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Continuous-Time Tracking Algorithms Involving
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Abstract—This work is concerned with least-mean-squares
(LMS) algorithms in continuous time for tracking a time-varying
parameter process. A distinctive feature is that the true parameter
process is changing at a fast pace driven by a finite-state Markov
chain. The states of the Markov chain are divisible into a number
of groups. Within each group, the transitions take place rapidly;
among different groups, the transitions are infrequent. Intro-
ducing a small parameter into the generator of the Markov chain
leads to a two-time-scale formulation. The tracking objective is
difficult to achieve. Nevertheless, a limit result is derived yielding
algorithms for limit systems. Moreover, the rates of variation of the
tracking error sequence are analyzed. Under simple conditions, it
is shown that a scaled sequence of the tracking errors converges
weakly to a switching diffusion. In addition, a numerical example
is provided and an adaptive step-size algorithm developed.

Index Terms—Adaptive filtering, continuous-time Markov
chain, two-time scale.

I. INTRODUCTION

T
HIS paper is concerned with least-mean-squares (LMS)

algorithms in continuous time for tracking a time-varying

parameter process, which is under the influence of a con-

tinuous-time Markov chain. For analyzing LMS algorithms

with time-varying parameters, by assuming that the parameter

varies continuously but slowly over time with small amount

of changes, the performance of tracking algorithms is studied

in [1], [5], [9], [11], [12], [16], among others. Most literature

has focused on discrete-time problems (see [1], [4], [11], [12],

[17], and the references therein). In contrast, our method here

deals with rapidly changing parameters in a continuous-time

setting. Our results are good approximations to discrete-time

algorithms when the sampling frequency is very high. Note that

it is important to examine algorithms when the sampling rate

becomes very high (see the motivation and description given in

[18] for least-squares estimation schemes for continuous-time

systems).
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Although least-squares-type algorithms have been studied ex-

tensively and applied to a wide range of problems in control,

optimization, learning, and related fields, emerging applications

have been found in signal processing, wireless communication,

and network problems (see [7], [14], and [15]). These applica-

tions, in turn, require in-depth understanding and further devel-

opment of more efficient procedures.

To the best of the authors’ knowledge, most of the existing

results are concerned with slowly varying parameter processes,

whereas not as much attention has been drawn for systems

with fast variations. In this paper, we consider the parameter

process under a regime switching and subject to fast variations.

The regime switching is modeled as a Markovian time-varying

dependence and involves two time scales. Suppose that the

Markov chain has a finite-state space whose states are divided

into a number of recurrent groups so that within each recur-

rent group, the transitions take place frequently, and among

different groups, the transitions occur less frequently. This

time-scale separation is one of the novelties of this paper. The

rationale is: For a fast-changing jump process, the tracking aim

or computation objective is difficult to achieve. Nevertheless,

due to the features of the fast-varying jumps in relation to the

slow-changing jumps, we may consider a computationally sim-

pler limit system associated with much slower jump changes.

In lieu of the original tracking algorithms, we can use the limit

systems to carry out the investigation.

Once the limit system is obtained, the next question of interest

is, How does the tracking error of the system evolve as a function

of time? We handle the rate of variation problem by means of

a weak convergence approach. We show that a properly scaled

sequence of tracking errors converges to a nonzero stochastic

process limit. Distinct from the usual analysis of tracking prob-

lems, the limit is not a diffusion process but a switching dif-

fusion or diffusions modulated by a continuous-time Markov

chain. The limit dynamic system delineates the evolution of the

scaled tracking error process. By working with a joint pair of

processes, the proof of this result uses a combination of mar-

tingale averaging and perturbed test function methods and is

interesting in its own right. Finally, we use the limit tracking

algorithm and the idea of step-size adaptation to build adaptive

modifications leading to efficient performance.

The remainder of the paper is organized as follows. Section II

provides the formulation and the algorithm. Asymptotic proper-

ties of the algorithm are presented in Section III. Using the re-

cently developed results on two-time-scale Markov chains [20],

[21], we derive algorithms for certain limit systems, which are

also of LMS type. The main techniques are the weak conver-

gence methods. Section IV is devoted to the asymptotic anal-
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ysis of the tracking error sequence. Based on the limit system,

Section V proceeds with the design of adaptive step-size algo-

rithms. Further remarks are given in Section VI to conclude

the paper. Technical details and proofs are deferred to an ap-

pendix to better preserve the flow of presentation. Throughout

the paper, we use to denote the transpose of for

and use to denote the norm of . For notational sim-

plicity, denotes a generic positive constant whose values may

vary for different usages. For a square matrix , by , we

mean that it is positive definite.

II. TWO-TIME-SCALE LMS TRACKING ALGORITHM

Suppose that is a real-valued sequence of signals with

representing the observation obtained at time and that

is a time-varying true parameter, an -valued random

process. Assume the true parameter is observed in noise as

(1)

where is the regression vector and repre-

sents a zero-mean observation noise. We construct an algorithm

so that weighted tracking errors are made as small as possible

in an appropriate sense. Here, we use the mean-squares tracking

error criterion. That is, we choose so that

is minimized.

The model given by (1) stems from a large class of applica-

tions in signal process and adaptive estimation. It arises from

noise cancellation, adaptive qualization, and adaptive filter

among others. (For various such processes in discrete time, see

[1] and references therein.) The model also arises in tracking

performance of an adaptive linear multiuser detector in a cel-

lular digital signal/code-division multiple-access (DS/CDMA)

wireless network when the profile of active users changes due

to an admission or access (scheduling) controller at the base

station. A discrete-time version of a finite-state Markovian

model for a linear minimum-mean-square-error (LMMSE)

multiuser detector can be found in [19]. The continuous-time

signal model describes the case when the sampling frequency

is high. We assume the parameter process ,

where is a function of ( ) and is a continuous-time

Markov chain. Note that if for all , then it

becomes a hidden Markov model in continuous time. Our tasks

are to track the time-varying parameter and to figure out the

bounds of the tracking errors.

In many applications, the state space of the Markov chain is

inevitably large. This raises the issue and concern on compu-

tation complexity. One of the ways to reduce the complexity is

to use a two-time-scale model. The rationale is that in a large

system, not all subsystems or components or parts or states

change at the same speed. Some of them vary rapidly, and others

change relatively slowly. Taking advantage of the contrast of the

different speeds of variation, we can put the states with similar

changing rate into one group. Then, we arrive at a model with

a total of number of groups much less than the total number

of states of the Markov chain. Mathematically, this is done as

follows. We introduce a small parameter to highlight dif-

ferent rates of changes. Then, , which we assume

to be a stationary or time-homogeneous Markov chain with fi-

nite state space

(2)

where , and generator

(3)

such that and (for each ) are themselves

generators (see [20, pp. 47–49] for a procedure of obtaining

a generator of such a canonical form (3)). In the above,

denotes a block diagonal matrix with entries

through of appropriate dimensions. Note that in the

asymptotic analysis, we let . In the actual application,

is merely a constant that highlights the different rates of vari-

ations among the states. The idea is, to achieve the reduction

of complexity, we lump all the states in each group into one

state, and then the process becomes one with only states. If

, the number of groups, is much less than the total number of

Markov states, a substantial reduction of effort is achieved.

With the signal model given above, to track the parameter

, we construct which depends on the scale pa-

rameter . The algorithm takes the form

(4)

where is a small constant step size of the algorithm.

A0) The parameter process is , where ,

is a continuous-time Markov chain with generator

given by (3), and for each , is a continuous

function.

A1) For each , is irreducible.

A2) The is a sequence of bounded signals

that is stationary and independent of such that

, and in

, for a symmetric and

positive definite matrix , where denotes

the -algebra generated by .

Remark 2.1: Condition A1) specifies the structure of the un-

derlying Markov model. Assumption A2) is essentially a con-

dition on the mixing property of the signals. The inequalities in

A2) are modeled after the well-known mixing inequalities (see

[8, p. 82]). They indicate that although correlated, the signals

are asymptotically independent, and the correlations decay in a

certain rates.

III. TRACKING ALGORITHM FOR THE LIMIT SYSTEM

A. Preliminary Results

First, recall the definition of weak convergence. Suppose that

and are -valued random variables. is said to con-

verge weakly to if for any bounded and continuous func-

tion , as is said to

be tight if for each , there is a compact set such that

for all . The above definitions extend to

random variables in a metric space. The notion of weak conver-

gence is a substantial generalization of convergence in distribu-

tion. On a complete separable metric space, tightness is equiv-
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alent to sequential compactness, which is known as Prohorov’s

theorem. Due to this theorem, we can extract convergent subse-

quences once tightness is verified. For terminologies and results

of weak convergence such as Skorohod topology, Skorohod rep-

resentation, and Prohorov’s theorem, etc., we refer the reader to

[11, Ch. 7].

For our signal model, we aggregate the states of the Markov

chain according to the following rule. Define

if . Generally, the aggregated process is not

necessarily Markov, but it yields a Markovian limit process. The

proof of the first assertion can be found in [20, Th. 7.4] (see also

[21] for time-varying generators being measurable only). The

proofs of the second and the third assertions are modifications

of that of [20, Th. 7.2 and Lemma 7.12] with being random

but independent of . The details are omitted. Using these

results, we then study asymptotic properties of the tracking al-

gorithm.

Lemma 3.1: Under A0) and A1), the following assertions

hold.

• converges weakly to , a Markov chain with

state space and generator

(5)

where for each , is the stationary distri-

bution corresponding to the generator , and is a

column vector in with all components being 1.

• For each and , and for any

bounded and measurable process that is indepen-

dent of

where is the th component , and can be

either a scalar or a vector-valued process.

• Define by

where is the -algebra generated by

. Then, .

B. Moment Bounds

We use the perturbed Liapunov function method (see [11]) to

prove the following moment bounds. The basic idea is to con-

struct small perturbation of the Liapunov function associated

with the differential equation to enable cancellation of unwanted

terms due to correlated signals.

Theorem 3.2: Define . Assume A0)–A2).

Then, .

Remark 3.3: Note that the theorem above is a stability result.

A direct consequence of Theorem 3.2 is as follows: For ,

.

C. Weak Convergence

Theorem 3.4: Assume A0)–A2). Then, for each ,

as , converges weakly to in

which is a reduced Markov chain generated by given in

(5) and is a solution of

(6)

where

(7)

Remark 3.5: A particular form of the function that we

have in mind is . That is, it assigns a value to each

of the Markovian states. Nevertheless, our formulation allows us

to deal with more general setup.

The Markov chain is fast varying; it may not be sen-

sible from a computational point of view to track its variation at

any given instance since its value will jump to another state in

a short duration. Nevertheless, due to the above limit result, the

system under consideration is closely related to a limit system,

in which the parameter and the observations are that of the orig-

inal system averaged out with respect to the stationary distribu-

tions. Thus, in lieu of the original system, we can examine the

limit system.

Define

The corresponding algorithm with used is

The proof of the following lemma is essentially the same as that

of Theorem 3.2 and is omitted. The proof of the corollary is

relegated to the appendix .

Lemma 3.6: Under the conditions of Theorem 3.4,

.

Corollary 3.7: Under the conditions of Theorem 3.4, for

, as .

Remark 3.8: The results obtained thus far are under the con-

ditions that the Markov chain is time homogeneous. These

results can be extended to time-inhomogeneous Markov chains,

in which the notation of weak irreducibility and quasi-station

distribution are needed (see [20, Ch. 2 ] for definitions of weak

irreducible and quasi-stationary distributions). We present the

following result but omit the verbatim proof, which can be car-

ried out by modifying the argument for that of the time-homo-

geneous case.

Theorem 3.9: Assume A0)–A2) with the following modifi-

cations. Suppose that the generators in (3) all depend on time.

Suppose that for each , is weakly irreducible. Then, the

conclusions of Lemmas 3.1 and 3.6, Theorems 3.2, 3.4, and 3.7,

and Corollary 3.7 continue to hold with and replaced by

time-dependent and , respectively.
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IV. RATES OF TRACKING ERROR VARIATION

This section is devoted to the analysis of tracking errors. The

desired rate results are obtained by a combined approach of mar-

tingale averaging and perturbed test functions for a pair of pro-

cesses. The proof is different from our previous paper [20] and

is interesting in its own right.

Define . Then, we have

and

Define a sequence of scaled tracking errors .

Then, satisfies

(8)

We proceed to prove that has a weak limit that is a

switching diffusion process. The following theorem reveals the

rates of tracking error variations.

Theorem 4.1: Under the conditions of Theorem 3.4,

converges weakly to , a switching

diffusion process such that is a solution of

(9)

, and is the limit in proba-

bility of .

Note that depends on . Up to now, we have used

Assumption A0) to specify the parameter process. The result

obtained can be generalized to the case of “hidden” Markovian

driving models. We present the corresponding results in the fol-

lowing theorem with the detailed proofs omitted since the proofs

are essentially the same as before.

Theorem 4.2: Assume the conditions of Theorem 3.4 with

the following modification: In A0), assume

, where is stationary and is independent of , ,

and such that and .Then, the

conclusions of Theorems 3.2, 3.4, 3.9, and 4.1 continue to hold.

V. EXAMPLES

A. Numerical Results

In this section, we give simulation results. Suppose

the continuous-time Markov chain has four states

and the generator is given by (3), where

Consider

Fig. 1(a)–(c) shows the sample paths of the second components

versus that of . All other components display sim-

ilar behavior. the horizontal axis represents the time . As is

getting smaller, the sample paths of the original systems are well

approximated by that of the averaged (or limit) systems. Al-

though the boundedness condition of the signal is

violated, the tracking algorithm still works well. Fig. 1(d) dis-

plays the sample paths of .

B. Adaptive Step-Size Algorithm

In this section, we design an adaptive step-size algorithm in

continuous time. The motivation comes from previous work re-

ported in [1] and [2]. The idea of step-size adaptation is sug-

gested in [1], in which one superimposes an adaptive algorithm

for selecting the “best” step size. This is further developed in

[2] with many worked out numerical examples for problems in

signal processing. The analysis of such algorithms in discrete

time is analyzed in [10] (see also [11]).

Here, we work with continuous-time algorithms, and we also

seek an adaptation scheme so as to achieve the goal of selecting

the best step size . In lieu of a fixed , we choose a time-

dependent . Then, we construct a second-level continuous-

time stochastic approximation algorithm for adaptation.

We let the step size in (6) be confined in with

being sufficiently small. Suppose for each ,

is a stationary process. We regard the observa-

tion noise associate with as a function of and write

(10)

Define by

and define

and the central finite difference

. Similar to [10, p. 1406], as
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Fig. 1. (a)–(c) Sample paths of � (t) versus � (t) (the second components): solid line—� (t); dashed line—� (t). (d) Sample path of u (t).

, has the interpretation of mean-squares

derivative. Note that

Then, we use an adaptive step-size algorithm of the following

form:

(11)

Suppose that such that as and

as .That is, goes to 0 much faster than .

Using techniques in stochastic approximation [11], we pro-

ceed to analyze the adaptive-step size tracking algorithm. Define

by . In other words, we use a time-scale

transformation. It follows from (11), is bounded due to

its truncation. Then, it is easily seen that for any , ,

with , , where

is a random variable satisfying

. It follows that , hence

the tightness follows.

The tightness of and the Prohorov’s theorem en-

able us to extract a convergent subsequence. For notational sim-

plicity, still denote the subsequence by with limit .

By the Skorohod representation, without changing notation, we

may assume that converges to with probability 1.

Also for simplicity, we drop the projection in the following dis-

cussion but retain it in the limit. Using the definition of ,

we have for any
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TABLE I
COMPARISONS OF MEAN-SQUARES ERRORS

First, it can be shown that

in probability. In addition,

. Thus, we also have

in probability. It follows

that

where in probability uniformly in . By

using the perturbed test function methods (see [8] and [11]), we

characterize the limit process as

for

where . That is, as its discrete-

time counter part (see [10]), there is a mean ordinary differential

equation associated with (11), which is given by

To demonstrate, we consider a numerical example. Use

, and consider the time interval [0,10].

Take and , and keep all other parame-

ters the same as in the previous section. Table I presents the

mean-squares errors obtained using (6) and that of the adaptive

algorithm. In the table, corresponding to the initial state ,

MSE and AMSE denote the mean-squares errors using (6)

and (11), respectively. The first column gives the value of

used in (6). We run 50 sample paths and partition the time

interval [0,10] into 1000 subintervals using step size 0.01 (i.e.,

). Denote the solution in the th

sample ( th simulation run) using (6) or (11) by . Then,

we compute ,

where is the true parameter.

As can be seen from Table I, the mean-squares errors of using

the adaptive step-size algorithm are consistently smaller than

that of (6). As the value of decreases, the corresponding mean-

squares errors increase. From a computational point of view, we

would not want to choose to be too small, since it may result in

updates of a small step at each time, which may not be desirable.

VI. FURTHER DISCUSSIONS

Continuous-time tracking algorithms for Markov regime

switching models have been developed and analyzed in this

paper. One of the main features of the algorithm is that the

driving random process is fast varying. The resulting system is

thus difficult to track. Our approach is to use averaging methods

to ignore microvariations and concentrate on a macrosystem

that is an average with respect to invariant measures.

Developing further on this idea, we have suggested adaptive

step-size algorithms. As can be seen, the adaptive step-size algo-

rithm relies on finite-difference approximation. The added sto-

chastic approximation algorithm aims at given “descent” direc-

tion of the step sizes. As in [10], we may consider algorithms

with the step-size adaptation built based on derivatives in the

sense.

Out focus has been on the case that all of the states of the

Markov chain are recurrent. Similar methods can be used to an-

alyze Markov chains, including transient states. In this case, we

can partition the states of the Markov chain as

, where denotes the group of transient

states. The corresponding generator now takes the form

. . .

where is an matrix with all of its eigenvalues on the

left half of the complex plane. In this case, we only aggregate

the states in each of the recurrent classes. Thus, we define

if for ,

if for

where is given by

, denotes the th component of for

and , and is a random variable

uniformly distributed on [0,1], independent of the Markov chain

. Note that can be viewed as the probability of entering

the th recurrent class starting from transient state (see [22]).

Then, we can proceed to study the tracking property and ascer-

tain the rates of tracking error variations.

Finally, there is a fairly complete treatment of the hidden

Markov model (HMM) (see [6]). The filtering schemes sug-

gested in this reference can be used to treat the averaged sys-

tems. Thus, we could use a combined approach of averaging and

HMM to track the time-varying signals driven by fast Markov

chains.

APPENDIX

In this section, we give the proofs of Theorems 3.2, 3.4, and

4.1 and Corollary 3.7.
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Proof or Theorem 3.2: The function chosen above

is a Liapunov function associated with the differential equation

(4). Differentiating along the solution leads to

To proceed, we use the perturbed Liapunov function method

(see [11]). Define

where denotes the conditional expectation with respect to the

-algebra . Then, using A2)

(12)

Moreover, direct calculation yields

(13)

Define

Then, for some , , and as

result

where denotes the gradient of with respect to . It

is readily seen that . The boundedness

of implies that

By virtue of (12), the on the right-hand side above

can be replaced by with a small error term added.

Therefore

It follows that

An application of Gronwall’s inequality yields that

. Replacing by

and using (12), we arrive at . The proof is

concluded.

Proof of Theorem 3.4: We first prove the tightness of

. For fixed , using (4) and Remark 3.3, for any

, and with and , by the

continuity of for each

where is random and by virtue of

Theorem 3.2. It follows that

Thus, is tight by the tightness criterion [8, p. 47]. The

weak convergence of implies that it is also tight. Then,

is tight in , which is the space

of functions defined on , taking values in and
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being right continuous and having limit limits, endowed with

the Skorohod topology.

Since is tight, by Prohorov’s theorem, we can

extract a weakly convergent subsequence. For simplicity, still

denote the subsequence by , whose limit is de-

noted by . Using (4), we write as

(14)

Focusing on the last term, we have by virtue of Lemma 3.1, as

Thus

(15)

where in probability as uniformly in

. By virtue of the weak convergence of to

, in distri-

bution. By the Skorohod representation (with a slight abuse of

notation), we may assume that

and with probability 1, and the conver-

gence is uniform on any bounded time interval. Using this fact

and taking limit in (15) as , we obtain

(16)

Equivalently, what has been proved so far is that the pair of

processes solves a martingale problem with oper-

ator defined by

where

for an appropriate real-valued function . We claim

that the solution of the martingale problem associated

with the operator is unique in the sense of in distri-

bution. To see this, using the characteristic function, de-

fine , ,

where , , , and is a continu-

ously differentiable, real-valued function. Define the vector

. Then, it

is easily verified that satisfies a linear ordinary differ-

ential equation, which has a unique solution. It follows that

is uniquely determined for all

and all . As a consequence, the distribution of

is uniquely determined by virtue of the well-known

inversion theorem of the characteristic function. The proof of

the theorem is thus completed.

Proof of Corollary 3.7: Subtracting from

yields

(17)

It follows that

where

Note that as by virtue of Lemma 3.1. By virtue

of Gronwall’s inequality

as

The assertion is proved.

Proof of Theorem 4.1: The proof is divided into four steps.
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Step 1: We first show that . By

virtue of (8) and Lemma 3.1

The desired bound follows from Lemma 3.1 and Gronwall’s

inequality.

Step 2: We proof the tightness of . For any ,

and with and , we have

where by Lemma

3.1, and . Thus, the tightness of

follows from the above estimate by taking expectations

and followed by .

Step 3: We proceed to figure out the limit process. For

convenience, set

(18)

where

As done in Step 2, we can show that is tight in

. Select a weakly convergent subsequence

and still denote it by . Using the Skorohod repre-

sentation without changing notation, we may assume the con-

vergence is in the sense of with probability one and the conver-

gence takes place uniformly on compact subsets.

For each and any (the collection of

functions with compact support), define the operator

(19)

For each and any , define

It is well known that

is a martingale (20)

We will use a combination of perturbed test function and mar-

tingale averaging to figure out the limit process. In view of the

definition (19)

(21)

where denotes the gradient of with respect to .

Noting

(22)

To get rid of the term of the order , we introduce the

following perturbation:

(23)

where denotes the conditional expectation with respect to the

-algebra generated by . By the

Markov property

(24)

This implies that (by the independence of and )

(25)

Thus, the perturbation is small.
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Similar to (22)

direct calculation yields that

(26)

To proceed, define

By virtue of (25)

(27)

Using (21) and (26)

By virtue of Lemma 3.1, and the boundedness of

for each , as

Moreover, in view of (24), the limit (in probability) of

exists and is denoted

by . Consequently

in probability

Noting the use of and , the with probability 1 conver-

gence of to (via the weak convergence

and the Skorohod representation), we have that for any positive

integer , any , any bounded and continuous function

for , see (28), shown at the bottom of the page,

where for notational simplicity, we have used

In view of the definition of the perturbation and (25), see the

equation that is shown at the bottom of the page, where the

limit operator is defined by

Thus, the limit process solves a martingale problem

with operator . Moreover, via the use of characteristic func-

tions as in the last part of the proof of Theorem 3.4, the

martingale problem is unique in the sense in distribution.

Thus, we have a representation for the limit , namely

, where is an -dimensional

standard Brownian motion. Note that in the above, the diffusion

coefficient in fact depends on the limit Markov chain .

Thus, in lieu of a diffusion process, we have a limit switching

diffusion.

Step 4: Using the result of Step 3 and (8), the weak conver-

gence of to and the Sko-

rohod representation then imply that the limit is given by

(9). Furthermore, the limit is unique in distribution by the same

reason as in Step 3.

(28)
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