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We consider the security of continuous-variable quantum key distribution using thermal (or noisy) Gaussian

resource states. Specifically, we analyze this against collective Gaussian attacks using direct and reverse rec-

onciliation where both protocols use either homodyne or heterodyne detection. We show that in the case of

direct reconciliation with heterodyne detection, an improved robustness to channel noise is achieved when large

amounts of preparation noise is added, as compared to the case when no preparation noise is added. We also

consider the theoretical limit of infinite preparation noise and show a secure key can still be achieved in this

limit provided the channel noise is less than the preparation noise. Finally, we consider the security of quantum

key distribution at various electromagnetic wavelengths and derive an upper bound related to an entanglement-

breaking eavesdropping attack and discuss the feasibility of microwave quantum key distribution.

PACS numbers: 03.67.Dd, 03.67.Hk, 42.50.-p

I. INTRODUCTION

Continuous-variable quantum key distribution (QKD) [1, 2]

is the ability to generate a secret key between two distant par-

ties, Alice and Bob, which can be used to encrypt messages

for secure communication. This is achieved by using Gaus-

sian quantum resource states [2] where its theoretical security

is guaranteed by the no-cloning theorem. A typical Gaussian

modulated protocol [3–8] involves Alice randomly displacing

a number of pure vacuum modes and sending them over an

insecure quantum channel to Bob. These modes are then mea-

sured by Bob using either homodyne [3] or heterodyne detec-

tion [5]. The various stages of classical communication [1]

follow next, including error correction, where either direct [3]

or reverse reconciliation [4] can be used.

Generally, in Gaussian QKD protocols, it is assumed that

Alice starts off with a large number of pure vacuum states.

However, this is an idealization and is never quite true in

practice with small amounts of unknown Gaussian prepara-

tion noise often being present. The idea of analyzing the secu-

rity of continuous-variable QKD using such noisy or thermal

states was first considered in [9, 10]. Here they showed using

reverse reconciliation that the distance over which continuous-

variable QKD was secure declined rapidly as the resource

states became noisier, ultimately resulting in the inability to

generate a secure key. However, in a subsequent work [11],

it was shown using direct reconciliation that the distance with

which the protocol is secure does not decline to zero as the

states become noisier. In fact, even though the rate of gen-

eration of the secret key decreases for increasing noise, it re-

mains bigger than zero for values of transmission T > 0.5.

This means that the security threshold of the protocol remains

at T = 0.5 for extremely high values of preparation noise.

∗Electronic address: christian.weedbrook@gmail.com

Thus, up to a requirement of a strong modulation of the input,

thermal state QKD is able to reach distances comparable to

standard QKD. Furthermore, an application of the analysis of

noisy coherent states was found by considering the security of

QKD at various wavelengths of the electromagnetic spectrum,

revealing regions of security from the optical all the way down

into the microwave region [11].

In this paper, we build upon the work presented in [11]

and outline our results here. We begin by using the previ-

ous analysis of reverse [10, 11] and direct reconciliation [11]

using homodyne detection and extending them both to study

the case of heterodyne detection. For the case of direct recon-

ciliation and heterodyne detection we show an improved ro-

bustness to channel noise when large amounts of preparation

noise is added, as compared to the case with zero prepara-

tion noise. This effect of noise improving the performance

of QKD using direct reconciliation, was previously seen in

the context of homodyne detection where pure coherent states

were more robust than pure squeezed states [12]. In [11] it

was shown that direct reconciliation could tolerate a thermal

variance of 104 times that of the pure vacuum mode and still

show no deterioration in the security threshold of the protocol

(albeit with a reduced key rate). Here we extend this result and

show that, provided the channel noise is less than the prepa-

ration noise, the same protocol can, in principle, tolerate any

amount of preparation noise, again at a cost of decreasing key

rate. Finally, we consider the security of QKD at various elec-

tromagnetic wavelengths and develop an improved security

bound along with an upper bound related to an entanglement-

breaking eavesdropping attack.

This paper is organized as follows. Section II introduces

the main concepts of thermal state QKD. In Secs. III and IV

the secret key rates for direct and reverse reconciliation using

both homodyne and heterodyne detection are given. Section

V considers QKD in the so-called classical limit where an in-

finite amount of preparation noise is added for direct recon-

ciliation using homodyne detection. Finally, before conclud-
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ing in Sec. VIII, we look at the security of QKD at various

wavelengths along with the feasibility of microwave QKD in

Sec. VII.

II. THERMAL STATE QUANTUM KEY DISTRIBUTION

The initial stages of a thermal state QKD protocol consists

in Alice preparing a number of randomly displaced thermal

states and then sending them to Bob over an insecure quan-

tum channel monitored by Eve (cf., Fig. 1). This initial mode

prepared by Alice can be described in the Heisenberg picture

as

X̂A = XS + X̂0, (1)

where XS describes the classical signal encoding and X̂0

describes the quantum noise of the thermal mode. Here

the quadrature variables are given by: X̂A ∈ {Q̂A, P̂A},

XS ∈ {QA, PA} and X̂0 ∈ {Q̂0, P̂0}. The overall variance

V := V (X̂A) of Alice’s initially prepared modes is given by

V = VS + V0, (2)

where VS is a Gaussian distribution with zero mean. Here V0

is the shot-noise which can be defined in terms of the condi-

tional variance as

V (Q̂A|QA) = V (P̂A|PA) = V0 ≥ 1, (3)

where the conditional variance is defined as [13, 14]

V (X̂ |Y ) = V (X̂)− |〈X̂Y 〉|2
V (Y )

. (4)

We can decompose the shot-noise variance as V0 = 1 + β
where β is the variance of the preparation noise at Alice’s sta-

tion and 1 denotes the variance of the pure vacuum mode. It is

common in most continuous-variable QKD protocols to theo-

retically let V = VS + 1, i.e., zero preparation noise (β = 0)

in Alice’s mode preparation. However in our analysis we con-

sider the general case where β is different from zero. This

means that the shot-noise V0 (that we also call the “purity”)

can be greater than 1. Then we make the valid assumption

that this preparation noise is restricted to Alice’s station and

not accessible, or known, to Eve (or even to Alice for that

matter).

The most important type of eavesdropping attack is the col-

lective Gaussian attack [15–17]. It was shown that such an at-

tack is the most powerful attack allowed by quantum physics,

up to a suitable symmetrization of the protocols [18]. It con-

sists in Eve interacting her independent ancilla modes with

Alice’s mode for each run of the protocol in such a way to

generate a memoryless (or one-mode) Gaussian channel. The

entangling cloner [19] is the most important and practical ex-

ample of a collective Gaussian attack and is used in our anal-

ysis. This consists in Eve perfectly replacing the quantum

channel between Alice and Bob with her own quantum chan-

nel where the loss is simulated by a beam splitter with trans-

mission T ∈ [0, 1].

She then prepares ancilla modes Ê and Ê′′ in an Einstein-

Podolsky-Rosen (EPR) entangled Gaussian state [20] with

variance W (see Fig. 1). Eve keeps one mode Ê′′ and in-

jects the other mode Ê into the unused port of the beam split-

ter, leading to the output mode Ê′. This operation is repeated

identically and independently for each signal mode sent by

Alice. Eve’s output modes are then stored in a quantum

computer and detected collectively at the end of the proto-

col. Eve’s final measurement is optimized based on Alice and

Bob’s classical communication. Note that this attack can be

simply described by two parameters: the channel transmis-

sion T and the channel noise W . The latter parameter can be

replaced by the equivalent noise of the channel

χ =
(1 − T )

T
+ ǫ, (5)

where the first term (1 − T )/T corresponds to the noise in-

duced by the loss and ǫ is the excess channel noise which can

be written as ǫ = (W − 1)(1 − T )/T . In the particular case

where W = 1, or equivalently ǫ = 0 (no excess noise), the

attack corresponds to a pure loss channel.

W

T

E`

E``

E
XBXA

^

^

^
^

^

Alice Bob

Q or P (Hom)
V = V + VS 0

Q and P (Het)

^ ^

^ ^

FIG. 1: Schematic of a continuous-variable QKD protocol using

thermal states. The loss in the quantum channel is modeled by a

beam splitter with channel transmission T . The eavesdropping attack

is a Gaussian collective attack in the form of an entangling cloner at-

tack where the variance of the EPR state is W with the modes of the

EPR beam described by the operators Ê′′ and Ê′. The initial mode

sent by Alice X̂A is a thermal state and once Bob receives the mode

X̂B he will perform either a homodyne (Hom) or heterodyne (Het)

measurement on it.

III. REVERSE RECONCILIATION

We begin the analysis by considering reverse reconcilia-

tion [4] (denoted by the symbol ◭) using homodyne and het-

erodyne detection. Note that reverse reconciliation using ho-

modyne detection has been analyzed before [9, 10]. For com-

pleteness, we give the derivation for reverse reconciliation for

homodyne detection so as to help in the derivation for hetero-

dyne detection. Before commencing we make a brief com-

ment about notation. When we consider homodyne detection

the relevant variable XB is QB ∈ R (or PB ∈ R, equiva-

lently). On the other hand, when considering heterodyne de-

tection, the relevant variable XB is the pair {QB, PB} ∈ R
2.

Also a variable with hat is an operator while the same vari-

able without a hat is the corresponding classical variable after

measurement.
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A. Homodyne Detection

The secret key rate R◭[Hom] for reverse reconciliation

where Bob uses homodyne detection is given by

R◭[Hom] := I(XA : XB)− I(XB : E), (6)

where the mutual information between Alice and Bob is given

by

I(XA : XB) := H(XB)−H(XB|XA), (7)

where

H(XB) =
1

2
log2 V (X̂B), (8)

is the Shannon (or classical) entropy and

H(XB|XA) =
1

2
log2 V (X̂B|XA), (9)

is the conditional Shannon entropy [21]. The mutual informa-

tion between Eve and Bob is given by the Holevo bound [22]

defined as

I(XB : E) := S(E)− S(E|XB), (10)

where S(·) is the von Neumann (or quantum) entropy. The

von Neumann entropy of a Gaussian state ρ containing n
modes can be written in terms of its symplectic eigenval-

ues [23]

S(ρ) =

n
∑

k=1

g(νk), (11)

where

g(ν) =
(ν + 1

2

)

log2

(ν + 1

2

)

−
(ν − 1

2

)

log2

(ν − 1

2

)

.

(12)

We will show how to explicitly calculate the symplectic spec-

trum ν = {ν1, ..., νn} soon.

To begin with though, let’s calculate Alice and Bob’s mu-

tual information. To achieve this the first step is to consider

the output modes at Bob’s (and Eve’s) station. These are given

respectively by

V (Q̂B) = V (P̂B) = (1− T )W + TV := bV , (13)

V (Q̂E′) = V (P̂E′) = (1− T )V + TW := eV , (14)

with the following conditional variances

V (Q̂B|QA) = V (P̂B |PA) = (1− T )W + TV0 := b1,
(15)

V (Q̂E′ |QA) = V (P̂E′ |PA) = (1− T )V0 + TW := e1,
(16)

derived using the definition given in Eq. (4). Using Eq. (7)

with Eqs. (13) and (15) we can calculate Alice and Bob’s mu-

tual information to be

I(XA : XB) =
1

2
log2

[ (1− T )W + TVS + TV0

(1− T )W + TV0

]

. (17)

Note that, ultimately in the above equation it is V0 that will

be varied in our calculations. Next up is the calculation of

Eve and Bob’s mutual information, i.e., Eq. (10). First though

we need to introduce the covariance matrix. The covariance

matrix V can be constructed using the following definitions of

its matrix elements

Vlm :=
1

2
〈ŶlŶm + ŶmŶl〉 − 〈Ŷl〉〈Ŷm〉, (18)

Vll = 〈Ŷ 2
l 〉 − 〈Ŷl〉2 := V (Ŷl), (19)

where Ŷl is the lth element of the quadrature row vector

Ŷ = (Q̂1, P̂1, ..., Q̂n, P̂n) which describes the bosonic system

of n modes. As mentioned previously, to calculate Eq. (10),

we need to calculate the symplectic spectrum of the appro-

priate covariance matrices. The symplectic spectrum ν =
{ν1, ..., νn} of an arbitrary covariance matrix V can be cal-

culated by finding the (standard) eigenvalues of the matrix

|iΩV|, where Ω defines the symplectic form and is given by

Ω :=

n
⊕

k=1

(

0 1
−1 0

)

. (20)

Here
⊕

is the direct sum indicating adding matrices on the

block diagonal.

Eve’s covariance matrix is made up from the two modes Ê′

and Ê′′

VE(V, V ) =

(

diag[eV , eV ] ϕZ
ϕZ W I

)

, (21)

where ϕ = [T (W 2 − 1)]1/2 and the notation “diag” simply

means a matrix with the arguments on the diagonal elements

of a matrix and zeros everywhere else. Here Z and I are the

Pauli matrices

Z =

(

1 0
0 −1

)

, I =
(

1 0
0 1

)

. (22)

To calculate Eve’s symplectic spectrum we note that a partic-

ular covariance matrix of the form

V =

(

aI
√
TcZ√

TcZ bI

)

:= V(a, b, c, T ) , (23)

where c ≥ 0 and T ∈ [0, 1], has a symplectic spectrum with a

simple expression given by

ν± :=
1

2
[
√
y ± (a− b)] , (24)

where y = (a + b)2 − 4c2T ≥ 4 [2]. Therefore, using the

above, Eve’s symplectic spectrum can be expressed in a more
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compact form as

ν±E =
1

2

[

√

(eV +W )2 − 4T (W 2 − 1)± (eV −W )
]

.

(25)

Next we need to calculate the symplectic spectrum of the co-

variance matrix VE|XB
. This represents the covariance ma-

trix of a system where one of the modes has been measured

using homodyne detection (in this case Bob) and is given

by [2, 24, 25]

VE|XB
= VE − (bV )

−1DΠDT , (26)

where

Π :=

(

1 0
0 0

)

. (27)

Here D is a 4×2 matrix describing the (quantum) correlations

between Eve’s modes {Ê′, Ê′′} and Bob’s output mode X̂B .

It is given by

D :=

(

〈Ê′X̂B〉I
〈Ê′′X̂B〉Z

)

=

(

ξI
φZ

)

, (28)

where

ξ = −
√

T (1− T )(VS + V0 −W ), (29)

φ =
√
1− T

√

W 2 − 1, (30)

and we have used X̂B =
√
TX̂A +

√
1− TÊ and Ê′ =

−
√
1− TX̂A+

√
TÊ. Using Eq. (26) we find that Eve’s con-

ditional covariance matrix is given by

VE|XB
=

(

A C

C
T

B

)

, (31)

where

A =

(

V W
T (V −W )+W 0

0 (1− T )V + TW

)

,

B =

(

1−T+TWV
TV +W−TW 0

0 W

)

,

C =

(

√

T (W 2 − 1)
(

V
TV +W−TW

)

0

0 −
√

T (W 2 − 1)

)

.

The symplectic spectrum of the above conditional covariance

matrix is composed by the two eigenvalues [26]

ν± =

√

∆±
√
∆2 − 4 detV

2
, (32)

where detV (the determinant of the covariance matrix) and

∆ := detA + detB + 2detC are global symplectic invari-

ants. Note that these quantities can also be simply expressed

in terms of the symplectic spectrum as

detV = ν2+ν
2
−, ∆ = ν2+ + ν2− (33)

Using Eq. (32) the corresponding symplectic spectrum νE|XB

of VE|XB
can be calculated but is not written down explicitly

here due to its length. Finally using Eq. (11) and Eq. (12)

with the just computed symplectic spectra, we can determine

Bob and Eve’s mutual information. The final secret key rate

R◭[Hom] is calculated and plotted in Fig. 2 (a) using various

values of V0 for a lossy channel (i.e., a quantum channel with

only loss and no added noise, i.e., W = 1). We find that,

for only moderate values of V0, the security of the protocol

reduces rapidly.
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FIG. 2: Secret key rates for reverse reconciliation using (a) homo-

dyne detection and (b) heterodyne detection for various values of V0.

Top dashed (red) line is a pure encoded state sent by Alice with the

solid (blue) lines giving different values of impurity, i.e., V0 = 2, 3, 5

from top to bottom. Here VS = 10
3 and W = 1 (i.e., only loss on

the quantum channel).

B. Heterodyne Detection

The secret key rate for reverse reconciliation where Bob

now employs heterodyne detection is given by

R◭[Het] := I(XA : XB)− I(XB : E), (34)

where, as mentioned previously, XB is {QB, PB} ∈ R
2 for

heterodyne detection and not QB ∈ R (or equivalently PB ∈
R) as it was previously for homodyne detection. The mutual

information between Alice and Bob is again defined as

I(XA : XB) := H(XB)−H(XB|XA), (35)

except now the Shannon entropies are

H(XB) = log2 V (X̂B), (36)

and

H(XB|XA) = log2 V (X̂B|XA). (37)
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Note that the above two formulas do not have the usual factor

of 1/2 out the front. This indicates that twice the amount of in-

formation is obtained using heterodyne detection, but at a cost

of the extra unit of vacuum noise introduced at the beam split-

ter. The mutual information between Eve and Bob is again

given by the Holevo information

I(XB : E) := S(E)− S(E|QB, PB), (38)

but now S(E|QB, PB) is calculated from the symplectic

spectrum νE|QB ,PB
of the conditional covariance matrix

VE|QB ,PB
. The variances of the quadratures of the output

modes after Bob’s heterodyne measurement are given by

V (Q̂B) = V (P̂B) =
1

2
(bV + 1) := b′V , (39)

where bV is defined in Eq. (13). The following conditional

variances now apply

V (Q̂B|QA) = V (P̂B |PA) =
1

2
(b1 + 1). (40)

Using Eq. (35) we calculate Alice and Bob’s mutual informa-

tion to be

I(XA : XB) = log2

[ (1− T )W + TVS + TV0 + 1

(1− T )W + TV0 + 1

]

.

(41)

The covariance matrix of Eve conditioned on Bob’s hetero-

dyne measurement results {QB, PB} is given by [2]

VE|QB ,PB
= VE − θ−1D(ΩVBΩ

T + I)DT , (42)

where VE is given by Eq. (21) and VB = bV I. Here θ :=
detVB + TrVB + 1 and D is defined previously in Eq. (28).

We find that θ = b2V + 2bV + 1 and ΩVBΩ
T + I = VB + I.

We find that

VE|QB ,PB
=

(

aI
√
TcZ√

TcZ bI

)

, (43)

where

a =
(1− T )V + (T + V )W

1 + TV + (1− T )W
,

b =
1− T + (1 + TV )W

1 + TV + (1− T )W
,

c =
√

W 2 − 1
[ 1 + V

1 + TV + (1 − T )W

]

.

The above covariance matrix has the corresponding symplec-

tic spectrum

ν±E|QB ,PB
=

1

2
[
√
y ± (a− b)] (44)

where y = (a + b)2 − 4c2T as given by Eq. (24). Using

this, the final secret key rate R◭[Het] can be calculated and is

plotted in Fig. 2 (b) for different values of V0.
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FIG. 3: (a) Comparison of reverse reconciliation using homodyne

detection (dashed lines) against heterodyne detection (solid lines) for

V0 = 1 (red lines) and V0 = 1.5 (blue lines) and with only loss on

the quantum channel, i.e., W = 1 with VS = 10
3. (b) Close up

view of (a) where V0 = 1.5 for heterodyne detection (solid (blue)

line) crosses over with the pure state (dotted (red) line) for homodyne

detection.

We can now compare homodyne detection to heterodyne

detection using reverse reconciliation with, for example, an

impurity of V0 = 1.5. This is plotted in Fig. 3 (a). We note

that after a certain value of line transmission (≈ T > 0.79)

it is better, in terms of information rates, to use heterodyne

detection with a noisy input state than homodyne detection

with a pure input state, c.f., Fig. 3 (b).

IV. DIRECT RECONCILIATION

We now look at direct reconciliation [3] (◮) where Bob

uses both homodyne and heterodyne detection. First though,

we begin with our analysis using homodyne detection as first

presented in [11].

A. Homodyne Detection

The secret key rate for direct reconciliation using homo-

dyne detection is given by

R◮[Hom] := I(XA : XB)− I(XA : E), (45)

where I(XA : XB) has already been calculated in Eq. (17)

(note the mutual information between Alice and Bob is sym-

metric with respect to the two reconciliation protocols). For

Eve we have

I(XA : E) := S(E)− S(E|XA), (46)

where S(E|XA) is calculated from the spectrum νE|XA
of

the conditional covariance matrix VE|XA
. Eve’s conditional
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covariance matrix for homodyne detection using direct recon-

ciliation is equal to

VE|QA
= VE(V0, V ), (47)

where VE is defined in Eq. (21). The resulting symplectic

spectrum calculated using Eq. (32) is again too complicated to

be written down here. However, in Fig. 4 (a) we have plotted

the resulting secret key rates for various values of V0. Here

we see the surprising feature of direct reconciliation as first

noticed in [11] where adding preparation noise onto the initial

states does not reduce the transmission range of the protocol

(despite the fact that the secret key rate is reduced).
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FIG. 4: Secret key rates for direct reconciliation using (a) homodyne

detection and (b) heterodyne detection. Here the dashed (red) line

is the pure mode case V0 = 1 where the solid (blue) lines are for

impurity values V0 = 2, 3, 5, from top to bottom; again using the

parameters: W = 1 and VS = 10
3. (c) Close up view of (b) show-

ing that as Alice’s input state becomes more and more thermal, even

though the information rates are reduced, the protocol becomes more

secure in terms of where the lines cross the transmission axis. The

values of V0 are indicated next to the respective lines.

B. Heterodyne Detection

In our final analysis of this section, we consider heterodyne

detection using direct reconciliation. The secret key rate for

direct reconciliation using homodyne detection is given by

R◮[Het] := I(XA : XB)− I(XA : E), (48)

where I(XA : XB) is the same as Eq. (41). For Eve, her

mutual information with Alice is defined as

I(XA : E) := S(E)− S(E|QA, PA), (49)

where S(E|QA, PA) is calculated from the spectrum

νE|QA,PA
of the conditional covariance matrix VE|QA,PA

.

This conditional covariance matrix is given by

VE|QA,PA
= VE(V0, V0), (50)

where again VE is defined in Eq. (21). Using Eq. (24) we can

write the symplectic spectrum as

ν±E|QA,PA
=

1

2

[

√

(e1 +W )2 − 4T (W 2 − 1)± (e1 −W )
]

.

(51)

The resulting secret key rates are plotted in Fig. 4 (b) for dif-

ferent values of initial mode impurity. As with homodyne

detection, when the impurity is increased, there is no reduc-

tion in the security threshold of the protocol, only the secret

key rates. However, the security threshold for heterodyne de-

tection (T ≈ 0.73) is higher than that of homodyne detec-

tion (T = 0.5). Surprisingly though, by adding more and

more uncertainty to the initial modes, the security threshold

improves slightly for heterodyne detection; meaning that the

protocol can, at least for a small window of transmissions, tol-

erate slightly higher levels of loss (cf., Fig. 4 (c)). For exam-

ple, for a pure vacuum as input a secure key can be generated

from a transmission of T >≈ 0.73. However, when the initial

mode is set to V0 = 5 we have T >≈ 0.68. Numerically,

we find that for large values of impurity V0 ≫ 1, the security

asymptotes to T → 0.67. Out of the four family of protocols

studied here, this is the only protocol that exhibits such behav-

ior. Figure 5 contains plots of the security thresholds (where

R = 0) for both homodyne and heterodyne detection using

direct reconciliation and shows the improvement in security

when (unknown) preparation noise is added, with heterodyne

detection offering the largest improvement. This situation of

noise improving the performance of QKD has previously been

seen in the context of direct reconciliation where (pure) co-

herent states and homodyne detection are more robust than

squeezed states and homodyne detection [12]. Furthermore,

reverse reconciliation, where Bob measures squeezed states

using heterodyne detection rather than homodyne detection,

also shows an enhanced robustness [27, 28]. Achieving such

security robustness only works when additional noise is added

to the reference point (either Alice or Bob) of the reconcilia-

tion protocol. This means Alice in direct reconciliation and

Bob in reverse reconciliation.



7

Channel Transmission T

C
h

an
n

el
 N

o
is

e 
W

0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

FIG. 5: Security threshold plots for direct reconciliation where the

(red) dashed lines indicate a pure vacuum mode at Alice’s prepara-

tion side and the (blue) solid lines indicate a noisy coherent state

(V0 ≫ 1) as input. The two lines converging to T = 0.5 are for

homodyne detection while the other two lines indicate heterodyne

detection. Adding preparation noise to the heterodyne detection pro-

tocol illustrates the largest improvement in security of the pair of two

protocols.

As we did with the reverse reconciliation protocols, we

compare homodyne detection to heterodyne detection but this

time for direct reconciliation. This comparison is plotted in

Fig. 6 (a) where we have compared the two pure vacuum

modes against V0 = 3 for both homodyne and heterodyne

detection. We have also plotted a comparison between direct

and reverse reconciliation for both homodyne and heterodyne

detection using impurity values of V0 = 3 and 5. In the case of

homodyne detection, as given in Fig. 6 (b), we find that direct

reconciliation offers stronger security and higher information

rates than reverse reconciliation for the same values of impu-

rity. This is somewhat mirrored in the heterodyne detection

scenario given in Fig. 6 (c), although it only becomes more

apparent for values of impurity higher than V0 = 5.

C. Effect of Channel Noise

Here we consider the effect of channel noise (W > 1) on

the protocol that uses direct reconciliation with homodyne de-

tection for larger values of preparation noise. In particular

we consider preparation noises with a variance up to 104. In

Fig. 7 we plot the two cases of channel noises of W = 1.01
and W = 3 (Fig. 7 (a) and (b), respectively). As expected

both plots show a reduction in both the channel transmission

and secret key rate for both channel noises. However, the char-

acteristic where the various values of V0 converge to the same

channel transmission value still remains.
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FIG. 6: (a) Comparison of secret key rates between direct reconcilia-

tion using homodyne detection (dashed lines) and heterodyne detec-

tion (solid lines) for V0 = 1 (red lines) and V0 = 3 (blue lines) and

with only loss on the quantum channel, i.e., W = 1, with VS = 10
3.

Comparison of direct and reverse reconciliation for (b) homodyne

detection and (c) heterodyne detection for a lossy channel. Here

the dashed (red) lines indicate direct reconciliation whilst the solid

(blue) lines indicate reverse reconciliation. In each of the cases we

have plotted the impurity values of V0 = 3 and 5.

V. QKD IN THE CLASSICAL LIMIT

So far we have considered what happens to the

four protocols (direct/reverse reconciliation using homo-

dyne/heterodyne detection) when modest amounts (at most

V0 = 5) of preparation noise is added onto Alice’s in-

put states. In this section we consider the ‘classical limit’,

where an infinite amount of preparation noise is added, i.e.,

V0 → ∞, and hence, the quantum vacuum mode contribu-

tion to QKD becomes (almost) negligible. Here we consider

the case of direct reconciliation (using homodyne detection)
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FIG. 7: The effect of channel noise W on the secret key rates for

direct reconciliation using homodyne detection for a quantum chan-

nel with noise of (a) W = 1.01 and (b) W = 3 for various values

of V0 where VS = 10
5. The effect of increasing the channel noise

only shifts the security threshold of both plots while maintaining the

same characteristic of the lossy channel [11] where all values of V0

converge to the same channel transmission. Such a preparation noise

effect is not seen in reverse reconciliation.

because as we have seen, reverse reconciliation (using either

homodyne and heterodyne detection) does not handle prepara-

tion noise very well as the security (channel transmission) and

the secret key rate deteriorate quickly for modest increases in

noise. It was first shown in [11] that for a pure loss channel

(W = 1), a secret key could still be established even if Alice’s

preparation noise was as large as V0 = 104. Adding prepara-

tion noise from V0 = 1 to V0 = 104 reduced the key rate but

kept the maximum transmission threshold fixed at T = 0.5.

We now consider what happens to the secret key rate

R◮[Hom] in the asymptotic limit where the preparation noise

goes to infinity V0 → ∞ and the channel noise is much

smaller, i.e., W ≪ V0. To do this we consider the fixed ratio

φ :=
VS

V0
> 0. (52)

In our calculations we make the substitution VS = φV0 and

take the limit V0 → ∞. We begin by first considering the mu-

tual information between Alice and Bob as defined in Eq. (17).

Following the recipe given above we obtain

I(XA : XB) =
1

2
log2(1 + φ). (53)

The above equation is simply Shannon’s formula for the clas-

sical capacity of a single-mode communication channel with

additive Gaussian noise of variance V0 and input Gaussian

signal VS [21]. We now calculate the mutual information

between Eve and Alice I(XA : E) in this so-called clas-

sical limit. To do this we follow the techniques given in

Sec. IV A. Note that Eve and Alice’s mutual information is

defined in Eq. (46) and uses Eq. (11) with Eq. (12). However,

in this asymptotic limit the symplectic eigenvalues are also

very large, i.e., ν ≫ 1, in which case Eq. (12) is simplified to

g(ν) → g′(ν) = log2

(eν

2

)

+O(ν−1). (54)

Again in this asymptotic limit, the first symplectic spectrum

value of Eve using Eq. (25) is given by

ν+E = (1− T )V. (55)

While the other symplectic eigenvalue can be calculated in the

same manner to give

ν−E = W. (56)

To calculate the conditional symplectic spectrum νE|XA
we

use Eq. (32) where

∆ =W 2 + (V − TV + TW )(V0 − TV0 + TW )

− 2T (W 2 − 1), (57)

and

(∆2 − 4detVE|XA
) = (T − 1)2[T 2(V −W )2(V0 −W )2

+ (W 2 − V V0)
2 + 2T (V −W )(W − V0)(W

2 + V V0 − 2)].
(58)

Taking the limit as before gives, for the first symplectic eigen-

value, the following

ν+E|XA
=
√

1 + φ(1− T )V0 +O(V −1
0 ). (59)

Now in order to get a non-zero value for the other symplectic

eigenvalue we use Eq. (33) to give

ν−E|XA
=

(1− T )−1

√

(T + VW − TVW )(T + V0W − TV0W )

V V0
.

(60)
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Using the above asymptotic formulas with Eq. (45), we find

that a positive secret key rate exists only when

R◮[Hom] = log2

[ (
√
1 + φ)ν+E|XA

ν−E|XA

ν+Eν−E

]

> 0. (61)

The above expression can be simplified to

log2

[ [T + VW (1− T )][T + V0W (1 − T )]

V V0W 2(1− T )2

]

> 0. (62)

For a finite information rate we therefore require the following

inequality to be true

[T + VW (1− T )][T + V0W (1 − T )]

V V0W 2(1− T )2
> 1. (63)

Algebraically, we find that the above inequality is always sat-

isfied for our required conditions of 1/2 < T < 1, V0 > 1,

VS > 1 and W > 1. Therefore we have shown that in the

asymptotic limit where V0 → ∞, VS = φV0, and W ≪ V0,

any value of preparation noise can be added onto the initial

quantum states used by Alice and a secret key can still be

achieved, albeit with a very small, but still finite, key rate.

This happens as long as the transmission of the channel is

greater than a half.

VI. QUANTUM CRYPTOGRAPHY AT VARIOUS
ELECTROMAGNETIC WAVELENGTHS

It is interesting to consider that one possible application

of the results from the previous two sections is continuous-

variable QKD over different wavelengths of the electromag-

netic spectrum. The reason why the previous analyzes would

be useful for such an application is that the average photon

number is dependent on the wavelength of the signals sent.

Typically, QKD experiments [1] are performed at telecom

wavelengths of 1550 nm where the average photon number

at room temperature is very low (n̄ ∼ 10−14). However,

when one moves away from this wavelength and down into

the infrared, the modes become more thermal. In Sec. IV we

determined that direct reconciliation is significantly more ro-

bust against preparation noise than reverse reconciliation and

is therefore better suited to our analysis of QKD at various

wavelengths. We consider a simply model where Alice sends

Bob thermal states at a particular wavelength and Bob uses a

(perfect efficiency) homodyne detector that is unaffected by

the thermal radiation. Note that if Bob employed heterodyne

detection the additional unit of shot noise vacuum from the

heterodyne detector would also be thermal and need to be

taken into account. For Eve’s attack, as with the previous sec-

tions we assume she performs a collective Gaussian attack,

but this time with a difference. Eve’s ancilla modes, which

she interacts with Alice’s incoming modes (where the inter-

action is typically modeled using a Gaussian beam splitter),

are also thermal (for the same reason Alice’s are). In order to

combat this Eve performs her entire attack inside a cryostat,

see Fig. 8. In preparation for her attack Eve’s first step (1)

is to cool down her thermal ancilla modes so as to approxi-

mate pure vacuum modes. In the second step (2) she performs

a collective Gaussian attack via the entangling cloner attack.

Then, before sending the mode X̂B′ onto Bob, she randomly

modulates X̂B′ to create (from Alice and Bob’s perspective)

a thermal state. The variance of this thermal state is chosen

to be equal to the variance of the environmental noise, so that

Eve covers her tracks. The key point here is that by modulat-

ing her modes Eve has effectively added known noise to her

ancilla modes.

XB
XA

^ ^

Alice Bob

Q or P (Hom)V = V + VS 0

Eve’s cryostat

(1) 

(2)

^ ^

Eve

W

T

E`

E``

E

^

^

^

XB’
^

FIG. 8: Schematic of a continuous-variable QKD protocol performed

at different wavelengths of the electromagnetic spectrum. Alice

sends modes at a particular fixed wavelength to Bob who measures

the incoming modes using homodyne (Hom) detection. Eve’s attack

consists of using a cryostat which is used to cool down her thermal

modes to produce pure vacuum modes (1). The second step (2) in-

volves implementing the entangling cloner attack. Finally, Eve adds

known noise onto the modes X̂B′ she sends to Bob. This is to cre-

ate a thermal state in order to match the level of the variance of the

radiation of the environment, effectively covering her tracks.

To begin the analysis we need to calculate the variance of a

mode at a specific wavelength. To do this we note that we can

write the average photon number n̄ in terms of the quadrature

variance V as

n̄ = 〈â†â〉 = 1

2
(V − 1) =⇒ V = 2n̄+ 1, (64)

where â = (Q̂ + iP̂ )/2 and â† are the annihilation and cre-

ations operators, respectively, and we have also symmetrized

both quadratures, i.e., V := V (Q̂) = V (P̂ ). Now the average

photon number for a single mode is equal to [29]

n̄ =
1

exp(hf/kBτ) − 1
, (65)

where τ is the temperature, f is the frequency of the mode,

h is Planck’s constant and kB is Boltzmann’s constant. Us-

ing the techniques from Sec. IV A we can calculate the re-

gions where continuous-variable QKD is secure as a func-

tion of the frequency (wavelength) and channel transmission.

This is plotted in Fig. 9 where areas of security correspond to

R > 0 where again R is the secret key rate. We see that re-

gions of security exist over various wavelength values from

optical (1550 nm) into the infrared and down into the mi-

crowave region. We note that in the original paper [11], where
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FIG. 9: Security of continuous-variable QKD as a function of chan-

nel transmission T at various wavelengths of the electromagnetic

spectrum at room temperature τ = 300 K. Beginning at the infrared

spectrum (430 THz) and down into the microwave spectrum (starting

from 300 GHz) where VS = 10
8. The solid (blue) line is the se-

cure region derived against a collective Gaussian attack. The dotted

(red) line corresponds to an entanglement-breaking channel where

Eve performs an intercept-resend attack. In such a situation no se-

cure key can be synthesized.

continuous-variable QKD at various frequencies was first in-

vestigated, a bound was derived that underestimated the secu-

rity threshold. The new tigher bound given in Fig. 9 improves

upon the previous bound by having higher levels of security.

It is instructive to consider a loss limit (or transmission

threshold) for QKD at various wavelengths. It is known [30]

that a loss limit exists when considering channel noise for

continuous-variable QKD. This bound corresponds to Eve

performing an intercept-resend attack which destroys any

quantum correlations between Alice and Bob and thus the pos-

sibility of generating a secure key [31]. In order to avoid an

entanglement-breaking channel we demand that the equiva-

lent noise of the quantum channel χ cannot exceed one unit

of shot-noise, i.e., χ < 1 [3]. Since χ = W (1 − T )/T , the

security condition becomes

W <
T

1− T
. (66)

We can rewrite the above equation in terms of a secure bound

on the required frequency as a function of channel transmis-

sion. Using the fact that W = 2n̄+ 1 with Eqs. (65) and (66)

we can show that we require

f > −α ln(2T − 1), (67)

where α = kBτ/h. This curve is plotted as the dotted (red)

line in Fig. 9 and gives a lower bound in security.
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FIG. 10: Security of microwave quantum cryptography. Here we

consider the upper end of the microwave spectrum, i.e., V0 = 41.66

(300 GHz) using the direct reconciliation protocol and homodyne

detection, where W = 41.66 and VS = 10
8. The insecure region

corresponds to the entanglement-breaking channel where no secure

key can be created; whilst a region in between the secure and insecure

region exists where it might be secure but as yet no known protocol

exists. For example, secure protocols could be developed which are

based on more complex strategies in terms of classical communica-

tions and post-processing.
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FIG. 11: How channel noise W affects the security of thermal

state QKD. Here we have V0 = 41.66 using direct reconcilia-

tion and homodyne detection with VS = 10
3. From left to right:

W = 5, 10, 20, 50, 100. After only modest increases in channel

noise the security of the protocol reduces rapidly.

A. Discussion: Feasibility of Microwave QKD

Here we consider the possibility of using QKD at the mi-

crowave frequency. The microwave frequency is ubiquitous as

a communication wavelength in today’s technologies, rang-
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ing from cell phones to short-range devices such as Wi-Fi

and Bluetooth. The fact that small regions of security ex-

ist in the microwave regime is initially quite surprising due

to the presence of large amounts of background noise. We

consider the microwave frequency from 300 GHz (1 mm) to

1 GHz (30 cm). Using Eq. (65) for Alice’s initial modes

we find that this corresponds to a range of variances from

V0 = 41.66 to V0 = 1.25 × 104, respectively. In Fig. 10 we

plot the case where V0 = 41.66 (i.e., 300 GHz) and where the

noise on Eve’s mode is also W = 41.66. We see that a secure

key can only be generated when the transmission is higher

than T ≈ 0.981. Here the straight vertical line distinguishing

the insecure and secure regions is the entanglement-breaking

region as given by Eq. (66), i.e., T > W/(1 +W ) = 0.9766.

For the 1 GHz frequency, numerically we only start getting

positive key rates when the channel reflection (i.e., loss) is

on the order of 1 − T ≈ 10−5 giving a key rate on the or-

der of R ≈ 10−6. Although the secure region is very small,

the practical required distances are also very small. Such a

short-range QKD scheme, unlike the typical long-range QKD

protocols, could potentially be ideal for such devices as Blue-

tooth (maximum distance of ∼ 10 m) and Wi-Fi (∼ 75 m).

Also a secure quantum version of Near Field Communica-

tion (NFC) [32] would be an ideal application as the range

with which these microwave devices operate over is ∼ 10 cm.

However, in such a situation what actually constitutes Alice’s

and Bob’s stations becomes blurred. We point out that the

dominate factor in terms of the limited range in security, is

the channel noise W and, as we have seen from the results of

the previous section, not the preparation noise. The effect of

channel noise on the security of thermal state QKD is plotted

in Fig. 11. Here we assume V0 = 41.66 and see that after only

a small increase in channel noise (i.e., W = 5) one can only

generate a secure key after T ≈ 0.86. Therefore a continuous-

variable QKD protocol that is able to tolerate large amounts

of preparation and channel noise is required, in order to make

microwave QKD feasible.

Another possible platform for microwave QKD is using dis-

crete variables, e.g., the BB84 protocol [33]. The preparation

and detection of photons at the microwave frequency is an

active field of experimental research in cavity quantum elec-

trodynamics [34–37]. However, such experiments do not in-

volve the propagation of microwave photons over free space.

Although, even if the technology allowed the efficient gen-

eration and detection of single microwave photons over free

space, the fundamental problem exists where Bob would not

be able to distinguish the photons that originated from Alice

to those which came from the surrounding environment - both

are indistinguishable.

VII. CONCLUSION

In conclusion, we have considered continuous-variable

quantum key distribution from the perspective of Alice us-

ing thermal Gaussian states as her initial cryptographic re-

source, instead of the usual pure Gaussian states. The case

of direct reconciliation and homodyne detection was first ana-

lyzed in [11] and we have extended these results here to in-

clude both direct and reverse reconciliation for the case of

heterodyne detection. We showed that an improved robust-

ness to channel noise can be achieved when preparation noise

is added in the case of direct reconciliation using heterodyne

detection. In [11] it was shown that direct reconciliation does

not suffer any loss in security when preparation noise is added

(although the secret key rate does decrease as a function of

preparation noise), even when the variance of the initial ther-

mal states was as large as 104 times that of the pure vacuum.

We significantly improved upon this result by showing that

direct reconciliation can tolerate any amount of preparation

noise, provided the channel noise is much less than the prepa-

ration noise. Finally, we derived an upper bound related to an

entanglement-breaking eavesdropping attack for quantum key

distribution at various electromagnetic wavelengths and ended

with a discussion on the feasibility of microwave quantum key

distribution.
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