multiscaling properties and leverage effect in discrete-time.
However, when the sampling pace goes to zero, eventhough the multiscaling properties
converge to standard multifractal behavior (1), the skewness tends to zero so that
any leverage effect unfortunately disappears. The second work [20] takes place in the
setting of turbulence study and not of finance, and as such is not interested in this
leverage effect.

In the present paper, we try to fill this gap, and show how one can obtain a
skewed, continuous time, multifractal model for log-returns that reproduces all stylized
facts mentioned in this introduction, including the leverage effect. Moreover, this
modelization may be described as ”parsimonious” insofar as it relies only on a very
small number of scalar parameters. So as to briefly summarize our approach, let us
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say that we extend the so-called Multifractal Random Walk (MRW) model, which is
one of the simplest multifractal, continuous ”cascade” models [16, 2], by introducing
some explicit correlations between log-returns and volatility.

However, by doing so, we also introduce correlations between log-returns, which
is an undesirable feature when modeling the price of a financial asset. As we argue
below, one can find a regime for the parameters of our model where these correlations
are almost zero, while the leverage effect remain quite noticeable. Hence, the statistical
properties of real financial data match rather closely those of our model, as we are able
to check on simulations. It should though be noted that obtaining a continuous-time
multifractal random model with leverage effect and uncorrelated increments remain an
open problem and we hope that the present study is a helpful step toward solving it.

The paper is organized as follows. In Section 2, we present a brief overview of
the (symmetrical) multifractal log-normal MRW model for financial data and discuss
the first attempt to input asymmetry in this model [19]. In Section 3, we propose a
new construction of a continuous-time, skewed, multifractal process that depends on
a Hurst exponent H > 1/2. In Section 4, we investigate its scaling properties and the
behaviour of all q-order moments (including the moments of order 3 and the skewness).
In Section 5, we explicitly compute the leverage effect and discuss the choice of the
parameter H , which affects both the correlation of the increments (which should be
close to zero, as in the case of financial data) and the skewness and the leverage effect
(which should be significantly non zero). A simulation scheme and some numerical
simulations are presented in Section 6, which also contains a comparison with real
data. Some computations and proofs that are used in the rest of the paper are finally
postponed in the Appendix.

2. Multifractal processes

Let X =
(

X(t), t ≥ 0
)

be a real-valued stochastic process with stationary incre-
ments. For t ≥ 0 and τ > 0, we write δτX(t) for the increment X(t+ τ)−X(t). When
the moments of order p of X satisfy:

E
[

|δτX(t)|q
]

≈ cqτ
ζq (2)

for (small) τ > 0, it is usual to speak of either a monofractal scaling if the exponent
ζq is a linear function of q, or a multifractal scaling if it is nonlinear.

2.1. The Multifractal Random Walk

In [16], two of us proposed the construction of a continuous-time stochastic random
process that exhibits features quite similar to most stylized facts observed on the
returns of financial assets (see [2]), including multifractal scaling, but excluding leverage
effect. The Multifractal Random Walk (MRW) X(t) can be defined as the continuous
limit as n goes to +∞ of the following discretized process:

Xn(t) =

⌊nt⌋
∑

k=0

εn(k/n)e
ωn(k/n) (3)

where the εn(k/n)’s are independent Gaussian random variables with mean equal to
zero and variance equal to σ2/n for some σ > 0, and ωn is a Gaussian stationary process
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independent of the εn(k)’s. Alternatively, one can consider a continuous construction

X(t) = σ lim

∫ t

0

eωn(u)dB(u) as n → +∞

where B is a standard Brownian motion independent of ωn, see [3]. The autocovariance
of ωn is the following:

Cov
[

ωn(j/n), ωn(k/n)
]

=

{

λ2 log nT
|j−k|+1 if |j−k|+1

n ≤ T

0 else,
(4)

and the expectation of ωn is such that E
[

e2ωn(·)
]

= 1. Here, λ2 > 0 is a parameter
called intermittency coefficient, and T > 0 is a parameter (called integral scale) such
that the scaling (2) holds exactly for all τ ∈ [0, T ]. More precisely, as shown in [3], the
following relation holds for all r ∈ [0, 1]:

(

X(rt), 0 ≤ t ≤ T
) law
= r1/2eΩr

(

X(t), 0 ≤ t ≤ T
)

where Ωr is a Gaussian random variable independent of X , and with expectation
−λ2 log(r−1) and variance λ2 log(r−1). One can then deduce that the following multi-
fractal scaling is satisfied for τ ∈ [0, T ]:

E
[

|δτX(t)|q
]

= cqτ
ζq

with ζq = q/2 − λ2(q − q2/2) and cq = E
[

|X(T )|q
]

T−ζq for all q’s such that cq is
finite. It is furthermore shown in [3] that cq is finite for all q ∈ (0, λ−2) and cq = +∞
for all q > λ−2, so that the process X does not have moments of all orders and the
distribution of X(t) is heavy-tailed.

2.2. Further extensions : towards a skewed model with leverage effect

The MRW model has been shown to have interesting applications to financial data,
in particular in terms of volatility and Value at Risk forecasting, see [7, 2, 11]. However,
one significant drawback of the MRW approach is that the distribution of X(t) is
symmetric, so that it does not reflect the skewness empirically observed on financial
data. Moreover, since the two processes ε and ω are independent, it follows that
the increments of the process X and the square of the increments are uncorrelated.
Therefore, the model does not present the “leverage effect” observed on stocks and
financial indexes prices.

The authors of [19] therefore proposed to modify the construction (3) in the following
way:

X̃n(t) =

⌊nt⌋
∑

k=0

εn(k/n)e
ωn(k/n)−nα ∑

i<k
K(i/n,k/n)ε(i/n), (5)

where K is a positive kernel. As they show, this enables to fairly well reproduce the
leverage effect observed on the data, as well as retaining most of the nice properties
of the original MRW. However, the authors note that this holds only for n < +∞:
indeed, the odd moments of the process vanish when n goes to +∞, so that their
approach only gives a discrete-time model for t = 0, 1/n, . . . , i/n, . . . Another related
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work can be found in [20] where the authors study a skewed 3D generalization of the
MRW model with applications to hydrodynamics.

In what follows, we propose an alternate, continuous-time, construction for a mul-
tifractal random walk with skewness and leverage effect. In particular, we modify
the construction (3) by defining the noise ε as a fractional Gaussian noise with Hurst
exponent H , where H is chosen in a regime where the increments of X are almost
uncorrelated. Thus, our approach shares some connections with the previous works of
[14] and [1] who also considered the question of constructing an MRW with a fractional
noise. However, in these papers the noise ε is independent of the volatility process ω,
whereas we will define them as correlated processes.

3. Construction of a continuous-time skewed MRW

3.1. Definition of the skewed process

Fix the following parameters: λ ∈ (0, 1/2), T > 0, σ > 0, H ∈ (1/2 + λ2/2, 1). The
parameters λ, T and σ are of similar nature as above, while H can be seen as a Hurst
exponent as in [14] and [1]. We define a skewed multifractal random walk by:

X(t) = limXl(t) as l → 0 (6)

where

Xl(t) =

∫ t

0

εl(u)e
ωl(u)du

and (ε, ω) =
(

(

εl(u), ωl(u)
)

, u ∈ R, l ∈ (0, T )
)

is a Gaussian process with values in R2

that satisfies the following properties:

Property 1.
(

εl(u), ωl(u)
)

is stationary in u, that is: for u1, . . . , un, τ ∈ R

(

(

εl(u1), ωl(u1)
)

, . . . ,
(

εl(un), ωl(un)
)

, l ∈ (0, T )
)

and

(

(

εl(u1 + τ), ωl(u1 + τ)
)

, . . . ,
(

εl(un + τ), ωl(un + τ)
)

, l ∈ (0, T )
)

have the same law.

Property 2.
(

εl(u), ωl(u)
)

has independent increments in l, that is: for l′ < l

(

(

εl′(u)− εl(u), ωl′(u)− ωl(u)
)

, u ∈ R

)

and
(

(

εl(u), ωl(u)
)

, u ∈ R

)

are independent.

Property 3. The expectation of ωl(u) is −1/2Var
[

ωl(u)
]

(so that E
[

eωl(u)
]

= 1). The
expectation of εl(u) is zero.

Note that the normalisation of ω is thus different from the MRW case presented in the
previous section.

Property 4. For τ ∈ R, let us write γω
l (τ) (resp. γ

ε
l (τ), γ

ωε
l (τ)) for Cov[ωl(u), ωl(u+

τ)] (resp. Cov[εl(u), εl(u + τ)], Cov[εl(u), ωl(u+ τ)]), and let us define

γω(τ) = λ2 max
(

log(T/|τ |), 0
)

(7)



6 E. Bacry, L. Duvernet and J.-F. Muzy

γε(τ) = cεσ2|τ |−2+2H (8)

γωε(τ) = cωεσλ
(

max(τ, 0)
)−1+H

(9)

for some positive constants cε and cωε (we use the convention 0−1 = +∞). Then
for fixed τ , γω

l (τ) ↑ γω(τ) (resp. γε
l (τ) ↑ γε(τ), γωε

l (τ) ↑ γωε(τ)) as l goes to zero.
Moreover, γωε

l (τ) is zero for l ∈ (0, T ) and τ ≤ 0.

Property 5. We have the following scaling equations for l ∈ (0, T ), τ ∈ [−T, T ] and
r ∈ (0, 1]:

γω
rl(rτ) = −λ2 log(r) + γω

l (τ),

γε
rl(rτ) = r−2+2Hγε

l (τ),

and

γωε
rl (rτ) = r−1+Hγωε

l (τ).

As explained below, these properties are sufficient to prove the convergenceXl → X
and study the properties of X . However, we still need to justify the existence of such a
process (ε, ω); this is done in Subsection 3.3 where we explicitly construct an example
of (ε, ω) that satisfies the above properties. The exact values γω

l (τ), γ
ε
l (τ) and γωε

l (τ)
for τ ∈ R and l ∈ (0, T ) as well as the constants cε and cωε corresponding to this
construction can all be found in Appendix A.

Remark: It can be immediately seen that the function γε in Property 4 is the co-
variance of a fractional Brownian noise with Hurst exponent H , so that the process
(∫ t

0 εl(u)du, t ≥ 0
)

converges in law to a fractional Brownian motion as l goes to 0.
(One could easily prove that the convergence also holds under stronger modes, however
this is of little interest for our purpose here.)

3.2. Existence of X

We here prove the existence and nondegeneracy of the process X . Let us define the
following condition H(p) on p ≥ 2

H(p) : pH −
λ2

2
p(p− 1)− 1 > 0. (10)

Note that since we chose H ∈ (1/2 + λ2/2, 1), then H(2) is always satisfied.
We first state two useful results:

Proposition 1. Let (Fl)l>0 be the following filtration:

Fl = σ
{

(

εl′(u), ωl′(u)
)

, u ∈ R, l′ ≥ l
}

.

Then for fixed t > 0,
(

Xl(t), l > 0
)

is an Fl-martingale.

Proof. This is a straightforward application of Properties 2 and 3.

�
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Proposition 2. Let p ≥ 2 be an integer. Then for t ∈ [0, T ],

lim
l→0

E
[

Xl(t)
p
]

= K(p)tpH− λ2

2
p(p−1), (11)

where K(p) ∈ (0,+∞] is a constant that depends on the parameters σ2, T , λ2, and H,

but not on t. Moreover, K(p) is finite if and only if p satisfies H(p).

The proof of this proposition is postponed in Appendix B, where the reader will also
find the value of the constant K(p).

It is then easy to prove the following:

Theorem 1. For fixed t ≥ 0, Xl(t) goes to a nondegenerate limit X(t) as l goes

to 0, and the convergence holds almost surely and in L3. Moreover, the process

X =
(

X(t), t ≥ 0
)

is well defined as a continuous version of the almost sure limit

of
(

Xl(t), t ≥ 0
)

in the space of continuous functions.

Proof. Applying Proposition 1 and a classical result of the theory of martingales,
if for some fixed t > 0, the moments E

[

|Xl(t)|
p
]

remain bounded for some p > 1, we
have:

X(t) = limXl(t) as l → 0

almost surely and in Lq for all q ∈ [1, p). Since we chooseH > 1/2+λ2/2 and λ2 < 1/4,
H(4) holds. Proposition 2 then proves the first half of the statement of the theorem.

Moreover, the same Proposition 2 shows that the Kolmogorov criterion for conver-
gence and regularity of stochastic processes is satisfied: there exists some a > 0, b > 0
and c > 0 such that for any t ∈ [0, T ] and any l > 0 small enough,

E
[

|Xl(t)|
a
]

≤ ct1+b.

Indeed, we can choose a = 4 and b = 4H − 6λ2 − 1. The rest of the theorem follows
from a standard application of this criterion.

�

Remark: From Properties 1 and 3, X is a process with stationary increments and zero
expectation.

3.3. Explicit construction of (ε, ω)

The construction of the process ω is almost the same as the one used in the definition
of the symmetrical MRW in [3]. The process ε is also constructed in a similar fashion.
Let us consider the “time-scale” half-plane R×(0,+∞), and define on it a 2D Gaussian
white noise P (dt′, dl′) with variance l′−2dt′ × dl′. Then ω is obtained as:

ωl(t) = −λ2/2
(

log(T/l) + 1
)

+ λ

∫

Al(t)

P (dt′, dl′),

where Al(t) is the conical domain

Al(t) =
{

(t′, l′) ∈ R× (0,+∞), l′ ≥ l, 0 ≤ t− t′ ≤ min(l′, T )
}

.
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So as to construct ε, we now consider the domain Bl(t):

Bl(t) =
{

(t′, l′) ∈ R× (0,+∞), l′ ≥ l, 0 ≤ t′ − t ≤ l′
}

and define

εl(t) = σ

∫

Bl(t)

l′−1+HP (dt′, dl′).

We refer to Figure 1 for a graphical representation of Al(t) and Bl(t). In Appendix
A we give the exact first and second moments of (ε, ω), which are obtained through
straightforward computations. It is then easy to check that (ε, ω) satisfies Properties
1 to 5. In particular, the constants cε and cωε of Property 4 are respectively equal to

1
(2−2H)(3−2H) , and

22−H−2
(1−H)(2−H) .

0 t
′

l
′

l

T

t−l t t+lt−T

Al(t)

Bl(t)

t−T

Figure 1: The cones Al(t) and Bl(t)

4. Scaling and moments of the skewed process X

The following theorem characterizes the scaling behavior of the distribution of X(t):

Theorem 2. For r ∈ (0, 1],

(

X(rt), 0 ≤ t ≤ T
) law
= eΩrrH

(

X(t), 0 ≤ t ≤ T
)

(12)

where Ωr ∼ N(−λ2 ln(r−1)/2, λ2 ln(r−1)) is a Gaussian constant independent of X.

Proof. First note that it follows from Properties 3 and 5 that for fixed l > 0 and
r ∈ (0, 1]

(

(

εrl(ru), ωrl(ru)
)

, u ∈ [0, T ]
)

law
=

(

(

r−1+Hεl(u),Ωr + ωl(u)
)

, u ∈ [0, T ]
)

,

where Ωr is a N(−λ2 ln(r−1)/2, λ2 ln(r−1)) random variable, which is furthermore
independent of (ε, ω). From this we deduce:
(

εrl(ru) exp
(

ωrl(ru)
)

, u ∈ [0, T ]
)

law
= r−1+H exp(Ωr)

(

εl(u) exp
(

ωl(u)
)

, u ∈ [0, T ]
)
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We now consider the process Xrl(rt):

(

Xrl(rt), t ∈ [0, T ]
)

=
(

∫ rt

0

εrl(u) exp
(

ωrl(u)
)

du, t ∈ [0, T ]
)

=
(

r

∫ t

0

εrl(ru) exp
(

ωrl(ru)
)

du, t ∈ [0, T ]
)

law
= rH exp(Ωr)

(

∫ t

0

εl(u) exp
(

ωl(u)
)

du, t ∈ [0, T ]
)

= rH exp(Ωr)
(

Xl(t), t ∈ [0, T ]
)

.

Taking the limit l → 0 gives (12).

�

We now turn on the absolute moments of X , and show that they satisfy (2) with
an exact equality.

Theorem 3. If for some q > 0, there is an even integer p > q such that H(p) is

satisfied, then for t ∈ [0, T ]

E
[

|X(t)|q
]

= C(q)tqH− λ2

2
q(q−1), (13)

where C(q) is the positive finite constant

C(q) = T−qH+q(q−1)λ2/2
E
[

|X(T )|q
]

.

If q is moreover an integer, then

E
[

X(t)q
]

= K(q)tqH− λ2

2
q(q−1), (14)

where K(q) is the same as in Proposition 2. Conversely, if H(q) is not satisfied for

some q > 2, E
[

|X(t)|q
]

= +∞ for t > 0.

Proof. Propositions 1 and 2 yield that Xl(T ) converges in Lq to X(T ), so that
E
[

|X(T )|q
]

is finite. In the case where q is an integer, (14) is also a direct consequence
of these two propositions. In the general case, we apply Theorem 2: by setting r = t/T ,
we have:

E
[

|X(t)|q
]

= T−qH+q(q−1)λ2/2
E
[

|X(T )|q
]

tqH− λ2

2
q(q−1).

Conversely, let us suppose that E
[

|X(t)|q
]

is finite for some t ∈ (0, T ] and q > 1.
Then from the stationarity of the increments of X and a basic convexity inequality, we
obtain:

E
[

|X(t)|q
]

> 2E
[

|X(t/2)|q
]

.

Then, applying Theorem 2, we have 21−qH+λ2q(q−1)/2 < 1 so that H(q) is satisfied.
This proves the result.

�
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5. Modeling the asymmetry of financial data

5.1. Preliminaries

In this section, we focus on the second and third order properties of the increments
of the process X , and show how, depending on the value of the parameter H , they can
reflect the following stylized facts: first, there is no statistically significant correlation
between two log-returns at different times. Second, there is a negative, slightly signifi-
cant correlation between the past log-returns and the future squared log-returns, while
the converse is false: past volatilities and future returns appear to be uncorrelated.
(Note that while the former fact is universally observed on financial assets prices, the
latter is mainly observed on stocks and indices prices, see [6].)

Let us examine the moment of second order of X :

Proposition 3. For t ∈ [0, T ],

E
[

X(t)2
]

=
2σ2T λ2

cε

(2H − 1− λ2)(2H − λ2)
t2H−λ2

.

Proof. This is a simple application of Proposition 2 and of the value of K(2) given in
Appendix B.

�

Let us now recall that X is properly defined only in the case H ∈ (1/2 + λ2/2, 1) (so
that H(4) holds). Thus we can write E

[

X(t)2
]

= K(2)t1+d with K(2) being the above
fraction and

d = 2H − 1− λ2 > 0.

So as to obtain a satisfying model of financial data, we clearly have to place ourselves in
a regime where d is small, so that E

[

X(t)2
]

scales approximately as a linear function of
t, and the covariance between the increments ofX at different times vanishes. However,
as can be seen from Proposition 3, K(2) goes to +∞ as d goes to 0.

In this section, we therefore study in the regime of small d the second and third
order properties of the normalized process:

Yd(t) = −σ
X(t)

(

E
[

X(1)2
])1/2

.

Note that we introduced a minus sign so as to reproduce the negative skewness empir-
ically observed, and we added a d subscript to emphasize the dependence on this
parameter (we will continue to use the notation d ∈ (0, 1 − λ2) instead of H ∈
(1/2+ λ2/2, 1)). We intend to show here that for a well chosen value of d, the process
Yd reproduces the type of asymmetry observed on stocks and indices prices.

Recall that the notation δτYd(t) refers to the increment Yd(t+τ)−Yd(t). For τ > 0,
k ∈ Z, we are interested in the following functions:

ρ
(1)
d (τ, k) =

E
[

δτYd(0)δτYd(kτ)
]

E
[

δτYd(0)2
] (15)
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and

ρ
(2)
d (τ, k) =

E
[

δτYd(0)δτYd(kτ)
2
]

(

E
[

δτYd(0)2
])2 , (16)

where the normalization of ρ(2) has been introduced in [5] and further used in the
literature, for instance in [9] or [17]. Alternatively, one could wish to examine the
proper linear correlation between δτYd(0) and δτYd(kτ)

2, that is:

ρ
(3)
d (τ, k) =

E
[

δτYd(0)δτYd(kτ)
2
]

(

E
[

δτYd(0)2
])1/2(

E
[

δτYd(0)4
])1/2

. (17)

Since we are dealing with correlations that empirically decays to zero after a few lags,
we will restrict ourselves to the case (|k|+ 1)τ ≤ T .

5.2. Behavior of Yd in the regime of small d

We first examine the moments of Yd as d goes to 0:

Proposition 4. For t ∈ [0, T ], and p ≥ 2 an even integer such that E
[

X(t)p
]

< +∞,

E
[

Yd(t)
p
]

remains positive and bounded as d goes to 0. However, if p is odd, E
[

Yd(t)
p
]

goes to zero.

Proof. Again, this is a direct consequence of Proposition 2 and of the value of K(p)
given in Appendix B.

�

Remark: This suggests that a limiting process

Y (t) = limYd(t) as d → 0

may exist, where the convergence is understood as a convergence in distribution. This
is quite reminiscent of the study of [1] who investigated the validity of the limit

lim

∫ t

0 e
ωl(u)dBH(u)

E

[

(∫ t

0
eωl(u)dBH(u)

)2
]1/2

as l → 0,

where BH is a fractionary Brownian motion with Hurst exponent H and which is (in
contrast with our setting) independent of ω. In the case H = 1/2 + λ2/2 (that is,
d = 0 in our notations), these authors obtained only the convergence of the moments
of integer order and postulated the convergence in law. Note however that in the
present work, we are not chiefly interested in the validity of the convergence Yd → Y ,
since the moments of order 3 of Yd vanish, so that the limiting process Y0 (if it exists)
has a skewness equal to 0.

We now place ourselves in the regime of small but nonzero values of d, and examine

the magnitude of the correlation functions ρ
(i)
d , i = 1, 2, 3.
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Theorem 4. For 0 < τ < T and (|k|+ 1)τ ≤ T , we have:

ρ
(1)
d (τ, k) = O(d) if |k| ≥ 1

|ρ
(2)
d (τ, k)| = O(d1/2) and |ρ

(3)
d (τ, k)| = O(d1/2) if k ≥ 0

|ρ
(2)
d (τ, k)| = O(d3/2) and |ρ

(3)
d (τ, k)| = O(d3/2) if k < 0

as d → 0.

The proof of this theorem can be found in Appendix C.

This therefore suggests that when d is of order roughly 0.01 to 0.1, ρ
(2)
d (τ, k) for

k ≥ 0 is significantly non zero (as it is of order d1/2), while ρ
(2)
d (τ, k) for k < 0 and

ρ
(1)
d (τ, k) for k 6= 0 are much smaller, and in practice indiscernible from the noise. We

refer to Section 6.2 for a empirical discussion concerning the choice of d.

6. Numerical simulation and comparison to real data

In this section we present a numerical method for simulating the process we in-
troduce, and we compare the leverage effect observed on simulations to the leverage
effect measured on empirical data. Since the main objective of this paper was to define
and study the mathematical properties of the model, we do not discuss any parameter
estimation issue. This problem and a more exhaustive comparison to financial data
will be the subject of a forthcoming work.

6.1. The simulation scheme

We propose in this section to approximate the increments

δτX(kτ) = lim
l→0

∫ (k+1)τ

kτ

εl(u)e
ωl(u)du

of the process X (for k ∈ N and τ > 0) by Riemann sums. If the parameter d =
2H−1−λ2 defined in the previous section is large enough, this is easily done, however
if this parameter is small, then some extra difficulties must be taken care of. This
comes mainly from the fact that the approximation

1/n

n
∑

k=1

(k/n)−1+d ≈

∫ 1

0

u−1+ddu

is valid only in a regime n ≫ e1/d which might be unfeasible in practice.
We set (ln, n ∈ N) as:

ln =
(

d(1− d/2− λ2/2)
)1/(1−d)

n−1,

and

δτ X̃1/n(kτ) = n−1

⌊n(k+1)τ⌋−1
∑

j=⌊kτn⌋

εln(j/n)e
ωln(j/n),

where (ε, ω) are as in Section 3.3. We then have the following result:
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Theorem 5. For k ∈ N and τ > 0, δτ X̃1/n(kτ) converges to δτ X̃(kτ) in L2 as n →
+∞. Moreover, let us write rn for

rn =

∣

∣E
[

(δτX(kτ))2
]

− E
[

(δτ X̃1/n(kτ))
2
]∣

∣

E
[

(δτX(kτ))2
] .

Then rn is of order dn−d: that is for fixed n, rn/d is bounded as d → 0, and for fixed

d, ndrn is bounded as d → +∞.

Proof. With no loss of generality, we suppose that τ = 1. The exact value of
E
[

(δ1X(k))2
]

can be found in Proposition 3; we rewrite it as

E
[

(δ1X(k))2
]

= 2σ2T λ2

cε
(

n−d/d+

∫ 1

1/n

u−1+ddu−

∫ 1

0

uddu
)

.

In order to compute E
[

(δ1X̃1/n(k))
2
]

, we use the relation

εln(k1/n)εln(k2/n)e
ωln(k1/n)+ωln(k2/n) =

∂2

∂x1∂x2

∣

∣

∣

∣

x1=x2=0

eωln(k1/n)+ωln(k2/n)+x1εln (k1/n)+x2εln (k2/n).

This and the values of the covariance functions given in Appendix A yield

E
[

(δ1X̃1/n(k))
2
]

=
σ2T λ2

cε

n

(

(2 − d− λ2)l−1+d
n + 2

n−1
∑

k=1

(1− k/n)(k/n)−1+d
)

.

Using a first order Taylor expansion gives the result for rn.
Moreover, going along the same lines, one easily obtains the exact value of E

[

δ1X(k)δ1X̃1/n(k)
]

.

This allows to check that E
[

(δ1X(k)− δ1X̃1/n(k))
2
]

goes to 0 as n goes to +∞.

�

Remark: If ln is not chosen as the value that we specify above, but instead as a more
generic value like ln = 1/n, then rn will be of order n−d which may decrease very
slowly to 0 for small d.

Theorem 5 shows that we can well approximate the increments of the process X
through the discrete process X̃1/n. This last process is easily simulated with the help
of some efficient procedures for the simulation of stationary Gaussian random fields
like the one proposed by [8], which is based on Fast Fourier Transforms.

6.2. Numerical results and comparisons to empirical data

Let us illustrate previous results on some numerical simulations. We choose the
following values for the parameters: σ2 = 1, λ2 = 0.04 and T = 200, which are usual
values for modeling financial data with the MRW model (see [2]). The parameter d
has been chosen to vary from 0.01 to 0.3, i.e., H varies from 0.525 to 0.67. In all the
reported results, we have set τ = 1, N = 5000, n = 500 and we performed averages over
100 realizations of the process. For each value of d, each realization of the sequence
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δ1X̃1/n(0), . . . , δ1X̃1/n(N−1) has been simulated using the techniques described above.
We then approximate δ1Yd(k) by

δ1Yd(k) ≈ −
δ1X̃1/n(k)

(

(

δ1X̃1/n

)2
)1/2

,

(

δ1X̃1/n

)2
being the empirical means of the squared increments δ1X̃1/n(0), . . . , δ1X̃1/n(N−

1).

Figure 2: Values ρ
(1)
d (1) (•), ρ

(3)
d (1) (◦), and ρ

(3)
d (−1) (N) for d = 0.01 to d = 0.10, and

their respective adjustment to a fit c1d, c2d
1/2, and c3d

3/2 (dashed lines).

In Figure 2, we check the dependency of the correlation functions ρ
(1)
d and ρ

(3)
d

(defined in (15) and (17)) on the parameter d. Recall that we obtained ρ
(1)
d (k) = O(d)

for all |k| ≥ 1, ρ
(3)
d (k) = O(d1/2) for all k ≥ 0, and ρ

(3)
d (k) = O(d3/2) for all k ≤ −1.

This is well confirmed by our simulations.

In Figure 3 we plot the auto-correlations ρ
(1)
d (k) of the return series as a function

of the lag k for d = 0.01, 0.05 and 0.1. We see that after a few lags all series are
almost uncorrelated; but it is only for d small enough (d ≤ 0.05) that the first lag
correlation is inside the 95% confidence interval of a series of N = 5000 uncorrelated
random variables. Since financial returns are well known to be uncorrelated (or very
weakly correlated), the parameter d should probably be chosen below the value 0.05.

In Figure 4 we report the estimation of the leverage effect on our simulated series.

We estimate ρ
(3)
d (k) as a function of k for 3 values of d. For comparison purpose, we

also plot the correlation that we measure on real data, namely the daily quotation of
5 stock indices. More precisely we considered the CAC40, DAX, FTSE100, S&P500,
and Dow-Jones index daily series from 1990/12/03 to 2010/02/15 and averaged the
empirical correlations over the 5 indices, so as to reduce the noise. We confirm our
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previous computations: the estimated function ρ
(3)
d (k) on our simulation exhibits a

strong asymmetry and is clearly negative for positive lags k. Moreover, we see that
as d increases the leverage effect indeed becomes stronger. The curves we obtain seem
quite similar to the effect observed on stock index returns.

Figure 3: Correlations ρ
(1)
d (k) for 1 ≤ k ≤ 50 with d = 0.01 (•), d = 0.05 (◦) and d = 0.10

(N). The dashed lines represent the 95% interval for uncorrelated random variables for a
series of size 5000.

Finally, in Figure 5, we present another way to assess the leverage effect. Indeed,
the construction of our model directly suggests that there should exist a negative
correlation between past returns and the logarithm of future volatilities, and this
correlation should behave as a power-law of the time lag. That is, if we denote by
p(t) the log-price of an asset, then the following relation is expected:

Cωε(k) ≡ −Corr[δτp(0), 2 log(|δτp(kτ)|)] ∼ ck−α

for k ≥ 1, some constant c > 0, and some exponent α ∈ (0, 1). From the definition of
γωε, we expect to find in our model α ≈ −1 +H = (−1 + λ2 + d)/2 which is close to
1/2. Figure 5(a) shows that this is indeed the case. We have

Cωε(k) ≃ γωε(k) ∼ ck(−1+λ2+d)/2.

In the case of real data, as illustrated in Figure 5(b) we observed that a power-law
with an exponent α ≃ 0.48 provides of good fit of the data.

Appendix A. Covariances of ω and ε

Through straightforward computations, it is possible to obtain the following covari-
ance functions for (ε, ω): Fix 0 < l′ < l < T and u, τ ∈ R. The process ω has following
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Figure 4: Correlations ρ
(3)
d (k) for |k| ≤ 250. Thin solid lines represent, from top to bottom,

d = 0.03, d = 0.1 and d = 0.30. The noisy curve corresponds to real data estimated on a
basket of 5 indices and is shown for comparison.

expectation:

E
[

ωl(u)
]

= −
λ2

2

(

log
(T

l

)

+ 1

)

and covariance:

Cov[ωl(u), ωl′(u+ τ)] = γω
l (τ)

with


















γω
l (τ) = λ2

(

log
(

T
l

)

+ 1− τ
l

)

if |τ | ≤ l;

γω
l (τ) = λ2 log

(

T
τ

)

if l ≤ |τ | ≤ T ;

γω
l (τ) = 0 if T ≤ |τ |.

The process ε has zero expectation and satisfies

Cov[εl(u), εl′(u+ τ)] = γε
l (τ),

where γε
l (τ) is defined as:

{

γε
l (τ) = σ2

(2−2H)(3−2H) |τ |
−2+2H if l ≤ |τ |;

γε
l (τ) = σ2

(

1
2−2H − 1

3−2H
|τ |
l

)

l−2+2H if 0 ≤ |τ | ≤ l.

Finally, the covariance between ε and ω is given by

Cov[εl(u), ωl′(u + τ)] = Cov[εl′(u), ωl(u+ τ)] = γωε
l (τ),
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Figure 5: Plot of Cωε = −Corr[δ1p(0), 2 log(|δ1p(kτ )|)] for |k| ≤ 50 in log-log scale. (a)
Estimated correlation for 100 realizations of a Skewed MRW with λ2 = 0.04, T = 250 and d =

0.03. In dashed line the expected power-law behavior ck(−1+λ2+d)/2 ∼ k−0.48 is represented.
(b) Same graph for the mean correlations over 5 indices. The same power-law behavior as in
(a) has been plotted for comparison purpose.

where γωε
l (τ) is defined as:















































γωε
l (τ) = 0 if τ < 0;

γωε
l (τ) = λσ

2−H τl−2+H if 0 ≤ τ ≤ l;

γωε
l (τ) = λσ

(

2
1−H l−1+H − 1

2−H
τ
l l

−1+H − 2
(1−H)(2−H) τ

−1+H
)

if l ≤ τ ≤ 2l;

γωε
l (τ) = λσ

(1−H)(2−H)

(

22−H − 2
)

τ−1+H if 2l ≤ τ ≤ T ;

γωε
l (τ) = λσ

(1−H)(2−H)

(

(22−H − 1)τ−1+H − T−1+H
)

if T ≤ τ ≤ 2T ;

γωε
l (τ) = λσ

(1−H)(2−H)

(

(τ − T )−1+H − τ−1+H
)

if τ ≥ 2T.

Appendix B. Proof of Proposition 2

We begin by evaluating the moment E
[

Xl(t)
p
]

, for l ∈ (0, T ), t ≥ 0, p ≥ 2. From
Fubini’s theorem, we have

E

[

(

∫ t

0

εl(u)e
ωl(u)du

)p
]

=

∫ t

0

. . .

∫ t

0

du1 . . . dupE
[

εl(u1) . . . εl(up)e
ωl(u1)+···+ωl(up)

]

.

(18)
We are going to compute the right-hand side using the following relation:

εl(u1) . . . εl(up)e
ωl(u1)+···+ωl(up) =

∂p

∂x1 . . . ∂xp

∣

∣

∣

∣

x1=···=xp=0

eωl(u1)+···+ωl(up)+x1εl(u1)+···+xpεl(up).

Permuting expectation and differentiation, we have to differentiate p times

E

[

eωl(u1)+···+ωl(up)+x1εl(u1)+···+xpεl(up)
]

= exp(Sp(x1, . . . , xp)).
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The term Sp = Sp(x1, . . . , xp) can be evaluated as

Sp =
∑

1≤i<j≤p

γω
l (ui−uj)+

∑

1≤i,j≤p

xjγ
ωε
l (ui−uj)+

∑

1≤i<j≤p

xixjγ
ε
l (ui−uj)+

1

2

p
∑

i=1

x2
i γ

ε
l (0)

where we used Property 3. From Property 4 γωε
l (ui − uj) is non zero if and only if

ui > uj; however this will not be used in what follows: we do not keep track of the
order of the ui’s in order to avoid introducing notations that would be of no use to this
proof.

We will however need the following definitions: for i, j = 1, . . . , p

Di = Di(x1, . . . , xp)

=
∂

∂xi
Sp(x1, . . . , xp),

Di,j = Di,j(x1, . . . , xp)

=
∂

∂xj
Di(x1, . . . , xp),

and for 1 ≤ n ≤ p

Rn = Rn(x1, . . . , xp)

=
∂n

∂x1 . . . xn
eSp(x1,...,xp).

Also, for 1 ≤ n ≤ p and 0 ≤ m ≤ ⌊n/2⌋, we define Em,n to be the set of all partitions
P of {1, . . . , n} into n−m subsets such that m of these subsets have two elements and
the other n− 2m subsets have one element:

Em,n =
{

P =
{

{a1, a2}, . . . , {a2m−1, a2m}, {a2m+1}, . . . {an}
}

, {a1, . . . , an} = {1, . . . , n}
}

.

Then by differentiating iteratively, one can see that

Rn =

⌊n/2⌋
∑

m=0

∑

P∈Em,n

Da1,a2
. . .Da2m−1,a2m

Da2m+1
. . . Dan

eSp . (19)

Indeed, the formula is clearly true for n = 1. Moreover, using the fact that for 1 ≤
ai, ai+1 ≤ n

∂

∂xn+1
Dai,ai+1

= 0,

we have for each P =
{

{a1, a2}, . . . , {a2m−1, a2m}, {a2m+1}, . . . {an}
}

in Em,n:

∂

∂xn+1
Da1,a2

. . . Da2m−1,a2m
Da2m+1

. . . Dan
eSp

=

p
∑

k=2m+1

(Da1,a2
. . . Da2m−1,a2m

Da2m+1
. . .Dak−1

Dak,n+1Dak+1
. . . Dan

+Da1,a2
. . . Da2m−1,a2m

Da2m+1
. . . Dan

Dn+1)e
Sp .
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We therefore obtain (19) after summing over P and m.
Finally, by taking n = p, we have

∂p

∂x1 . . . ∂xp
eSp =

⌊p/2⌋
∑

m=0

∑

P∈Em,p

Da1,a2
. . .Da2m−1,a2m

Da2m+1
. . . Dap

eSp . (20)

We now evaluate this expression for x1 = · · · = xp = 0. Since

Dai
(0, . . . , 0) =

p
∑

b=1

γωε
l (ub − uai

),

Dai,ai+1
(0, . . . , 0) = γε

l (uai
− uai+1

),

and
eSp(0,...,0) = e

∑
1≤i<j≤p γω

l (ui−uj),

we can express the moment E
[

Xl(t)
p
]

as:

⌊p/2⌋
∑

m=0

∑

P∈Em,p

p
∑

b1=1

· · ·

p
∑

bp−2m=1

∫ t

0

. . .

∫ t

0

du1 . . . dup f
m,P,b1,...,bp−2m

l (u1, . . . , up) (21)

where

f
m,P,b1,...,bp−2m

l (u1, . . . , up) =γε
l (ua1

− ua2
) . . . γε

l (ua2m−1
− ua2m

)

× γωε
l (ub1 − ua2m+1

) . . . γωε
l (ubp−2m

− uap
)e

∑p

1≤i<j≤p
γω
l (ui−uj).

Define Γp(m) as:

Γp(m) = σpλp−2mT λ2p(p−1)/2(cε)
m
(cωε)

p−2m
.

Then from Property 4, each f
m,P,b1,...,bp−2m

l ↑ fm,P,b1,...,bp−2m as l → 0, where fm,P,b1,...,bp−2m

is the following:

fm,P,b1,...,bp−2m(u1, . . . , up) = Γp(m)|ua1
− ua2

|−2+2H . . . |ua2m−1
− ua2m

|−2+2H

×(ub1 − ua2m+1
)−1+H
+ . . . (ubp−2m

− uap
)−1+H
+

∏

1≤i<j≤p

|ui − uj|
−λ2

,

which is integrable if and only if

−1 + pH −
p(p− 1)

2
λ2 > 0.

Applying the monotone convergence theorem gives the result, the constant K(p) being:

⌊p/2⌋
∑

m=0

Γm(p)
∑

P∈Em,p

p
∑

b1=1

· · ·

p
∑

bp−2m=1

∫ 1

0

. . .

∫ 1

0

du1 . . . dup|ua1
− ua2

|−2+2H . . .

×|ua2m−1
− ua2m

|−2+2H(ub1 − ua2m+1
)−1+H
+ . . . (ubp−2m

− uap
)−1+H
+

∏

1≤i<j≤p

|ui − uj |
−λ2

.
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Appendix C. Proof of Theorem 4

C.1. Behaviour of ρ(1)

Here and in the following, we will use the identity:

εl(u1) . . . εl(up)e
ωl(u1)+···+ωl(up) =

∂p

∂x1 . . . ∂xp

∣

∣

∣

∣

x1=···=xp=0

eωl(u1)+···+ωl(up)+x1εl(u1)+···+xpεl(up).

(22)
Applying this identity for p = 2, Property 4, and the monotone convergence theorem
yields:

E
[

δτX(0)δτX(kτ)
]

= cεσ2T λ2

∫ τ

0

du1

∫ (k+1)τ

kτ

du2|u2 − u1|
−1+d.

Note that from the value of cε given in Section 3.3, cε does depend on d but is
approximately 1/2 for small d. It is easy enough to compute the integral above, which
gives: for k = 0

E
[

δτX(0)2
]

=
2cεσ2T λ2

d(1 + d)
τ1+d, (23)

and for |k| > 0

E
[

δτX(0)δτX(kτ)
]

=
cεσ2T λ2

d(1 + d)

(

|k + 1|1+d + |k − 1|1+d − 2|k|1+d
)

τ1+d.

It follows that for |k| > 0, the correlation ρ
(1)
d (τ, k) is of order d when d is small. More

precisely, for |k| = 1:

ρ
(1)
d (τ, k) ∼ d log(2) as d → 0.

and for |k| > 1:

ρ
(1)
d (τ, k) ∼

d

2

(

|k| log(1− 1/k2) + log(1 + 2/(|k| − 1))
)

as d → 0.

C.2. Behavior of ρ(2) and ρ(3)

From Proposition 4, it is enough to prove the result for ρ(2). Going along the same
line as above, we get

E
[

δτX(0)δτX(kτ)2
]

= cεcωεσ3λT 3λ2

τ (3−3λ2+3d)/2
∑

i1,i2,i3
∫ 1

0

du1

∫ k+1

k

du2

∫ k+1

k

du3|ui1 − ui2 |
−1+d(ui2 − ui3)

(−1+d+λ2)/2
+ |ui3 − ui1 |

−λ2

,

the sum being taken on all permutations i1, i2, i3 of the set {1, 2, 3}. Note that
depending on the sign of k and the permutation, it may be the case that ui2 lies
in an interval lower than ui3 , so that the corresponding integral is zero. Also note that
from the value of cε and cωε given in Section 3.3, the product cεcωε is approximately
0.55 for small d.
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Taking into account the range of possible values for d > 0 and λ2, the integrals
above are clearly finite. Moreover, as d goes to zero, only the integral Id(k)

Id(k) =

∫ 1

0

du1

∫ k+1

k

du2

∫ k+1

k

du3|u2 − u3|
−1+d(u3 − u1)

(−1+d+λ2)/2
+ |u1 − u2|

−λ2

(and the one where we permute u2 and u3, which is much obviously the same) does
explode for k ≥ 0, while in the case k < 0, Id(k) is exactly zero so that the moment
E
[

δτX(0)δτX(kτ)2
]

remains bounded. For k ≥ 2, we have the following bounds:

(k+1)(−1+d−λ2)/2

∫ 1

0

du

∫ 1

0

dv|u−v|−1+d ≤ Id(k) ≤ (k+1)(−1+d−λ2)/2

∫ 1

0

du

∫ 1

0

dv|u−v|−1+d

from which we get
Id(k) ∼ c(k)d−1 as d → 0

where c(k) are some positive constants such that

2(k + 1)(−1−λ2)/2 ≤ c(k) ≤ 2(k − 1)(−1−λ2)/2.

For k = 0, 1 it can be similarly shown that

Id(k) ∼ c(k)d−1 as d → 0

where c(0), c(1) are some positive constants. From this, we may write: for k < 0

|ρ
(2)
d (τ, k)| = O(d3/2) as d → 0

and for k ≥ 0,

ρ
(2)
d (τ, k) ∼ −

(

cεT 3λ2

2

)1/2

cωελ c(k)d1/2 as d → 0.
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