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Continuous variable measurement 
device independent quantum 
conferencing with postselection
Alasdair I. Fletcher* & Stefano Pirandola

A continuous variable (CV), measurement device independent (MDI) quantum key distribution 
(QKD) protocol is analyzed, enabling three parties to connect for quantum conferencing. We utilise 
a generalised Bell detection at an untrusted relay and a postselection procedure, in which distant 
parties reconcile on the signs of the displacements of the quadratures of their prepared coherent 
states. We derive the rate of the protocol under a collective pure-loss attack, demonstrating improved 
rate-distance performance compared to the equivalent non-post-selected protocol. In the symmetric 
configuration in which all the parties lie the same distance from the relay, we find a positive key rate 
over 6 km. Such postselection techniques can be used to improve the rate of multi-party quantum 
conferencing protocols at longer distances at the cost of reduced performance at shorter distances.

Quantum Key Distribution (QKD) promises provably secure  communication1 based on fundamental physical 
principles. Relying on the inability to clone arbitrary quantum  states2 and by utilising non-orthogonal states or 
 entanglement3, two distant parties are able to agree symmetric cryptographic keys, secure against any attack 
possible within the laws of quantum mechanics. The technology has rapidly matured, advancing from the first 
proposed protocols based on transmission of discrete single qubit  states4,5 and proof of principle of experiments 
to practical deployments over long  distances6–8 and networks and network protocols enabling multiple users to 
communicate securely across metropolitan sized areas and  beyond9–11.

However, whilst QKD offers ultimate security against channel attacks, its practical implementation remains 
challenging. Many approaches require trusted experimental devices and detectors and therefore suffer from the 
possibility of so-called side-channel attacks against such devices. Fully Device-Independent approaches to QKD 
are possible, which entirely eliminate such  attacks12–14 but these are practically limited by low rates and poor 
distance scaling. Instead Measurement Device Independent (MDI)  QKD15,16 provides a middle ground, offer-
ing higher  rates17 and various practical  implementations18–20, by relaxing the assumptions on the protocol to 
having distant parties send states to a central detector relay which may be controlled by an Eavesdropper (Eve). 
Malicious behaviour by Eve may be detected by the parties in the reconciliation and parameter estimation stage 
of the protocol.

Moreover, point-to-point quantum communications are known to be inherently distance limited by the 
PLOB  bound21 expressed by the formula C = − log2(1− η) with the transmissivity η decaying exponentially with 
distance. Continuous variable (CV) QKD protocols are able to reach rates approaching the PLOB bound, out-
performing discrete state protocols; furthermore their experimental implementation is more  straightforward1,22. 
Naively, there was thought to be a 3db (corresponding to η = 1

2 ) loss-limit on CV QKD, however this has since 
been exceeded with reverse reconciliation, twin-field  QKD23–26 and postselection techniques. Postselection tech-
niques rely on the fact that even beyond 3db loss there are regions in parameter space in which the rate remains 
 positive27. By announcing the absolute values of the quadratures of their prepared coherent states the two end 
parties are able to select only these regions, reconciling the signs of their quadratures into a key with a positive 
rate even beyond 3db loss. Such post selection techniques have been implemented  experimentally28 and have 
recently been exploited in the MDI setting to extend the maximum distance of two-party CV MDI  QKD29. Other 
similar postselection techniques are also possible and have recently been utilised  in30,31 for discrete modulation 
CV QKD protocols to improve their distance scaling and tolerance to excess noise.

Whilst such postselection techniques have been shown to improve the distance scaling for typical QKD pro-
tocols with two end users; it is also frequently desirable, particularly within a network setting, for multiple users 
to be able to establish a common secret key. Quantum  conferencing32 enables the secure distribution of such 
keys from a single QKD protocol rather than via the composition of multiple bipartite protocols. Such protocols 
rely on establishing multipartite entangled states between the users such as GHZ  states33 in the discrete variable 
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case. Quantum conferencing has attracted a great deal of interest and a variety of protocols have been proposed, 
including MDI protocols with discrete  variables34, twin field  protocols35–37, consideration of the effect of finite 
sized  keys38 and recently a continuous variable MDI  protocol39.

In this work, we provide the first demonstration that the same post selection techniques typically applied 
to two party QKD can also be utilised to increase the effective range at which CV MDI quantum conferencing 
can occur. We utilise the same generalised Bell detection from the CV MDI quantum conferencing protocol 
introduced  in39 to establish multipartite correlations between the user’s variables and a similar postselection 
procedure to that used  in29 to extend the effective range of the protocol. Whilst we are restricted by the need 
to perform numerical integration in large number of dimensions to consider only three parties and pure loss 
attacks, the protocol presented here is in principle readily extended to N users and entangling cloner attacks.

The structure of the paper is as follows: in “Protocol and detector” we introduce the protocol and explain the 
structure of the detector; “Rate” explains how the rate of the protocol is calculated; “Results” provides results 
and “Conclusion” is for conclusions.

Protocol and detector
In this paper, we consider the case of three users undertaking quantum conferencing. The three parties: Alice, 
Bob and Charlie individually prepare Gaussian modulated coherent states. Each party individually has access to 
an independent zero-mean Gaussian distribution with standard deviations σA, σB, σC respectively. Each party 
then draws two independent values from their respective distributions for the value of the q and p quadratures 
of their coherent state. They encode the absolute values in the variables Qi and Pi respectively and the signs in 
κi and κ ′i  . Thus they prepare coherent states of the form:

Each state is sent through a lossy channel to the detector which may be attacked by an eavesdropper (Eve). 
This is modelled as a beamsplitter attack in which Eve inserts a beamsplitter into each channel, storing the outputs 
in a quantum memory. In a pure loss attack, Eve does not actively inject any state at the beamsplitter and thus 
each coherent state is instead mixed with the vacuum state |0�.

The structure of the detector is illustrated in Fig. 1 and was devised  in39 to perform a generalised Bell detec-
tion on the incoming coherent states. It is comprised of a cascade of beamsplitters, each having transmissivity 
Ti =

i
i+1 . In the case of three parties, which we consider, this corresponds to T1 = 1/2 and T2 = 2/3 . The beam-

splitters are followed by two q  (p) homodyne detections and a final homodyne detection in the p  (q) quadrature 
and the results of all the measurements are publicly broadcast. Operated correctly, in the entanglement based 
 representation1 the detector has the effect of projecting the Alice-Bob-Charlie state into a symmetric state with 
GHZ-like correlations between each parties  state39. The two possible configurations are switched between ran-
domly and are announced during the basis reconciliation stage of the protocol. If the first configuration (two q 
and one p detection) was selected, the parties will attempt to reconcile their values of κ ′A, κ

′
B, κ

′
C into a secure key. 

Conversely, if the second configuration is utilised, the parties will attempt to reconcile their values of κA, κB, κC . 
At this point each party reveals their values of Qi and Pi , and publicly broadcasts them to every other user. Using 

(1)|αi� = |
1

2
(κiQi + κ ′iPi)� for i = A,B,C .

Figure 1.  Structure of the detector, demonstrating the two possible orientations. Input modes are mixed by 
two beamsplitters with transmissivities T1 =

1
2
 and T2 =

2
3
 . In the first configuration (pictured left) the states 

undergo two q homodyne detections and one p homodyne detection. The parties will attempt reconciliation 
between κ ′A, κ

′
B, κ

′
C . In the second orientation (pictured right) the states undergo two p homodyne detections 

and one q homodyne detection. In this case the parties attempt reconciliation on κA, κB, κC.
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their knowledge of Qi and Pi , the parties can perform postselection, only retaining instances of the protocol 
where their mutual information exceeds Eve’s Holevo information. Figure 2 depicts the protocol being performed 
under the pure loss attack assumed throughout this paper.

Rate
We first sketch the method used to determine the rate. At the end of the protocol the parties perform pairwise 
reconciliation between κA, κB, κC or κ ′A, κ

′
B, κ

′
C depending on the orientation of the detector. In the asymptotic 

limit of a large number of uses the rate of the protocol is given by:

where Iij is the binary mutual information between the sign variables κi and κj or κ ′i and κ ′j  . χ is the Holevo infor-
mation. The mutual information can be found by utilising Bayes’ Theorem and the distribution of measurement 
outcomes as detailed in “Mutual information”. The Holevo information is calculated by carefully considering 
Eve’s state at the end of the protocol as explained in “Holevo bound”. Additionally, since we ultimately wish to 
perform postselection to increase the performance of the protocol we work with single-point versions of the above 
quantities Ĩij and χ̃ which are the values conditioned upon the quadratures and measurement outcome. To this 
end we start by considering the initial covariance matrix of the Alice–Bob–Charlie–Eve system, which is given by:

where I is the two-by-two identity matrix and for a pure loss attack VE = I⊕ I⊕ I . The mean value of the 
Alice–Bob–Charlie system is:

The mean value of Eve’s system is zero. After propagation through the detector’s array of beamsplitters and the 
homodyne detections, the distribution of measurement outcomes is given by:

where

We have implicitly removed the conditioning on the modulus and absolute value of the q quadratures from the 
notation as there is no dependence upon them. Similarly for the opposite detector configuration:

(2)Rij = Iij − χ

(3)VABCE = IA ⊕ IB ⊕ IC ⊕ VE

(4)x̄ABC = (κAQA, κ
′
APA, κBQB, κ

′
BPB, κCQC , κ

′
CPC)

T .

(5)p(γp|κ
′
A, κ

′
B, κ

′
C ,PA,PB,PC) =

1
√

2πvp
exp

(

−(γp − p̄)2

2

)

(6)p̄ =
√

T1T2τA κ ′APA +
√

(1− T1)T2τB κ ′BPB +
√

(1− T2)τC κ ′CPC .

Figure 2.  Operation of the detector under a collective pure loss attack. Eve attacks each of the incoming 
channels by inserting beamsplitters with transmissivities τA, τB, τC , which combine the incoming signals with 
vacuum states |0� . Eve stores her output modes in a quantum memory (QM). The remaining modes are mixed 
in the cascade of beamsplitters and then undergo homodyne detection. The results of the homodyne detections 
γq1 , γq2 , γp are publicly announced. Alice, Bob and Charlie also publicly announce the absolute values of the 
quadratures of their prepared coherent states QA,QB,QC ,PA,PB,PC . In this configuration the parties attempt 
to reconcile their values of κ ′A, κ

′
B, κ

′
C.
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where

Finally, we have implicitly assumed throughout that the homodyne detectors have perfect efficiency.

Mutual information. We first introduce the following compact notation κ ′ = (κ ′A, κ
′
B, κ

′
C) ; PPP = (PA,PB,PC) , 

κ
′
\A = (κ ′B, κ

′
C) which simplifies the following expressions. Let us recall the definition of the single point mutual 

information between the two binary variables κ ′i and κ ′j  . This is clearly just the mutual information conditioned 
on the announced variables γp and PPP:

where H is the binary entropy so that:

and

From the symmetry of the detector we have IAB = IAC = IBC and for simplicity we consider only IAB from 
this point onwards. Using Eq. (5) and Bayes’ theorem we first calculate the probability of positive and negative 
values for κ ′A conditioned on κ ′B,κ ′C , the magnitudes of the p quadratures PPP and the measurement outcome γp:

Noting that,

and p(κ ′A|κ
′
\A,PPP) = 1/2 we reach:

We may then remove the conditioning on κ ′C to find p(κ ′A|κ
′
B,PPP, γp) for the second term in the single point 

mutual information.

so that we may write

Similarly to further remove the dependence from κ ′B:

By the same approach we can also find p(κ ′B|PPP, γp) , enabling the sum in Eq. (9) to be taken. Finally in order to 
take the integral over the single point mutual information we require the probability of all the variables

Holevo bound. At the end of the protocol Eve is left with the state ρ̂E|PPP,γp which is her total state conditioned 
on the announced absolute values of the p quadratures PPP and the measurement outcome γp . This state is a convex 
combination of pure Gaussian states corresponding to given values of κ ′A, κ

′
B, κ

′
C and hence Eve’s total state may 

be written:

(7)p(γq|κA, κB, κC ,QA,QB,QC) =
1

√

2πvq
exp

(

−(γq − q̄)2

2

)

(8)q̄ =
√

T1T2τA κAQA +
√

(1− T1)T2τB κBQB +
√

(1− T2)τC κCQC .

(9)
Ĩij = Hκ ′i |PPP,γp

−
∑

κ ′j

p(κ ′j |PPP, γp) Hκ ′i |κ
′
jPPP,γp

(10)Hκ ′i |PPP,γp
= −p(κ ′i |PPP, γp) log2

(

p(κ ′i |PPP, γp)
)

−
(

1− p(κ ′i |PPP, γp)
)

log2
(

1− p(κ ′i |PPP, γp)
)

(11)
Hκ ′i |κ

′
j ,PPP,γp

= −p(κ ′i |κ
′
j ,PPP, γp) log2(p(κ

′
i |κ

′
j ,PPP, γp))−

(

1− p(κ ′i |κ
′
j ,PPP, γp)

)

log2

(

1− p(κ ′i |κ
′
j ,PPP, γp)

)

.

(12)p(κ ′A|κ
′
\A,PPP, γp) =

p(γp|κ
′,PPP) p(κ ′A|κ

′
\A,PPP)

p(γp|κ
′
\A,PPP)

(13)
p(γp|κ

′
\A,PPP) =

∑

κ ′A

p(γp|κ
′,PPP) p(κ ′A|κ

′
\A,PPP)

(14)p(κ ′A|κ
′
\A,PPP, γp) =

p(γp|κ
′,PPP)

∑

κ ′A
p(γp|κ ′,PPP)

.

(15)
p(κ ′A|κ

′
B,PPP, γp) =

∑

κ ′C

p(κ ′A|κ
′
\A,PPPγp) p(κ

′
\ b|κ

′
B,PPP),

(16)p(κ ′A|κ
′
B,PPP) =

∑

κ ′C
p(γp|κ

′,PPP)
∑

κ ′Aκ
′
C
p(γp|κ ,′PPP)

.

(17)p(κ ′A|PPP, γp) =

∑

κ ′Bκ
′
C
p(γp|κ

′,PPP)
∑

κ ′Aκ
′
Bκ

′
C
p(γp|κ ′,PPP)

.

(18)p(γp,PPP) =
∑

κ
′

p(γp|κ
′PPP) p(κ ′APA) p(κ

′
BPB) p(κ

′
CPC).



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17329  | https://doi.org/10.1038/s41598-022-22251-8

www.nature.com/scientificreports/

It is important to note that whilst the conditional states, ρ̂E|κ ′ ,PPP,γp , are pure and Gaussian the total state, ρ̂E|PPP,γp is 
not, which complicates our analysis. Nonetheless, assuming that Eve performs a collective attack on the protocol 
the relevant quantity to calculate is the Holevo information χ . We can again write this as a single point quantity 
in the following way.

where χ̃(E : κ ′i |PPP, γp) is the single point Holevo information and S is the von Neumann entropy which we recall 
is calculated from the eigenvalues {�i} of a density matrix ρ̂ by:

First let us write the conditional states ρ̂E|κ ′PPPγp as:

We consider the matrix of overlaps O of this state for all the combinations of κ ′A, κ
′
B, κ

′
C.

The values in the far column denote the row values of κ ′A, κ
′
B, κ

′
C . The columns may be similarly labelled. O is 

clearly separable as:

which implies:

Each of these states lies in a two-dimensional Hilbert space. Using x to index the parties A, B, C we may expand 
the states as:

and find the following relation for the coefficients:

where X labels the corresponding values A, B, C from Eq. (23). For two Gaussian states with the same covariance 
matrix V and mean values x̄1 and x̄2 the following relation  holds40:

which we use to calculate

(19)ρ̂E|PPP,γp =
∑

κ
′

p(κ ′|PPP, γp) ρ̂E|κ ′ ,PPP,γp .

(20)χ̃ (E : κ ′i |PPP, γp) = S(ρ̂E|PPP,γp )− S(ρ̂E|κ ′i ,PPP,γp
)

(21)S(ρ̂) = −
∑

i

�i log2(�i).

(22)ρ̂E|κ ′PPPγp = |E
PPP,γp
κ ′Aκ

′
Bκ

′
C
� �E

PPP,γp
κ ′Aκ

′
Bκ

′
C
|

(23)O =





















1 C B BC A AC AB ABC
C 1 BC B AC A ABC AB
B BC 1 C AB ABC A AC
BC B C 1 ABC AB AC A
A AC AB ABC 1 C B BC
AC A ABC AB C 1 BC B
AB ABC A AC B BC 1 C
ABC AB AC A BC B C 1





















(−1 − 1 − 1)
(−1 − 1 1)
(−1 1 − 1)
(−1 1 1)
(1 − 1 − 1)
(1 − 1 1)
(1 1− 1)
(1 1 1)

(24)O =

(

1 A
A 1

)

⊗

(

1 B
B 1

)

⊗

(

1 C
C 1

)

(25)|E
PPP,γp
κ ′Aκ

′
Bκ

′
C
� = |E′PPP,γp

κ ′A
� ⊗ |E

PPP,γp
κ ′B

� ⊗ |E′PPP,γp
κ ′C

� .

(26)|E
PPP,γp
κi=−1� = c0 |�

(x)
0 � + c1 |�

(x)
1 �

(27)|E
PPP,γp
κi=1� = c0 |�

(x)
0 � − c1 |�

(x)
1 �

(28)|c
(x)
0 |2 =

1

2
(1+ X)

(29)|c
(x)
1 |2 =

1

2
(1− X)

(30)Tr(ρ̂1ρ̂2) = exp

(

−
1

4
(x̄1 − x̄2)V

−1(x̄1 − x̄2)

)

(31)A = �E
PPP,γp
κA=−1|E

PPP,γp
κA=1�,

(32)B = �E
PPP,γp
κB=−1|E

PPP,γp
κB=1�,
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We are now able to give ρ̂E|PPP,γp in the {|�(A)
0 � , |�

(A)
1 �} ⊗ {|�

(B)
0 � , |�

(B)
1 �} ⊗ {|�

(C)
0 � , |�

(C)
1 �} basis. Describing 

the row position with the binary string (i, j, k) and similarly the column position with (i′, j′, k′) each component 
of the density matrix can be calculated by:

By calculating the following inner products:

we can therefore immediately find the diagonal components of the density matrix:

The off diagonal terms are given by:

where �(i, j, k, i′, j′, k′) is given by

where f is a function such that f (κi = −1) = 0 and f (κi = 1) = 1 . We therefore have all the components of 
ρ̂E|PPP,γp from which we may numerically find the eigenvalues and compute the first term in the Holevo bound 
(Eve’s conditional output state following the protocol ρ̂E|PPP,γp has dimension 2N . Therefore for N ≥ 3 , including 
the tri-partite case considered in this paper, the eigenvalues of this state cannot be given in closed form. Therefore 
the entropy of the state and consequently the single point Holevo information χ̃ can only be evaluated numeri-
cally for given values of the protocol’s parameters. This greatly complicates numerical integration in Eq. (47) as 
no explicit expression for the single point rate can be given. It is for this reason that our analysis is limited to 
pure loss attacks and three users, even though the analysis is readily extended to an arbitrary number of users 
and entangling cloner attacks.). For the second term in the Holevo bound we need Eve’s state conditioned on 
κA . If κ ′A = −1:

if κ ′A = 1:

The same method explained above may be used to determine components of these density matrices in the 
{|�

(B)
0 � , |�

(B)
1 �} ⊗ {|�

(C)
0 � , |�

(C)
1 �} basis. The eigenvalues may then be used to calculate the second term in the 

Holevo bound.

Postselection. We now demonstrate how the single point quantities may be used to calculate the postse-
lected rate RPS . The mutual information IAB may be found by integrating the single point mutual information ĨAB

Similarly we do the same for the Holevo information:

(33)C = �E
PPP,γp
κC=−1|E

PPP,γp
κC=1�.

(34)

(ρ̂E|PPPγp )(ijk)(i′j′k′) =
∑

κ
′

p(κ ′|PPP, γp)��
(A)
i |E

PPP,γp
κA ��E

PPP,γp
κA |�

(A)
i′ ���

(B)
j |E

PPP,γp
κB ��E

PPP,γp
κB |�

(2)
j′ ���

(C)
k |E

PPP,γp
κ ′C

��E
PPP,γp
κ ′C

|�
(C)
k′ �.

(35)��
(x)
0 |E

PPP,γp
κx=−1� = c

(x)
0

(36)��
(i)
0 |E

PPP,γp
κx=1� = c

(x)
0

(37)��
(i)
1 |E

PPP,γp
κx=−1� = c

(x)
1

(38)��
(i)
1 |E

PPP,γp
κx=1� = −c

(x)
1

(39)(ρ̂E|PPP,γp )(ijk)(ijk) = |c
(A)
i |2 |c

(B)
j |2 |c

(C)
k |2.

(40)(ρ̂E|PPP,γp)(ijk)(i′j′k′) = c
(A)
i

(

c
(A)
i′

)∗
c
(B)
j

(

c
(B)
j′

)∗
c
(C)
k

(

c
(C)
k′

)∗
�(i, j, k, i′, j′, k′)

(41)�(i, j, k, i′, j′, k′) =
∑

κ
′

(−1)f (κ
′
A)|i−i′|+f (κ ′B)|j−j′|+f (κ ′C)|k−k′| p(κ ′|PPP, γp)

(42)

ρ̂E|κ ′A=−1,PPP = |E
PPP,γp
κ ′A=−1

� �E
PPP,γp
κ ′A=−1

| ⊗

(

∑

κ ′Bκ
′
C

p(κ ′B, κ
′
C |κ

′
A = −1,PPP, γp) |E

PPP,γp
κ ′Bκ

′
C |κ

′
A=−1

� �E
PPP,γp
κ ′Bκ

′
C |κ

′
A=−1

|

)

;

(43)ρ̂E|κ ′A=1,PPP = |E
PPP,γp
κ ′A=1

� �E
PPP,γp
κ ′A=1

| ⊗

(

∑

κ ′Bκ
′
C

p(κ ′B, κ
′
C |κ

′
A = 1,PPP, γp) |E

PPP,γp
κ ′Bκ

′
C |κ

′
A=1

� �E
PPP,γp
κ ′Bκ

′
C |κ

′
A=1

|

)

.

(44)IAB =

∫

p(PPP, γp) ĨAB(PPP, γp) dPPP dγp

(45)χ =

∫

p(PPP, γp) χ̃(PPP, γp) dPPP dγp
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By defining the single point rate as R̃ = ĨAB − χ̃ . Thus the overall rate becomes:

The postselection ensures the parties only use instances of the protocol where the single point rate is positive. 
Hence the postselected rate RPS becomes:

where Ŵ denotes the region in which the single point rate is positive.

Results
We now present the numerical results for the post-selected rate of the protocol. By utilising the relation τ = 10−γ d 
and setting γ = 0.02/km (equivalent to 0.2 db/km), which corresponds to state of the art fibre optics, the rate 
of the protocol is expressed in terms of distances (d) of the parties from the detector. In particular, we consider 
the symmetric configuration in which each of the parties is located the same distance from the detector. Other 
asymmetric configurations can be considered within the same framework, by mapping the distance of the user 
furthest away into the transmissivity of each incoming channel. Thus the results presented here represent the 
worst case scenario for any other asymmetric configuration of the parties.

Figure 3 shows the rate-distance performance of the protocol in the asymptotic limit, assuming that a pure-
loss attack is undertaken by Eve. We work with perfect detector efficiency and with the variance of each prepared 
quadrature σA = σB = σB = 1 . We note that in general it may be possible to optimise the performance of the 
protocol over these parameters. Our results demonstrate that a positive rate can be maintained over a greater 
distance than in the corresponding 3-party case (shown for comparison in Fig. 3, albeit at the cost of lower rates 
at short distances). In particular the new protocol outperforms the equivalent protocol without postselection 
for distances greater than ∼ 1 km.

Conclusion
We have demonstrated a 3-party CV-MDI-QKD protocol that combines a generalised Bell detection with a post-
selection regime based on performing reconciliation on the signs of prepared quadratures of coherent states. We 
show that improved rate-distance performance is possible compared to the equivalent 3-party protocol without 
postselection, allowing a rate in excess of 10−4 bits per use at greater than 3 km and a positive rate for distances of 
up to ∼ 6 km . Our protocol also outperforms the equivalent protocol without postselection for distances greater 
than ∼ 1 km . Moreover since these protocols have exactly the same structure in terms of state preparation and 
the detector relay, it is possible to use one such relay to perform either protocol, choosing whichever will give the 
higher rate. That is, if the users are able to establish their distances from the detector, they choose whether or not 
to announce the absolute values of their quadratures and undertake postselection depending on whether or not 
this will produce a better rate. Whilst σA, σB, σC are preset so any optimisation over these parameters must con-
sider both protocols simultaneously it is still possible to retain the advantages of higher rate at shorter distances 
from the non-postselected protocol in addition to the improved long distance performance from our protocol.

(46)R =

∫

p(PPP, γp) R̃(PPP, γp) dPPP dγp.

(47)RPS =

∫

p(PPP, γp)max
[

R̃(PPP, γp), 0
]

dPPP dγp

(48)=

∫

Ŵ

p(PPP, γp) R̃(PPP, γp) dPPP dγp

Figure 3.  Post-selected rate of the protocol for the symmetric party configuration. Rate plotted with perfect 
detector efficiency and the variance in all prepared quadratures satisfy σA = σB = σC = 1 . The rate of the 
equivalent 3-party protocol  from39 with optimised parameters, under a pure loss attack from is shown for 
comparison (red dashed line).
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The need to undertake a high-dimensional numerical integral given in Eq. (47), for a function that cannot be 
given in closed form (Eve’s conditional output state following the protocol ρ̂E|PPP,γp has dimension 2N . Therefore 
for N ≥ 3 , including the tri-partite case considered in this paper, the eigenvalues of this state cannot be given 
in closed form. Therefore the entropy of the state and consequently the single point Holevo information χ̃ can 
only be evaluated numerically for given values of the protocol’s parameters. This greatly complicates numerical 
integration in Eq. (47) as no explicit expression for the single point rate can be given. It is for this reason that 
our analysis is limited to pure loss attacks and three users, even though the analysis is readily extended to an 
arbitrary number of users and entangling cloner attacks.) to compute the post-selected key rate, limits our analysis 
to the 3-party case and pure-loss attacks. Nonetheless it may be possible to extend the study to the general N 
party case, maintaining the same structure of detector as  in39 and considering entangling cloner attacks. Thus, 
our new protocol demonstrates that secure, multi-party conferencing can be achieved over improved distances, 
while retaining the security advantages of an MDI QKD protocol.

Data availability
The datasets used and analysed during the current study are available from the corresponding author on reason-
able request.
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