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3Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
4Department of Computer Science, University of York, York YO10 5DD, UK
*e-mail: pirs@mit.edu

Published online: 11 July 2008; doi:10.1038/nphys1018

Quantum cryptography has recently been extended to continuous-variable systems, such as the bosonic modes of the electromagnetic
field possessing continuous degrees of freedom. In particular, several cryptographic protocols have been proposed and experimentally
implemented using bosonic modes with Gaussian statistics. These protocols have shown the possibility of reaching very high secret
key rates, even in the presence of strong losses in the quantum communication channel. Despite this robustness to loss, their
security can be affected by more general attacks where extra Gaussian noise is introduced by the eavesdropper. Here, we show a
‘hardware solution’ for enhancing the security thresholds of these protocols. This is possible by extending them to two-way quantum
communication where subsequent uses of the quantum channel are suitably combined. In the resulting two-way schemes, one of the
honest parties assists the secret encoding of the other, with the chance of a non-trivial superadditive enhancement of the security
thresholds. These results should enable the extension of quantum cryptography to more complex quantum communications.

In recent years, quantum information has entered the domain of
continuous-variable systems, that is, quantum systems described by
an infinite-dimensional Hilbert space1,2. So far, the most studied
continuous-variable systems are the bosonic modes, such as the
optical modes of the electromagnetic field. In particular, the most
important bosonic states are the ones with Gaussian statistics,
owing to their experimental accessibility and the relative simplicity
of their mathematical description3,4. Accordingly, quantum key
distribution (QKD) has been extended to this new framework5–21

and Gaussian cryptographic protocols using coherent states have
been shown to fully exploit the potentialities of quantum optics12,16.
These coherent-state protocols are robust with respect to the noise
of the quantum channel, as long as such noise can be ascribed
to pure losses12,16. In contrast, their security is strongly affected
when channel losses are used to introduce a thermal environment,
which is assumed to be controlled by a malicious eavesdropper12,22.
In this Gaussian eavesdropping scenario, we present a method
to enhance the security thresholds of the basic coherent-state
protocols. This is achieved by extending them to two-way quantum
communication protocols, where one of the honest parties (Bob)
uses its quantum resources to assist the secret encoding of the other
party (Alice). In particular, the enhancement of security is proved
to be effective because the security thresholds are superadditive
with respect to the double use of the quantum channel. Such
a result is achieved when the Gaussian attack corresponds to a
memoryless Gaussian channel. More generally, we also consider
Gaussian channels with memory, therefore creating classical and/or
quantum correlations between the paths of the two-way quantum
communication. To overcome this kind of eavesdropping strategy,
the two-way protocols must be modified into suitable hybrid
protocols, which represent their safe formulation against every kind
of collective Gaussian attack.

ONE-WAY PROTOCOLS

In basic coherent-state protocols11,15, Alice prepares a coherent state
|α〉, the amplitude α = (QA + iPA)/2 of which is stochastically
modulated by a pair of independent Gaussian variables {QA,PA},
with zero mean and variance V − 1. This variance determines
the portion of phase space that is available to Alice’s classical
encoding {QA, PA} and, therefore, quantifies the amount of
energy that Alice can use in the process. This energy is usually
assumed to be very large V � 1 (large modulation limit) to
reach the optimal and asymptotic performances provided by
the infinite-dimensional Hilbert space. The modulated coherent
state is then sent to Bob through a quantum channel, the noise
of which is assumed ascribable to the malicious action of a
potential eavesdropper (Eve). In a homodyne (Hom) protocol11,
Bob detects the state through a single quadrature measurement
(by a homodyne detection). More exactly, Bob randomly measures
the quadrature Q̂ or P̂, getting a real outcome XB = QB (or PB)
that is correlated to the encoded signal XA = QA (or PA). In a
heterodyne (Het) protocol15, Bob carries out a joint measurement
of Q̂ and P̂ (a heterodyne detection). In such a case, Bob
decodes the R2-variable XB = {QB, PB} correlated to the total
signal XA = {QA,PA} encoded in the amplitude α. In both cases,
Alice and Bob finally possess two correlated variables XA and XB,
characterized by some mutual information I(XA:XB). To access
this mutual information, either Bob estimates Alice’s encoding XA

through a direct reconciliation or Alice estimates Bob’s outcomes
XB through a reverse reconciliation22. However, to extract some
shared secret information from I(XA:XB), the honest parties must
estimate the noise of the channel by broadcasting and comparing
part of their data. In this way, they are able to bound the
information I(XA:E) or I(XB:E) that has been potentially stolen

726 nature physics VOL 4 SEPTEMBER 2008 www.nature.com/naturephysics

© 2008 Macmillan Publishers Limited.  All rights reserved. 

 

mailto:pirs@mit.edu
http://www.nature.com/doifinder/10.1038/nphys1018


ARTICLES

T

Eve Bob

A BE

E ′

E ″

V

Alice W

A

Q and P

+α

Q or P (Hom)

Q and P (Het)

|0〉
|   〉α

Figure 1 Coherent-state protocols. Alice prepares a coherent state |α〉 that Bob
detects using a homodyne or heterodyne detector. A Gaussian (entangling cloner)
attack by Eve is also shown. Note that preparing a coherent state (by modulating the
vacuum) can be equivalently achieved by heterodyning one of the two modes of an
EPR pair.

by Eve during the process. Then, the accessible secret information is
simply given by RI

:= I(XA:XB)−I(XA:E) for direct reconciliation
and by RJ

:= I(XA:XB)− I(XB:E) for reverse reconciliation. Such
secret information can be put in the form of a binary key by
slicing the phase space and adopting the standard techniques of
error correction and privacy amplification23. In particular, Alice
and Bob can extract a secret key whenever the channel noise is less
than certain security thresholds, which correspond to the boundary
conditions RI

= 0 and RJ
= 0.

In the continuous-variable framework, collective Gaussian
attacks represent the most powerful tool that today can be handled
in the cryptoanalysis of Gaussian-state protocols24–27. In the most
general definition of a collective attack, all of the quantum systems
used by Alice and Bob in a single run of the protocol are made
to interact with a fresh ancillary system prepared by Eve. Then,
all of the output ancillas, coming from a large number of such
single-run interactions, are subject to a final coherent measurement
that is furthermore optimized on all of Alice and Bob’s classical
communications. In particular, the collective attack is Gaussian if
the single-run interactions are Gaussian, that is, corresponding to
unitaries that preserve the Gaussian statistics of the states. Notice
that for standard one-way QKD, a single run of the protocol
corresponds to a single use of the channel. As a consequence,
every collective Gaussian attack against one-way protocols results
in a memoryless channel and, therefore, can be called a one-mode
Gaussian attack. As the quadratures encode independent variables
{QA,PA}, the single-run Gaussian interactions do not need to mix
the quadratures24,25,28,29. As a consequence, the Gaussian interaction
can be modelled by an entangling cloner12 (Fig. 1) where a beam
splitter (of transmission T) mixes each signal mode A with
an ancillary mode E belonging to an Einstein–Podolsky–Rosen
(EPR) pair (see the Supplementary Information). Such an EPR
pair is characterized by a variance W and correlates the two
output ancillary modes E′,E′′ to be detected in the final coherent
measurement. Notice that, from the point of view of Alice and
Bob, this EPR pair simply reduces to an environmental thermal
state ρE with thermal number n̄E = (W − 1)/2. A one-mode
Gaussian attack can therefore be described by two parameters:
transmission T and variance W or, equivalently, by T and
N := (W − 1)(1 − T)T−1, the latter being the excess noise of
the channel. This parameter quantifies the amount of extra noise
that is not referable to losses, that is, the effect of the thermal
noise scaled by the transmission12. The security thresholds against
these powerful attacks can be expressed in terms of tolerable excess
noise {NI, NJ

} versus the transmission T of the channel. For
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Figure 2 Security thresholds in direct reconciliation. Tolerable excess noise NI

(in quantum shot-noise units) versus transmission T. Curves compare the various
one-way and two-way protocols against one-mode Gaussian attacks {N, T } in the
limit of large modulation (V → +∞).

protocols Hom and Het, these thresholds are shown in Fig. 2
for direct reconciliation and Fig. 3 for reverse reconciliation, and
they confirm the results previously found in refs 30,31 (see the
Supplementary Information).

FROM ONE-WAY TO TWO-WAY PROTOCOLS

The above coherent-state protocols have been simply formulated in
terms of prepare-and-measure schemes. Equivalently, they can be
formulated as entanglement-based schemes, where Alice and Bob
extract a key from the correlated outcomes of the measurements
made on two entangled modes (Fig. 1). In fact, heterodyning
one of the two entangled modes of an EPR pair (with variance
V ) is equivalent to remotely preparing a coherent state |α〉 with
an amplitude that is randomly modulated by a Gaussian (with
variance V − 1)22. In this dual representation of the protocol,
Alice owns a physical resource that can be equivalently seen as an
amount of energy ∼V for modulation (in the prepare-and-measure
representation) or as an amount of entanglement ∼ log2V to be
distributed (in the entanglement-based representation). Because of
this equivalence, the previous entanglement is also called virtual22.
In the above one-way protocols, all of these physical resources
are the monopoly of Alice and their sole purpose is the encoding
of secret information. However, we can also consider a scenario
where these resources are symmetrically distributed between Alice
and Bob, and part of them is used to assist the encoding. This
is achieved by combining Alice and Bob in a two-way quantum
communication where Bob’s physical resources, to be generally
intended as entanglement resources, assist the secret encoding of
Alice, which is realized by unitary random modulations (Fig. 4).

Let us explicitly construct such a two-way quantum
communication. In simple two-way generalizations, Hom2 and
Het2, of the previous one-way protocols, Hom and Het, Bob
exploits an assisting EPR pair (with variance V ) of which he
keeps one mode B1 while sending the other to Alice (Fig. 5). Then,
Alice encodes her information through Gaussian modulation (with
variance V −1) by adding a stochastic amplitude α= (QA + iPA)/2
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Figure 3 Security thresholds in reverse reconciliation. Tolerable excess noise
NJ (in quantum shot-noise units) versus transmission T. Curves compare the
individual one-way and two-way protocols against one-mode Gaussian attacks
{N, T } in the limit of large modulation (V → +∞).

to the received mode. Such a mode is then sent back to Bob, where
it is detected together with the unsent mode B1. Depending on
the protocol, Bob will carry out different detections on modes B1

and B2. In particular, for the Hom2 protocol, Bob will detect the Q̂
(or P̂) quadrature of such modes (homodyne detections), whereas,
for the Het2 protocol, he will detect both Q̂ and P̂ (heterodyne
detections). From the outcomes, Bob will finally construct an
optimal estimator XB of Alice’s corresponding variable XA, equal to
QA (or PA) for Hom2 and to the R2-vector {QA,PA} for Het2.

As Bob’s decoding strategy consists of individual incoherent
detections, these entanglement-assisted QKD schemes are actually
equivalent to two-way schemes without entanglement, where
Bob stochastically prepares a quantum state to be sequentially
transmitted forward and backward in the channel. In fact, it can
be assumed that Bob detects B1 at the beginning of the quantum
communication, so that the travelling mode C1 is randomly
prepared in a reference quantum state (which is squeezed for Hom2

and coherent for Het2). This reference state reaches Alice, who
stores the encoding transformation and, then, is finally detected
by the second decoding measurement of Bob. Therefore, if we
restrict Bob to incoherent detections (classical Bob), then the
two-way schemes also possess a dual representation, where the
assisting entanglement resource is actually virtual, that is, it can
be replaced by an equivalent random modulation. In this dual
(entanglement-free) representation, the advantage brought by the
two-way quantum communication can be understood in terms of
an iterated use of the uncertainty principle, where Eve is forced
to produce a double perturbation of the same quantum channel.
For instance, let us consider the Het2 protocol in the absence of
eavesdropping. By heterodyning mode B1, Bob randomly prepares
mode C1 in a reference coherent state |β〉 containing a random
modulation γ known only to him. Then, Alice transforms this state
into another coherent state |α + β〉 that is sent back to Bob. By
the subsequent heterodyne detection, Bob is able to estimate the
total amplitude α+β and, therefore, to infer the signal α from his
knowledge of β. If we now insert Eve in this scenario, we see that she
must estimate both the reference β and the masked signal α+β to
access the signal α. This implies attacking both the forward and the
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Figure 4 General structure of the one-way, two-way and hybrid protocols,
together with their possible collective attacks. Circles and squares represent the
physical resources available in the process. In particular, circles represent
entanglement (possibly virtual), whereas squares are unitary modulations. a, The
basic one-way scheme, where all of the resources are owned by Alice. b,c, Scheme
where the physical resources are instead distributed between Alice and Bob, where
Bob uses them for assisting and Alice uses them for encoding (two-way scheme).
d, The hybrid protocol where one-way (off ) and two-way (on) quantum
communications are randomly switched. All of the parts also show Eve’s collective
attacks. a shows the collective attacks against one-way protocols (one-mode
attacks). b,c show instead the collective attacks against the two-way protocols.
These are one-mode (or reducible two-mode) in b and two-mode in c. d shows the
effects of a two-mode attack on the hybrid protocol.

backward channel (Fig. 5) and, because the noise of the first attack
will perturb the second attack, we expect a non-trivial security
improvement in the process. Such an effect intuitively holds under
the assumption of one-mode attacks (where the two paths are
attacked incoherently) and it is indeed confirmed by our analysis.
Quantitatively, we have tested the security performances of the
two-way protocols against the one-mode Gaussian attacks {N ,T}

and the corresponding security thresholds NI,J
= NI,J(T) are

shown in Figs 2 and 3 (see the Supplementary Information). For
the two-way protocols, such thresholds relate the tolerable excess
noise to the transmission in each use of the channel and, therefore,
they are directly comparable to the thresholds of the corresponding
one-way protocols. By comparing Hom2 with Hom and Het2 with
Het, we see that the security thresholds are improved almost
everywhere (the only exception being Hom2 for T > Tc ' 0.86 in
direct reconciliation). Such a superadditive behaviour is the central
result of this work. Roughly speaking, even if two communication
lines (for example, two optical fibres) are too noisy for one-way
QKD, they can be combined to enable a two-way QKD, as long as
the quantum channel is memoryless.

To deepen our analysis on superadditivity, we also tested the
previous one-way and two-way protocols when a classical Bob is
replaced by a quantum Bob. This means that Bob is no longer
limited to incoherent detections but can access a quantum memory
storing all of the modes involved in the quantum communication.
Then, Bob carries out a final optimal coherent measurement on
all of these modes to retrieve Alice’s information. Such a coherent
measurement can be disjoint, that is, designed to estimate a
single quadrature for each encoding, or joint, that is, designed
to estimate both quadratures. Correspondingly, the modified
one-way and two-way protocols will be denoted by ⊗Hom, ⊗Het,
⊗Hom2 and ⊗Het2. Notice that these collective protocols may
not admit an equivalent entanglement-free representation (where
Bob’s entanglement is replaced by a random modulation) if Bob’s
coherent measurement cannot be reduced to incoherent detection.
The corresponding security thresholds are shown in Fig. 2
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Figure 5 Two-way quantum communication scheme. Bob exploits an EPR pair to
assist Alice’s encoding. He keeps one mode B1 while sending the other one C1 to
Alice who, in turn, carries out a stochastic phase-space displacement +α. The
resulting mode A2 is then sent back to Bob. The final modes B1 and B2 are
incoherently detected by means of two homodyne detectors (Hom2 protocol) or two
heterodyne detectors (Het2 protocol). The figure also shows a one-mode Gaussian
attack, where the forward mode C1 (from Bob to Alice) and the backward one A2

(from Alice to Bob) are subject to the action of entangling cloners.

(only direct reconciliation can be compared, see Supplementary
Information). It is evident that superadditivity holds almost
everywhere also for these collective schemes, the only exception
being ⊗Hom2 above the same critical value Tc as before. We
easily note that ⊗Hom coincides with Hom, whereas ⊗Hom2

coincides with Hom2. Then, in the case of disjoint decoding, the
optimal coherent measurement asymptotically coincides with a
sequence of incoherent homodyne detections. As a consequence,
the collective protocols (⊗Hom and ⊗Hom2) collapse to the
corresponding individual protocols (Hom and Hom2), where
there is no need for a quantum memory. In particular, this
proves that ⊗Hom2 admits an entanglement-free representation
where infinitely squeezed states are sent to Alice through the
forward path, and are then homodyned at the output of the
backward path. The use of quantum memories does better in
the case of joint decoding, because ⊗Het and ⊗Het2 have much
better performances than the corresponding individual protocols
Het and Het2. As a consequence, no simple entanglement-free
representation is known for ⊗Het2.

HYBRID PROTOCOLS

We remark that our previous quantitative cryptoanalysis concerns
one-mode Gaussian attacks, which are the cryptographic analogue
of a memoryless Gaussian channel. However, when a multiway
scheme is considered, a single run of the protocol no longer
corresponds to a single use of the channel. As a consequence,
the most general collective attack against a multiway scheme,
even if incoherent between separate runs, may involve quantum
correlations between different channels. In general, an arbitrary
collective attack against a two-way scheme can be called a two-mode
attack. This is the general scenario of Fig. 4c where the action of
this attack on a single round-trip of quantum communication is
given by an arbitrary map E2. On the one hand, such an attack
is said to be reducible to a one-mode attack if the map can be
symmetrically decomposed as E2

=E◦E (the attack can be described

by the scenario of Fig. 4b). On the other hand, the two-mode attack
is called irreducible if E2

6= E ◦ E (the attack of Fig. 4c cannot be
described by Fig. 4b). The latter situation includes all attacks where
some kind of correlation is exploited between the two paths, either if
this correlation is classical (so that E2

=E2 ◦E1 with E1 6=E2) or truly
quantum (so that E2

6= E2 ◦E1 for every E1 and E2).
To detect and handle an irreducible attack, the previous

two-way protocols, Hom2 and Het2, must be modified into hybrid
forms that we denote by Hom1,2 and Het1,2. In this hybrid
formulation, Alice randomly switches between a two-way scheme
and the corresponding one-way scheme, where she simply detects
the incoming mode and sends a new one back to Bob. We may
describe this process by saying that Alice randomly closes (on)
and opens (off) the quantum communication circuit with Bob,
the effective switching sequence being communicated at the end
of the protocol (Fig. 4d). By publicizing part of the exchanged
data, Alice and Bob can carry out tomography of the quantum
channels in both the on and off configurations. In particular, they
can reconstruct the channel E 2 affecting the two-way trip and
the channels E1 and E2 affecting the forward and backward paths
(see Fig. 4d). Then, they can check the reducibility conditions
E1 = E2 and E 2

= E2 ◦ Eα ◦ E1, where Eα(ρ) = D̂(α)ρD̂†(α) is
Alice’s publicized encoding map. If such conditions are satisfied
then the two-mode attack is reducible, that is, Alice and Bob have
excluded every kind of quantum and classical correlation between
the two paths of the quantum communication (see Supplementary
Information for an explicit description). In such a case, the honest
users can therefore exploit the superadditivity of the two-way
quantum communication. If the previous reducibility conditions
are not met, then the honest users can always exploit the instances
of one-way quantum communication. Notice that the verification
of the reducibility conditions is easy in the Gaussian case, where
the channels can be completely reconstructed by analysing the first
and second statistical moments of the output states. Also notice
that the reducibility conditions exclude every kind of quantum
impersonation attack32, where Eve short-circuits the channels of the
two-way quantum communication.

In summary, the hybrid protocols constitute a safe
implementation of two-way protocols, at least in the presence of
collective Gaussian attacks (one-mode or two-mode). In the hybrid
formulation, Alice and Bob can in fact optimize their security on
both one-way and two-way quantum communication. The on–off
manipulation of the quantum communication can be interpreted
as if Alice had two orthogonal bases to choose from during the
key distribution process. In the presence of this randomization,
Eve is not able to optimize her Gaussian attack with respect to
both kinds of quantum communication and the trusted parties
can always make the a posteriori optimal choice. As a natural
development of these results, we can consider a situation where Bob
also carries out a random and independent on–off manipulation
of the quantum communication. Such a scheme naturally leads to
instances of n-way quantum communication (with n > 2) with
security properties that would be interesting to inspect in future
work. In general, our results pave the way for future investigations
in the domain of secure multiple quantum communications, where
quantum communication circuits can in principle grow to higher
and higher complexity.
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32. Dušek, M., Haderka, O., Hendrych, M. & Myška, R. Quantum identification system. Phys. Rev. A 60,
149–156 (1999).

Supplementary Information accompanies this paper on www.nature.com/naturephysics.

Acknowledgements
The research of S.P. was supported by a Marie Curie Outgoing International Fellowship within the
6th European Community Framework Programme (Contract No. MOIF-CT-2006-039703).
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