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Quantum-state sharing is a protocol where perfect reconstruction of quantum states is achieved with incom-

plete or partial information in a multipartite quantum network. Quantum-state sharing allows for secure com-

munication in a quantum network where partial information is lost or acquired by malicious parties. This

protocol utilizes entanglement for the secret-state distribution and a class of “quantum disentangling” protocols

for the state reconstruction. We demonstrate a quantum-state sharing protocol in which a tripartite entangled

state is used to encode and distribute a secret state to three players. Any two of these players can collaborate

to reconstruct the secret state, while individual players obtain no information. We investigate a number of

quantum disentangling processes and experimentally demonstrate quantum-state reconstruction using two of

these protocols. We experimentally measure a fidelity, averaged over all reconstruction permutations, of F

=0.73±0.02. A result achievable only by using quantum resources.

DOI: 10.1103/PhysRevA.71.033814 PACS numberssd: 42.50.Dv, 03.67.Dd, 42.65.Yj

I. INTRODUCTION

The advent of quantum information science has heralded
the birth of two exciting new fields of research in quantum
mechanics: quantum computation and quantum information
networks f1g. Quantum computation involves computation
via quantum mechanical techniques, using quantum states
known as qubits, to outperform conventional computers for
certain computational problems f2,3g. Quantum information
networks, the quantum analogy of the internet, are expected
to consist of nodes, where information is processed and
stored, connected by quantum channels, through which quan-
tum information can be transmitted. Both quantum computa-
tion and quantum information networks share several key
similarities, as they are both concerned with the creation,
processing, and distribution of quantum states. They are,
however, both vulnerable to the loss or destruction of quan-
tum states: through decoherence, node, or channel failures or
the intervention of malicious parties. For this reason proto-
cols that allow for the secure and robust distribution of quan-
tum states are vital for the successful implementation of
these protocols.

In computer science, Shamir f4g proposed secret sharing

as a protocol that enables the secure distribution of classical
information in networks. Secret sharing can be used to en-
hance the security of communication networks such as the
internet, telecommunication systems, and distributed com-
puters. Quantum resources allow the extension of secret
sharing into the quantum domain in one of two ways. The
first involves using quantum resources to enhance the secu-
rity of classical information in cryptocommunication systems
and is known as quantum secret sharing f5–7g. The second
uses quantum resources to securely encode and distribute
quantum states. This second class, which we term quantum-

state sharing to distinguish it from the first class of proto-

cols, is of more significance to quantum information proto-
cols, which are primarily concerned with quantum states. In
sk ,nd threshold quantum state sharing, originally proposed

by Cleve et al. f8g, a secret state is encoded by the “dealer”
into an n-party entangled state or “share.” Any k players sthe
authorized groupd can collaborate to retrieve the quantum
state, whereas the remaining n−k players sthe adversary
groupd, even when conspiring, acquire nothing. As a conse-
quence of the no-cloning theorem, the number of players in
the authorized group must consist of a majority of the play-
ers sk.n /2d. For quantum computation and quantum infor-

mation networks, quantum-state sharing provides a secure
framework for distributed quantum communication, protect-
ing the quantum states from the loss up to n−k shares due to
destruction, failures, or malicious conspiracies.

In general, most theoretical proposals for quantum state
sharing, by Cleve et al. f8g and other subsequent theoretical
proposals f9–12g, are formulated for the discrete regime.
These proposals require qudits smultidimensional qubitsd for
the encoding and distribution of the secret quantum states.
Experimentally, however, the control and coupling of qudits
is extremely challenging, making an experimental demon-
stration of quantum state sharing in the discrete regime a
difficult task. Recently, Tyc and Sanders f13g extended
quantum-state sharing to the continuous-variable regime.
Their proposal utilizes Einstein-Podolsky-Rosen sEPRd en-
tanglement, an experimentally accessible quantum resource
f14,15g, which has been used in several quantum information
protocols including quantum teleportation f16g, quantum
dense coding f17g, and entanglement swapping f18g. Impor-
tantly, Tyc et al. f19g, later showed that continuous-variable
quantum-state sharing could be extended to a sk ,nd threshold

scheme, without a corresponding scale up in quantum re-
sources. This makes quantum-state sharing an important and
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powerful security protocol for future quantum information
systems.

In this paper we experimentally demonstrate s2, 3d thresh-
old quantum-state sharing in the continuous-variable regime
f20g. In our scheme, a secret coherent state is encoded into a
tripartite entangled state and distributed to three players. In
general, arbitrary quantum states can be shared via quantum-
state sharing. Experimentally we demonstrate quantum-state
sharing using secret coherent states with unknown coherent
amplitude and phase displacements. The coherent states form
an overcomplete basis, making it possible to infer perfor-
mance for arbitrary input states from our results. We demon-
strate that any two of the three players can form an autho-
rized group to reconstruct the state and characterize this state
reconstruction in terms of fidelity sFd, signal transfer sTd,
and reconstruction noise sVd. These measures show a direct

verification of our tripartite continuous-variable entangle-
ment. The entangled state in the dealer protocol ensures that
the quantum features of the secret state can be reconstructed
by the authorized group, while simultaneously providing se-
curity against individual players. We also demonstrate that
security of our scheme can be enhanced using classical en-
coding techniques.

This paper is presented in the following manner: in Sec. II
we describe the dealer protocol for encoding and distributing
the secret state to the players, and we describe a set of “dis-
entangling protocols” that can be used to reconstruct the se-
cret state by the corresponding authorized groups. In Sec. III
we present techniques to characterize the state reconstruc-
tion. In Secs. IV and V we describe the experimental setup
and present the experimental results. Finally we conclude in
Sec. VI.

II. (2,3) QUANTUM-STATE SHARING PROTOCOLS

In this paper we consider quantum states that reside at the
sideband frequency v of an electromagnetic field. These
quantum states include the secret and entangled states used
in the dealer protocol and can be described using the field

annihilation operator â= sX̂+iX̂−d /2. This operator is ex-

pressed in terms of the amplitude X̂+ and phase X̂− quadra-
ture operators, which are noncommuting observables, de-

scribed by the commutation relation fX̂+ , X̂−g=2i. Without

loss of generality, we can express these quadrature operators
in terms of a steady-state component and fluctuating compo-

nent as X̂±= kX̂±l+dX̂±, where the variance and mean of these

quadrature operators are expressed as V±= ksdX̂±d2l and kX̂±l,
respectively.

A. Dealer protocol

For the s2, 3d quantum-state sharing scheme, we extend
the original dealer protocol proposed by Tyc and Sanders
f13g sQuantum Protocol in Fig. 1d. In the original protocol,
the secret state is encoded by the dealer by interfering the
secret quantum state with one of a pair of EPR entangled
beams on a 1:1 beam splitter. This interference hides the
secret state in the relatively larger amplitude and phase noise

of the entangled beam. The two outputs from this beam split-
ter and the second entangled beam form the three shares to
be distributed to the players in the protocol. The second EPR
entangled beam, although not containing a component of the
secret state, does share entanglement with the other two
beams. This entanglement ensures that the quantum features
of the secret state can be reconstructed.

The security of the scheme is governed by the strength of
the entanglement in the dealer protocol. In the case of finite
entanglement, some information of the secret state can still
be retrieved by individual players. The security can be fur-
ther enhanced, however, by using additional classical encod-
ing techniques in the dealer protocol. This is achieved by
encoding correlated Gaussian noise onto each of the players
shares sClassical Protocol in Fig. 1d. We describe the addi-
tional Gaussian noise encoded onto the shares by dN

= sdN++ idN−d /2, which has a mean of kdN±l=0 and variance

of ksdN±d2l=VN. The variance of the Gaussian noise encoded

onto the quadratures of each of the shares can be controlled
via an electronic gain G sFig. 1d. The resulting shares after
the classical encoding can be expressed as f20,21g

X̂player1
± = sX̂in

± + X̂EPR1
± + dN±d/Î2, s1d

X̂player2
± = sX̂in

± − X̂EPR1
± − dN±d/Î2, s2d

X̂player3
± = X̂EPR2

± ± dN±, s3d

where we have assumed that the EPR entangled beams are
generated by interfering an phase and an amplitude squeezed
beam on a 1:1 beam splitter with a relative optical phase shift
of p. The quadratures of the EPR entangled beam are given
by

X̂EPR1
± = sX̂sqz1

± + X̂sqz2
± d/Î2, s4d

FIG. 1. Schematic of the dealer protocol for the s2, 3d quantum-

state sharing scheme. cin: secret quantum state. OPA: optical para-

metric amplifier. x :y: beam splitter with reflectivity x / sx+yd and

transmitivity y / sx+yd. fi: optical phase delays. N±: additional

Gaussian noise. Gi: electronic gains.
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X̂EPR2
± = sX̂sqz1

± − X̂sqz2
± d/Î2, s5d

where X̂sqz1
± and X̂sqz2

± correspond to the quadratures of the
squeezed beams. The variance of the squeezed quadratures

of the squeezed beams is expressed as Vsqz1
− = ksdX̂sqz1

− d2l,1

and Vsqz2
+ = ksdX̂sqz2

+ d2l,1.

B. Reconstruction disentangling protocols

For s2, 3d quantum-state sharing, which is the simplest
nontrivial quantum-state sharing scheme, there exists a class
of protocols that can be used to reconstruct the secret state.
These reconstruction protocols can be thought of as disen-

tangling protocols as the secret state is embedded within two
states which are EPR entangled. This is analogous to the
disentangling protocols in the discrete regime f22g. Some of
these reconstruction protocols are shown in Fig. 2.

1. Mach-Zehnder protocol

The specific state reconstruction protocol used in the s2,
3d quantum-state sharing scheme depends on the constituent

players which form the authorized group. The authorized
group formed when players 1 and 2 collaborate, which we
henceforth denote as the h1,2j, can reconstruct the secret
state using the Mach-Zehnder protocol, as shown in Fig.
2sad. The h1,2j authorized group completes a Mach-Zehnder
interferometer by interfering the shares on a 1:1 beam split-
ter. The quadratures of the reconstructed secret are given by

X̂out
± =

X̂player1
± + X̂player2

±

Î2
= X̂in

± . s6d

Since this reconstruction protocol effectively reverses the
dealer encoding protocol, the h1,2j authorized group can re-
construct the secret state to an arbitrary precision, indepen-
dent of the amount of squeezing or additional Gaussian noise
employed in the dealer protocol.

For the h1,3j and h2,3j authorized groups, more compli-
cated reconstruction protocols are required. This complexity
is due to the asymmetry of the entanglement and Gaussian
noise in each of the shares in the authorized groups.

2. Phase-insensitive amplifier protocol

The h1,3j and h2,3j authorized groups can, in theory, re-
construct the secret state to an arbitrary precision using a
phase insensitive amplifier. This can be achieved by carefully
controlling the inherent noise coupled into the output state as
a result of the amplification process, as shown in Fig. 2sbd.
The output from a phase insensitive amplifier can be ex-
pressed by the quadrature equations f23g

X̂out
± = ÎGX̂in

± 7 ÎG − 1X̂N
± , s7d

where G is the amplifier gain. The amplification process has

two inputs X̂in
± and X̂N

± . The second input X̂N
± is coupled into

the quadratures of the output state as a result of the amplifi-
cation process. Typically, this second input corresponds to
the quadratures of a vacuum state. For a general phase-
insensitive amplifier, however, this second input can be arbi-
trary. We utilize this second input in the phase-insensitive
amplifier reconstruction protocol. In this protocol, share h1j
sor h2j depending on the corresponding authorized groupd is
amplified using the phase-insensitive amplifier. By replacing
the amplifier noise coupled into the output state with share
h3j, the resulting quadratures of the reconstructed secret can
be expressed as

X̂out
± =ÎG

2
X̂in

± + SÎG

2
7ÎG − 1

2
DdX̂sqz1

±

+ SÎG

2
±ÎG − 1

2
DdX̂sqz2

± + SÎG

2
− ÎG − 1DdN±.

s8d

By setting the amplifier gain to G=2, the quadratures of the
reconstructed secret are given by

X̂out
+ = X̂in

+ + Î2dX̂sqz2

+ , s9d

FIG. 2. Schematic of the reconstruction protocols for the s2, 3d
quantum-state sharing scheme. For the players 1 and 2 as the au-

thorized group: sad Mach-Zehnder reconstruction protocol. For the

players 1 and 3 sor players 2 and 3d as the authorized group: sbd
Phase-insensitive amplifier reconstruction protocol. scd Two optical

parametric amplifier reconstruction protocol. sdd Feed-forward re-

construction protocol. sed Two feed-forward reconstruction proto-

cols. cout: reconstructed quantum state, G: electronic gain, and AM:

amplitude modulator. Switch symbol: represents the use of either

player 1 or player 2 in the corresponding reconstruction protocols.
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X̂out
− = X̂in

− + Î2dX̂sqz1

− , s10d

where dX̂sqz2

+ and dX̂sqz1

− are the squeezed quadratures of the

squeezed beams used to generate the entanglement in the
dealer protocol. At an amplifier gain of G=2, it is seen that
in the limit of infinite squeezing, the secret state is recon-
structed to an arbitrary precision without degradation. We
term this point the unity gain point sanalogous to the unity
gain point in quantum teleportation f16,24gd. At the unity
gain point the expectation value of the quadrature amplitudes
of the reconstructed state is the same as the secret state.
Furthermore, the noise contributions do not appear on the
quadratures of the reconstructed state. As a result, the secu-
rity of the scheme can be arbitrarily increased by either in-
creasing the squeezing or the additional noise in the dealer
protocol, without degrading the quality of the reconstructed
state. We point out the significance of the unity gain point, as
all the reconstructions protocols presented in this paper, can
achieve some form of unity gain. Although, in theory, this
reconstruction protocol can be used to reconstruct the secret
to an arbitrary precision, experimentally it is extremely dif-
ficult to directly access the second input field of the phase-
insensitive amplifier. We now turn our attention to examining
more experimentally achievable reconstruction protocols.

3. Two-optical-parametric-amplifier protocol

In their original proposal, Tyc and Sanders suggested us-
ing a pair of optical parametric amplifiers to perform the
h1,3j and h2,3j secret reconstructions f13g, as shown in Fig.
2scd. We term this protocol the two-optical-parametric-

amplifier protocol. In this protocol, the two shares are inter-
fered on a 1:1 beam splitter. The two resulting beams are
each noiselessly amplified using phase-sensitive optical para-
metric amplifiers, with amplifying gains of ÎG and 1/ÎG,
respectively. After the noiseless amplification, the secret state
is reconstructed by interfering the two amplified beams on a
second 1:1 beam splitter. The quadrature of the reconstructed
secret can be expressed by

X̂out
± =

1

2Î2
SÎG −

1

ÎG
DX̂in

± + Î2C+dN± s11d

+ C±dX̂sqz1

± + C7dX̂sqz2

± s12d

where G is the amplifying gain of the optical parametric
amplifiers, and the coefficients C± are given by

C± =
1

4
S1 ± Î2

ÎG
+ s1 7 Î2dÎGD . s13d

At an amplifying unity gain of G= sÎ2+1d / sÎ2−1d, the

quadratures of the reconstructed state can be expressed as

X̂out
+ = X̂in

+ + Î2dX̂sqz2

+ , s14d

X̂out
− = X̂in

− + Î2dX̂sqz1

− . s15d

In the limit of infinite squeezing in the dealer protocol and at
unity gain, the secret state is reconstructed to an arbitrary

precision. This scheme requires significant quantum re-
sources, however, with two optical parametric amplifiers in
the reconstruction protocol. Furthermore, in the reconstruc-
tion protocol these optical parametric amplifiers must have
precisely controlled amplifying gains as well as high nonlin-
earity. Experimentally, high nonlinearity can be achieved by
using high-peak-power pulsed light sources, either in
Q-switched or mode-locked setups or by enhancing the op-
tical intensity within an optical resonator. However, both of
these techniques cause significant coupling of vacuum fields
into the output state, resulting in a significant decrease of
quantum efficiency. The pulsed systems often suffer distor-
tion of optical wave fronts in the nonlinear medium, result-
ing in poor optical interference and losses, while the resona-
tors couple in vacuum fields via intraresonator losses, the
resonator mirrors, and the second harmonic pump field. For
these reasons it is desirable to investigate reconstruction pro-
tocols that do not rely on optical parametric amplifiers, but
instead utilize linear optics, which are not susceptible to
these type of losses and inefficiencies.

4. Single feed-forward reconstruction protocol

An alternative reconstruction protocol that uses linear op-
tics and electro-optic feed-forward to reconstruct the secret
state f20,21g is shown in Fig. 2sdd. We term this protocol the
single feed-forward reconstruction protocol. In this protocol
the shares are interfered on a beam splitter, where the two

resulting output beams are denoted as b̂ and ĉ. The propor-
tion of entanglement and additional noise between share h3j
and share h1j sor h2jd are not equal; hence, an appropriate
beam splitter ratio must be chosen so that the entanglement
and additional noise contributions are proportional on one of

the quadratures of the beam splitter output b̂ as a result of
this interference. In the limit of infinite squeezing or addi-
tional noise in the dealer protocol, the optimum beam splitter
ratio is 2:1 sfor convenience we will use this beam splitter
ratio for the rest of this analysis unless otherwise statedd.
This interference reconstructs the phase quadrature of the

secret state on the phase quadrature of beam splitter output b̂.

As a result of this interference the amplitude quadrature X̂b
+

obtains additional noise fluctuations. It is possible to cancel

the noise on the amplitude quadrature X̂b
+, however, by rec-

ognizing that this noise is correlated with the noise on the

amplitude quadrature X̂c
+. By detecting dX̂c

+ and imparting

these fluctuations onto X̂b
+ with a well-chosen electronic gain

G via an electro-optic feed-forward loop, it is possible to
reconstruct the amplitude quadrature of the secret state. After
the electro-optic feed-forward, the quadratures of the recon-
structed secret can be expressed as

X̂out
+ = g+X̂in

+ +Î3

2
sÎ3g+ − 1ddX̂sqz2

+ +
1

Î2
sÎ3 − g+ddX̂sqz1

−

+ sÎ3 − g+ddN+, s16d

X̂out
− =

1

Î3
sX̂in

− + Î2dX̂sqz1

− d , s17d

where g± denotes the optical quadrature gains of the recon-

structed secret, given by g±= kX̂out
± l / kX̂in

± l. The phase quadra-
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ture gain is set by the reconstruction beam splitter ratio 2:1 to
be g−=1/Î3, while the amplitude quadrature gain g+=1/Î3
+G /Î6 has an additional contribution due to the feed-
forward process, which is a function of the electronic gain G.
We refer to the optical quadrature gain product g+g−= sÎ3d
3s1/Î3d=1 as the unity-gain point. At unity gain, the

quadratures of the reconstructed secret are given by

X̂out
+ = Î3sX̂in

+ + Î2dX̂sqz2

+ d , s18d

X̂out
− =

1

Î3
sX̂in

− + Î2dX̂sqz1

− d . s19d

In the limit of infinite squeezing in the dealer protocol, the
reconstructed secret is directly related to the secret state via a
local unitary parametric operation. This reconstructed state
can only be achieved using quantum resources. If required, a
reverse local unitary parametric operation can be applied to
the reconstructed state to transform the reconstructed secret
state into the original form of the secret state. Since this
unitary parametric operation is a local operation and requires
no entanglement, this shows the quantum nature of the state
reconstruction is contained within the feed-forward recon-
struction protocol, and not by the subsequent operations.

5. Double feed-forward reconstruction protocol

Although the single feed-forward protocol is sufficient for
demonstrating the quantum nature of quantum-state sharing,
it could be inconvenient in practice if the reconstructed state
is a unitary transform of the secret state. It is useful to inves-
tigate alternative feed-forward protocols where the recon-
structed state is in the same form as the secret state. Such a
reconstruction protocol is shown in Fig. 2sed, which we term
the double feed-forward reconstruction protocol. In this pro-
tocol, share h1j sor h2jd is interfered with a vacuum state on
a beam splitter. The reflectivity of the beam splitter has to be
optimized, and in the limit of infinite squeezing or additional
Gaussian noise in the dealer protocol, the optimum beam
splitter ratio is 1:1 sfor convenience we will use this beam
splitter ratio for the rest of this analysis unless otherwise

statedd. The resulting output beam b̂ is then interfered with
share h3j on a 1:1 beam splitter. The resulting beams are

denoted by d̂ and ê, respectively. The noise fluctuations on

the amplitude quadrature X̂d
+ and phase quadrature X̂e

− are
correlated with the amplitude and phase quadrature fluctua-
tions on beam ĉ, respectively. The secret state can be recon-

structed by measuring the X̂d
+ and X̂e

− quadrature fluctuations
and displacing the corresponding quadratures of beam ĉ with
a properly chosen electronic gain. The resulting quadratures
of the reconstructed state are given by

X̂out
± = g+X̂in

± + s1 − g+ddN+ +
1

Î2
s1 − g+dÂ± +

1

Î2
s3g+ − 1dB̂±

+ Î2sg+ − 1ddX̂v
±, s20d

where the coefficients represent the corresponding squeezing

operators Â+=dX̂sqz1

+ , Â−=dX̂sqz2

− , B̂+=dX̂sqz2

+ , and B̂−=dX̂sqz1

− ,

the optical quadrature gains are defined as g±= s1

−G /Î2d /2, and where dX̂v
± is the vacuum noise. At unity

gain sg±=1d, the quadratures of the reconstructed secret state

can be expressed as

X̂out
+ = X̂in

+ + Î2dX̂sqz2

+ , s21d

X̂out
− = X̂in

− + Î2dX̂sqz1

− . s22d

In the case of infinite squeezing in the dealer protocol and at
unity gain, the secret state is reconstructed to an arbitrary
precision. This protocol has advantages over the previous
protocols as it uses linear optics to reconstruct the secret state
and the reconstructed state is in the same form as the secret
state.

III. CHARACTERIZATION OF QUANTUM-STATE

RECONSTRUCTION

We characterize state reconstruction in quantum-state
sharing by measuring the fidelity between the secret and re-
constructed states sFd, which is used in the characterization

quantum teleportation experiments f16,24g. We also charac-
terize the state reconstruction by measuring the signal trans-
fer from the secret to the reconstructed state sTd and the

additional noise on the reconstructed state sVd, which is used

to characterize quantum teleportation f24g and quantum non-
demolition experiments f25g.

A. Fidelity

Fidelity measures the overlap between the secret and re-
constructed states, and can be expressed in terms of the input
and the output state as F= kcinur̂outucinl f26g. A fidelity of

F=1 implies perfect overlap between the secret and recon-
structed states and corresponds to state reconstruction with
arbitrary precision, while a fidelity of F=0 implies no over-
lap between the corresponding states.

In quantum-state sharing the secret state can be any state
in general. In our experiment we use coherent states with
unknown amplitude and phase-coherent amplitudes. As a
consequence we limit our analysis here to coherent states.
The fidelity between a secret state and the reconstructed state
for a general quantum-state sharing scheme, assuming that
all states have Gaussian statistics, can be expressed as

F =
2e−sk++k−d/4

Îs1 + Vout
+ ds1 + Vout

− d
, s23d

where k±= kXin
± l2s1−g±d2 / s1+Vout

± d and Vout
± are the quadra-

ture variances of the reconstructed state and where g± are the
optical quadrature gains. Since fidelity is a measure of the
overlap between the input and output states, the most signifi-
cant fidelity measure is at unity gain g±=1. This is seen as
the fidelity, averaged over an ensemble of unknown states,
falls exponentially as we move away from unity gain.

We now determine the maximum fidelity achievable by
the authorized group in the case when the squeezed states are
replaced with coherent states in the dealer protocol, which
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we term the classical fidelity limit. The quadrature equations
for a general reconstructed state can be expressed as

X̂out
± = g±X̂in

± + X̂N
± , s24d

where X̂N
± are the reconstruction noise terms on the quadra-

tures of the reconstructed state. To measure the fidelity of
this reconstructed state at unity gain, we assume that a phase-
insensitive amplification can be applied to the reconstructed
state to achieve unity gain. Assuming that the optical quadra-
ture gains on both quadratures are equal g±=g, and for a
phase-insensitive amplification with an amplifying gain of
1 /g, the resulting quadrature equations are given by

X̂outsampd
± = X̂in

± +
1

g
X̂N

± + X̂M
± , s25d

where X̂M
± is the noise coupled into the output state as a result

of the amplification process. By using the commutation rela-
tion fXi

+ ,X j
−g=2idij and the Heisenberg uncertainty product

inequality Vi
+V j

−ù ukfXi
+ ,X j

−glu2 /4, we can obtain Heisenberg

uncertainty products for the noise terms in Eqs. s24d and s25d
expressed as

VN
+ VN

− ù us1 − g2du2, s26d

VM
+ VM

− ù us1 − g2d/sg2du2. s27d

By substituting Eqs. s25d–s27d into fidelity Eq. s23d, the
maximum classical fidelity for a general reconstructed state
is given by

Fclas ø
1

1 + us1 − g2d/g2u
. s28d

Using this inequality, we can determine the maximum clas-
sical fidelity achievable by the authorized groups for the
s2,3d quantum-state sharing scheme. From the individual
player shares, Eqs. s1d–s3d, the quadrature gains for h1,2j
access group are g±=1, while the quadrature gains for h1,3j
and h2,3j access group are g±=1/Î2. By substituting these
gains into Eq. s28d, the maximum classical fidelity for the
authorized groups are given by

Fh1,2j
clas ø 1,

Fh1,3j
clas = Fh2,3j

clas ø 1/2. s29d

The average classical fidelity limit for the quantum-state
sharing scheme can be determined by averaging the maxi-
mum classical fidelity achievable by all the authorized
groups. For the s2,3d quantum-state sharing scheme, the av-
erage classical fidelity is Favg

clasø sFh1,2j+Fh1,3j+Fh2,3jd /3

=2/3. This limit can only be exceeded using quantum re-
sources. The average classical fidelity achievable for a gen-
eral sk ,nd quantum-state sharing scheme can also be calcu-

lated. Assuming that the secret is a coherent state, it is
straightforward to show that the average classical fidelity is
given by Favg

clasøk /n.
Similarly for the individual players, the maximum achiev-

able classical fidelity limits are given by

Fh1j
clas = Fh2j

clas ø 1/2,

Fh3j
clas = 0. s30d

For large squeezing or additional noise in the dealer protocol,
the fidelity for the individual players approaches zero, corre-
sponding to no overlap between the secret state and the in-
dividual shares.

B. Signal transfer and additional noise

In quantum-state sharing, the state reconstruction can also
be characterized in terms of the signal transfer to sTd and

additional noise on sVd, the reconstructed state. These mea-

sures provides complementary information about the state
reconstruction compared with the fidelity measure. Perfect
state reconstruction corresponds to T=2 and V=0, while T

=0 and V=` implies that no information has been obtained
about the secret state. The spatial difference between the T

and V points, for the access and adversary groups, illustrates
the information difference about the secret state obtained by
both groups. Unlike fidelity, which requires the reconstructed
state to be in the same form as the secret state, both T and V

are state-independent measures and are invariant to unitary
transformations of the reconstructed state.

The signal transfer function is given by the sum of the
quadrature signal transfer coefficients T± as

T = T+ + T− =
Rout

+

Rin
+ +

Rout
−

Rin
− , s31d

where R± are the quadrature signal-to-noise ratios. In the
case of zero squeezing in the dealer protocol, using Eq. s26d,
the signal transfer for a general reconstructed state, Eq. s24d,
is limited by the inequality

T clas ø
1

1 + u1/sg+d2 − 1u
+

1

1 + u1/sg−d2 − 1u
. s32d

The additional noise on the reconstructed state sVd is given

by product of the quadrature conditional variances, which
can be expressed as

V = Vinuout
+

Vinuout
− , s33d

where the quadrature conditional variances each describe the
amount of additional noise on each quadrature of the secret
state and can be expressed in the standard form Vinuout

±

=minh
in
± ksdX̂out

± −hin
± dX̂in

± d2l, where the gains hin
± are optimized,

giving minimum conditional variances of

Vinuout
± = Vin

± −
ukdX̂in

± dX̂out
± lu2

Vout
± . s34d

For a general reconstructed state described by Eq. s24d and
assuming that the secret is a coherent state, the quadrature
conditional variances can be written in an alternative form as
Vinuout

± = fVout
± − sg±d2g. The minimum additional noise on the

reconstructed state is limited by the inequality

V ù u1 − g+g−u2. s35d
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For our s2,3d quantum-state sharing protocol, we deter-
mine the classical limits for T and V for the authorized
groups. The h1,2j authorized group can obtain a maximum
signal transfer and a minimum additional noise of

Th1,2j
clas ø 2,

Vh1,2j
clas ù 0, s36d

which corresponds to state reconstruction to an arbitrary pre-
cision. For the h1,3j and h2,3j authorized groups, the maxi-
mum achievable signal transfer, and the minimum achievable
additional noise is given by

Th1,3j
clas = Th2,3j

clas ø 1,

Vh1,3j
clas = Vh2,3j

clas ù 1/4. s37d

For no squeezing in the dealer protocol, the h1j and h2j ad-
versary groups can reach the equality given in Eq. s37d. As
either the squeezing or additional Gaussian noise is increased
in the dealer protocol, however, the amount of information

the adversary group obtains approaches zero. In the limit of
infinite squeezing or large amounts of additional noise, the
adversary groups obtains no information about the secret
state, corresponding to T=0 and V=`.

Figures 3 and 4 show the accessible T and V regions for
the h1,3j and h2,3j authorized groups using the single feed-
forward reconstruction protocol, with and without squeezing
in the dealer protocol. The accessible points for the corre-
sponding h2j and h1j adversary groups are also shown. To
map out these accessible regions, the authorized group vary
both the electronic feed-forward gain and the beam splitter
reflectivity in the reconstruction protocol. In Fig. 3, for no
squeezing in the dealer protocol, the authorized group can
achieve the classical limits set in Eq. s37d. Figure 4 shows
that in the limit of ideal squeezing, the authorized group can
achieve state reconstruction to an arbitrary precision.

IV. EXPERIMENTAL SETUP

A. Dealer protocol

We use a Nd:YAG laser producing 1.2 W of laser light at
1064 nm. Approximately 0.8 W of this laser light is coupled

FIG. 3. Signal transfer sTd and additional noise sVd for the single feed-forward reconstruction protocol, with no squeezing in the dealer

protocol. sad Accessible regions for the h2,3j sand h1,3jd authorized groups and sbd accessible points for the h1j sand h2jd adversary group, for

increasing additional Gaussian noise in the dealer protocol of sid VN=0, siid VN=0.25, siiid VN=1.13, and sivd VN=3.06, normalized to the

quantum noise limit. Gray square: unity gain point for the authorized group reconstruction protocol. Gray circles: corresponding adversary

group points.

FIG. 4. Signal transfer sTd and additional noise sVd for the single feed-forward reconstruction protocol, with increasing squeezing in the

dealer protocol. sad Accessible regions for the h2,3j sand h1,3jd authorized groups and sbd accessible points for the h1j sand h2jd adversary

group, for increasing squeezing in the dealer protocol of sid 0 dB, siid −3 dB, siiid −6 dB, and sivd −9 dB below the quantum noise limit and

with no additional Gaussian noise.
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into a hemilithic MgO:LiNbO3 second-harmonic generator,
producing approximately 0.4 W of frequency doubled light
at 532 nm.

The remaining light from the laser is coupled into a high-
finesse mode-cleaning cavity. This cavity serves as stable
frequency reference, to which the laser is locked. The output
beam is quantum noise limited above the sideband frequency
of 2 MHz. The mode-cleaning cavity also “spatially cleans”
the output mode, by only being resonant for the TEM00

transverse electromagnetic field mode. This output beam is
used to seed two hemilithic MgO:LiNbO3 optical parametric
amplifiers, which are pumped with the frequency-doubled
light. The optical phase of the pump beam is controlled to
produce amplitude-squeezed beams from the optical para-
metric amplifiers. The amount of amplitude quadrature
squeezing corresponds to −4.5±0.2 dB below the quantum
noise limit. To produce EPR entangled beams, the two
amplitude-squeezed beams are interfered on a 1:1 beam split-
ter with a controlled relative optical phase shift of p /2. The
resulting beams exhibit continuous-variable entanglement
between the amplitude and phase quadratures of the two
beams. This entanglement is characterized using two stan-
dard measures. The first measure, proposed by Duan et al.

f27g, characterizes the inseparability of the two entangled
wave functions and is referred to as the inseparability crite-

rion. Our system satisfies the inseparability criterion, which
can be express as

ÎVEPR1+EPR2
+ VEPR1−EPR2

− = 0.44 ± 0.01 , 1, s38d

where VEPR1±EPR2 is the minimum of the normalized variance

of the sum or difference of the operators X̂EPR1 and X̂EPR2. A
second measure proposed by Reid and Drummond f28g, re-
ferred to as the EPR criterion, is based on the observation of
nonclassical correlations which can be used to demonstrate
the EPR paradox. Our system satisfied the EPR criterion
which can be express as f29g

VEPR1uEPR2
+

VEPR1uEPR2
− = 0.58 ± 0.02 , 1, s39d

where VEPR1uEPR2
± are the standard conditional variances

given in Eq. s34d. A more detailed analysis and discussion of
the experimental generation and characterization of
continuous-variable EPR entanglement is given in f15g.

In our experiment, the secret quantum state is a displaced
coherent state at the sideband frequency of 6.12 MHz of the
coherent laser field. The secret state is encoded and distrib-
uted to the three players by interfering it with one of the EPR
entangled beams on a 1:1 beam splitter with a mode-
matching efficiency of hEPR1,in=0.97, as shown in Fig. 1. To
increase the security of the scheme, the dealer introduces
additional Gaussian noise onto the three player shares using
electro-optic modulation techniques. An alternative method
for introducing this noise is to modulate the optical paramet-
ric amplifier resonator cavities with Gaussian noise at the
secret-state sideband frequency. In our experiment, the
Gaussian noise appears naturally as a result of decoherence
in the optical parametric amplifiers, resulting in mixed output
states from the optical parametric amplifiers. These mixed
states can be described as squeezed states with additional

noise on the antisqueezed quadratures. The additional noise
on the EPR beams corresponds exactly to Eqs. s1d–s3d. Ex-
perimentally, the variance of this noise can be controlled to
an extent by adjusting the power of the 532-nm light used to
pump the optical parametric amplifiers. Typically, the addi-
tional Gaussian noise has a noise variance of 3.5 dB above
the quantum noise limit, for a corresponding amplitude
quadrature squeezing of 4.5±0.2 dB below the quantum
noise limit.

B. Reconstruction protocols

For the h1,2j authorized group-state reconstruction, we
use the Mach-Zehnder reconstruction protocol, as shown in
Fig. 2sad. Both players shares are interfered on a 1:1 beam
splitter with a mode-matching efficiency of hshare1,share2

=0.99. The output state from the beam splitter is the recon-
structed secret state.

For the s2, 3d quantum-state sharing scheme, the h1,3j and
h2,3j authorized groups are equivalent, so that an experimen-
tal demonstration requires the successful demonstration of
either of these protocols. For the h2,3j authorized group, the
secret state is reconstructed using the single feed-forward
reconstruction protocol, as shown in Fig. 2sdd. For this re-
construction protocol, the players shares are interfered on a
2:1 beam splitter with a mode-matching efficiency of
hplayer2,player3=0.97. To improve the efficiency of the feed-
forward loop, the optical power on the feed-forward detector
is increased so that the quantum noise limit is sufficiently
higher than the detector dark noise. Typically for our experi-
ment, the dark noise on the feed-forward detector is 13 dB
below the quantum noise limit.

In the original proposal, the amplitude quadrature of beam

b̂ is directly modulated using electro-optic feed-forward
techniques. This method, however, is prohibitive as ampli-
tude modulators have quantum efficiencies of 50%. An alter-
native method that has a much higher quantum efficiency is
to displace the amplitude quadrature of a separate strong lo-

cal oscillator field X̂LO
+ . This local oscillator field is then in-

terferes with field b̂ on a highly reflective beam splitter. The
efficiency of this technique is equal to the beam splitter re-
flectivity of the highly reflective beam splitter. In our experi-
ment we use a beam splitter ratio of 50:1 with a mode-
matching efficiency of hshare3,LO=0.96.

C. Measuring the secret and reconstructed quantum states

Both the secret and reconstructed quantum states for the
access and adversary groups are measured using a single
balanced homodyne detector, via a configuration of remov-
able mirrors. Assuming Gaussian states, the secret and recon-
structed states are completely characterized by measuring the
amplitude and phase quadrature noise spectra, together with
the calibration noise spectra. After detection, the total homo-
dyne efficiency hhom=0.89±0.01 is factored into each mea-
surement. This inference ensures accurate results sthis can be
seen in the limit of poor homodyne efficiency, where all
states measured correspond to vacuum states, resulting in
state reconstruction to an arbitrary precision by both the ac-
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cess and adversary groups, which would be obviously incor-
rectd. Due to a control drift in our experimental setup, the
quadrature noise spectra are normalized with respect to the
noise of the secret state, which are approximately quantum

noise limited at 6.12 MHz. From these noise spectra, kX̂±l

and ksX̂±d2l of the secret and reconstructed states are calcu-

lated, respectively.

V. EXPERIMENTAL RESULTS

A. Experimental fidelity results

Figure 5sbd sinsetd shows the measured fidelity for the
h1,2j authorized group as a function of the optical gain prod-
uct g+g−, with −4.5±0.2 dB of squeezing and +3.5±0.1 dB
of additional Gaussian noise in the dealer protocol. The au-
thorized group obtains a best fidelity of Fh1,2j=0.95±0.05

with g+g−=0.92±0.03. The theoretical curve for the fidelity
as a function of optical gain product is also shown. The
fidelity and the optical gain product for the h1,2j authorized
group are close to unity, being slightly degraded as a result of
experimental losses and imperfections.

For the h2,3j and h1,3j authorized groups using the single
feed-forward reconstruction protocol, a meaningful fidelity

measure cannot be obtained directly. This is because the re-
constructed secret is a unitary transform of the secret state,
and the overlap between the secret and reconstructed state
overlap is poor, even in the ideal case of infinite squeezing.
However, a meaningful fidelity measure can be obtained af-

ter the unitary parametric operation dX̂para
± = sÎ3d71dX̂out

± is

applied to reconstructed state a posteriori. This unitary para-
metric operation can either be applied electronically to the
measured values of the amplitude and phase quadratures of
the reconstructed state or optically by amplifying the recon-
structed state using an optical parametric amplifier.

Figure 5sad shows the measured fidelity for the h2,3j au-
thorized group as a function of the optical gain product for
zero squeezing in the dealer protocol. The h2,3j authorized

group achieves a maximum fidelity of Fh2,3j
clas =0.41±0.01 at a

gain of g+g−=1.00±0.05. Figure 5sbd shows the measured
fidelity for the h2,3j authorized group as a function of the
optical gain product for −4.5±0.2 dB of squeezing and
+3.5±0.1 dB of additional Gaussian noise in the dealer pro-
tocol. Near unity gain of g+g−=1.03±0.03, the h2,3j autho-
rized group measures a best-state reconstruction of Fh2,3j

=0.62±0.02. This fidelity exceeds the classical fidelity limit

Fh2,3j
clas

ø1/2, which is only achievable using quantum re-

sources in the dealer protocol. In our scheme, the fidelity
averaged over all authorized groups is Favg= sFh1,2j

+2Fh2,3jd /3=0.73±0.02, which exceeds the classical limit of

Favg
clas=2/3. This classical limit can only be exceeded using

quantum resources and so demonstrates the quantum nature
of the s2, 3d threshold quantum-state sharing scheme.

For the corresponding adversary group h1j, the fidelity is
calculated both with and without an ideal linear amplification
applied to the reconstructed state to achieve unity gain. This
linear amplification operation is applied to the measured
quadratures of the adversary state electronically after the
measurement and is described by Eq. s25d, where we assume
a linear amplification gain of Î2. In the case of no squeezing
in the dealer protocol, the best fidelity achieved by the ad-

versary group after amplification is Fh1jamp
clas =0.25±0.01 with

a gain of 2g+g−=0.92±0.04, where the subscript sampd de-
notes the fidelity after the a posteriori linear amplification. In
this case, however, the adversary group obtains a higher fi-
delity by not applying linear amplification operation, with a

fidelity Fh1j
clas=0.35±0.06 at a gain of g+g−=0.46±0.02

achieved directly without amplification.
For −4.5±0.2 dB of squeezing and +3.5±0.1 dB of addi-

tional Gaussian noise in the dealer protocol, the best fidelity
achieved by the adversary group is Fh1jamp=0.16±0.01 at a

gain of 2g+g−=1.00±0.04. Without the linear amplification
the authorized group achieves a fidelity of Fh1j=0.04±0.02

at a gain of g+g−=0.50±0.02

B. Experimental T and V results

Figure 6sad sinsetd shows the measured signal transfer T

and additional noise V for the h1,2j authorized group with
−4.5±0.2 dB of squeezing and +3.5±0.1 dB of additional
Gaussian noise in the dealer protocol. The h1,2j authorized
group achieves a best-state reconstruction of Th1,2j

FIG. 5. Experimental fidelity for the authorized groups. sad Clas-

sical fidelity for h2,3j authorized group as a function of the optical

gain product g+g−. sbd Fidelity for h2,3j authorized group with

4.5 dB of squeezing in the dealer protocol. Solid line: theoretical

curve with 3.5 dB of additional Gaussian noise, 13 dB of electronic

noise below the quantum noise limit, and a feed-forward detector

efficiency of hff=0.93. Gray area: classical region for the autho-

rized group. Inset: fidelity for the h1,2j authorized group as a func-

tion of the optical gain product. Solid line: theoretical curve.
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=1.83±0.10 and Vh1,2j=0.01±0.01, which are both close to

T=2 and V=0, corresponding to ideal-state reconstruction.
Figure 6sbd shows the T and V points for the h2,3j autho-

rized group for no squeezing or additional Gaussian noise in
the dealer protocol. The points are taken from two experi-
mental runs. The first experimental points flabeled sidg are for
a reconstruction beam splitter ratio of 2:1 and for varying
electronic feed-forward gain. The second experimental
points flabeled siidg are for an optimized beam splitter reflec-
tivity of 100% and for zero electronic feed-forward gain. In
this case the h2,3j authorized group obtains a best signal

transfer of Th2,3j
clas =0.96±0.06 and lowest additional noise of

Vh2,3j
clas =0.24±0.03. These points are close to the classical lim-

its described by Eqs. s32d and s35d.
Figure 6sbd shows the measured T and V points for the

h2,3j authorized group for −4.5±0.2 dB of squeezing and
+3.5±0.1 dB of additional Gaussian noise in the dealer pro-
tocol. The points are taken for a varying electronic feed-
forward gain and a beam splitter ratio of 2:1. The classically
accessible region, which can only be exceeded using quan-
tum resources in the dealer protocol, is also shown. The
quantum nature of our protocol is demonstrated by the ex-
perimental points which exceed this classical region. For the
h2,3j authorized group, we measure a best signal transfer of
Th2,3j=1.01±0.06 and lowest additional noise of Vh2,3j

=0.41±0.11. The experimental points adhere to the theoret-
ical curve, being degraded slightly due to drifts in our control
system.

Figure 7 shows the T and V points for the adversary group
h1j for increasing squeezing and additional Gaussian noise in
the dealer protocol. Figure 7 shows how the security of the
scheme against individual players is enhanced by increasing
either the squeezing or additional Gaussian noise. For no
squeezing or additional Gaussian noise in the dealer proto-
col, the adversary group can obtain equal information about
the secret state as the h2,3j authorized group with Th1j

=0.96±0.06 and Vh1j=0.24±0.03. The adversary group ob-

tains almost no information about the secret state in the case
of −4.5±0.2 dB of squeezing and 18.6±3.8 dB of additional
noise in the dealer protocol, with Th1j=0.19±0.01 and Vh1j

=18.7±0.6. To achieve this large amount of additional
Gaussian noise, the optical parametric amplifiers are dis-
placed with noise centered around the secret state frequency
of 6.12 MHz. This demonstrates that the amount of informa-
tion the adversary group obtains about the secret can be re-
duced to zero by increasing either the squeezing or additional
Gaussian noise in the dealer protocol. The spatial separation
of the adversary group T and V points from that of the au-
thorized group illustrates the information difference about
the secret state obtained by both parties.

VI. CONCLUSION

In conclusion, we have demonstrated that for the s2, 3d
threshold quantum-state sharing scheme, there exists a class
of “disentangling” protocols which can be used to recon-
struct the secret state. We have experimentally demonstrated
that for this scheme, any two of the three players can form an
authorized group to reconstruct the quantum state, achieving
a fidelity averaged over all reconstruction permutations of

FIG. 6. Experimental signal transfer sTd and additional noise sVd
for the authorized groups. sad Classical T and V for the h2,3j autho-

rized group, for varying electronic feed-forward gain. sbd T and V

for the h2,3j authorized group with −4.5 dB of squeezing in the

dealer protocol. Solid line: theoretical curve for authorized group.

Gray area: classical region for the authorized group. Inset: experi-

mental T and V for the h1,2j authorized group.

FIG. 7. Experimental signal transfer sTd and additional noise sVd
for the h1j adversary group, for increasing squeezing and additional

Gaussian noise in the dealer protocol. Solid line: theoretical curve

with increasing squeezing or additional Gaussian noise. sid Experi-

mental point with no squeezing or additional noise, siid experimen-

tal points with squeezing of additional noise varied around −4.5 dB

and +3.5 dB, respectively, and siiid and experimental point with

−4.5 dB of squeezing and +18.6 dB of additional noise with respect

to the quantum noise limit
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0.73±0.02, a level achievable only using quantum resources.
We demonstrated that the entangled state and classical en-
coding techniques in the dealer protocol provide security
against individual players, and in the case of finite squeezing
in the dealer protocol, the security can be arbitrarily en-
hanced using classical encoding techniques.

This demonstration of s2, 3d threshold quantum-state shar-
ing can be scaled up to sk ,nd threshold quantum-state shar-

ing without increasing the number of active elements se.g.,
optical parametric amplifiers and feed-forward devicesd f19g.
Although scaling up does not result in an increase in the
number of active devices required by the players, the dealer
does require an increasing number of two-mode squeezed
states to hide the state being transmitted. Despite this chal-
lenge, extending beyond three players should be possible and
will elucidate the scaling properties of quantum-state shar-
ing. Furthermore, it may be possible to substitute one of the
two squeezers in the dealer protocol by an electro-optic feed-

forward and an amplifier as was done here for s2, 3d
quantum-state sharing, in which case the two-squeezer re-
quirement f19g could be relaxed. This implementation of
quantum-state sharing broadens the scope of quantum infor-
mation protocols, allowing a secure and robust transfer of
quantum information, and also provides security against ma-
licious parties or node and channel failures in quantum in-
formation networks. Teleported states, quantum computer
output states, and quantum keys used in quantum cryptogra-
phy can all be securely distributed using quantum-state shar-
ing.
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