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Quantum key distribution enables two remote parties to grow a shared key, which they can 
use for unconditionally secure communication over a certain distance. The maximal distance 
depends on the loss and the excess noise of the connecting quantum channel. Several quantum 
key distribution schemes based on coherent states and continuous variable measurements are 
resilient to high loss in the channel, but are strongly affected by small amounts of channel 
excess noise. Here we propose and experimentally address a continuous variable quantum key 
distribution protocol that uses modulated fragile entangled states of light to greatly enhance the 
robustness to channel noise. We experimentally demonstrate that the resulting quantum key 
distribution protocol can tolerate more noise than the benchmark set by the ideal continuous 
variable coherent state protocol. Our scheme represents a very promising avenue for extending 
the distance for which secure communication is possible. 
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There is a tremendous demand for secure communication of 
data in commerce, finance and government affairs. Uncon-
ditional security is promised by the use of a one-time pad 

strategy where two parties, Alice and Bob, share a pre-established 
secret key that they use for encoding and decoding the message. 
The confidentiality of the communication therefore falls back on 
the generation of a secret key between Alice and Bob1,2. Such a key 
can be generated with quantum key distribution (QKD), which was 
first proposed by Bennett and Brassard3 in 1984 for single photons 
and discrete variable measurements. The technology has later been 
extended to also include coherent states and continuous variable 
(CV) measurements known as CV-QKD4–13.

A generic CV-QKD protocol between two trusted parties is ini-
tiated by Alice, who prepares a distribution of Gaussian quantum 
states of light, for example, coherent4–11 or squeezed/entangled 
states14–18. Alice transmits the states through a quantum channel 
to Bob, who performs measurements on the continuous quadrature 
components of the light field using either a homodyne detector4–7 
or a heterodyne detector8, thus measuring conjugate quadratures 
either randomly or simultaneously, respectively. This results in a set 
of data that is partially correlated with Alice’s data set, which she 
obtained in the process of preparing the distribution of quantum 
states. Alternatively, a two-way quantum communication scheme 
can be formulated12, but we will restrict our discussion to one-
way quantum communication. To estimate the secrecy of the trans
mission, Alice and Bob compare a subset of their data using classical 
communication. Provided that the security threshold for channel 
loss and excess noise has not been crossed, the resulting set of raw 
data can then be mapped onto a shared secret key using classical 
reconciliation and post-processing techniques6,19,20.

There are two major hurdles in CV-QKD that limit the distance 
for secure communication. The first is the presence of excess noise, 
combined with high losses in the optical channel4–8, and the second 
is the limited classical reconciliation efficiency. For example, in the 
realistic CV-QKD scheme based on coherent states, the maximal 
secure distance is in theory limited to around 140 km if the channel  
excess noise is 4% of vacuum noise, the loss is 0.2 dB km − 1 and 
the post-processing efficiency is 96.9%19. To enlarge the secure  
distance, one obvious strategy is to reduce the channel loss and 
noise, and to increase the post-processing efficiency. However, 
present CV-QKD systems are already working with state-of-the-art 
optical channels and the post-processing efficiency is also reaching 
its limit. Therefore, to go beyond the currently achievable distances, 
a fundamentally different approach must be followed.

In this article, we propose and, as a proof-of-principle, experi-
mentally demonstrate a CV-QKD protocol based on entangled 
states of light that is more tolerant to channel excess noise, channel  
loss and limited post-processing efficiency than the coherent state-
based protocols. Explicitly, using only 3.5 dB of impure and modu-
lated two-mode squeezing, we demonstrate the generation of a 
secret raw key between two parties connected by a noisy and lossy 
channel—a channel that cannot be used for secure communication 
based on any coherent state protocol. A full-scale implementation of 
our proposed protocol has the capability to significantly boost the 
robustness and distance for secure communication using available 
technology and a feasible, that is impure, squeezed light source.

Results
Our protocol. In our scheme, we prepare a Gaussian distribution 
of squeezed states using the method illustrated in Fig. 1a. Alice 
prepares a Gaussian entangled state, known as an Einstein–
Podolsky–Rosen (EPR) state, and measures one of the modes 
using a homodyne detector that randomly detects the amplitude 
or the phase quadrature. This measurement projects the EPR state 
onto a Gaussian distribution of conditionally squeezed states21.  
Such alphabet of squeezed states could in principle be used to 

outperform the coherent state protocol under the condition of pure 
and strong entanglement13. To release these stringent requirements, 
we propose to enlarge the Gaussian distribution in phase space 
by a controlled modulation using two random and independent 
Gaussian variables. The final Gaussian distribution of states is 
then transmitted through a potentially lossy and noisy quantum 
channel, the action of which may be ascribed to an eavesdropper 
(Eve). Finally, the states are measured by Bob, who randomly 
measures one of the two conjugate continuous quadratures using  
homodyne detection.

After the transmission, Alice holds two sets of data: one set 
obtained from the homodyne measurements, {xHD}, and one from 
the Gaussian modulation, {xM}. To maximize the performance of 
the protocol, we suggest to weight the homodyne data with a gain 
factor, g∈[0,1], and subsequently add the two sets to yield the 
optimized set: xM + gxHD. The optimal gain factor depends on the 
strength and the purity of the EPR state. In the limit of no squeez-
ing, Alice only keeps the data from the Gaussian modulation and 
thus the protocol reduces to the standard coherent state protocol4,5. 
On the other hand, for very high antisqueezing, g = 1 and the values  
of the resulting data set are equally constructed from the two subsets. 
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Figure 1 | Conceptual diagram and purification of our QKD protocol.  
(a) Alice prepares a conditionally squeezed state by randomly measuring 
the amplitude or the phase quadratures of one mode of an EPR state using 
a homodyne detector. The conditionally squeezed state is modulated 
further by a modulator (Mod) fed with a Gaussian white noise (WN) 
source controlled by Alice. The homodyne data and the white noise 
data are stored for signal processing (SP) and the gain between them is 
optimized. The modulated conditionally squeezed state is transmitted 
through an untrusted quantum channel where Eve is allowed to perform 
any attack that mimics the channel transmission η and the channel 
excess noise ε. After the channel Bob performs quadrature measurements 
using a homodyne detector and the classical post-processing can begin. 
(b) Purification scheme for an arbitrary Gaussian QKD protocol. Two 
quadrature squeezers (SQZ1 and SQZ2) are placed inside a Mach–Zehnder 
interferometer with beam splitters of transmittances T1 and T2 and fed with 
modes from two independent EPR sources (EPR1 and EPR2). The resulting 
4-mode state (A, B, C and D) is pure, whereas the six free parameters 
can be set so that the two modes A and B can simulate any Gaussian 
two-mode state (up to a local unitary transformation) including the states 
produced in our experimental set-up. One mode of the state is measured 
by an ideal detector at Alice while the other travels through the channel, 
which has transmission η and excess noise ε. Finally Bob’s noisy detection 
is purified by placing a beamsplitter with an EPR input and a transmission 
mimicking his electronic noise, detection efficiency and the noise he adds 
to his data, before an ideal detector.
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However, in a real-life scenario, squeezing is limited and thus an 
intermediate gain will optimize the generation of a secret key. The 
rest of the classical part of the protocol follows the common recipe 
of the generic protocols.

Secret key. To prove the security of our CV-QKD protocol, it is suf-
ficient to consider the class of collective attacks as they have been 
shown to be optimal under certain symmetries of the protocol22–25. 
For collective attacks and using the classical technique of reverse 
reconciliation5, the achievable key rate (in the asymptotic limit of 
an infinitely long raw key) is given by

I I= −b cAB BE,

where IAB is the Shannon mutual information between the data of 
Alice and Bob, χBE is the Holevo bound on the information avail-
able between Bob and Eve and β is the post-processing efficiency.

To use this general framework for the calculations of the key rate, 
it is necessary to define a theoretical preparation scheme26–28 where 
the actual two-mode state of Alice and Bob is part of a pure multi-
mode state29. This purification is generated by using pure sources 
and accounting for all modes. For example, the standard prepare-
and-measure coherent state or squeezed-state protocols are often 
treated theoretically by an equivalent entanglement-based protocol. 
In the present work, the actual set-up is already partially entangle-
ment based, however the resulting states are impure due to imper-
fections in the squeezing sources and the imposed modulations. We 
therefore define a theoretical preparation scheme (see Fig. 1b) that 
can generate any two-mode Gaussian state between Alice and Bob 
as part of a pure four-mode state (see Methods).

To reach large distances for which key distribution can be 
attained, one must develop a protocol that maximizes the key rate 
in equation (1). We start by considering the standard coherent  
state protocol assuming unity post-processing efficiency. It is known 
that the key rate for this protocol can be maximized by using an 
infinitely large Gaussian modulation and by adding white noise to 
Bob’s data, which are obtained by homodyne detection13. Using 
the above-mentioned analysis for collective attacks, we calcu-
late the secure key rate and the maximally tolerable excess noise,  
and the results are illustrated by the solid curves in Fig. 2a,b. These 
two curves represent the coherent state benchmarks. Employing the 
squeezed-state protocol suggested in ref. 13, these benchmarks can 
be beaten but only for strongly squeezed states, that is, 5.6 dB noise 
suppression below the shot noise limit as illustrated by the dotted 
curves in Fig. 2a,b.

Now by considering our protocol (Fig. 1a), the key rate and the 
tolerable excess noise are increased even further, as shown by the 
bold dashed lines in Fig. 2. Comparing the previous squeezed state 
protocol13 with ours, we see that the maximal secure distance attain-
able for 3-dB squeezed states is increased by a factor of about 19 and 
the required squeezing for surpassing the coherent state protocol 
is lowered from 5.6 dB to 0 dB for pure two-mode squeezed states. 
For highly impure two-mode squeezed states, we need 3 dB of two-
mode squeezing as shown by the dot-dashed curve. Our protocol 
thus has the remarkable property that any conditionally squeezed 
state improves the performance beyond the optimized coherent 
state protocol. Moreover, another important feature of our protocol  
is that the squeezed states need not be pure; arbitrary mixedness 
can be tolerated as long as the state is conditionally squeezed.  
Therefore, the main resource for increased performance is condi-
tional squeezing. We note however that the performance saturates 
for high degrees of squeezing (see Fig. 2b).

Experimental set-up and results. The experimental set-up is 
sketched in Fig. 3. We start by generating EPR entanglement 
between two modes of light21. The quadrature of one of the EPR 

(1)(1)

modes is measured by means of high-efficiency homodyne detec-
tion at Alice’s station. In addition to the measurement, we induce a 
random but known coherent modulation to the second EPR mode. 
After the channel, we measure the second mode using a high- 
efficiency homodyne detector at Bob’s station, to access either the 
amplitude quadrature or the phase quadrature. We use laser light at 
1,064 nm for the seeds and local oscillators and 532 nm for the pump 
for the optical parametric oscillators (OPOs). The EPR state has 
3.5 ± 0.2 dB of two-mode squeezing and 8.2 ± 0.2 dB of antisqueezing 
and the coherent modulation depth is sequentially varied between 
0 dB and 15 dB. All measurements are performed at the sideband 
frequency of 4.9 MHz with a bandwidth of 90 kHz. The system is 
initially calibrated to ensure that the correlation between conjugate 
quadratures of Alice is negligible and that the quadratures of Alice 
are in phase with Bob. The experiment was carried out sequen-
tially for conjugate quadratures; the amplitude quadrature was first 
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Figure 2 | Theoretical comparison between the performance of 
different CV-QKD protocols. (a) Secret key rate as a function of distance 
(corresponding to a loss of 0.2 dB per km) for a fixed excess noise of 
0.1 SNU. (1) Ideal coherent state protocol with 100 SNU modulation. 
The shaded region illustrates the regime accessible with coherent state 
protocols. (2) and (3) Squeezed state protocol with 3 dB and 10 dB 
squeezing, respectively (without additional modulation). (4) and (5) 
Our proposed protocol with 3 dB and 10 dB of squeezing, respectively, 
and 100 SNU modulation. The red arrows indicate the improvement 
of our proposed protocol compared with the squeezed state protocol 
with no modulation. For all protocols, the added noise to Bob’s data is 
optimized and β = 1. (b) Maximal tolerable channel noise versus the initial 
antisqueezed variance. The channel loss is set to 10 dB (corresponding to 
a distance of 50 km). (1) Ideal coherent state protocol with asymptotically 
large modulation. The shaded region illustrates the regime accessible 
with coherent state QKD. (2) Squeezed state protocol without additional 
modulation. (3) New combined squeezed state protocol with 100 SNU 
of coherent modulation without the gain. This is also the performance 
obtained for highly impure squeezed states. (4) Our proposed optimized 
protocol with 100 SNU coherent modulation and optimized gain factor. For 
all protocols, the added noise to Bob’s data is optimized and β = 1.
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conditionally squeezed, displaced and measured, and the procedure 
was then repeated for the phase quadrature. We add the homodyne 
and modulation data with an optimized gain. For technical rea-
sons, we multiply the modulation data with the inverse of the gain 
factor. This results in two large data strings, one for Alice and one 
for Bob, which are strongly correlated as shown for three different 
modulation depths in Fig. 4a–c. The correlations arise partly from 
the quadrature entanglement and partly from the coherent modula-
tion. From the correlated data, we compute the covariance matrices 
as illustrated in Fig. 4d-f from which we can estimate the security 
limits for our system (see Methods).

Discussion
In the laboratory, the channel transmission is 95% and the excess 
noise can be continuously varied by unbalancing the generated data 
at Alice and Bob. As an example, we set the excess noise to 0.45 
shot noise units (SNU) and the total modulation depth to 23.4 SNU. 
For these settings of the experiment, we generate a raw key with a 
rate of 0.004 ± 0.001 bit per state. We note that neither the coherent  
state-based protocols nor the standard squeezed state-based  
protocol (with 3.5 dB squeezing) could have generated a key in such 
a channel.

We now investigate the security performance of our protocol in 
longer channels based on the experimentally measured covariance 
matrices assuming perfect post-processing and channel estimation. 
The matrices are used in a model that includes the trusted losses 
and noise sources of the detectors, and in which arbitrary channel 
loss and excess noise can be simulated. As an example, we assume 
a channel transmission of 10% and find the tolerable excess noise 
for six different realizations of the covariance matrices illustrated 
in Fig. 4g. Finally, in Fig. 4h, we plot the maximum distance and 
loss as a function of the tolerable noise associated with the experi-
mentally realized covariance matrix in Fig. 4f. We clearly see that by 
combining squeezed states with coherent modulation, we beat the 
performance of any coherent state protocol (limited to the shaded 

region). The supremacy of the squeezed state protocol relative to 
the coherent state protocol is best seen by equalizing the amount 
of energy used in the two protocols. In this case, the states entering 
the channel are identical and Eve cannot tell the difference between 
the two protocols. The relative improvement is illustrated by the  
dot-dashed curve relative to the dashed curve in Fig. 4g.

In the analysis above, we have assumed perfect classical post-
processing (corresponding to β = 1). However, the key rate of real-
world implementations of CV-QKD is currently limited by the 
inefficiency of the yet-developed classical error codes19,30. We have 
therefore considered the effect of imperfect post-processing on our 
protocol corresponding to a security analysis with β < 1. The results 
of this analysis for an optimistic β = 0.98 are illustrated in the insets 
of Fig. 4g,h, whereas a more pessimistic β = 0.95 can be seen in  
Supplementary Fig. S1, and further discussed in the Supplementary 
Discussion. Finally, we fix the channel transmission to 10% and 
plot the tolerable excess noise as a function of the post-processing 
efficiency in Supplementary Fig. S2. It is evident from the figures 
that despite inefficient post-processing, our squeezed state protocol 
remains superior to the coherent state protocol, and remarkably, it is 
seen that the relative improvement has increased. We also note that 
the optimal performance occurs for a finite modulation depth. If 
the beta factor becomes very low, a different squeezed state protocol 
must be considered31.

As mentioned above, the performance of our protocol is partially 
parametrized by the degree of conditional squeezing. In our realiza-
tion, the conditionally squeezed states were prepared by measuring 
one mode of a two-mode squeezed state. However, alternatively, the 
conditionally squeezed state could have been prepared directly by 
modulating a single-mode squeezed state beyond the antisqueezing. 
The direct benefit of such a strategy is that the degree of conditional 
squeezing is identical to the degree of the single-mode squeezed 
state. Protocols with single-mode squeezed states will be studied in 
future work.

We have introduced and experimentally addressed a QKD  
protocol based on CV-squeezed states of light. Interestingly, we find 
that the key rate as well as the robustness against channel noise is 
improved for any degree of conditional squeezing compared with 
the idealized and optimized coherent state protocol. The require-
ment on the purity of the squeezed states is relaxed, thus render-
ing the protocol provably secure against any type of attack on the 
channel. In fact, by using strongly squeezed but also highly impure 
states, such as those produced via the large bandwidth Kerr effect in 
standard optical fibres (where up to 6.8 dB of squeezing and 29.6 dB 
of anti-squeezing has been produced32), the coherent modulation is 
left unnecessary. In future commercial implementations, miniatur-
ized waveguide cavities could be used to make on chip-squeezed 
state QKD.

Methods
Theory of the protocol. After obtaining the two-mode covariance matrix, the 
security analysis of our protocol follows the well-established security proofs for 
the Gaussian CV-QKD protocols, which are based on the extremality of Gaussian 
states22 and consequently the optimality of Gaussian collective attacks23,24. From 
this, it follows that the lower bound on the key rate as stated in equation (1), can 
be obtained from the covariance matrix of the state. Given that the difference in 
equation (1) is positive, the classical privacy amplification algorithms can distil a 
secure key.

The Shannon mutual information is calculated directly from the variance of 
Alice’s quadrature data, VA, and Alice’s variance conditioned on Bob’s measure-
ment, VA|B, as I V VAB A A Blog= 1 2 ( / )2 |( / ) . The gain factor, weighting the fraction 
of Alice’s homodyne measurement results, is then optimized to maximize the 
mutual information.

The Holevo quantity is expressed through the von Neumann entropies S(·) as 
c r rBE E E= ( ) ( )S S x− B  in the reverse reconciliation scheme, where ρE is the den-
sity matrix of Eve’s states and rE

xB is the density matrix conditioned by Bob’s meas-
urement. If untrusted noise is present in the system, Eve is assumed to be able to 
purify the system of Alice and Bob so that S S( ) = ( )r rE AB  and S Sx x( ) = ( )r rE AB
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Figure 3 | Experimental set-up. A squeezed state is generated in each of 
the two OPOs, operated below threshold. The squeezed states interfere 
at a beam splitter to form a two-mode squeezed state. The amplitude or 
the phase quadrature of the one mode is measured by Alice’s homodyne 
detector. The other mode is carefully phase locked to a coherently 
modulated auxiliary mode. The auxiliary state is generated using a phase 
modulator (PM) and an amplitude modulator (AM), each of which are 
driven by a white noise generator. Alice acquires information about the 
modulation by measuring a part of the auxiliary state. The coherent state 
is purified by the highly asymmetric beamsplitter all of this to minimize the 
harmful preparation noise28. The modulated and conditionally squeezed 
state is transmitted through the channel to Bob’s homodyne detector 
where one of the conjugate quadratures is measured. The resulting 
measurement outcomes are fed via a fast AD card to a computer for  
signal processing.
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Figure 4 | QKD measurement results. (a–c) The red points represent the normalized and weighted quadrature data of Alice and Bob for three different 
depths of coherent modulation. In the left and the right, the amplitude and phase quadrature correlations are shown, respectively. The extra modulation 
added is 0 SNU in (a), 3.6 SNU in (b) and 23.8 SNU in (c), which comes on top of 3.6 SNU modulation from the EPR source. These correlated data are 
contrasted with a set of uncorrelated data points (green) with identical total energy. The solid black ellipse and outer circle correspond to two s.d. of  
these two, respectively. The inner blue circle is two s.d. of shot noise. (d–f) Illustrations of the covariance matrices for the three modulation depths.  
(g) Tolerable excess noise as a function of the modulation depth for a simulated transmission of η = 0.1. The uncertainty represents the actual 
measurements with compensation for 85 ± 5% quantum detection efficiency as the dominating source of uncertainty. The theoretical estimates for the 
ideal coherent state protocol and our protocol with the experimental parameters are given by the solid and dashed curves, respectively. For comparison, 
we also include the performance of the coherent state protocol with an energy identical to the energy of the two-mode squeezing protocol (dot dashed 
curve). The shaded region illustrates the regime accessible with coherent state QKD. The inset is the same as the main figure but with limited post-
processing efficiency β = 98%. (h) The maximally tolerable loss as a function of the channel excess noise. The thick dashed line is for the data set 
presented in (c) and (f), the solid curve is for the ideal coherent state protocol. The dotted curve corresponds to the two-mode squeezing protocol without 
additional modulation presented in matrix (a) and (d). The shaded region illustrates the regime accessible with coherent state QKD. The distance scale 
assumes 0.2 dB loss per km. The insert is the same as the main figure, the dotted curve being the data set presented in (a) and (d) but with limited post-
processing efficiency β = 98%.
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(assuming, with no loss of generality, that the amplitude quadrature is measured 
by Bob with result xB), where rAB is the pure state shared between Alice and Bob6. 
Thus, to calculate the Holevo quantity, we need to purify the state of Alice and Bob. 
In the theoretical analysis of the protocol, it is done by explicitly introducing all 
trusted modes13,28 and constructing the overall covariance matrix of the trusted pure 
state. The von Neumann entropies are then calculated from the symplectic eigenval-
ues of the respective covariance matrices (see Supplementary Methods for details).

Experimental data security analysis. The measurement and the subsequent data 
processing (including gain optimization) resulted in a set of covariance matrices 
for different values of modulation. The security analysis was carried out according 
to the above described purification method and cross-checked using the entangling 
cloner method (which is shown to be optimal for the individual attacks in ref. 26 
and used for the collective attacks in ref. 7). As the explicit trusted mode structure 
of the experimentally obtained states was not known, the experimental covariance 
matrices were purified using the Bloch–Messiah reduction theorem29 as illustrated 
in Fig. 1b). For each of the covariance matrices, the four-mode pure state (ABCD 
on Fig. 1b) was constructed and used to calculate the Holevo quantity and the  
resulting lower bound on secure key rate.

In parallel, the theoretical estimation of the expected protocol performance  
was calculated from the experimental parameters of our set-up. The covariance 
matrices were constructed from the experimentally measured EPR states.  
All the respective transmittances and efficiencies were applied in both EPR modes 
(as beamsplitter transformations) and the coherent modulation was added atop. 
The resulting covariance matrices were tested against given channel transmittance 
and excess noise.

Furthermore, we have simulated the accuracy in estimating the channel as a 
function of the size of the data blocks. The results are shown in the Supplementary 
Fig. S3) and discussed in the Supplementary Discussion.

Experimental set-up details. Our light source is an Innolight Diabolo laser 
producing light at 1,064 nm and 532 nm. Both beams are sent through high-finesse 
triangular mode-cleaning cavities for temporal and spatial mode cleaning. The 
mode at 532 nm is used as the pump for the OPOs, whereas the mode at 1,064 nm 
serves as a lock beam for the OPOs, auxiliary beam for the modulation channel 
and as local oscillators for the homodyne detection systems. The OPOs are  
25-cm-long bowtie-shaped cavities with two curved dichromatic mirrors  
(with 25 mm radius of curvature and highly reflective at 1,064 nm) and two plane 
mirrors; one with a highly reflective coating and another one with a reflectivity of 
8% for OPO1 and 10% for OPO2. This yields cavity bandwidths of around 21 MHz 
and 24 MHz. The non-linear crystals inside the OPOs are temperature-controlled 
type-I periodically poled KTP crystals, which are phase matched for down conver-
sion at the specified wavelenghts. Each of the crystals is pumped with 170 mW of 
the 532-nm beam, which means that the OPOs are operating well below threshold. 
A small part of the squeezed output beam is tapped of and used for locking the 
phase of the pump to deamplification, thereby generating amplitude-squeezed  
sidebands. The states measured directly have 4.9 dB and 4.1 dB of shot noise 
reduction along the squeezed quadratures and 8.3 dB of increased noise along the 
conjugate quadratures. When coupling these two squeezed seeds, we measure an 
EPR state with 3.5 dB two-mode squeezing and 8.2 dB of antisqueezing. The total 
homodyne detection efficiency is 90 ± 5% at Alice and 85 ± 5% at Bob. The signal 
is mixed down and low passed with a 90 kHz filter before it is digitalized with a 
sampling rate of 500 kHz. Each data block consists of around 200,000 points. 
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