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Abstract: Over the years, wings have become lighter and more flexible, making them more 
prone to aeroelastic effects. Thus, aeroelasticity in design becomes more important. In order 
to determine the response of an aircraft to, for example, a gust, an unsteady aerodynamic 
model is required to determine the dynamic loads. The three most-commonly used methods in 
aeroelastic loads analysis are 2D unsteady-airfoil theory, the doublet lattice method (DLM), 
and the unsteady vortex lattice method (UVLM). In contrast to these existing methods, the 
current paper proposes a 3D state-space model for unsteady aerodynamic analysis that is both 
directly written in time-domain, and is a continuous-time model. The main advantages of this 
are that no approximation errors are made in the conversion to the time domain, and that the 
time step is only driven by requirements on accuracy. The model is based on potential flow 
theory, which is implemented by means of vortex ring elements. The model was first verified, 
and then applied to a pitch-plunge response problem showing the benefits of the current 
approach over existing methods. 

1 INTRODUCTION 

One of the driving parameters in the design of aircraft has always been reducing weight to 
reduce the operating cost and make them more efficient. As a consequence, wings have 
become more flexible, making aeroelasticity more important in aircraft wing design. In order 
to determine the dynamic response of an aircraft to, for example, a gust, an unsteady 
aerodynamic model is required to determine the dynamic loads. 

There are several ways to predict the unsteady aerodynamic loads on an aircraft. Murua et 
al.[1] and Kier[2] give a nice overview of unsteady aerodynamic modelling for loads analysis. 
The three most-commonly used methods are 2D unsteady-airfoil theory, the doublet lattice 
method (DLM), and the unsteady vortex lattice method (UVLM). A brief overview of each of 
these methods will be given in the following paragraphs. 

2D unsteady-airfoil theory is generally referred to as strip theory. It uses closed-form 
solutions for several specific cases (i.e. impulsive flows, step gusts, harmonic oscillations, and 
sinusoidal gusts) in order to set up a state-space system to determine the unsteady 
aerodynamic loads. Strip theory has extensively been used for high-altitude-long-endurance 
(HALE) aircraft modelling [3, 4]. Two different methods to obtain a state-space system from 
the closed-form solutions are commonly used: Peters' finite-state method[5] and the indicial 
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method of Leishman[6]. The main advantages of strip theory are its simplicity and that it 
allows for easy corrections for, for example, stall. However, the main disadvantage of strip 
theory is that it is based on 2D unsteady-airfoil theory with 3D corrections and thus it cannot 
give any accurate information about the spanwise loading distribution.  The doublet lattice 
method, introduced by Albano and Rodden[7], is probably the most-widely used method for 
unsteady load analysis of aircraft. DLM assumes harmonic displacements on the natural 
vibration modes of the wing to determine the aerodynamic influence coefficients (AICs) for 
several reduced frequencies and flight conditions. The solution is converted from the 
frequency domain to the time domain by means of a rational function approximation (RFA). 
There are two well-known techniques for the RFA: Roger's approach using Padé 
approximants[8] and Karpel's minimum-state method[9]. The setup in the frequency domain 
makes the method especially suitable for flutter analysis. However, when time domain 
simulations are required, an incorrect selection of lag terms in the RFA can have a significant 
effect on the accuracy of the results. Furthermore, a wide range of reduced frequencies has to 
be covered to ensure accurate results. 

The unsteady vortex lattice method uses a distribution of vortex rings over the mean 
aerodynamic surface to solve the potential flow equations. Katz and Plotkin[10] give a good 
overview of the implementation of UVLM. The main advantage of UVLM is that it allows for 
modelling a free wake and can thus be used for the computation of the flow around wings 
undergoing large motions. Therefore UVLM has recently become popular for the accurate 
analysis of HALE aircraft wings undergoing large deformations[1]. Furthermore, UVLM can 
be written in a discrete-time state-space system[11], allowing easy integration with other 
disciplines. However, this also immediately highlights the main disadvantage of UVLM: the 
solution can only be obtained using a fixed time step. This can result in inefficient analysis 
when, for example, the structural model or the flight dynamic model would allow for larger 
time steps to be used.  

As can be concluded from the previous paragraphs, all three methods have their own 
advantages and disadvantages. Ideally one would want a 3D unsteady aerodynamic analysis 
model, which is directly written in time-domain and is a continuous-time model, such that no 
approximation errors are made in the conversion to the time domain and the most efficient 
time step can be used for the analysis. Therefore the current paper proposes a 3D continuous-
time state-space model for unsteady aerodynamic analysis. This work is based on the work of 
Mohammadi-Amin et al.[12] This paper extends their model to the application of arbitrary 
wing planforms, camber distribution, and twist distribution and instead of constant strength 
doublet panels, vortex ring elements are used to simplify the computation of aerodynamic 
forces on non-uniform meshes. Section 2 will give a brief overview of the potential flow 
theory on which the aerodynamic model is based, followed by the implementation of this 
potential flow theory in a continuous-time state-space model by means of vortex rings. 
Section 3 will then show the verification of this model and its application to determining the 
gust response of an aircraft. Finally conclusions will be drawn on the application of the model 
for efficient aeroelastic analysis. 

2 UNSTEADY AERODYNAMIC MODEL 

For efficient loads analysis, the unsteady aerodynamic model is based on potential flow 
theory. When the flow conditions around a wing correspond to low to moderate subsonic 
Mach numbers, very high Reynolds numbers, and small angles of attack, the incompressible, 
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inviscid, and irrotational flow assumptions are valid. In this case, the Navier-Stokes equations 
can be reduced to the Laplace equation for the velocity potential, 𝜙:  

 𝛻
!𝜙   =   0 (1) 

In order to solve this problem, the solution is subject to a set of boundary conditions. In 
aerodynamics of aircraft, these in general consist of a boundary condition enforcing flow 
tangency on the wing surface and a boundary condition at infinity that ensures the flow 
disturbance vanishes at infinity:   

 𝛻𝜙 + 𝑽! ⋅ 𝒏 = 0, on the wing surface (2) 

 lim
|𝒙!𝒙𝟎|→!

𝛻𝜙 = 0 (3) 

where 𝑽! is the free-stream velocity vector, 𝒏 is the surface normal vector, 𝒙𝟎 is the position 
vector on the wing surface, and 𝒙 is the position vector of the location of interest.  

Once the potential difference over the wing surface is determined, the aerodynamic pressures 
can be computed using the unsteady Bernouilli equation:   

 𝑝! − 𝑝

𝜌
=
1

2
𝛻𝜙 !

+
𝜕𝜙

𝜕𝑡
 

(4) 

Given these pressures, the unsteady aerodynamic forces and moments can be computed using 
the panel geometry. 

In aerodynamics, the potential flow solution is commonly obtained using the boundary 
element method. The first step in the solution of the aerodynamic flow around the wing by 
means of the boundary element method is the selection of the type of singularity element, i.e. 
elementary solutions to the Laplace equation. All singularity elements commonly used in 
aerodynamics, e.g. sources, doublets, or vortices, automatically satisfy the far-field boundary 
conditions. In this case, vortex ring elements have been selected, since they allow for simple 
meshing of any arbitrary thin wing surface and the corresponding aerodynamic forces can be 
computed directly from their strength by using the Kutta-Joukowski theorem. Katz and 
Plotkin[10] provide a detailed description of the solution of the unsteady flow around a wing 
by means of vortex ring elements, resulting in the equation for the flow tangency boundary 
condition. In contrast to Katz and Plotkin where this equation is solved using a time-stepping 
procedure and the wake is developed in time, similar to Mohammadi-Amin et al.[12] for 
constant strength doublet panels, under the assumption of small motions about a reference 
configuration, a prescribed wake can be included and using the Kutta condition and 
Helmholtz theorem, a complete system of equations for vortex ring elements can be found 
and is given by:   

 𝑨𝜞
!
= −𝑽! ⋅ 𝒏, Flow tangency condition (5) 

 𝜞
𝑻𝑬

!
= 𝜞𝒘𝟎

! , Kutta condition (6) 

 𝑯𝟏𝜞
!
= 𝑯𝟐𝜞

!!!, Helmholtz theorem (7) 

where 𝑨 is the matrix of aerodynamic influence coefficients, 𝜞𝒕 is the vector of unknown 
vortex ring strengths at time 𝒕, 𝜞𝑻𝑬 is the vector of unknown vortex ring strengths at the 
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trailing edge of the wing, 𝜞𝒘𝟎 is the vector of unknown vortex ring strengths at the start of the 

wake, and matrices 𝑯𝟏 and 𝑯𝟐 describe the transport of vorticity in the wake. An example of 
a corresponding wing discretization is shown in Figure 1, illustrating the different vortex 
rings. Note that, as can be seen, the first wake panel is smaller than any following wake 
panels. From a physical point of view, this can be interpreted by looking at the starting vortex. 
At the first time step, when the vortex strength in the wake is still 0, the closing vortex of the 
first wake panel can be interpreted as the starting vortex that develops following the trailing 
edge angle and is a lumped representation of the continuous vortex sheet shed during the 
initial time step. As argued by Katz and Plotkin, this vortex should be placed around 0.2-0.3 
of the distance covered in the time step used to discretize the wake. Once this vortex has been 
shed, according to Helmholtz' theorem, it follows the free-stream flow, thus under the 
assumption of small perturbations, the remaining wake is shed parallel to the initial free 
stream flow. The only parameter that is left to be investigated is the distance at which the 
prescribed wake is truncated. As the distance between the shedded vortices and the wing 
increases, their influence diminishes, allowing for a truncation of the wake after a certain 
distance without a major influence on the resulting aerodynamic forces and moments. The 
effect of this truncation will be assessed in more detail when discussing the results in section 
3.   

  
Figure 1: Example wing discretization using vortex ring elements. The thick solid lines indicate the wing outline, 

the thin solid lines indicate the panel distribution, and the dashed lines indicate the vortex ring elements. 

 
Figure 2: Schematic illustrating a panel at an angle 𝛼!  with respect to the free-stream flow. 

This system of equations can now be written in a continuous-time state-space system in two 
steps. As a first step, the right hand side of the flow tangency condition given in equation (5) 
is investigated. When looking at Figure 2 illustrating a wing panel under an angle 𝛼! with 
respect to the mean free stream flow, the right hand side reduces to:   

 
−𝑽! ⋅ 𝒏𝒑 = −𝑉!

cos𝛼

sin𝛼
⋅

𝑛!!

𝑛!!
= −𝑉!

cos𝛼

sin𝛼
⋅
sin𝛼!

cos𝛼!
 

(8) 

where 𝛼! is the panel angle of attack with respected to the undisturbed flow and 𝛼 is the 
perturbance angle of the free stream flow. When small perturbations are assumed, thus 
making a small angle approximation for 𝛼, this reduces to:  
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−𝑽! ⋅ 𝒏𝒑 = −𝑉!

1

𝛼
⋅
sin𝛼!

cos𝛼!
= −𝑉! sin𝛼! − 𝑉! cos𝛼! ⋅ 𝛼 

(9) 

Note that the first term in equation (9) is independent of the perturbation angle 𝛼, thus for this 
part of the flow tangency boundary condition the time dependency in the system of equations 
stems only from Helmholtz theorem. From a physical point of view, this can be interpreted in 
two ways. One, the wing is flying at a free stream velocity, 𝑉!, and the wake is fully 
developed. In this case a solution can be found by splitting the problem in two sub-problems. 
First, a steady solution satisfying the first term in equation (9) is obtained assuming constant 
vorticity in the wake. Second, an unsteady solution satisfying the second term in equation (9) 
is obtained by developing the wake vorticity in time. Finally, by the principle of superposition 
the total aerodynamic forces and moments can be found. Two, the wing exhibits a sudden 
acceleration from rest to 𝑉!, thus the vorticity in the wake is initially 0. In this case, the steady 
term in the boundary condition needs to be included in the unsteady solution and the starting 
vortex is also resolved. 

Based on these assumptions, the unsteady aerodynamic flow problem can be written in 
continuous-time state-space form, similar to the derivation of Mohammadi-Amin et al.[12] for 
flat plates. Note that Mohammadi-Amin et al. only include the unsteady boundary condition. 
Starting from equation (7) for Helmholtz theorem:  

 𝑯𝟏𝜞
!
= 𝑯𝟐𝜞

!!!
→ 𝜞

!
− 𝜞

!!!
= (1−𝑯

𝟐

!!
𝑯𝟏)𝜞

! (10) 

this equation can be written in an equivalent continuous-time form by using a forward Euler 
discretisation of the transport of vorticity in the wake: 

 
𝜞𝒘
!
=
𝜞𝒘
!
− 𝜞𝒘

!!!

𝛥𝑡
=
(1−𝑯

𝟐

!!
𝑯𝟏)𝜞𝒘

!

𝛥𝑡
=
𝑉!(1−𝑯𝟐

!!
𝑯𝟏)𝜞𝒘

!

𝛥𝑥!

 
(10) 

where 𝜞𝒘 defines the vortex strength in the wake to indicate that this equation only holds for 
the vortex strength of the wake panels and the time step 𝛥𝑡 is related to the wake 
discretisation through the time it takes to travel the distance covered by one wake panel, 𝛥𝑥!, 

resulting in 
!!!"

!!!

. Note that all governing equations (5), (6), and (10) are now written at time 𝑡, 

thus allowing for a continuous time system written at time 𝑡. Dividing the vector of 
unknowns, 𝛤, into three parts, the vortex ring strength on the body, 𝛤!, the vortex ring 
strength belonging to the first row of wake panels related to the Kutta condition, 𝛤!!, and the 

remaining wake panels, 𝛤!, as also indicated in Figure 1, and using the small perturbation 
assumption for the flow tangency boundary condition, the governing equations can be 
rewritten as: 

 𝑲𝟏𝜞𝒃 +𝑲𝟐𝜞𝒘𝟎
+𝑲𝟑𝜞𝒘 = −𝑉!𝒏𝒙 − 𝑉!𝒏𝒛 ⋅ 𝜶 (11) 

 𝑲𝟒𝜞𝒃 +𝑲𝟓𝜞𝒘𝟎
= 0 (12) 

 𝑲𝟔𝜞𝒘 +𝑲𝟕𝜞𝒘𝟎
= 𝜞𝒘 (13) 

where 𝑲𝟏, 𝑲𝟐, and 𝑲𝟑 are each given by a part of the aerodynamic influence coefficient 
matrix 𝑨, 𝑲𝟒 and 𝑲𝟓 are matrices containing ones and zeros to link the trailing edge panel to 
the corresponding first wake panel as defined by equation (6), and 𝑲𝟔 and 𝑲𝟕 describe the 
transport of vorticity in the wake according to equation (10). Using equation (12), 𝜞𝒃 can be 
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written as function of 𝜞𝒘𝟎. When this is inserted in equation (11), 𝜞𝒘𝟎 can be written as 

function of 𝜞𝒘 and the velocity induced by the free stream flow. Substituting this relation in 
the wake transport equation, the state equation of the state-space system can be derived: 

 𝜞𝒘 = 𝑲𝟖𝜞𝒘 +𝑲𝟗𝜶+𝑲𝟏𝟎 (13) 

 

where  

 𝑲𝟖 = 𝑲𝟔 +𝑲𝟕 𝑲𝟓 −𝑲𝟒𝑲𝟏

!!
𝑲𝟐

!!
𝑲𝟒𝑲𝟏

!!
𝑲𝟑 (14) 

 𝑲𝟗 = −𝑲𝟕 𝑲𝟓 −𝑲𝟒𝑲𝟏

!!
𝑲𝟐

!!
𝑲𝟒𝑲𝟏

!!
𝑩𝟏 (15) 

 𝑲𝟏𝟎 = −𝑲𝟕 𝑲𝟓 −𝑲𝟒𝑲𝟏

!!
𝑲𝟐

!!
𝑲𝟒𝑲𝟏

!!
𝑩𝟐 (16) 

with 𝑩𝟏 a diagonal matrix containing −𝑉!𝒏𝒛 and 𝑩𝟐 = −𝑉!𝒏𝒙.  

Next, using the unsteady Bernouilli equation given by equation (4), the aerodynamic forces 
and moments can be determined. Since vortex ring elements are used, the aerodynamic forces 
and moments can be computed directly from the vortex strength of the vortex segments using 
the Kutta-Joukowski theorem, equivalent to the unsteady lifting line theory.[13] The 
computation of the aerodynamic forces and moments can be split in a steady component and 
an unsteady component. The steady component of the aerodynamic forces is given by the 
steady component of the Kutta-Joukowski theorem and is computed for each of the bound 
vortices: 

 𝑭𝒔𝒕 = 𝜌𝑽!×𝜞 = 𝜌𝑽!×𝒆𝜞𝛤 (17) 

where 𝒆𝜞 is the vector along the vortex segment and 𝛤 is the vortex strength of the vortex 
segment. The resulting force acts at the midpoint of the bound vortex segment. Note that, in 
order to only account for valid aerodynamic forces (under the assumption of inviscid, 
irrotational flow), these forces need to be corrected by subtracting any force components that 
do not act in the plane spanned by the free-stream velocity and the panel normal. An example 
of this is given in Figure 3, where the two trailing vortices of body panel 𝑖, 𝑗 are in the plane 
given by the free-stream velocity and the panel normal, but oriented with an angle 𝛼 with 
respect to the free-stream flow.  

 
Figure 3: Schematic illustration of vortex ring element 𝑖, 𝑗 and its neighbours to illustrate the computation of the 

aerodynamic forces. 
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If the forces are computed using equation (13), this results in a force component in the plane 
of the panel. However, since no viscous forces are accounted for, this force cannot exist and 
therefore should be subtracted from the forces computed by equation (13). Using Figure 3, the 
forces created by the 4 bound vortices that involve panel 𝑖, 𝑗 are given by:  

 
𝑭𝒔𝒕𝒊,𝒋𝟏

= 𝝆𝑽!×𝒆𝜞𝟏(𝜞𝒊,𝒋 − 𝜞𝒊!𝟏,𝒋)

𝑭𝟏

−
𝑭𝟏 ⋅ 𝑽!×𝒏𝟏 𝑽!×𝒏𝟏

𝑽!×𝒏𝟏
𝟐

 
(18) 

 
𝑭𝒔𝒕𝒊,𝒋𝟐

= 𝝆𝑽!×𝒆𝜞𝟏(𝜞𝒊,𝒋 − 𝜞𝒊!𝟏,𝒋)

𝑭𝟐

−
𝑭𝟐 ⋅ 𝑽!×𝒏𝟐 𝑽!×𝒏𝟐

𝑽!×𝒏𝟐
𝟐

 
(19) 

 
𝑭𝒔𝒕𝒊,𝒋𝟑

= 𝝆𝑽!×𝒆𝜞𝟏(𝜞𝒊,𝒋 − 𝜞𝒊!𝟏,𝒋)

𝑭𝟑

−
𝑭𝟏 ⋅ 𝑽!×𝒏𝟑 𝑽!×𝒏𝟑

𝑽!×𝒏𝟑
𝟐

 

(20) 

 
𝑭𝒔𝒕𝒊,𝒋𝟒

= 𝝆𝑽!×𝒆𝜞𝟏(𝜞𝒊,𝒋 − 𝜞𝒊!𝟏,𝒋)

𝑭𝟒

−
𝑭𝟏 ⋅ 𝑽!×𝒏𝟒 𝑽!×𝒏𝟒

𝑽!×𝒏𝟒
𝟐

 

(21) 

Similarly the steady component of the forces induced by the remaining bound vortices can be 
computed, resulting in the total aerodynamic force distribution. Note that for the bound 
vortices on the wing leading edge or wing tip, the vortex strength is only given by the vortex 
strength of that particular panel, since no neighbouring panels exist.  

The unsteady component of the aerodynamic forces is given by the unsteady component of 
the Kutta-Joukowski theorem and is computed per panel according to:  

 
𝑭𝒖𝒏𝒔𝒕𝒊

= 𝜌𝑽!×𝒆𝜞𝒊

𝜕𝛤!,!

𝜕𝑡
𝐴!,! 

(22) 

where 𝑽! is the unit vector in the direction of the free stream flow velocity and 𝒆𝜞𝒊 is the unit 
vector in the direction of the leading vortex segment. The aerodynamic moments can be 
computed by defining a reference axis with respect to which the aerodynamic moments are 
computed. 

Using equations (17) and (22) for the steady and unsteady forces, the total aerodynamic forces 
and moments can be related to the vortex strength according to: 

 𝑭

𝑴
=

𝑭𝒔𝒕

𝑴𝒔𝒕

+
𝑭𝒖𝒏𝒔𝒕

𝑴𝒖𝒏𝒔𝒕

= 𝑳𝟏𝜞𝒃 + 𝑳𝟐𝜞𝒃 
(22) 

Using equations (11) and (12), the vortex strength of the body panels can be related to the 
vortex strength of the wake panels and the input, resulting in: 

 𝜞𝒃 = −𝑳
𝟑

!!
𝑲
𝟏

!!
𝑲𝟑𝜞𝒘 + 𝑳𝟑

!!
𝑲
𝟏

!!
𝑩𝟏𝜶+ 𝑳𝟑

!!
𝑲
𝟏

!!
𝑩𝟐 (23) 

where 𝑳𝟑 = 𝑰−𝑲
𝟏

!!
𝑲𝟐𝑲𝟓

!!
𝑲𝟒. Taking the time derivative of this equation, realising that all 

terms related to the steady component of the boundary conditions are independent of time and 
substituting this in equation (22), the following relation between the aerodynamic forces and 
moments and the vortex strength in the wake and the boundary conditions is found:   
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 𝑭

𝑴
= 𝑳𝟒𝜞𝒘 + 𝑳𝟓𝜶+ 𝑳𝟔 + 𝑳𝟕𝜞𝒘 + 𝑳𝟖𝜶 (24) 

where 

 𝑳𝟒 = −𝑳𝟏𝑳𝟑
!!
𝑲
𝟏

!!
𝑲𝟑 (25) 

 𝑳𝟓 = 𝑳𝟏𝑳𝟑
!!
𝑲
𝟏

!!
𝑩𝟏 (26) 

 𝑳𝟔 = 𝑳𝟏𝑳𝟑
!!
𝑲
𝟏

!!
𝑩𝟐 (27) 

 𝑳𝟕 = −𝑳𝟐𝑳𝟑
!!
𝑲
𝟏

!!
𝑲𝟑 (28) 

 𝑳𝟖 = 𝑳𝟐𝑳𝟑
!!
𝑲
𝟏

!!
𝑩𝟏 (29) 

Finally, using equation (13), equation (24) can be reduced to: 

 𝑭

𝑴
= 𝑳𝟗𝜞𝒘 + 𝑳𝟏𝟎𝜶+ 𝑳𝟖𝜶+ 𝑳𝟏𝟏 (30) 

where 𝑳𝟗 = 𝑳𝟒 + 𝑳𝟕𝑲𝟖, 𝑳𝟏𝟎 = 𝑳𝟓 + 𝑳𝟕𝑲𝟗, and 𝑳𝟏𝟏 = 𝑳𝟔 + 𝑳𝟕𝑲𝟏𝟎. The resulting system of 
governing equations thus becomes:  

 𝜞𝒘 = 𝑲𝟖𝜞𝒘 +𝑲𝟗𝜶+𝑲𝟏𝟎 (31) 

 𝑭

𝑴
= 𝑳𝟗𝜞𝒘 + 𝑳𝟏𝟎𝜶+ 𝑳𝟖𝜶+ 𝑳𝟏𝟏 (32) 

Therefore, identifying 𝜶, 1 ! as state-space input, 𝒖, 𝜞𝒘,𝜶
! as state vector, 𝒙, and 𝑭,𝑴 ! 

as output vector, 𝒚, a standard continuous-time state-space system is obtained: 

 
𝒙 =

𝑲𝟖 𝑲𝟗

𝟎 𝟎
𝒙+

𝟎 𝑲𝟏𝟎

𝑰 𝟎
𝒖 (33) 

 𝒚 = 𝑳𝟗 𝑳𝟏𝟎 𝒙+ [𝑳𝟖 𝑳𝟏𝟏]𝒖 (34) 

In conclusion, under the assumption of small perturbation of a thin wing around a steady-state 
reference configuration, this state-space system allows for the computation of the inviscid, 
incompressible, irrotational, unsteady aerodynamic forces and moments of any generic wing. 

3 RESULTS 

In order to assess the effect of wake truncation, first a study on the required wake length for a 
converged solution is carried out. Next, the state-space unsteady aerodynamic model, as 
described in section 2, is assessed by first running the model for different steady and unsteady 
test cases, followed by a pitch-plunge analysis study to indicate the advantages of the current 
model to existing models. For all results presented, first a mesh convergence study has been 
carried out, but for clarity, only the results for a converged mesh will be shown. In case of the 
unsteady aerodynamic results, a study on the required wake length in terms of the number of 
chords is first carried out in order to assess the effect of wake truncation on the unsteady 
aerodynamic results, before the results of the model are compared to the literature. 
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3.1 Wake truncation 

The effect of wake truncation on the aerodynamic loads is investigated by analysing a 
rectangular wing with an aspect ratio of 8, and properties given in Table 1. The wing is 
suddenly accelerated from rest and the effect of wake truncation is assessed by investigating 
the lift coefficient after the wing has travelled a distance of 100 chord lengths. The selected 
flight speed is 10 m/s at sea level. The resulting lift coefficient for different wake truncation 
lengths is given in Figure 4a. In order to do a more thorough assessment of the actual error, 
the relative error of the lift coefficient at different wake truncation lengths with respect to the 
longest wake truncation length of 80 chords is shown in Figure 4b. As can be seen, depending 
on the level of accuracy required, a wake length of 20 or 40 chords is sufficient for a 
converged solution to within 0.2% or 0.05% respectively. Note that, even though this 
provides an indication of the effect of wake truncation, the effect of the wake truncation 
length might be different for each wing and flight condition analysed and should therefore 
always be considered as a parameter in a convergence study of the results. 

Semispan 0.40 m 

Chord 0.10 m 

Sweep angle 0 deg 

Camber 0% 

Table 1: Wing properties 

 
(a) Convergence study showing the lift coefficient for 
various lengths of wake truncation. 

(b) Convergence study showing the relative error for 
various lengths of wake truncation with respect to a 
wake length of 80. 

Figure 4: Effect of wake truncation on the lift coefficient of a rectangular wing with an aspect ratio of 8, 

suddenly accelerating from rest after it has travelled 100 chords. 

3.2 Verification 

In order to verify the unsteady aerodynamic model, the model is applied to several benchmark 
problems. First, a steady verification of the model is done by comparing the results of the 
current approach to steady aerodynamic results in the literature, as shown in section 3.2.1. 
Then in section 3.2.2, the verification is completed by comparing the model to unsteady 
aerodynamic results in the literature.   
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3.2.1 Steady aerodynamic verification 

Aircraft wings in general are not rectangular, but have a combination of taper, sweep, 
dihedral, twist, and camber for optimal aerodynamic performance. Therefore, as a steady 
verification, the results obtained by the current model are compared to results found in 
literature for different taper ratios, sweep angles, dihedral, twist angles, and camber. For all 
cases presented in this section, the wing has been been discretised using 16 spanwise and 32 
chordwise elements. First, as a verification of the implementation of camber, a wing with an 
aspect ratio of 200 is modelled to approximate 2D aerodynamics with different levels of 
camber and compared to results obtained by Xfoil.[14] In order to do a fair comparison to the 
2D results, the results obtained from Xfoil have been compared to the section lift coefficient 
at the center of the wing. The results of this comparison are shown in Figure 5, showing 
excellent agreements in the linear aerodynamic range. As can be seen, as the angle of attack 
increases above 8 deg or decreases below -6 deg the results start to differ because of nonlinear 
aerodynamic effects captured by Xfoil, which cannot be captured using thin airfoil theory. As 
can be seen, as the level of camber increases, these nonlinear effects become more 
pronounced and thus the difference between the present model and Xfoil increases. However, 
most aircraft don't have these highly cambered airfoils and fly at small angles of attack, where 
the present model provides excellent results.   

 
Figure 5: Verification of the steady aerodynamic results for a 2D cambered airfoil. The squares indicate the 

present model and the triangles indicate the data obtained from Xfoil. 

Second, Figure 6a shows the comparison of the current model to the results obtained by 
Bertin and Cummings[15] using lifting-line theory for an untwisted wing with an aspect ratio 
of 7.28 and a NACA2412 airfoil at various taper ratios. As can be seen, the results show good 
agreement for a taper ratio of 0.4, 0.6, and 1.0. Only for a taper ratio of 0, the difference 
becomes more pronounced. Note that using vortex rings, a taper ratio of 0 can only be 
approximated by selecting a very small taper ratio of, in this case, 0.001, since otherwise the 
length of vortices at the wing tip would become zero, resulting in numerical problems when 
solving the system of equations. Furthermore, the difference can be explained by the fact that 
both models use a different approximation of the lift distribution; Bertin and Cummings use 
lifting-line theory with a truncated series to approximate the lift distribution, while in the 
present model the wing is discretised in spanwise and chordwise direction. Noting that 
general aircraft do not have a taper ratio of 0, this should not provide any difficulties in 
analysing general aircraft wings. 
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(a) An untwisted wing with a NACA2412 airfoil and 
an aspect ratio of 7.28 at different taper ratios. 

(b) An untwisted wing with an aspect ratio of 4 at 
different sweep angles. 

 

(c) An untwisted wing with an aspect ratio of 4 at 
different dihedral angles. 

Figure 6: Verification of 3D steady aerodynamics results. 

Third, Figure 6b shows the comparison for an untwisted, untapered wing with an aspect ratio 
of 4.0 at different sweep angles to the results obtained by Katz.[16] Since Katz' model is 
based on the unsteady vortex lattice method, and is thus equivalent to the current model, as 
expected, the results show excellent agreement.  

Finally, in order to verify the model for dihedral, the results of the model were compared to 
the results by Kalman et al.[17] for a rectangular wing with an aspect ratio of 4.0 at different 
dihedral. As can be seen in Figure 6c, the results show excellent agreement. 

In conclusion, the steady results show excellent agreement to results found in the literature for 
different taper ratios, sweep angles, dihedral, and twist, thus verifying the current 
aerodynamic model for steady aerodynamic analysis. 

3.2.2 Unsteady aerodynamic verification 

In order to verify the unsteady aerodynamic response, similar to the steady aerodynamic 
results, the unsteady aerodynamic model is first compared to 2D unsteady results in the 
literature. Figure 7a shows the comparison of the present model to the analytical 
approximation of Wagner[18] for a 2D flat plate under a sudden acceleration, which is 
equivalent to at step response of the angle of attack or the impulse response of the current 
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system. The wing is discretised using 8 spanwise and 32 chordwise elements. The wake is 

truncated at 10 times the chord and the normalised time step is given by 
!!!"

!
=

!

!"
. As can be 

seen, the initial lift is slightly over predicted by the present model, after which the model 
converges to the solution of Wagner and shows excellent agreement. This initial over 
prediction of the lift can be explained by the fact that the present model, due to its wake 
discretisation, can only represent a finite acceleration rate and not the infinite acceleration rate 
as solved by Wagner. As was shown by Katz[16], the effect of this finite acceleration rate is 
to moderately increase the lift.  

Figure 7b and Figure 7c show the comparison of the present model to the lift and moment 
coefficient as predicted by Theodorsen[19] for the harmonic pitch, plunge oscillation of a 2D 
flat plate at different reduced frequencies. The flat plate pitches around the quarter-chord axis 

with an amplitude of 1 deg and has a plunge amplitude of 
!!

!
= 0.2, 

!!

!
= 0.05, and 

!!

!
= 0.02 

for 𝑘 = 0.1, 𝑘 = 0.4, and 𝑘 = 1 respectively. The wing is discretised using 8 spanwise and 
32 chordwise elements. The wake is truncated at 20 times the chord and the normalised time 

step is given by 
!!!!

!
=

!

!"
. As can be seen the present model shows excellent agreement for 

𝑘 = 0.1 and 𝑘 = 0.4. At 𝑘 = 1, it can be seen that the present model slightly overpredicts the 
lift and moment coefficient, which can be explained by the fact that for the present model the 
wake needs to be discretised, while Theodorsen computes the lift and moment coefficient 
analytically. Especially at higher reduced frequencies, the effect of this discretisation becomes 
more pronounced, since the number of wake panels travelled per oscillation becomes smaller. 
It should be noted, however, that, for most practical applications, a reduced frequency of 0.4 
is already very high. 

 

 

 

 

 

 

 

 

 

 

 

 



IFASD-2015-060 

13 

 
(a) Sudden acceleration of a 2D flat plate. (b) Harmonic pitch, plunge oscillation of a 2D flat 

plate at different reduced frequencies. 

 

(c) Harmonic pitch, plunge oscillation of a 2D flat 
plate at different reduced frequencies. 

Figure 7: Verification of 2D unsteady aerodynamics results. 

Aircraft in general have a combination of taper, sweep, dihedral, twist, and camber. However, 
to the authors knowledge, no results are available in literature on the unsteady aerodynamic 
response of panel methods for thin general aircraft wings. Therefore, in order to verify the 3D 
unsteady aerodynamic response, the present model is compared to the unsteady aerodynamic 
response for rectangular wings. Figure 8a shows the comparison of the present model to the 
sudden acceleration of a flat rectangular wing with an aspect ratio of 6 to the results obtained 
by Jones[20]. The wing is discretised using 8 spanwise and 32 chordwise elements. The wake 

is truncated at 10 times the chord and the normalised time step is given by 
!!!"

!
=

!

!"
. As can 

be seen, similar to the sudden acceleration of a 2D flat plate, the present model initially 
overpredicts the lift because of the finite acceleration rate, before it converges to the results 
obtained by Jones.   

As a final verification for the unsteady aerodynamic response, the present model is compared 
to the results obtained by Wang et al.[21] for the gust response of the Goland wing under a 1-
cosine gust. The wing is discretised using 8 spanwise and 32 chordwise elements. The wake is 

truncated at 10 times the chord and the normalised time step is given by 
!!!"

!
=

!

!"
. As can be 

seen in Figure 8b, the results show excellent agreement, thus verifying the present model.  In 
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conclusion, the present model shows excellent agreement to results in the literature for the 
unsteady aerodynamic response of wings, thus verifying the present model.  

 
(a) Sudden acceleration of a rectangular wing with an 
aspect ratio of 6. 

(b) Gust response of the Goland wing under a 1-cosine 
gust. 

Figure 8: Verification of 3D unsteady aerodynamics results. 

3.2.3 Pitching-plunging wing 

Finally, to illustrate the advantages of the present continuous-time state-space model over 
discrete-time models, the model is applied to the analysis of a rectangular wing with the 
properties given in Table 2 under a pitch, plunge motion. 

Semispan 4.0 m 

Chord 1.0 m 

Sweep angle 0 deg 

Camber 0% 

Table 2: Wing properties 

The free-stream velocity is set to 50 m/s at sea level and the wing is perturbed at reduced 
frequencies of 𝑘 = 0.1, 𝑘 = 0.4, and 𝑘 = 1, using the following input signal: 

 
𝜃 𝑡 = 𝜃! sin

𝑘𝑉!𝑡

𝑏
 

(35) 

 
ℎ 𝑡 = ℎ! cos

𝑘𝑉!𝑡

𝑏
 

(36) 

where 𝜃 is the pitch angle, 𝜃! is the pitch amplitude, ℎ is the plunge displacement, and ℎ! is 
the plunge amplitude. The wing pitches about the quarter chord with an amplitude of 1 deg 

and plunges with an amplitude of 
!!

!
= 0.2, 

!!

!
= 0.05, and 

!!

!
= 0.02 for 𝑘 = 0.1, 𝑘 = 0.4, 

and 𝑘 = 1 respectively. The number of spanwise vortex ring elements is kept constant at 8, 
while the number of chordwise panels and correspondingly the wake discretisation is varied. 
All results presented are obtained for a fully developed wake.   

The resulting convergence study is shown in Figure 9a. Since no analytical or reference 
solution is available for this case, the relative error of the maximum lift coefficient with 
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respect to the result obtained with the finest mesh is plotted. The resulting maximum lift 
coefficient found for the finest mesh is given in Table 3.  

Red. frequency Lift coefficient 

0.1 0.188 

0.4 0.155 

1.0 0.192 

Table 2: Lift coefficient for different reduced frequencies 

As is expected, as the reduced frequency increases, a finer wake discretisation is required to 
obtain a converged solution, since the number of wake panels travelled per oscillation 
decreases. For 𝑘 = 0.1, 4 chordwise panels is already sufficient to find a solution within 0.1% 
of the solution found for 64 chordwise panels, while for 𝑘 = 0.4, in order to bring the error 
with respect to the solution for 𝑛! = 64 to 1%, already 16 chordwise panels are required, and 
for 𝑘 = 1, 64 chordwise panels are required.  

When looking at Figure 9, another interesting observation can be made when looking at the 
convergence trend for 𝑘 = 0.1. While 𝑘 = 0.4, and 𝑘 = 1 converge monotonically from 
above, as can also be concluded from Figure 9c and Figure 9d, for 𝑘 = 0.1 the maximum lift 
coefficient first increases up to 16 chordwise panels after which it also converges from above. 
This can be explained by a combination of two sources of error. The first source of error 
comes from the spatial discretization of the wing for which the lift coefficient will converge 
from above. The second source of error comes from the time discretization of the solution, 
where, as the mesh is refined and thus the time discretization is refined, the time discretization 
converges to the time at which the maximum lift occurs, for which the lift coefficient 
converges from below. In case of 𝑘 = 0.4 and 𝑘 = 1, the spatial discretization introduces an 
error that is much larger than the error introduced by the time discretization, thus resulting in 
a solution which converges from above. However, in case of 𝑘 = 0.1, initially the error 
introduced by the time discretization is larger than the error introduced by the spatial 
discretization, resulting in an increasing lift coefficient, while as the mesh and thus time 
discretization is refined, the error introduced by the spatial discretization becomes more 
important, resulting in convergence from above. 
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(a) Convergence study showing the relative error of 
various mesh size with respect to the analyses for 
𝑛! = 64. 

(b) Effect of varying the timestep for time integration 
on the lift coefficient for various mesh sizes at a 
reduced frequency of 𝑘 = 0.1. 

 

(c) Effect of varying the timestep for time integration 
on the lift coefficient for various mesh sizes at a 
reduced frequency of 𝑘 = 0.4. 

(d) Effect of varying the timestep for time integration 
on the lift coefficient for various mesh sizes at a 
reduced frequency of 𝑘 = 1.0. 

Figure 9: Pitch, plunge analysis of a rectangular wing with an aspect ratio of 8. 

 

In case of the use of a discrete-time system for general aircraft, where many different load 
cases and gust analysis need to be run, either many different models are required for efficient 
analyses for each of the cases or a single model refined enough for the most demanding load 
case, but inefficient for the other load cases, is required. However, in case of the continuous-
time state-space model, another trade-off can be made, where a single fine model is used for 
the model setup, but the efficiency of the analysis is increased by increasing the time step 
when permitted. Especially in combination with a reduced-order modelling technique, this 
results in a single model that is both accurate and efficient. Figure 9b, Figure 9c, and Figure 
9d show this trade-off for the different reduced frequencies. As can be seen, for, for example 
𝑘 = 0.1, a normalised time-step of 1/2 is already sufficient for a maximum lift coefficient 
within 1% of the solution found for a timestep of 1/64. This results in a decrease in 
computational time of the time integration by a factor of 32, which reduces total 
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computational time significantly, especially when many simulations need to be run. Note that, 
even for 𝑘 = 1, the timestep can be increased by a factor of 2, while keeping the error to 
within 1%, thus clearly showing the advantage of a variable time step. 

4 CONCLUSIONS 

A continuous-time state-space unsteady aerodynamic model has been presented for efficient 
load analysis of general aircraft wings. Based on potential flow theory, under a thin wing 
assumption, the unsteady vortex lattice method is used to setup the governing discretised 
equations. By assuming small perturbances with respect to the steady solution, the flow 
tangency condition can be linearised. Finally, by assuming a fixed wake, the governing 
continuous-time state-space system has been derived. The states of the system are the vortex 
strength of the wake vortex elements and the perturbance angle of attack, and the input of the 
system is the time derivative of the perturbance angle of attack. Verification of the present 
approach with results in the literature, both for steady and unsteady aerodynamic solutions, 
and 2D and 3D solutions for general wing shapes, shows excellent agreement. Finally, the 
present model has been applied to the pitch-plunge analysis of a rectangular wing with an 
aspect ratio of 8, showing the benefits of the present approach over discrete-time models, by 
allowing for a single model to be applied to all load cases, while varying the time step for 
efficiency.  

In conclusion, the resulting model can be used for the efficient loads analysis of general 
aircraft wings, and its state-space implementation allows for easy integration with structural 
or flight dynamic models, allowing for efficient aero(servo)elastic analysis using a time step 
solely governed by accuracy requirements. 
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