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Continuous-Variable Quantum Cryptography is Secure against Non-Gaussian Attacks

Frédéric Grosshans and Nicolas J. Cerf
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A general study of arbitrary finite-size coherent attacks against continuous-variable quantum
cryptographic schemes is presented. It is shown that, if the size of the blocks that can be coherently
attacked by an eavesdropper is fixed and much smaller than the key size, then the optimal attack for a
given signal-to-noise ratio in the transmission line is an individual Gaussian attack. Consequently, non-
Gaussian coherent attacks do not need to be considered in the security analysis of such quantum
cryptosystems.
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FIG. 1. Equivalent entanglement-based QKD protocol. The
twin beams of an EPR source (*) are sent to homodyne
detectors at Alice’s (left) and Bob’s (right) side. In the analogue
of the squeezed-state protocol, the beam splitter and the dashed
lines are omitted, so Alice measures only one quadrature
(QA0 � QA). In the analogue of the coherent-state protocol,
the key size, so that the key is made out of a large number
of independent blocks and statistical arguments there-

the beam splitter is used by Alice to measure QA0 and PA0

simultaneously [13].
The continuous-variable quantum information theory
has attracted rapidly increasing interest over the past few
years (see, e.g., [1]). In this context, several quantum key
distribution (QKD) schemes based on the exchange of
continuous key carriers have been proposed (see, e.g., [2]).
In particular, several schemes based on the continuous
modulation of coherent or squeezed states of light supple-
mented with homodyne detection have been shown to be
particularly efficient for distributing secret keys at high
repetition rates [3,4]. An experimental demonstration of
key distribution based on a Gaussian modulation of co-
herent states was recently provided in [5].

In this Letter, we prove that, given the estimated
covariance matrix of Alice’s and Bob’s data, the opti-
mal finite-size coherent attack reduces to an individual
Gaussian attack characterized by this covariance matrix.
This result fundamentally originates from the property
that the distribution maximizing its Shannon entropy for
a given variance is a Gaussian distribution. This, com-
bined with an entropic uncertainty relation, implies that it
is sufficient to check the security of such cryptosystems
against the restricted class of Gaussian attacks. In other
words, the best strategy for Eve is to apply sequentially,
on each key element, a Gaussian cloning machine [6] or
an entangling Gaussian cloning machine [7] depending
on the exact protocol used. Another consequence is that,
in order to maximize the resulting secret key rate via the
Gaussian channel induced by Eve’s attack, Alice should
modulate her data with a Gaussian distribution.

The security proof presented here is valid for all
continuous-variable QKD schemes where Alice and Bob
monitor the transmission line via the second-order mo-
ments of their data, which includes all the protocols
considered in our previous papers [3–5]. Note, however,
that this excludes the alternative protocol based on post-
selection as presented in [8]. Our proof covers all possible
(including coherent) attacks that an eavesdropper may
apply on finite-size blocks of key elements. The block
size may be arbitrary, but it must be much smaller than
0031-9007=04=92(4)=047905(4)$22.50 
fore warrant the use of information theory in the proof.
The unconditional security of squeezed-state QKD
against coherent attacks is currently proven if the squeez-
ing exceeds some threshold [9], while such a proof for
coherent-state QKD is the topic of a separate study [10].

Squeezed state protocols.—Let us first investigate the
security of Gaussian-modulated squeezed-state protocols
[3]. Alice chooses a quadrature (q or p) at random and
sends Bob a displaced squeezed state, where the squeezing
and displacement are applied on the chosen quadrature
while the value of the displacement is Gaussian distrib-
uted. After transmission via the quantum channel, which
may be controlled by Eve, Bob then measures q or p at
random. After disclosing the quadrature they used, Alice
and Bob discard their data when the quadratures differ,
while the rest is used to make a secret key [11,12].We will
in fact consider equivalent entanglement-based protocols
[4], where Alice prepares a two-mode vacuum squeezed
state, measures a quadrature of one of the beams, and
sends the other beam to Bob. Alice and Bob iterate these
actions n times, while we assume that Eve is able to apply
some arbitrary joint operation on this block of n pulses. In
order to acquire accurate statistics, Alice and Bob repeat
this protocol L times (with L � 1); that is, they exchange
L blocks of n pulses in total. In our security analysis
below, we will apply information theory at the level of
blocks, which is justified since L � 1.
2004 The American Physical Society 047905-1
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We model Eve’s attack by considering that Alice, Bob,
and Eve share a pure tripartite entangled state (see Fig. 1).
Alice’s (respectively, Bob’s) part of the state is a set of n
modes, denoted by A (respectively, B). The unknown
physical system kept by Eve is denoted by E. The joint
state is pure since we must assume that Eve is able to
control the environment, thereby to purify the state. We
also suppose that Bob always measures the same quadra-
ture Q as Alice (Q � q or p). This requires the availabil-
ity of a quantum memory (Bob delays his measurement
until Alice discloses the quadrature she used). In a more
realistic scheme where Alice and Bob independently
choose their quadrature q or p at random, they agree
only half of the time, which simply leads to a factor
1=2 in the information rates computed below.

Information rates.—The mutual information between
Alice’s and Bob’s data is

I�B;A� � I�QB;QA� � H�QB� �H�QBjQA�; (1)

where QA (respectively, QB) is the random vector of
Alice’s (respectively, Bob’s) measured quadratures on a
block of n pulses, while H��� [respectively, H��j��] denotes
the Shannon entropy (respectively, conditional entropy)
for continuous random variables. We focus our attention
on reverse reconciliation protocols [5,7], in which Bob’s
data are used to make the key instead of Alice’s data
(direct reconciliation). Then, Eve tries to get the maxi-
mum information on Bob’s measurement outcomes QB
through a measurement of her ancilla E (we denote Eve’s
ancilla and her measurement outcomes by the same sym-
bol E). Eve’s information is

I�B;E� � I�QB;E� � H�QB� �H�QBjE�: (2)

The secret key rate Alice and Bob are guaranteed to be
able to distill by reverse reconciliation is [14,15]

�I � I�B;A� � I�B;E� � H�QBjE� �H�QBjQA�: (3)

Alice and Bob can, in principle, estimate H�QBjQA�)
with arbitrary precision since they have access to L joint
realizations of the random vectors QA and QB. To lower
bound Eve’s uncertainty on the key H�QBjE�, they can
use the entropic uncertainty relation that applies to the
two sets of conjugate quadratures QB and PB [16,17].
Indeed, we know that by measuring their systems,
Alice and Eve project Eve’s system onto a pure state since
the three of them share a joint pure state. Thus, condi-
tionally on Alice’s and Eve’s measurements PA and E, the
pure state held by Bob must satisfy the entropic inequality

H�QBjE� 	H�PBjPA� 
 2nH0; (4)

where H0 is the entropy of a quadrature of the vacuum
state for an harmonic oscillator. This inequality then
allows us to lower bound the accessible secret key rate
regardless of the action of Eve, namely,

�I 
 �Imin � 2nH0 �H�QBjQA� �H�PBjPA�: (5)
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It is worth stressing that the random vectors PA and PB
denote the quadratures that could have been measured
(the measured quadratures are QA and QB). These quad-
ratures are, of course, not directly accessible, but we need
only their statistical distribution here in order to upper
bound Eve’s information. This distribution can be esti-
mated from the other pulses for which the measured
quadrature is the same as PA and PB. For simplicity, we
assume that the two physical quadratures q and p are both
chosen with probability 1=2. This implies that QA and PA
play fully identical roles so they can be treated completely
symmetrically (the same is true for QB and PB). We insist
that this symmetry is not a limitation on Eve’s possible
actions. Even if Eve has a quantum memory and acts
differently on the physical quadratures q and p (after
the selected quadrature is disclosed), each of them has
an equal probability to be a measured (QA and QB) or an
unmeasured (PA and PB) quadrature. Since Eve has no
way of guessing which physical quadrature is used, this
symmetry imposes H�QBjQA� � H�PBjPA� � H�BjA�,
where we now use A and B as a shorthand notation for
QA and QB (or PA and PB). Therefore

�Imin � 2�nH0 �H�BjA��: (6)

Since Alice and Bob can evaluate H�BjA� by statistical
sampling, they get an estimate of �Imin and can use
relevant algorithms to extract a secret key with at least
this rate [11,12].

Individual attacks are optimal.—We first prove that
Alice and Bob can lower bound �Imin simply by assuming
that Eve performs an individual attack. Let Ai (respec-
tively, Bi) be the ith component of the random vector A
(respectively, B). The subadditivity of Shannon entropy
implies that

H�BjA� 

X
i

H�BijA�; (7)

while each term of the summation can be bounded by use
of the strong subadditivity of the entropy, namely,

H�BijA� � H�BijA1; . . . ; An� 
 H�BijAi�; (8)

so that

H�BjA� 

X
i

H�BijAi�: (9)

We now consider the average joint distribution of Alice’s
and Bob’s measurement outcomes (averaged over the
block of size n). Suppose that A and B are distributed
according to a mixture of the Ai and the Bi, with the in-
dex i being randomly drawn from a uniform distribution,
that is

P �A � a; B � b� �
1

n

X
i

P �Ai � a; Bi � b�; 8 a; b:

(10)
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Then, the strong subadditivity of entropies implies that

H�BijAi� � H�BjA; i� 
 H�BjA�; (11)

so that Eq. (9) transforms into

H�BjA� 
 nH�BjA�: (12)

Finally, using Eq. (6), one gets

�Imin 
 2n�H0 �H�BjA��: (13)

This means that, to be safe against finite-size coherent
attacks, Alice and Bob need only to evaluate H�BjA�, a
conditional entropy for a distribution in R2, instead of
H�BjA�, a conditional entropy for a distribution in R2n.

To better understand this conclusion, assume that Eve
applies a coherent attack which induces correlations be-
tween the various components of A and B inside each
block. These correlations force Eve to induce a kind of
structure in Alice’s and Bob’s data, which would not be
present for individual attacks, so Eve is actually limiting
herself. Overlooking these correlations and considering
individual attacks may only be suboptimal for Alice and
Bob when estimating �Imin, but it guarantees they are on
the safe side.

Gaussian attacks are optimal.—Now, we prove that
H�BjA� can be upper bounded simply by measuring the
covariance matrix K of variables A and B:

K �

�
hA2i hABi
hABi hB2i

�
; (14)

which is much easier than estimating H�BjA�. To simplify
the notations, we will assume that hAi � hBi � 0 (in
practice, this should be checked and possibly corrected
by applying the adequate shift). For a given K, if Alice
knowsA, her linear estimate of B that minimizes the error
variance is given by �hABi=hA2i�A. Denoting by �B the
error of this best linear estimate,

�B � B�
hABi

hA2i
A; (15)

we have

H�BjA� � H��BjA� 
 H��B�: (16)

where we have used the translation invariance and the
subadditivity of Shannon entropy. Since the Gaussian
distribution has the maximum entropy for a given vari-
ance, one has

H��B� 
 HG��B�; (17)

where HG��B� is the entropy of a Gaussian distribution
having the variance h�B2i � hB2i � hABi2=hA2i. In the
case, where A and B are drawn from an equivalent bi-
variate Gaussian distribution with the same covariance
matrix K as the observed distribution, we note that �B
and A become uncorrelated, so that
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HG��B� � HG��BjA�: (18)

Chaining Eqs. (16)–(18) and using the translation invari-
ance of entropy, one obtains

H�BjA� 
 HG�BjA�; (19)

which, combined with Eq. (13), yields

�Imin 
 2n�H0 �HG�BjA��: (20)

Finally, the conditional entropy HG�BjA� of a bivariate
Gaussian distribution being a simple function of K, one
obtains the central result of this paper:

�Imin 
 nlog2
N0

h�B2i
; (21)

where N0 represents the vacuum variance. This expression
coincides with the one found when limiting Eve to
Gaussian individual attacks [4,5]. Therefore, the optimal
attack given the observed covariance matrix K is a
Gaussian individual attack as described in [5,7,13].

The optimality of Gaussian attacks can be interpreted
almost like the optimality of individual attacks: Since the
Gaussian distribution has the maximal entropy, non-
Gaussian attacks are more structured than Gaussian
ones for the same added noise variance, so Eve is more
restricted. Therefore, if Alice and Bob monitor only the
covariance matrix K, they can safely assume that Eve
uses Gaussian attacks. If Eve indeed applies a Gaussian
individual attack, the best Alice and Bob can do is to use
independent and Gaussian-distributed key elements,
which saturates all the involved inequalities, so that
�Imin is the highest. This justifies a posteriori the choice
of Gaussian-modulated QKD protocols in [3–5].

Coherent state protocols.—We now extend the proof to
QKD protocols based on Gaussian-modulated coherent
states [4,5,7]. We again exploit the property that these
protocols are equivalent to some entanglement-based
protocols where Alice jointly measures q and p on her
entangled beam while sending the other one to Bob [13].
The central point is that this ‘‘virtual entanglement,’’
which may have existed between Alice and Bob, must
be taken into account when bounding Eve’s information
even if the actual protocol makes no use of entanglement.
We will denote by QA0 and PA0 the vectors of the two
quadratures of the n beams kept by Alice and QB the
vector of the n quadratures measured by Bob (see Fig. 1).
The difference with the previous scheme is that Alice
attempts to measure simultaneously QA0 and PA0 through
a 50:50 beam splitter followed by two homodyne detec-
tors. The measurement outcomes QA and PA suffer from
added noise, while Alice never has access to the actual
values QA0 and PA0 . The expression of H�QBjQA� depends
only on measured quantities so it can be statistically
estimated as before, but the entropic uncertainty relation
used to bound H�QBjE� now involves the physical beam
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on Alice’s side, so one has

H�QBjE� 	H�PBjPA0 � 
 2nH0: (22)

Thus, the same reasoning as before now leads to

�Imin 
 n�2H0 �HG�BjA� �HG�BjA
0��; (23)

where HG�BjA0� is the conditional entropy of a Gaussian
distribution having the same covariance matrix K0 than
A0 and B, which is

K 0 �

�
hA02i hA0Bi
hA0Bi hB2i

�
�

�
2�hA2i � N0�

���
2

p
hABi���

2
p

hABi hB2i

�
:

(24)

One has therefore

�Imin 
 nlog2
N0������������������������������������������������������������

�hB2i � hABi2

hA2i
��hB2i � hABi2

hA02i�N0
�

q ; (25)

which is exactly the same expression as in our previous
papers [5,7,13], where the only considered attacks are
Gaussian individual attacks.

Discussion.—We extended to finite-size non-Gaussian
attacks the validity of the previous security proofs for
continuous-variable QKD schemes when Eve’s interven-
tion is bounded via the measured added noise variance in
the channel. Our proof mainly relies on an entropic un-
certainty relation, in analogy with the security proof
against coherent attacks presented in [18] for discrete
QKD protocols. It focuses on the schemes based on re-
verse reconciliation since these are known to tolerate
larger losses than the direct reconciliation-based proto-
cols in the case of Gaussian individual attacks. Adapting
the proof to direct reconciliation [3,4] or even other [8]
protocols will be treated elsewhere. In the proof, we
assume the protocol is ideal; that is, a perfect one-way
reconciliation algorithm is available. However, realistic
reconciliation protocols are imperfect [12]: The number
of correlated bits that can be extracted from Alice’s and
Bob’s data never attains Shannon’s limit I�B;A� and may
become low if Eve’s attack has an unexpected shape, the
reconciliation protocol being adapted to a specific noise
structure. Nevertheless, the security proof can be easily
extended to this situation since Alice and Bob can al-
ways compute the effective value of their shared infor-
mation Ieff by comparing subsets of their data. Then,
using I�B;E� 
 n�H0 �HG�BjA

0�� as before, one obtains
�Imin 
 Ieff � I�B;E�.

Finally, we have shown that there is a fundamental link
between security and ‘‘entropic squeezing’’: The security
is guaranteed (�Imin > 0) if the conditional entropy
H�BjA� is below the quantum limit H0 [Eq. (13)]. In the
Gaussian case, this simplifies to the condition �2�BjA�<
N0 [Eq. (21)], where �2�BjA� � h�B2i denotes the condi-
tional variance of B knowing A, as suggested in [19]. The
latter condition is, however, overpessimistic if Eve uses a
non-Gaussian attack, since �2�BjA� might exceed N0,
047905-4
destroying the conditional squeezing, while keeping
H�BjA� low enough to ensure security. If Alice and Bob
monitor only the covariance matrix K, this attack is
nonoptimal since the worst-case Gaussian attack would
maximize H�BjA� and thereby minimize �I for a given
�2�BjA�. In conclusion, the security can be warranted by
requiring conditional squeezing, which is more stringent
than entropic squeezing but much easier to assess.
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