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Abstract. Quantum repeaters are essential ingredients for quantum networks that link distant
quantum modules such as quantum computers and sensors. Motivated by distributed quantum
computing and communication, quantum repeaters that relay discrete-variable quantum information
have been extensively studied; while continuous-variable (CV) quantum information underpins a
variety of quantum sensing and communication application, a quantum-repeater architecture for
genuine CV quantum information remains largely unexplored. This paper reports a CV quantum-
repeater architecture based on CV quantum teleportation assisted by the Gottesman-Kitaev-Preskill
(GKP) code to significantly suppress the physical noise. The designed CV quantum-repeater
architecture is shown to significantly improve the performance of CV quantum key distribution,
entanglement-assisted communication, and target detection based on quantum illumination, as three
representative use cases for quantum communication and sensing.

1. Introduction: file preparation and submission

Quantum networks [1-6] not only offer unconditional security in private-key distributions [7-
10], but also enable the establishment of entanglement across multiple parties to endow
quantum-enhanced capabilities. Photons are ideal information carriers for long-haul quantum
communications by virtue of their robustness against environmental noise, but they are susceptible
to loss because, unlike classical information, quantum information cannot be regenerated by
amplifiers due to the quantum no-cloning theorem [11,12]. Such a restriction places a fundamental
rate-loss trade-off between entanglement-distribution rate and transmission distance, which, in
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Figure 1. Scheme of m-relay repeaters based on CV error-correction protocol. ENC: encoding.
DEC: decoding. L is the physical distance between Alice and Bob. L∆ is the inter-repeater spacing.

terms of the distribution of bipartite entanglement, was formulated as the Pirandola–Laurenza–
Ottaviani–Banchi (PLOB) bound [13] and has been subsequently generalized to end-to-end
capacity of a general quantum network [14].

To circumvent the rate-loss trade-off, a long-distance quantum link is divided into shorter and
less lossy links via introducing intermediate quantum repeater (QR) nodes [15-21]. Based on the
processing power at each node, QRs are categorized into three generations (see Refs. [15,22,23],
Refs. [17,24] and Refs. [25,26]). The mainstream QR architectures have been dedicated to the
long-distance distribution of discrete-variable (DV) quantum states [17,27-29], i.e., qubits, to link
quantum computers, in analogy to sharing digital information among classical computers. On
the other hand, continuous-variable (CV) quantum states, akin to analog information, underpins a
variety of quantum-enhanced sensing and communication capabilities including entangled sensor
networks [30-37], physical-layer quantum data classification [38,39], quantum-illumination (QI)
target detection [40-43] and ranging [44], and entanglement-assisted (EA) communication [45-53].
Apart from a handful of investigations for a few specific use cases [54,55], the QR architecture for
CV quantum states remains largely unexplored.

Quantum error correction (QEC) is an essential ingredient for QRs to reliably relay quantum
information. QEC for qubits has been well established to support the development of fault-tolerant
quantum computing [56,57]. QEC for QRs, however, requires an additional framework to account
for the infinite dimensional Hilbert space that photons reside in. In this regard, bosonic QEC [58]
has emerged as a powerful paradigm to protect quantum information carried on photons. To
date, multiple single-mode bosonic codes, including the binomial code [59,60], Schrödinger-cat-
state codes [61-65], and Gottesman-Kitaev-Perskill (GKP) codes [66-70], have been proposed and
experimentally produced in the platforms of trapped ion and superconducting qubit [71-75]. Most
bosonic codes have been designed to protect qubits by encoding them into bosonic modes. The
more recent works of Rozpȩdek et al. [76] and Fukui et al. [77,78] introduced the optical GKP-
formed qubit codes into the QR architecture to transmit qubits, but a QR based on bosonic QEC
to transmit CV quantum information, which will significantly benefit a wide range of quantum-
enhanced applications, remains elusive. While generating optical GKP states in the experiment is
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still challenging, recently, a few theoretical works have been proposed on generating optical GKP
state probabilistically [79-81] or deterministically [82].

This article proposes a CV QR architecture based on the recently developed GKP-assisted
QEC [67,83] combined with CV quantum teleportation [84,85] and is organized as follows: Sec. 2
provides an overview on the QR architecture; Sec. 3 introduces the GKP-assisted QEC to the
QR architecture. Finally, in Sec. 4, the QEC QR is shown to boost the performance of EA
communication, target detection based on QI, and CV quantum key distribution (QKD).

2. Quantum-repeater architecture with bosonic quantum error correction

Fig. 1 illustrates the architecture for our CV QR based on the bosonic QEC code [67]. Consider a
quantum link comprising m QR nodes. At the source, Alice performs an encoding operation on the
message mode and an ancilla mode and then transmits both modes to the first QR node through a
quantum channel. The QR node performs a decoding operation on both received modes to correct
the accumulated errors incurred by the channel. Afterwards, encoding operations are operated on
the error-corrected message mode and an additional ancilla mode; the two modes are subsequently
transmitted to the next QR node for decoding and encoding, until the message mode is finally
decoded at Bob’s terminal.

Note that here the quantum channels not only model the transmission via fiber quantum links,
but also takes into account some pre- and post-processing that enhances the quantum information
transmission. Each fiber link between two nodes can be modeled as a bosonic pure-loss channel
with the transmissivity η = 10−γL∆/10, where L∆ is the physical distance between the two nodes,
with an attenuation factor γ = 0.2 decibels per kilometer. With additional pre- and post-processing,
we convert the pure-loss link into two types of quantum channels, the amplified one-way channel
(Sec. 2.1) and the quantum teleportation channel (Sec. Appendix A.1). The effect of transmitting
the message and ancilla modes through the amplified one-way or quantum teleportation channel is
equivalent to adding to their quadratures some additive noises of variance σ2

A or σ2
T , instead of the

original pure-loss.

2.1. Amplified one-way channel

Sketched in Fig. 2(a), the amplified one-way channel introduced in the QR architecture studied by
Fukui et al. [77] applies a phase-insensitive amplifier of gain 1/η before the pure-loss channel of
transmissivity η induced by the fiber transmission. The variance of additive noise of the amplified
one-way channel is derived to be

σ2
A = 1 − η, (1)

i.e., 〈q̂2〉vac = 〈p̂2〉vac = 1/2. Because both the channel loss and the amplification add noise, the
performance of QEC is limited. To overcome the drawback of the amplified one-way channel, we
introduce the quantum teleportation channel below.
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Figure 2. The scheme of (a) amplified one-way channel, and (b) teleportation channel. CC: classical
communication. HM: homodyne measurement. Amp: amplification. BS: beamsplitter.
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Figure 3. Variances of the additive noise for the protocols of amplified one-way and teleportation
channels. Amp: amplification. Tele: teleportation.

2.2. Quantum teleportation channel

CV quantum teleportation transmits CV quantum states from the source to the destination with only
local operations, classical communication (LOCC), and shared CV entangled states. To implement
a CV quantum teleportation channel in the CV QR architecture, a two-mode squeezed vacuum
(TMSV) source placed in the middle of QR nodes, as shown in Fig. 2(b), generates entangled
signal and idler modes that are sent to two adjacent QR nodes through two pure-loss channels,
yielding a shared entangled state that is subsequently used to teleport a CV quantum state between
the two QR nodes. Earlier results of CV quantum teleportation (e.g., Ref. [86]) showed that the
teleportation channel is equivalent to an additive thermal noise channel due to finite squeezing and
TMSV distribution loss. The variance of additive noise is

σ2
T =
√
η10−s/10 +

(
1 −
√
η
)
, (2)

where s (i.e. unit dB) characterizes the squeezing level of TMSV (see Appendix A.1).
Fig. 3 plots the additive noise of the amplified one-way channel (red) and the teleportation

channel (blue). Apparently, the inter-repeater spacing, L∆ is a crucial factor for determining the
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Figure 4. The Wigner functions in phase space of (a) ideal and (b) approximate GKP states.

optimal transmission protocol, and Fig. 3 implies there exists a minimal inter-repeater spacing
(MIRS)

L∗∆ ≡ −2
(
log10

[
1 − 10−s/10

])
/γ, (3)

such that σ2
T < σ

2
A, ∀L∆ > L∗

∆
.

3. GKP-error-correction code

Before proceeding to GKP-assisted QEC, we will first introduce the GKP ancilla mode in Sec. 3.1
and the GKP-two-mode-squeezing code in Sec. 3.2.

3.1. The GKP state

A bosonic mode of, e.g., the photon or the phonon, encompasses the continuous degrees of freedom
in the position and momentum quadratures. Mathematically, the quadratures, q̂ and p̂, are the
normalized real and imaginary parts of the annihilation operator â,

q̂ =
1
√

2

(
â + â†

)
, p̂ =

1

i
√

2

(
â − â†

)
, (4)

satisfying the commutation relation
[
q̂, p̂

]
= i (~ ≡ 1 for simplicity). The GKP state is pure and

stabilized by the following CV analog of the Pauli-Z and Pauli-X operators:

Ẑ = D̂
[
0,
√

2π
]
, X̂ = D̂

[√
2π, 0

]
, (5)

where D̂
[
α, β

]
= ei(αp̂−βq̂). An ideal GKP state can be considered as the superposition of an infinite

number of position or momentum eigenstates along a grid, i.e.,

|GKP〉 ∝
∑
n∈Z

|q = n
√

2π〉 ∝
∑
n∈Z

|p = n
√

2π〉 . (6)

The Wigner function of the ideal GKP state is sketched in Fig. 4(a), where each dot represents
a Dirac delta function. A GKP state incorporates precise information of both quadratures within
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Figure 5. General architecture of CV QEC protocol. The light blue shaded area denotes decoding
(i.e. DEC), and the light yellow shaded area denotes encoding (i.e. ENC).

a critical range without violating the uncertainty principle. Precisely, the standard deviation of
both quadrature operators modulo

√
2π are zero. Hence, both quadratures can be measured

simultaneously modulo
√

2π, rendering the GKP state perfect to calibrate any other states encoded
by the GKP codes. Nonetheless, ideal GKP states are not normalizable and thus not physical. The
consideration of experimental feasibility calls for a CV QEC based on approximate GKP states, as
presented below.

The approximate GKP considers an uncertainty ξ(G)
q(p),2 ∈ N

(
0, 2σ2

G

)
on both quadratures of

each tooth. For an approximate GKP state, a series of Dirac delta functions in Eq. (6) are replaced
by a series of Gaussian packets weighted by a Gaussian profile

|GKP〉 ∝
∑
n∈Z

e−πσ
2
Gn2

∫ ∞

−∞

e
−

(q−
√

2πn)2

2σ2
G |q〉 dq ∝

∑
n∈Z

e−
σ2

G p2

2

∫ ∞

−∞

e
−

(p−
√

2πn)2

2σ2
G |p〉 dp, (7)

and its Wigner function is plotted in Fig. 4(b) [74,75,80,87]. The linewidths of each Gaussian teeth
is characterized by the squeezing parameter s(G) = −10 log10

[
2σ2

G

]
(i.e. unit dB). At σG � 1, the

Gaussian envelope can be ignored so that the approximate GKP state approaches the ideal GKP
state.

3.2. GKP-two-mode-squeezing code

The CV QEC code that is assisted with GKP state refers to GKP code and were developed to
protect a bosonic mode by encoding it into multiple oscillator modes. A few of GKP codes
have already been well discussed in Ref. [67], such as, GKP-two-mode-squeezing (GKP-TMS),
GKP-repetition (GKP-R) and GKP-squeezing-repetition (GKP-SR) codes, and, for consistency,
the following QEC protocols all refer to the GKP-TMS code. To exploit the GKP-TMS code in
the CV QR architecture, a QR node that entails an encoding operation and a decoding operation is
designed, as sketched in Fig. 5.

To correct the additive noise, which can be modeled as independent and identically distributed
(i.i.d.) Gaussian random displacements

(
ζq,1, ζp,1, ζq,2, ζp,2

)
on the four quadratures of the two
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modes, the encoding process is carried out by a two-mode-squeezing (TMS) gate, T̂1,2
[
g
]

=

e
g
2

(
â1â2−â†1â†2

)
, where g = log

[√
G +

√
G − 1

]
is determined by G (i.e. G ≥ 1), and â1 and â2

denote, respectively, the annihilation operators of the involved bosonic message and ancilla mode
(mode 1 and mode 2). The decoding process entails three parts: inverse TMS operation (i.e.
T̂ †1,2), estimating the channel-induced noise by a quantum measurement and using displacement
operations D̂2 = D̂

[
−ξ̄q,1, 0

]
and D̂3 = D̂

[
0,−ξ̄p,1

]
to compensate for the displacement

errors incurred by the channel on the message mode, where the displacements depend on the
measurement outcomes of the corresponding modes. To perform the quantum measurement, one
introduces an additional GKP ancilla (mode 3). Two homodyne measurements on the prepared
two ancilla modes (mode 2 and mode 3) are implemented by a SUM gate beforehand, i.e., Ŝ 2,3 =

e−iq̂2⊗p̂3). Here, ξ̄q,1 and ξ̄p,1 are the estimations of the displacement error ξq,1 =
√

Gζq,1−
√

G − 1ζq,2

and ξp,1 =
√

Gζp,1 +
√

G − 1ζp,2, acquired by measuring the ancila states in mode 2 and mode 3. In
terms of experimental realization of the two in-line gates, TMS and SUM operations can be carried
out via linear optics, homodyne detection, and off-line squeezers [80,89-91].

The corrected message mode is subsequently encoded with a new GKP ancilla at mode 2
generated at the present QR node, and both mode 1 and mode 2 are transmitted to the next QR
node for decoding and encoding.

The displacement noise continuously accumulates on the message mode until it arrives at
Bob’s terminal. In a weak additive noise regime [83], the displacement noise is approximately
a Gaussian noise so the Wigner function of the message mode can be fully derived based on the
variance of displacement noise. Let L be the physical distance between Alice and Bob, the average
variances of the displacement noise for Bob’s received message mode are derived as

Σ2
QA = (L/L∆)VQ

[
σ2

A

]
, Σ2

QT = (L/L∆)VQ

[
σ2

T

]
, (8)

over, respectively, the QEC amplified one-way and the QEC teleportation channels, where σ2
A(T )

is a number given by Eq. (1) (Eq. (2)). Here, VQ [?] is a function to calculate the variance of the
displacement noise (see Appendix A.2).

3.3. Fidelity Performances

This section compares the performances of CV QR with different types of quantum channels from
the choices of pre- and post-processing. We will focus on the establishment of CV entanglement in
the form of TMSV pairs between Alice and Bob. The overall input-output relations are constructed
as the following channels: T D

L [?] for direct one-way transmission, T QA
L [?] for QEC amplified

one-way transmission, and T QT
s,L [?] for QEC teleportation. In the three regimes, the GKP-TMS

code is optimized over G for any given parameters of the inter-repeater spacing L∆, the squeezing
parameter s of the TMSV in quantum teleportation, and the finite squeezing teeth of the GKP state
s(G).

To establish CV entanglement in the form of TMSV pairs, we focus on the following scenario:
Alice generates a TMSV state consisting of a pair of modes, signal and idler, characterized by the
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r Message squeezing L Spacing between Alice and Bob
s Teleportation squeezing L∆ Inter-repeater spacing

s(G) GKP teeth squeezing L∗
∆

MIRS s.t. σ2
T < σ

2
A

Table 1. Definitions of related symbols.

Figure 6. Based on ideal GKP state, fidelities of direct one-way transmission (FO), QEC amplified
one-way transmission (FQA), and m-relay QEC teleportation (FQT ) versus L, with repeater spacing
(a) L∆ = 1 km and (b) L∆ = 0.25 km, and (c) versus numbers of repeaters m at L = 5 km. s(G) → ∞,
r = 15 dB and s = {20,∞} dB (i.e. L∗

∆
= {0.44, 0} km).

squeezing level r (in dB). Alice attempts to transmit the idler mode to Bob via a series of QRs
while locally retaining the signal mode. In doing so, Alice and Bob share a pair of noisy TMSV.
We will evaluate the performance of the QR in terms of the fidelity of the established TMSV to the
ideal TMSV. The symbols of related parameters are summarized in Tab. 1.

The Uhlmann fidelity is a measure to quantify the similarity between two density operators, ρ̂
and ρ̂′, defined as

F
[
ρ̂, ρ̂′

]
≡

(
Tr

[√√
ρ̂′ρ̂

√
ρ̂′

])2

. (9)

The fidelity is used to quantify the deviation between the distributed TMSV state and the original
TMSV state, and can be calculated via the covariance matrices (CMs) of the involved CV quantum
states (see Appendix B).

The fidelities of direct one-way transmission (i.e. neither pre- nor post-processing), QEC
amplified one-way transmission, and QEC teleportation are defined, respectively, as

FO ≡F
[
ρ̂, ρ̂′D

]
, FQA ≡ F

[
ρ̂, ρ̂′QA

]
, FQT ≡F

[
ρ̂, ρ̂′QT

]
, (10)

where
ρ̂′D =

(
I ⊗ T D

L

) [
ρ̂
]
, ρ̂′QA =

(
I ⊗ T

QA
L

) [
ρ̂
]
, ρ̂′QT =

(
I ⊗ T

QT
s,L

) [
ρ̂
]
. (11)

Here, I is the identity channel assuming ideal signal storage, and ρ̂ = |TMSV〉 〈TMSV| is the
input TMSV state.
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Figure 7. Fidelities of QEC teleportation-enabled repeater (FQT s) based on imperfect GKP. Input
TMSV is set r = 15 dB and the inter-repeater separation is L∆ = 1 km. (a) s = 10 dB (L∗

∆
= 4.6 km),

(b) s = 15 dB (L∗
∆

= 1.4 km), (c) s = 20 dB (L∗
∆

= 0.44 km), (d) s = 25 dB (L∗
∆

= 0.14 km).

First, let us assume a perfect GKP state is available (i.e. s(G) → ∞) and plot the optimized
fidelities in Fig. 6(a) and (b). Given that the teleportation squeezing is s = 20 dB, we choose
L∆ = 250 m to coincide with the optimal repeater separation that Rozpȩdek et al. selected in their
article [76].

The simulation result indicates that at an infinite teleportation squeezing level, i.e. s → ∞,
σ2

A > σ2
T always holds, yielding L∗

∆
= 0; yet, infinite squeezing requires unbounded energy

and is therefore unphysical. With a practical finite teleportation squeezing level, there is an
associated non-zero MIRS. However, a shorter inter-repeater spacing increases the density of QRs
and the associated resource overhead. In contrast, the QR protocol based on quantum teleportation
channels reduces the density of QRs while maintaining a high fidelity for the transmitted quantum
states by placing the TMSV source in the middle between two QR nodes separated by a distance
of L∆ > L∗

∆
, as shown in Fig. 6(b). The GKP-TMS code drastically improves the fidelity for

the transmitted quantum state in both channel scenarios, as compared to the direct one-way
transmission. Fig. 6(c) plots how the fidelity scales with the numbers of introduced repeaters
m = L/L∆ − 1.

Assuming using imperfect GKP states in QEC, FQT s are plotted in Fig. 7(a)(b)(c)(d) as
functions of L and s(G) while fixing r = 15 dB, corresponding to different s. Fig. 7 concludes
that s(G) & s & r is required for effective QEC over quantum teleportation channels; otherwise,
under s < r, the additive noise caused by teleportation will add too much noise to the transmitted
quantum state while under s(G) < s, the GKP state only increases the added noise because the
variance of GKP state is even larger than the noise to be corrected.

3.4. Concatenation of GKP-TMS code

Recent study has proven that concatenation of multiple layers of QEC would substantially reduce
the displacement noise comparing with only a single layer code [83]. In a multi-layer QEC scheme,
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Figure 8. Scheme of m-relay k-layer CV QEC repeaters. The wiring in the boxes of encoding
and decoding are defined in the bottom. T̂1,(2,n), is the TMS gate operated on mode 1 and mode
(2, n); Ŝ (2,n),(3,n) is the SUM gate operated on mode (2, n) and mode (3, n); D̂(2,n) and D̂(3,n) are two
displacements based on the measurement outcomes of mode (2, n) and mode (3, n). In encoding,
mode 1 is operated by

⊗k
n=1 T̂1,(2,n) with ancilla modes (2, 1), (2, 2), · · · , (2, k), and, along with

these k modes, distributed to the next node; in decoding,
⊗k

n=1 T̂ †1,(2,n) is operated on the teleported

(k + 1) modes; afterwards,
⊗k

n=1 Ŝ (2,n),(3,n) is operated on the 2k ancilla modes, (2, 1), (2, 2),
· · · , (2, k) and (3, 1), (3, 2), · · · , (3, k), for simultaneously accessing the measurement outcomes of
both quadratures, and the outcomes are, ultimately, feedforwarded to mode 1.

Alice, Bob and all repeaters prepare k GKP ancilla (i.e. k ∈ N) to be encoded with a single message
state, shown in Fig. 8 and another k GKP ancilla to decode the teleported state. In k-layer QEC,
the message mode in mode 1 is encoded with k ancilla modes (2, 1), (2, 2), · · · , (2, k); then, the
k-layer encoded message mode and the k encoding ancilla modes are distributed to the next node
over the associative channels; finally, the distributed k + 1 modes are decoded with the another
set of ancilla (3, 1), (3, 2), · · · , (3, k). As the assumption before, the physical noise of QEC can
be approximately Gaussian given that the displacement noise is much less than unity [83]. This
k-layer QEC process corrects the aboriginal noise to the k-th order. In multi-layer QEC, the first
layer corrects the noise with variance σ2

0 carried on the received signal, yielding output noise with
a variance of σ2

1 = VQ

[
σ2

0

]
; the second layer then corrects the noise from the first layer QEC and

results in a variance σ2
2 = VQ

[
σ2

1

]
; subsequently, the kth-layer corrects the output noise of the

(k − 1)th-layer, leading to a residue noise variance of σ2
k = VQ

[
σ2

k−1

]
.

Although the resources for implementing m-relay k-layer GKP-assisted QEC are immense
(i.e. in total, 2 (m + 1) k GKP ancilla modes need to be prepared beforehand), the correction
outcomes are remunerable. In Fig. 9, we demonstrate the fidelities of the m-relay QEC QRs, that
correspond to different layers of QEC and it shows that the fidelities are significantly improved.
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Figure 9. Fidelities of m-relay k-layer (k = 1, 2, 13) QEC teleportation (FQT s). The message
squeezing is r = 15 dB.

Albeit TMSV and GKP modes are never ideal in practice, concatenating multi-layer QEC codes is
an alternative approach to suppress the additive noises of the channel, shown in Fig. 9. In Fig. 9,
as k & 13, the endmost iterative noise almost converges to a finite value, which is ultimately
determined by s(G).

4. Applications

Preshared entanglement between distant parties underpins numerous quantum applications.
Nonetheless, establishing entanglement at a distance is impeded by the loss of the entanglement-
distribution channel. The proposed GKP-assisted QEC can correct the Gaussian errors to enhanced
the performance of a multitude of applications, including EA communication, QI, and CV-QKD.
For simplicity, we will set s(G) = s in the following performance analysis on the three applications
assisted by the proposal QR protocol (detailed theoretical derivations are shown in Appendix C).

4.1. Entanglement-assisted communication

The classical information rate over a thermal-loss channel is upper bounded by the classical
capacity [50,92], formulated as

C = g [κNS + NB] − g [NB] , (12)

where g [x] ≡ [x + 1] log2 [x + 1]−x log2 x, NS is the mean photon number of a signal mode, κ is the
transmissivity of the channel, and NB is the mean photon number of thermal-noise bath mode. EA
communication is able to surpass the classical capacity [50,93-95]. In an ideal EA communication
scenario illustrated in Fig. 10(a), Alice performs phase encoding on the signal mode of a preshared
TMSV state and sends it to Bob over a very lossy and noisy channel, i.e., κ � 1 and NB � 1. Bob
then performs a joint measurement on the received signal with the idler at hand.
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Figure 10. Entanglement-assisted communication (a) scheme and (b) the phase encoding Holevo
information normalized to classical capacity (H/C) at L = 25 km for the cases of ideal, direct
one-way transmission and m-relay k-layer (k = 1, 13) QEC teleportation.

However, building up preshared entanglement in real-world operational environments hinges
on lossy entanglement-distribution channels that degrade the quality of the entanglement, holding
back the advantage endowed by EA communication. The proposed CV QR architecture opens a
promising route toward mitigating the loss arising from the entanglement-distribution channel.

The EA capacity normalized to the classical capacities are sketched as the dashed black,
dashed blue, solid blue, solid purple and solid magenta curves, associated with different scenarios
of entanglement sharing, in Fig. 10(b). Over an extremely lossy and noisy communication channel,
the asymptotic Holevo capacity normalized to the classical capacity is given by

HIdeal/C ≈ (NS + 1) log [1 + 1/NS ] , HD/C ≈ η (NS + 1) log
[
1 + 1/ηNS

]
,

HQT/C ≈ (NS + 1) log
[
1 + 1/Σ2

QT

]
− NS /

(
Σ2

QT + Σ4
QT

)
,

(13)

where HIdeal, HD and HQT denote the Holevo information associated with ideal preshared TMSV
states, TMSV sharing via direct one-way transmission and QEC teleportation-enabled QR. The
QEC inevitably introduces thermal noise, causing the EA Holevo information to saturate at weak
NS ’s. In this regime, teleportation is inferior to direct one-way transmission in entanglement
distribution. Conversely, as NS increases, QEC teleportation-enabled QR starts to outperform the
direct one-way entanglement distribution approach. Under this parameter setting, we find that the
multi-layer encoding on finite squeezed TMSV and GKP states is more powerful than single-layer
encoding on infinitely squeezed TMSV and GKP states.

4.2. Quantum illumination

QI is a paradigm for quantum-enhanced target detection through a very lossy and noisy
environment [40,43,96-98]. Illustrated in Fig. 11(a), the QI transmitter prepares TMSV states
composed of entangled signal-idler mode pairs. The idler modes are distributed to receiver over
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Figure 11. (a) Scheme of quantum illumination. (b) The quantum Chernoff bounds of error
probability Pe versus transmitted M modes for CI and three QI cases: ideal entanglement
distribution, direct one-way, and m-relay k-layer (k = 1, 13) QEC teleportation at L = 25 km with
NS = 0.01.

a distribution channel while the signal modes are transmitted to interrogate a target residing in an
environment modeled as a thermal-loss channel. The QI receiver performs a joint measurement on
the transmitted signal embedded in a bright noise background and the idler to infer the presence
or absence of the target. Tan et al. [40] showed that QI, with ideal equipment and the optimum
quantum receiver, achieves a 6-dB advantage in the error-probability exponent of the quantum
Chernoff bound (magenta curve in Fig. 11(b)) over that of classical illumination (CI) based on the
coherent-state transmitter and homodyne receiver (cyan curve in Fig. 11(b)).

A practical challenge for QI lies in the requirement for high-fidelity quantum memories
used to match the propagation delay between the signal and idler modes. At present, QI
experiments [99] utilize low-loss optical fibers to store the idler, which mimics the one-way
entanglement distribution channel. Due to the idler-storage loss, QI’s advantage over CI quickly
diminishes, as shown in the black dashed curve of Fig. 11(b). The proposed QR architecture based
on QEC and teleportation would constitute an effective approach to mitigate the idler-storage loss.
The blue dashed and solid curves in Fig. 11(b) depicts the simulation results for QI enhanced by
QEC on the idler modes, showing reduced error probabilities as compared to QI without QEC.
Akin to EA communication, in this case the multi-layer QEC with finite squeezing outperforms
the single-layer QEC with infinite squeezing.

4.3. CV quantum key distribution

CV-QKD enables two distant parties, Alice and Bob, to securely share a common binary
random key despite the adversary, Eve, mounts the optimal attack to capture the communicated
information [6,100-102]. Unlike its DV counterpart, CV-QKD can be fully implemented with off-
the-shelf telecommunication components without resorting to single-photon detectors and is thus
particularly intriguing for real-world deployment. The security of CV-QKD protocols is analyzed
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Figure 12. The secret key rates per mode of m-relay k-layer (k = 1, 7, 10, 13) QEC teleportation-
enabled QR.

by upper bounding the accessible information to Eve assuming her power is only limited by the
laws of physics. Specifically, the secret-key rate (SKR) for CV-QKD is given by

R ≈ −
1
2

log2

[
e2ε (1 + ε) /4

]
, (14)

where ε quantifies the variance of overall additive excess noise. The proposed QR architecture
based on m-relay k-layer QEC mitigates the loss of the quantum channel to boost the SKR, as
shown in Fig. 12.

To further investigate the application of the QR architecture to CV-QKD, two additional
remarks on Fig. 12 are worth making. First, the SKR of the QR architecture based on k-layer
QEC and teleportation are below the PLOB bound at k ≤ 9, hindered by the accumulated noise
introduced at the QR nodes. Second, given s = s(G) = 25 dB, the theoretical maximal distance
of the QR architecture based on 13-layer QEC and teleportation, as shown in the purple curve of
Fig. 12, reaches 596 km. We expect that the incorporation of an additional DV QEC layer would
suppress the residue noise and further extend the CV-QKD distance [76,77].

5. Discussion and outlook

The QR architecture based on teleportation channels places an entanglement source in the middle
of two adjacent QR nodes. In contrast, the QR scheme based on amplified one-way channels
directly connects the adjacent nodes by optical fibers. One may argue that adding an intermediate
QR node in an amplified one-way channel would surpass the performance of the teleportation-
based scheme. However, a full-scale QR node needs multiple GKP ancilla modes, which consumes
much more resources than the widely available TMSV source.

The combination of CV and DV QEC was recently proposed by Rozpȩdek et al. [76] and
Fukui et al. [77]. Such a hybrid QEC scheme would allow the proposed QR architecture based
on m-relay k-layer QEC to be further concatenated with a DV QEC code to drastically reduce the
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amount of residue noise. As long as the CV errors after QEC are limited to a certain range, the DV
QEC will be able to correct these errors to maximize the fidelity of the transmitted quantum state.

6. Conclusions

In this article, we proposed a deterministic CV QR architecture based on optical GKP states to
enable the distribution of CV quantum states over long distances. The proposed QR architecture
based on GKP QEC obviates the needs for quantum memories and thereby remarkably reduces the
burden on quantum information storage; moreover, it significantly suppresses the additive errors
caused by a lossy bosonic channel. In our study, we showed that the optical QR architecture based
on GKR QEC and teleportation outperforms direct one-way transmission when the squeezing level
is higher than 15 dB. The proposed QR architecture is applied to improve the performance of
EA communication, QI and CV-QKD. Once optical GKP states with sufficient squeezing become
available, the proposed QR architecture will enable CV quantum states to be faithfully transmitted
over unprecedented distances, thereby making a large stride forward in the development of
quantum technology.
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Appendix A. Additive Gaussian noises of protocols

In this section, we prove that both teleportation and QEC result in additive zero-mean Gaussian
noises to the quantum system.

Appendix A.1. Teleportation

The quantum circuit of teleportation is shown in Fig. A1. In teleportation, sender prepares multiple
TMSV states (with quadratures q̂(T) and p̂(T)) at the middle of two consecutive nodes. The off-line
TMSV state have the quadratures

q̂(T)
a =

(
q̂(v)

a 10s/20 + q̂(v)
b 10−s/20

)
/
√

2, p̂(T)
a =

(
p̂(v)

a 10−s/20 + p̂(v)
b 10s/20

)
/
√

2,

q̂(T)
b =

(
q̂(v)

a 10s/20 − q̂(v)
b 10−s/20

)
/
√

2, p̂(T)
b =

(
p̂(v)

a 10−s/20 − p̂(v)
b 10s/20

)
/
√

2
(A.1)

for submodes a and b, where q̂(v) denotes the vacuum operator. In Eq. A.1. The submodes a
and b are distributed, respectively, to the former nodes and the later one. Since TMSV is put in
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Figure A1. The quantum circuit scheme of teleportation. The apostrophes, ′, ′′ and ′′′, stand for the
stages, mentioned in the context. qM = 〈q̂(T)′′

M 〉 and pa = 〈 p̂(T)′′
a 〉.

the middle, the distribution channel becomes two sub-channels with transmissivity η1/2 and the
attenuated quadratures become,

q̂(T)′
a =

√
η1/2q̂(T)

a +
√

1 − η1/2q̂(v)′
a , p̂(T)′

a =
√
η1/2 p̂(T)

a +
√

1 − η1/2 p̂(v)′
a ,

q̂(T)′

b =
√
η1/2q̂(T)

b +
√

1 − η1/2q̂(v)′

b , p̂(T)′

b =
√
η1/2 p̂(T)

b +
√

1 − η1/2 p̂(v)′

b ,
(A.2)

where p̂(v)′

a(b) is the transmission-induced vacuum operator at a (b). In teleportation, sender
implements the Bell measurement on M (with quadratures q̂M, p̂M) and a, and results in the
quadratures as

q̂(T)′′
a =

(
q̂M + q̂(T)′

a

)
/
√

2, p̂(T)′′
a =

(
p̂M + p̂(T)′

a

)
/
√

2,

q̂(T)′′

M =
(
q̂M − q̂(T)′

a

)
/
√

2, p̂(T)′′

M =
(
p̂M − p̂(T)′

a

)
/
√

2.
(A.3)

Subsequently, the sender feedforward the measurement results in mode M and a to b. With Eq. A.1,
Eq. A.2 and Eq. A.3, the resulting quadratures in b are

q̂(T)′′′

b = q̂M −
√

2η1/210−s/20q̂(v)
b +

√
1 − η1/2

(
q̂(v)′

b − q̂(v)′
a

)
,

p̂(T)′′′

b = p̂M +
√

2η1/210−s/20 p̂(v)
a +

√
1 − η1/2

(
p̂(v)′

b + p̂(v)′
a

)
,

(A.4)

and, apparently, we acquire the formula of additive noise as in Eq. 2.

Appendix A.2. QEC protocol

The QEC protocol consists of two parts: encoding and decoding.

Appendix A.2.1. Encoding In GKP-TMS code, we implement T̂1,2
[
g
]

to correlate the message
mode (with density operator ρ̂1) in mode 1 and an approximate GKP ancilla mode (with density
operator ρ̂(G)

2 ) in mode 2 as
T̂ †1,2

[
g
] [
ρ̂1 ⊗ ρ̂

(G)
2

]
T̂1,2

[
g
]
. (A.5)
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This TMS gate is described by a symplectic matrix,

S1,2 =

 √
G I2

√
G − 1 Z2√

G − 1 Z2
√

G I2

 (A.6)

in the basis of (q1, p1, q2, p2)T , where In and Zn denote the n × n identity and Pauli Z matrices.

Appendix A.2.2. Decoding During quantum information processing (e.g. teleportation), the
quantum state is added with Gaussian noises

(
ζq,1, ζp,1, ζq,2, ζp,2

)
∼iid N

(
0, σ2

)
(σ ∈ R). The

noise can be characterized by the CM V = σ2I4. The CM, after being operated by S−1
1,2, becomes

S−1
1,2V

(
S−1

1,2

)T
=

(
(2G − 1) I2 −2

√
G(G − 1) Z2

−2
√

G(G − 1) Z2 (2G − 1) I2

)
σ2, (A.7)

and the formulated additive noises in mode 1 and mode 2 are:(
ξq,1

ξp,1

)
=

 √Gζq,1 −
√

G − 1ζq,2√
Gζp,1 +

√
G − 1ζp,2.

 , (
ξq,2

ξp,2

)
=

 √Gζq,2 −
√

G − 1ζq,1√
Gζp,2 +

√
G − 1ζp,1

 . (A.8)

At this stage, the noise ξq(p),1 is correlated with ξq(p),2 (see Eq. A.7), and, hence, can be inferred
by measuring the ancilla in mode 2. Based on the minimum variance unbiased estimation (MVUE)
(with a Gaussian approximation) [67], the estimator of ξq(p),1, is formulated as

ξ̄q,1 = argminξ̃q,1∈R

{
Var

[
ξq,1 − ξ̃q,1

]}
= −

2
√

G (G − 1)σ2

(2G − 1)σ2 + 2σ2
G

R√2π

[
ξq,2 + ξ(G)

q,2

]
,

ξ̄p,1 = argminξ̃p,1∈R

{
Var

[
ξp,1 − ξ̃p,1

]}
=

2
√

G (G − 1)σ2

(2G − 1)σ2 + 2σ2
G

R√2π

[
ξp,2 + ξ(G)

p,2

]
,

(A.9)

where, V [?] denotes variance, R√2π [x] = x −
√

2π × argminn∈Z

∣∣∣x − √2πn
∣∣∣. The state in mode

1, then, is implemented with two displacement operations D̂
[
−ξ̄q,1, 0

]
and D̂

[
0,−ξ̄p,1

]
to have the

resulting noise

ξq,1 − ξ̄q,1 = ξq,1 +
2
√

G (G − 1)σ2

(2G − 1)σ2 + 2σ2
G

R√2π

[
ξq,2 + ξ(G)

q,2

]
,

ξp,1 − ξ̄p,1 = ξp,1 −
2
√

G (G − 1)σ2

(2G − 1)σ2 + 2σ2
G

R√2π

[
ξp,2 + ξ(G)

p,2

]
.

(A.10)

When the noise is small, we can approximate R√2π

[
ξq(p),2 + ξ(G)

q(p),2

]
as a Gaussian random variable

and therefore our QEC protocol approximately produces a Gaussian state, and we show the
derivation of resulting variance after QEC in the following section.
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Appendix A.2.3. Full derivation of Σ2
Q With Eq. A.8, the resulting variance of both quadratures

are

〈q̂2〉 =

∞∑
n=−∞

∫ ∞

−∞

dξ(G)
q,2

∫ ∞

−∞

dξq,2

∫ ∞

−∞

dξq,1

 1
√

4πσG

e
−
ξ
(G)2
q,2
4σ2

G


[

1
2πσ2 e−

2G−1
2σ2

(
ξ2

q,1+ξ2
q,2

)
−

2
√

G(G−1)ξq,1ξq,2
σ2

]
×

(
ξq,1 − ξ̄q,1

)2
U

(
ξq,2 + ξ(G)

q,2 ∈

[(
n −

1
2

)
√

2π,
(
n +

1
2

)
√

2π
])
,

〈p̂2〉 =

∞∑
n=−∞

∫ ∞

−∞

dξ(G)
p,2

∫ ∞

−∞

dξp,2

∫ ∞

−∞

dξp,1

 1
√

4πσG

e
−
ξ
(G)2
p,2

4σ2
G


[

1
2πσ2 e−

2G−1
2σ2

(
ξ2

p,1+ξ2
p,2

)
+

2
√

G(G−1)ξp,1ξp,2
σ2

]
×

(
ξp,1 − ξ̄p,1

)2
U

(
ξp,2 + ξ(G)

p,2 ∈

[(
n −

1
2

)
√

2π,
(
n +

1
2

)
√

2π
])
,

(A.11)
whereU is an indicator function (i.e. U (S) = 1, if S is true; otherwise, U (S) = 0). Performing
partial integration, we obtain

〈q̂2〉 =

∞∑
n=−∞

∫ ∞

−∞

dξ(G)
q,2

∫ ∞

−∞

dξq,2 e
−

ξ2q,2
2(2G−1)σ2 −

ξ
(G)2
q,2
4σ2

G U

(
ξq,2 + ξ(G)

q,2 ∈

[(
n −

1
2

)
√

2π,
(
n +

1
2

)
√

2π
])

×

 σ

[2 (2G − 1)]3/2 πσG
+

√
2G (G − 1)

[
(2G − 1)

(
n
√

2π − ξ(G)
q,2

)
σ2 + 2ξq,2σ

2
G

]2

(2G − 1)5/2 πσG

[
(2G − 1)σ2 + 2σ2

G

]2
σ


=

∞∑
n=−∞

σ
2
[
8 (G − 1) Gn2πσ2 + (2G − 1)σ4 + 4 (2G (G − 1) + 1)σ2σ2

G + 4 (2G − 1)σ4
G

]
2
[
(2G − 1)σ2 + 2σ2

G

]2


×

erfc

 (n − 1/2)
√
π√

(2G − 1)σ2 + 2σ2
G

 − erfc

 (n + 1/2)
√
π√

(2G − 1)σ2 + 2σ2
G


 ≡ VQ

[
σ2

]
= 〈p̂2〉.

(A.12)

Appendix B. Quantum fidelities of TMSV

Starting with Eq. 9, the fidelity between two-mode Gaussian quantum states ρ̂ and ρ̂′ can be
obtained as [96],

F =

√Γ +
√

Ω −

√(√
Γ +
√

Ω
)2
− Θ

−1

exp
[
−

1
2
δvT (

C + C′
)−1 δv

]
, (B.1)

where

J =

2⊕
n=1

(
0 1
−1 0

)
, Γ = 24Det

[
JCJC′ −

1
4

I4

]
, Θ = Det

[
C + C′

]
,

Ω = 24Det
[
C +

i
2

J
]

Det
[
C′ +

i
2

J
]
.

(B.2)
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Here δv = 〈v〉− 〈v′〉, with 〈v〉 and 〈v′〉 being the quadrature means of quantum states ρ̂ and ρ̂′, with
the associated CMs C and C′. Since our concerning state is zero-mean Gaussian (i.e. δv = 0),
we can derive quantum fidelity by its CM. Defining re =

(
r log 10

)
/10, we have the CM of ideal

TMSV,

C =
1
2

(
cosh re I2 sinh re Z2

sinh re Z2 cosh re I2

)
, (B.3)

and CMs of the distribution channels of direct one-way, QEC amplified one-way and m-relay QEC
teleportation,

C′D =
1
2

(
cosh re I2

√
η sinh re Z2,

√
η sinh re Z2 {η cosh re + 1 − η} I2

)
, C′QA =

1
2

cosh re I2 sinh re Z2

sinh re Z2

{
cosh re + 2Σ2

QA

}
I2

 ,
C′QT =

1
2

cosh re I2 sinh re Z2

sinh re Z2

{
cosh re + 2Σ2

QT

}
I2

 ,
(B.4)

and use Eq. B.1 to derive the fidelities,

FD =
4[(

1 +
√
η
)

+
(
1 −
√
η
)

cosh re

]2 , FQA =
1

1 + Σ2
QA cosh re

, FQT =
1

1 + Σ2
QT cosh re

. (B.5)

Appendix C. Theoretical formula of applications

In this section, we discuss the outcomes of three applications, considering a lossy and noisy idler
distribution channel (i.e. direct one-way transmission channel), and their boosted performances
after QEC process. To be consistent with the widely used quadrature convention of these
applications, we choose the quadrature convention: q̂ = â + â† and p̂ =

(
â − â†

)
/i in the following

calculations.

Appendix C.1. Entanglement assisted communications

In EA communication scenario, the signal arm of the prepared TMSV quantum state (with density
operator ρ̂) is encoded by a phase modulation operator Ûθ = exp

[
iθâ†S âS

]
(i.e. θ ∈ [0, 2π)) for

message encoding (i.e. ρ̂θ = Ûθρ̂Û†θ ) to obtain the CM,

Λ =

(
(2NS + 1) I2 2C0Rθ

2C0Rθ (2NS + 1) I2

)
, (C.1)

where C0 =
√

NS (NS + 1), and Rθ = Re
{
exp [iθ (Z2 − iX2)]

}
, NS is the mean photon number

of the preshared TMSV. Here I2, Z2 and X2 are the Pauli matrices. After encoding, the signal
mode is distributed to receiver via a lossy and noisy channel (i.e transmissivity κ � 1 and
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NB = 〈â†BâB〉/ (1 − κ) is the mean photon number of heat bath). Given that the optimal decoding
approach is applied, the Holevo (maximally accessible) capacity can be obtained from the formula

χ = S
[

1
2π

∫ 2π

0
ρ̂θdθ

]
−

1
2π

∫ 2π

0
S

[
ρ̂θ

]
dθ, (C.2)

where S [?] is the von Neumann entropy. As the signal and idler mode of the phase-encoded field
are, respectively, transmitted to the lossy and noisy channel and the distribution channel, the CMs
become

Λideal =

(
(2NB + 2κNS + 1) I2 2

√
κC0Rθ

2
√
κC0Rθ (2NS + 1) I2

)
, ΛD =

(
(2NB + 2κNS + 1) I2 2

√
ηκC0Rθ

2
√
ηκC0Rθ (2ηNS + 1) I2

)
,

ΛQT =

(2NB + 2κNS + 1) I2 2
√
κC0Rθ

2
√
κC0Rθ

(
2NS + 2Σ2

QT + 1
)

I2

 ,
(C.3)

with respect to ideal (Λideal), direct-one way (ΛD) and m-relay QEC teleportation (ΛQT ) distribution
channel. Finally, Eq. C.2 and Eq. C.3 allow us to calculate the Holevo capacities (more detailed
calculations can be found in [50]),

χideal ≈
κ

NB
NS (NS + 1) log2 [1 + 1/NS ], χD ≈

ηκ

NB
NS (NS + 1) log2

[
1 + 1/ηNS

]
,

χQT ≈
κNS

{
(NS + 1) Σ2

QT

(
Σ2

QT + 1
)

log
[
1 + 1/Σ2

QT

]
− NS

}
NBΣ2

QT

(
Σ2

QT + 1
)

log 2
,

(C.4)

by assuming NS � 1, κ � 1 and NB � 1.

Appendix C.2. Quantum illumination

The error probability of binary hypothesis testing in a quantum system can be evaluated from the
two density operators involved in the hypotheses,

Hypothesis 1: ρ̂1, when target is present,

Hypothesis 2: ρ̂2, when target is absent.
(C.5)

With multiple copies of the unknown state, the error probability is upper bounded by the Quantum
Chernoff bound (QCB) [96],

1
2

(
inf

0≤ν≤1

{
Tr

[
ρ̂ν1ρ̂

1−ν
2

]})M
, (C.6)

where M is the number of identical copy of the quantum system. Ref. [96] guides us the formula
of QCB,

1
2

inf
0≤ν≤1

2n ∏n
j=1 Gν

[
λ1, j

]
G1−ν

[
λ2, j

]
√

det [V1 [ν] + V2 [1 − ν]]
exp

[
−

1
2
δvT (V1 [ν] + V2 [1 − ν])−1 δv

]
M

, (C.7)
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where Gν [x] = 2ν/
[
(x + 1)ν − (x − 1)ν

]
, n ∈ N denotes the numbers of mode, λ1(2) is the symplectic

eigenvalues of ρ̂1(2),

V1(2) [ν] = S1(2)


n⊕

j=1


(
λ1(2), j + 1

)ν
−

(
λ1(2), j − 1

)ν(
λ1(2), j + 1

)ν
+

(
λ1(2), j − 1

)ν ⊗ I2


 ST

1(2),

S1(2)

 n⊕
j=1

(
0 1
−1 0

) ST
1(2) =

n⊕
j=1

(
0 1
−1 0

)
, C1(2) = S1(2)

 n⊕
j=1

λ1(2), jI2

 ST
1(2),

(C.8)

δv = 〈v1〉 − 〈v2〉, 〈v1(2)〉 is the quadrature mean and C1(2) is the CM of ρ̂1(2).
Comparing with the QI performances under three idler distribution channels: ideal, direct

one-way and m-relay QEC teleportation, we have the CMs of hypothesis 1 as
{
C(1)

ideal,C
(1)
D ,C

(1)
QT

}
,

C(1)
ideal =

(
(2NB + 2κNS + 1) I2 2

√
κC0Z2

2
√
κC0Z2 (2NS + 1) I2

)
, C(1)

D =

(
(2NB + 2κNS + 1) I2 2

√
ηκC0Z2

2
√
ηκC0Z2 (2ηNS + 1) I2

)
,

C(1)
QT =

(2NB + 2κNS + 1) I2 2
√
κC0Z2

2
√
κC0Z2

(
2NS + 2Σ2

QT + 1
)

I2

 ,
(C.9)

, and hypothesis 2 as
{
C(2)

ideal,C
(2)
D ,C

(2)
QT

}
C(2)

ideal =

(
(2NB + 1) I2 02

02 (2NS + 1) I2

)
, C(2)

D =

(
(2NB + 1) I2 02

02 (2ηNS + 1) I2

)
,

C(2)
QT =

(2NB + 1) I2 02

02

(
2NS + 2Σ2

QT + 1
)

I2

 , (C.10)

where 02 is the 2 × 2 zero matrix. Calculating the symplectic eigenvalues of the CMs in Eq. C.9
and Eq. C.10, we substitute them into Eq. C.7 and numerically calculate the QCBs in Fig. 11.

Appendix C.3. CV quantum key distribution

In the CV-QKD scheme, Alice and Bob preshared a TMSV state with CM VI2

√
V2 − 1Z2√

V2 − 1Z2 VI2

 , (C.11)

and have the mutual information at the limit of V � 1

IAB ≈
1
2

log2

[ V
1 + ε

]
, (C.12)

where V is the variance of the observed thermal mode if the state in Alice is traced out, ε is
the variance of overall additive excess noise. Presumably, Eve adopts Gaussian attack, shown to
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be optimal among all collective attacks [103,104]), to the system. In this attack, the maximal
accessible information is limited by the Holevo information,

χBE = S
[
ρ̂E

]
−

∫
p [xB] S

[
ρ̂xB

E

]
dxB, (C.13)

where p [xB] is the probability density function of Bob’s measurement outcome xB, ρ̂xB
E (or ρ̂E) are

the density operators conditioned (or unconditioned) on Bob’s result. Eq. C.13 can be derived as

χBE ≈
1
2

log2

[
e2Vε/4

]
(C.14)

and we obtain Eq. 14 with the definition of SKR, R ≡ IAB − χBE (see more details in
Ref. [Lodewyck07]).
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[76] F. Rozpȩdek, K. Noh, Q. Xu, S. Guha, and L. Jiang, Quantum repeaters based on concatenated bosonic and

24



discrete-variable quantum codes, npj Quantum Inf. 7, 102 (2021).
[77] K. Fukui, R. N. Alexander, and P. v. Loock, All-Optical Long-Distance Quantum Communication with

Gottesman-Kitaev-Preskill qubits, Phys. Rev. Research 3, 033118 (2021).
[78] K. Fukui and N. C. Menicucci, An efficient, concatenated, bosonic code for additive Gaussian noise,

arXiv:2102.01374v1 (2021).
[79] I. Tzitrin, J. E. Bourassa, N. C. Menicucci, and K. K. Sabapathy, Progress towards practical qubit computation

using approximate Gottesman-Kitaev-Preskill codes, Phys. Rev. A. 101, 032315 (2020).
[80] M. Eaton, R. Nehra and O. Pfister, Non-Gaussian and Gottesman–Kitaev–Preskill state preparation by photon

catalysis, New J. Phys. 21, 113034 (2019).
[81] D. Su, C. R. Myers, and K. K. Sabapathy, Conversion of Gaussian states to non-Gaussian states using photon-

number-resolving detectors , Phys. Rev. A. 100, 052301 (2019).
[82] J. Hastrup, U. L. Andersen, Generation of optical Gottesman-Kitaev-Preskill states with cavity QED,

arXiv:2104.07981 (2021).
[83] J. Wu and Q. Zhuang, Continuous-variable error correction for general Gaussian noises, Phys. Rev. Appl. 15,

034073 (2021).
[84] S. L. Braunstein and H. J. Kimble, Teleportation of Continuous Quantum Variables, Phys. Rev. Lett. 80, 869

(1998).
[85] S. Pirandola and M. Stefano, Quantum teleportation with continuous variables: A survey, Laser Physics 16,

1418 (2006).
[86] J. Wu, C. Cui, L. Fan, and Q. Zhuang, Deterministic microwave-optical transduction based on quantum

teleportation, Phys. Rev. Appl. 16, 064044 (2021).
[87] Y. Shi, C. Chamberland, and A. Cross, Fault-tolerant preparation of approximate GKP states, New J. Phys. 21,

093007 (2019).
[88] R. Filip, P. Marek, and U. L. Andersen, Measurement-induced continuous-variable quantum interactions, Phys.

Rev. A 71, 042308 (2005).
[89] Y. Miwa et al., Exploring a New Regime for Processing Optical Qubits: Squeezing and Unsqueezing Single

Photons, Phys. Rev. Lett. 113, 013601 (2014).
[90] J.-i. Yoshikawa, Y. Miwa, A. Huck, U. L. Andersen, P. v. Loock, and A. Furusawa, Demonstration of a Quantum

Nondemolition Sum Gate, Phys. Rev. Lett. 101, 250501 (2008).
[91] J.-i. Yoshikawa, Y. Miwa, R. Filip, and A. Furusawa, Demonstration of a reversible phase-insensitive optical

amplifier, Phys. Rev. A 83, 052307 (2011).
[92] V. Giovannetti, R. García-Patròn, N. J. Cerf, and A. S. Holevo, Ultimate classical communication rates of

quantum optical channels, Nat. Photonics 8, 796 (2014).
[93] C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal, Entanglement-assisted capacity of a quantum

channel and the reverse shannon theorem, IEEE Trans. Inf. Theory 48, 2637 (2002).
[94] B. Schumacher and M. D. Westmoreland, Sending classical information via noisy quantum channels, Phys.

Rev. A 56, 131 (1997).
[95] A. S. Holevo, The capacity of the quantum channel with general signal states, IEEE Trans. Inf. Theory 44, 269

(1998).
[96] S. Pirandola and S. Lloyd, Computable bounds for the discrimination of Gaussian states, Phys. Rev. A 78,

012331 (2008).
[97] Seth Lloyd, Enhanced Sensitivity of Photodetection via Quantum Illumination, Science 321, 1463 (2008).
[98] A. Karsa, G. Spedalieri, Q. Zhuang, and S. Pirandola, Quantum illumination with a generic Gaussian source,

Phys. Rev. Research. 2, 023414 (2020).
[99] Z. Zhang, S. Mouradian, F. N. C. Wong, and J. H. Shapiro, Entanglement-enhanced sensing in a lossy and noisy

environment, Phys. Rev. Lett. 114, 110506 (2015).
[100] J. Lodewyck et. al, Quantum key distribution over 25 km with an all-fiber continuous-variable system, Phys.

Rev. A 76, 042305 (2007).

25



[101] F. Grosshans et al., Quantum key distribution using gaussian-modulated coherent states, Nature 421, 238
(2003).

[102] F. Grosshans and P. Grangier, Continuous Variable Quantum Cryptography Using Coherent States, Phys. Rev.
Lett. 88, 057902 (2002).

[103] R. García-Patrón and N. J. Cerf, Unconditional Optimality of Gaussian Attacks against Continuous-Variable
Quantum Key Distribution, Phys. Rev. Lett. 97, 190503 (2006).

[104] A. G. Cohen and S. L. Glashow, Very Special Relativity, Phys. Rev. Lett. 97, 021601 (2006).

26


	1 Introduction: file preparation and submission
	2 Quantum-repeater architecture with bosonic quantum error correction
	2.1 Amplified one-way channel
	2.2 Quantum teleportation channel

	3 GKP-error-correction code
	3.1 The GKP state
	3.2 GKP-two-mode-squeezing code
	3.3 Fidelity Performances
	3.4 Concatenation of GKP-TMS code

	4 Applications
	4.1 Entanglement-assisted communication
	4.2 Quantum illumination
	4.3 CV quantum key distribution

	5 Discussion and outlook
	6 Conclusions
	Appendix A Additive Gaussian noises of protocols
	Appendix A.1 Teleportation
	Appendix A.2 QEC protocol
	Appendix A.2.1 Encoding
	Appendix A.2.2 Decoding
	Appendix A.2.3 Full derivation of Q2


	Appendix B Quantum fidelities of TMSV
	Appendix C Theoretical formula of applications
	Appendix C.1 Entanglement assisted communications
	Appendix C.2 Quantum illumination
	Appendix C.3 CV quantum key distribution


