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Continuous variable quantum cryptography
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We propose a quantum cryptographic scheme in which small phase and amplitude modulations of cw light
beams carry the key information. The presence of Einstein-Podolsky-Rosen type correlations provides the

quantum protection.

PACS number(s): 03.67.Dd, 42.50.Dv

Quantum cryptographic schemes use fundamental proper-
ties of quantum mechanics to ensure the protection of ran-
dom number keys [1,2]. In particular, the act of measurement
in quantum mechanics inevitably disturbs the system. Fur-
thermore, for single quanta, such as a photon, simultaneous
measurements of noncommuting variables are forbidden. By
randomly encoding the information between noncommuting
observables of a stream of single photons any eavesdropper
(Eve) is forced to guess which observable to measure for
each photon. On average, half the time Eve will guess
wrong, revealing herself through the back action of the mea-
surement to the sender (Alice) and receiver (Bob). There are
some disadvantages in working with single photons, particu-
larly in free space, where scattered light levels can be high.
Also it is of fundamental interest to quantum information
research to investigate links between discrete-variable,
single-photon phenomena and continuous variable, multi-
photon effects. This motivates a consideration of quantum
cryptography using multiphoton light modes. In particular,
we consider encoding key information as small signals car-
ried on the amplitude and phase quadrature amplitudes of the
beam. These are the analogues of position and momentum
for a light mode and hence are continuous, conjugate vari-
ables. Although simultaneous measurements of these non-
commuting observables can be made in various ways, for
example, splitting the beam on a 50:50 beam splitter and
then making homodyne measurements on each beam, the
information that can be obtained is strictly limited by the
generalized uncertainty principle for simultaneous measure-
ments [3,4]. If an ideal measurement of one quadrature am-
plitude produces a result with a signal to noise of
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then a simultaneous measurement of both quadratures cannot
give a signal-to-noise result in excess of
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Here Vf and Vni are, respectively, the signal and noise
power of the amplitude (+) or phase (—) quadrature at a
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particular rf frequency with respect to the optical carrier. The
quantum noise that is inevitably added when dividing the
mode is V,, . The splitting ratio is »~ and " =1—17" (e.g,
a 50:50 beam splitter has " =~ =0.5). The spectral pow-
ers are normalized to the quantum noise limit (QNL) such
that a coherent beam has V, =1. Normally the partition
noise will also be at this limit (V,, = 1). For a classical light
field, i.e., where Vni>1 the penalty will be negligible. How-
ever, for a coherent beam a halving of the signal-to-noise
ratio for both quadratures is unavoidable when the splitting
ratio is a half. The Hartley-Shannon law [5] applies to
Gaussian, additive-noise, communication channels such as
we will consider here. It shows, in general, that if informa-
tion of a fixed bandwidth is being sent down a communica-
tion channel at a rate corresponding to the channel capacity
and the signal-to-noise ratio is reduced, then errors will in-
evitably appear at the receiver. Thus, under such conditions,
any attempt by an eavesdropper to make simultaneous mea-
surements will introduce errors into the transmission. In the
following we will first examine what level of security is
guaranteed by this uncertainty principle if a coherent state
mode is used. We will then show that the level of security
can in principle be made as strong as for the single quanta
case by using a special type of two-mode squeezed state. The
question of optimum protocols and eavesdropper strategies is
complex and has been studied in detail for the single quanta
case [6]. Here we only examine the most obvious strategies
and do not attempt to prove equal security for all possible
strategies.

Consider the setup depicted in Fig. 1. A possible protocol
is as follows. Alice generates two independent random
strings of numbers and encodes one on the phase quadrature
and the other on the amplitude quadrature of a bright coher-
ent beam. Bob uses homodyne detection to detect either the
amplitude or phase quadrature of the beam when he receives

random number

generators .
homodyne detection

randomly measuring
either phase or
amplitude signal power

coherent AM PM
source

ALICE BOB

FIG. 1. Schematic of the coherent light cryptographic setup. AM
is an amplitude modulator while PM is a phase modulator.
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FIG. 2. Schematics of three eavesdropper strategies. Only (a) is
available in single quanta schemes.

it. He swaps randomly which quadrature he detects. On a
public line Bob then tells Alice at which quadrature he was
looking at any particular time. They pick one quadrature to
be the test and the other to be the key. For example, they
may pick the amplitude quadrature as the test signal. They
would then compare results for the times that Bob was look-
ing at the amplitude quadrature. If Bob’s results agreed with
what Alice sent, to within some acceptable error rate, they
would consider the transmission secure. They would then use
the undisclosed phase quadrature signals, sent while Bob was
observing the phase quadrature, as their key. By randomly
swapping which quadrature is key and which is test through-
out the data comparison an increased error rate on either
quadrature will immediately be obvious.

To quantify our results we will consider the specific en-
coding scheme of binary pulse code modulation, in which
the data is encoded as a train of 1 and O electrical pulses that
are impressed on the optical beam at some rf frequency using
electro-optic modulators. The amplitude and phase signals
are imposed at the same frequency with equal power. Let us
now consider what strategies Eve could adopt (see Fig. 2).
Eve could guess which quadrature Bob is going to measure
and measure it herself [Fig. 2(a)]. She could then reproduce
the digital signal of that quadrature and impress it on another
coherent beam that she would send on to Bob. She would
learn nothing about the other quadrature through her mea-
surement and would have to guess her own random string of
numbers to place on it. When Eve guesses the right quadra-
ture to measure, Bob and Alice will be none the wiser; how-
ever, on average 50% of the time Eve will guess wrong.
Then Bob will receive a random string from Eve unrelated to
the one sent by Alice. These will agree only 50% of the time.
Thus Bob and Alice would see a 25% bit error rate in the test
transmission if Eve were using this strategy. This is analo-
gous to the result for single quanta schemes in which this
type of strategy is the only available.
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However, for bright beams it is possible to make simulta-
neous measurements of the quadratures, with the caveat that
there will be some loss of information. So a second strategy
that Eve could follow would be to split the beam in half,
measure both quadratures, and impose the information ob-
tained on the respective quadratures of another coherent
beam that she sends to Bob [Fig. 2(b)]. How well will this
strategy work? Suppose Alice wishes to send the data to Bob
with a bit error rate (BER) of about 1%. For bandwidth lim-
ited transmission of binary pulse code modulation [7] the
BER is given by

1 1
B= EerfCE\/%S/N. (3)

Thus Alice must impose her data with a S/N ratio of about
13 dB. For simultaneous measurements of a coherent state
the signal-to-noise ratio obtained is halved [see Eq. (2)]. As
a result, using Eq. (3), we find the information Eve intercepts
and subsequently passes on to Bob will only have a BER of
6%. This is clearly a superior strategy and would be less
easily detected. Furthermore, Eve could adopt a third strat-
egy of only intercepting a small amount of the beam and
doing a simultaneous detection on it [Fig. 2(c)]. For ex-
ample, by intercepting 16% of the beam, Eve could gain
information about both quadratures with a BER of 25%,
while Bob and Alice would observe only a small increase of
their BER to 1.7%. In other words, Eve could obtain about
the same amount of information about the key that she could
obtain using the ‘‘guessing’’ strategy, while being very dif-
ficult to detect, especially in the presence of losses.

The preceding discussion has shown that a cryptographic
scheme based on coherent light provides much less security
than single quanta schemes [8]. We now consider whether
squeezed light can offer improved security. For example,
amplitude squeezed beams have the property V:[ <1<V, .
Because the amplitude quadrature is sub-QNL, greater deg-
radation of S/N than the coherent case occurs in simulta-
neous measurements of amplitude signals [see Eq. (2)]. Un-
fortunately the phase quadrature must be super-QNL; thus
there is less degradation of S/N for phase signals. As a result
the total security is in fact less than for a coherent beam.
However, in the following we will show that by using two
squeezed light beams, security comparable to that achieved
with single quanta can be obtained.

The setup is shown in Fig. 3. Once again Alice encodes
her number strings digitally, but now she impresses them on
the amplitude quadratures of two, phase locked, amplitude
squeezed beams a and b, one on each. A /2 phase shift is
imposed on beam b and then they are mixed on a 50:50 beam
splitter. The resulting output modes ¢ and d are given by

c= \/;(a—kib),
d=/X(a~ib).

These beams are now in an entangled state that will exhibit
Einstein-Podolsky-Rosen (EPR) type correlations [9,10]. Lo-
cal oscillator beams (LO’s) of the same power as, and with

(4)
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FIG. 3. Schematic of squeezed light cryptographic setup. Sqza
and sqzb are phase-locked squeezed light sources. Rna and Rnb are
independent random number sources. Bs and pbs are nonpolarizing
and polarizing beam splitters, respectively. Half-wave plates to ro-
tate the polarizations are indicated by A\/2 and optical amplification
by A. The /2 phase shift is also indicated. HD stands for homo-
dyne detection system.

their polarizations rotated to be orthogonal to, ¢ and d are
then mixed with the beams on polarizing beam splitters. A
rapidly varying random time delay is imposed on one of the
beams. Both mixed beams are then transmitted to Bob, who
uses polarizing beam splitters to extract the local oscillator
from each beam. Bob cannot remix the signal beams (¢ and
d) to separate a and b because the random time delay intro-
duced between the beams has destroyed their coherence at
the signal frequency. However, because each beam has a
corresponding local oscillator that has suffered the same time
delays, Bob can make individual, phase-sensitive measure-
ments on each of the beams and extract either the informa-
tion on a or the information on b by amplifying the local
oscillators and using balanced homodyne detection. Note
that the noise of the LO’s is increased by amplification, but
balanced homodyne detection is insensitive to LO noise. He
randomly chooses to either (i) measure the amplitude
quadratures of each beam and add them together, in which
case he obtains the power spectrum

vi={|(c"+e)+(d +d)|*)
=VyutV, (5)

n,a?®
where the tildes indicate Fourier transforms (thus he obtains
the data string impressed on beam a4,V ,, imposed on the
sub-QNL noise floor of beam a,V; 2)s or (i) measure the
phase quadratures of each beam and subtract them, in which
case he obtains the power spectrum

veo=(|(c"=o)—(d"=ad)|*)
= Vs,b+ V:h ’ (6)

i.e., he obtains the data string impressed on beam b,V ,,
imposed on the sub-QNL noise floor of beam b,V,tb. Thus
the signals lie on conjugate quadratures but both have sub-
QNL noise floors. This is the hallmark of the EPR correla-
tion [11].

Consider now eavesdropper strategies. First, like Bob,
Eve cannot remix ¢ and d optically to obtain a and b due to
the randomly varying phase shift [ ¢(7)] introduced by the
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time delay. For small phase shifts beam ¢ becomes ¢’ =(a
+ib)(1+i¢). Mixing ¢’ and d on a beam splitter will pro-
duce outputs with amplitude power spectra

Veriag=Vyat Vo Fa?Vy,

(7
Vc’fd: Vs,b+ V;r’b‘f' CK2V¢,

where a? is proportional to the intensity of beams a and b
and V is the power spectrum of the phase fluctuations. If
¢(t) has a white power spectrum over frequencies from well
below to well above the signal frequency, the signals will be
obscured. It is not possible to directly control the phase shifts
without similarly suppressing the signals. However, the
phase shifts are also present on the LO copropagating with
¢'. Mixing the two LO’s will produce an output with ampli-
tude power spectra

V+L0:1+E2V¢, (8)

where E? is proportional to the intensity of the LO’s and the
““one’’ is from the quantum noise of the LO’s. It is possible
to use this output to control the phase noise on the mixed
signal beams, giving (ideally) the amplitude power spectra

o?
Vi Vo Vit

, ©)
c  _ + @

VC/ —d Vs,h+ Vn,h+ P’
where the remaining penalty arises from the quantum noise
of the LO’s. If E>>a” (as is normally the case for a LO)
then this penalty can be made negligible, thus retrieving the
signals. This is why it is essential that the LO’s have the
same power as the signal beams at the point where the phase
fluctuations are imposed. This makes the ratio of the corre-
lated phase noise to the independent quantum noise the same
for the LO and the signal beam. This cannot be changed by
Eve. With E?= a? the penalty is at the quantum limit. As we
shall see in a moment this is sufficient to reveal Eve.

Eve can still adopt the guessing strategy by detecting a
particular quadrature of both beams and then using a similar
apparatus to Alice’s to resend the beams. As before she will
only guess right half the time, thus introducing a BER of
25%. Suppose instead she tries the second strategy of simul-
taneous detection of both quadratures on each beam. She will
obtain the following power spectra for the summed ampli-
tude quadratures and the differenced phase quadratures:

1
v+=5(vs¢,+ Vi +1)

n.,a

1
V‘=5(VS,,,+V;,,+1). (10)

The signal-to-noise ratio is reduced as predicted by Eq. (2),
but where the noise power for both quadrature measurements
is sub-QNL [12]. This leads to improved security. For ex-
ample, with 10-dB squeezing (V, ,=V, ,=0.1) the signal-
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to-noise ratio in a simultaneous measurement will be reduced
by a factor of 0.09. As a result, assuming initial S/N of 13
dB and using Eq. (3), we find the information Eve intercepts
and subsequently passes on to Bob will now have a BER of
about 24%. In other words, the security against an eaves-
dropper using simultaneous measurements iS now on a par
with the guessing strategy. The third strategy is also now of
no use to Eve, as small samples of the fields carry virtually
no information. For example, with 10-dB squeezing, inter-
cepting 16% of the field will give Eve virtually no informa-
tion (a BER of 49.5%) while already producing a 5% BER in
Bob and Alice’s shared information.

In any realistic situation losses will be present. Losses
tend in general to reduce security in quantum cryptographic
schemes [ 13]. The problem for our system is that losses force
Alice to increase her initial S/N in order to pass the infor-
mation to Bob with a low BER. Eve can take advantage of
this by setting up very close to Alice. Nevertheless, reason-
able security can be maintained with sufficiently high levels
of squeezing. For example, with 10-dB squeezing and 10%
loss, strategy two will result in a 15% BER in the shared
information. Also Eve must intercept 29% of the light to
obtain a 25% BER using the third strategy that will cause a
20% BER in Alice and Bob’s information. With 6-dB
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squeezing and 20% loss the second strategy penalty is re-
duced to a BER of 7.5%, similar to that of the coherent state
scheme. However, for the third strategy, Eve must still inter-
cept 29% of the light to obtain a BER of 25% and this will
cause an 11% BER in Alice and Bob’s shared information,
much larger than for the coherent case. Although these re-
sults demonstrate some tolerance to loss for our continuous
variable system it should be noted that single quanta schemes
can tolerate much higher losses [ 14] making them more prac-
tical from this point of view.

In summary we have examined the quantum crypto-
graphic security of two continuous variable schemes, one
based on coherent light, the other based on two-mode
squeezed light. While the coherent light scheme is clearly
inferior to single quanta schemes, the squeezed light scheme
offers, in principle, equivalent security. The quantum secu-
rity is provided by the generalized uncertainty relation. It is
also essential that the coherence between the two squeezed
modes is destroyed. More generally this system is an ex-
ample of a new quantum information technology based on
continuous variable, multiphoton manipulations [15]. Such
technologies may herald a new approach to quantum infor-
mation.

[1] S. Wiesner, SIGACT News 15, 78 (1983).

[2] C.H. Bennett and G. Brassard, in Proceedings IEEE Interna-
tional Conference on Computers, Systems and Signal Process-
ing (Bangalore) (IEEE, New York, 1984), pp. 175-179.

[3] Y. Yamamoto and H.A. Haus, Rev. Mod. Phys. 58, 1001
(1986).

[4] E. Arthurs and M.S. Goodman, Phys. Rev. Lett. 60, 2447
(1988).

[5] C.E. Shannon, Bell Syst. Tech. J. 27, 623 (1948).

[6] C.A. Fuchs and A. Peres, Phys. Rev. A 53, 2038 (1996); C.A.
Fuchs, N. Gisin, R.B. Griffiths, C.-S. Niu, and A. Peres, ibid.
56, 1163 (1997); L. Cirac and N. Gisin, Phys. Lett. A 229, 1
(1997).

[7] A. Yariv, Optical Electronics in Modern Communications, 5th
ed. (Oxford University Press, 5th Edition, New York, 1997).

[8] Another strategy Eve could use is to do homodyne detection at
a quadrature angle half-way between phase and amplitude.
This fails because the signals become mixed. Thus Eve can tell
when both signals are 0 or both are 1 but she cannot tell the

difference between 1,0 and 0,1. This again leads to a 25%
BER.
[9] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777

(1935).

[10] G. Yeoman and S.M. Barnett, J. Mod. Opt. 40, 1497 (1993);
T.C. Ralph and P.K. Lam, Phys. Rev. Lett. 81, 5668 (1998).

[11] Z.Y. Ou, S.F. Pereira, H.J. Kimble, and K.C. Peng, Phys. Rev.
Lett. 68, 3663 (1992).

[12] The signal to noise properties of Eq. (9) are the same as those
of Eq. (10).

[13] S.M. Barnett and S.J.D. Phoenix, Philos. Trans. R. Soc. Lon-
don, Ser. A 354, 793 (1996).

[14] W.T. Buttler et al., Phys. Rev. A 57, 2379 (1998).

[15] Other examples include: S.L. Braunstein, Nature (London)
394, 47 (1998); A. Furusawa et al., Science 282, 706 (1998);
S. Lloyd and S.L. Braunstein, Phys. Rev. Lett. 82, 1784
(1999); R.E.S. Polkinghorne and T.C. Ralph, ibid. 83, 2095
(1999).

010303-4





