
Continuous Visible Nearest Neighbor Queries

Yunjun Gao Baihua Zheng Wang-Chien Lee Gencai Chen
Singapore Management University Penn State University Zhejiang University

{yjgao, bhzheng}@smu.edu.sg wlee@cse.psu.edu chengc@zju.edu.cn

ABSTRACT
In this paper, we identify and solve a new type of spatial
queries, called continuous visible nearest neighbor (CVNN)
search. Given a data set P , an obstacle set O, and a query
line segment q, a CVNN query returns a set of 〈p,R〉 tu-
ples such that p ∈ P is the nearest neighbor (NN) to every
point r along the interval R ⊆ q as well as p is visible to r.
Note that p may be NULL, meaning that all points in P are
invisible to all points in R, due to the obstruction of some
obstacles in O. In this paper, we formulate the problem
and propose efficient algorithms for CVNN query process-
ing, assuming that both P and O are indexed by R-trees.
In addition, we extend our techniques to several variations
of the CVNN query. Extensive experiments verify the ef-
ficiency and effectiveness of our proposed algorithms using
both real and synthetic datasets.

1. INTRODUCTION
The continuous nearest neighbor (CNN) search is an im-

portant operator in spatial databases that has been well-
studied [24, 25, 27]. Let P be a set of points in a multi-
dimensional space. Given a query line segment q, a CNN
query retrieves the nearest neighbor (NN) of every point on
segment q over P . The result of CNN retrieval, denoted by
CNN(q), contains a set of 〈p,R〉 tuples, such that p ∈ P is
the NN of each point r along the interval R ⊆ q, i.e., ∀r ∈ R,
∀p′ ∈ P −{p}, dist(p, r) ≤ dist(p′, r)1. An example is shown
in Figure 1(a), with dataset P = {a, b, c, d, f, g, h} and query
line segment q = [s, e]. CNN(q) = {〈a, [s, s1]〉, 〈g, [s1, s2]〉,
〈h, [s2, s3]〉, 〈d, [s3, e]〉}, which indicates that point a is the
NN for any point along the interval [s, s1], and point g is
the NN for any point along the interval [s1, s2], and so on.
Points s1, s2, s3 are called split points, as the NN object
changes at those points.

The CNN query does not take obstacles into consider-
ation. However, many physical obstacles (e.g., buildings,

1Without loss of generality, dist(pi, pj) computes the Eu-
clidean distance between any two data points pi and pj .
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mountains, and blindages, etc.) exist in the real world, and
their presence may affect the visibility/distance between two
points and hence the result of spatial queries, such as range
query, NN search, and spatial join, etc. Moreover, users may
be only interested in the objects that are visible or reachable
to them. Based on these facts, the visible nearest neighbor
(VNN) search, which returns the closest object that is visible
to a given query point, was proposed in [15]. An example of
VNN query issued at s4 is depicted in Figure 1(b). The an-
swer point is d. Although point h is closer to s4 than d, it is
blocked by obstacle o3, represented by the shaded rectangle2

in Figure 1(b), and thus is excluded from the result.
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(a) CNN search
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(b) CVNN search

Figure 1: Example of CNN and CVNN queries

So far, the existing work on VNN queries only consid-
ers single query point. With the ever growing popularity of
smart mobile devices and rapid advance of wireless technol-
ogy, more and more users actually submit queries even when
they are moving around. Nowadays, location-based service
is expected to locate information for the users not only based
on fixed point locations but also based on moving trajecto-
ries. Motivated by the lack of efficient algorithm for VNN
query processing over moving trajectories, we, in this paper,
study continuous visible nearest neighbor (CVNN) search, a
novel form of VNN retrieval. Given a data set P , an ob-
stacle set O, and a query line segment q, a CVNN query
retrieves the VNN for each point on q. In particular, the
CVNN search aims at finding a set of 〈p, R〉 tuples, where
p ∈ P is the VNN for any point r in the interval R ⊆ q. It is
important to note that p may be empty, which means that
all points in P are invisible to all points on R due to the
obstruction of obstacles in O. The query result set, denoted
by RL(q), contains a set of 〈p,R〉 tuples. Continuing the ex-
ample in Figure 1(b), with O = {o1, o2, o3}, the result of the
CVNN query is RL(q) = {〈a, [s, s1]〉, 〈g, [s1, s2]〉, 〈c, [s2, s3]〉,
〈d, [s3, e]〉}. It indicates that point a is the VNN for any
point along interval [s, s1]; point g is the VNN for any point
along interval [s1, s2], and so forth. Note that point h is
the NN for interval [s2, s3] in the traditional CNN retrieval,

2Although an obstacle can be in any shape (e.g., triangle,
pentagon, etc.), we assume it is a rectangle in this paper.
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whereas it is not the VNN for [s2, s3] in the CVNN search be-
cause of obstacle o3. CVNN search has many variants. Due
to space limitation, we only present two variants, namely
continuous visible k nearest neighbor (CVkNN) query and
δ-CVNN retrieval. The former retrieves the k visible nearest
neighbors (VNNs) for every point on a specified query line
segment q and the latter reports the VNN of each point on
q with its distance to q bounded by a threshold δ. These
potential variants constitute a suite of interesting and prac-
tical problems from both the research point of view and the
application point of view.

CVNN query is interesting not only because it introduces
some new challenges but also because it is really useful in
real life applications, ranging from location-based commerce,
to interactive online games, and to decision support, to name
but a few. Some example applications are listed as follows.

Tourist Recommendation. A CVNN query can iden-
tify all the scenes (e.g., temple, stele, pagoda, etc.) for a
given tourist traveling route, defined by a starting point s
and an ending point e. Different from conventional CNN
query, CVNN retrieval considers all the physical obstacles
such as mountains and buildings. Consequently, the re-
turned results provide more accurate information in terms
of visibility. Note that in this case the purpose of CVNN
search differs from that of opposite query which finds suit-
able route(s) from a given set of scenes (e.g., trip planning
query [11] etc.).

First Person Shooting (FPS) Games. There are
many simulative obstacles (e.g., buildings, blindages, etc.)
in FPS games (e.g., call of duty). We assume a player or
a non-player character (NPC) moves from one shelter to
another when heading towards his/her destination. Conse-
quently, CVNN search is invoked for a player or an NPC
to find nearest adversary shelters in order to make effective
shooting or concealment during the movement.

Outdoor Advertisement. Assume that an advertise-
ment company plans to place outdoor advertisement posters
at some popular locations in a downtown area. By conduct-
ing a CVNN search which takes as input a set of poster
billboards P , a set of obstacles (e.g., buildings) O, and an
anticipated trajectory q (representing a specified commercial
street), the company can find a set of 〈loc, R〉 tuples, such
that location loc ∈ P is the VNN of all customers shopping
in the corresponding region R (i.e., an interval of q). Thus,
it provides a near optimal selection of the poster billboards
in order to guarantee the visibility of the posters.

Owing to the big application base, efficient search algo-
rithms for CVNN are required. Several spatial queries have
taken the presence of obstacles into consideration, such as
(i) obstructed NN (ONN) query [33] that is to find top-k
(≥ 1) points in a data set P with the smallest obstructed
distances3 to a specified query point q, based on an obstacle
set O; (ii) VNN search that is to find the nearest point vis-
ible to a given query point [15]; and (iii) clustering spatial
data in the presence of obstacles that tries to divide a set of
data points in a 2D space into smaller homogeneous groups
considering the influence of physical obstacles [5, 28, 31].
Nevertheless, to the best of our knowledge, research on ex-
ploring the VNN query in a continuous fashion, i.e., CVNN,
has not been studied in the literature. We aim at propos-

3The obstructed distance between any two points pi, pj ∈ P
is defined as the length of the shortest path that connects
pi to pj without crossing any obstacle from O.

ing efficient CVNN query processing algorithms in this pa-
per. The main idea is to perform a single navigation for
the whole input line segment, and enable effective pruning
heuristics on the point set and obstacle set respectively to
improve the search performance. Our approaches are based
on conventional data-partitioning indexes (e.g., R-trees [2]).
The proposed search algorithms are highly flexible which can
be easily extended to support different variants of CVNN
queries. Finally, extensive experiments with both real and
synthetic datasets are conducted to verify the performance
of our proposed algorithms in terms of both efficiency and
scalability.

The rest of the paper is organized as follows. Section 2
reviews the related work on NN, CNN, and VNN queries,
respectively. Section 3 provides preliminary background for
our research, including the definitions and characteristics of
CVNN problem. Section 4 proposes efficient CVNN query
processing algorithms, with a data set P and an obstacle
set O indexed by two separate R-trees and a unified R-tree,
respectively. Section 5 extends our solution to deal with
CVNN variants. Section 6 presents the performance evalu-
ation of our proposed algorithms and reports our findings.
Finally, Section 7 concludes the paper with some directions
for future work.

2. RELATED WORK
In this section, we briefly review existing work related to

CVNN queries, namely, NN search based on R-trees, CNN
search, and VNN search.

2.1 Algorithms for NN Search on R-trees
Among all the index structures available for spatial ob-

jects, R-tree and its variants [2, 7, 20] are the most well-
received due to their simplicity and efficiency. Figure 2
shows a set of data points P = {a, b, · · · , j} in a 2D space,
and the corresponding R-tree with node fanout set to three.
Note that in Figure 2(b) the number in each entry refers to
the mindist between the query point q and the correspond-
ing Minimum Bounding Rectangle (MBR) of the entry. As
a leaf entry e refers to a point p of P , its mindist to q is
the real distance from p to q. These numbers are not stored
in R-tree previously but computed on-the-fly during query
processing based on a given query point q.
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(a) The dataset placement
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(b) R-tree (fanout = 3)

Figure 2: Example of an R-tree and a NN query

An NN query specifies a query point q, and finds the ob-
ject in a dataset P that is closest to q. The NN search algo-
rithms on R-trees traverse the R-tree of P in a branch-and-
bound manner and use some distance metrics, including (i)
mindist(q, N), (ii) maxdist(q, N), and (iii) minmaxdist(q, N),
to prune the search space [3, 8, 19]. Here, q is a query point
and N is an R-tree node which corresponds to an MBR,
together with all the points covered. Figure 2(a) illustrates
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these pruning metrics between q and nodes N1 and N2. Ex-
isting algorithms for NN retrieval follow either depth-first
(DF) or best-first (BF) traversal paradigm. DF algorithms
[3, 19] start from the root, and visit recursively the node with
the smallest mindist from q until the leaf level where a po-
tential NN is found. Subsequently, the algorithm conducts
backtracking operation. In particular, during backtracking
to the upper levels, DF only visits those entries with min-
imum distances to the query point smaller than the real
distance between the query point and the NN candidate al-
ready retrieved. As demonstrated in [18], the DF algorithm
is suboptimal, i.e., it accesses more nodes than necessary.

The BF algorithm proposed in [8] achieves the optimal
I/O performance by visiting only the nodes necessary for
obtaining the NN. In order to implement this, it maintains
a priority queue H , with the entries visited so far sorted in
ascending order of their mindist. It recursively examines the
top entry ǫ of H . If ǫ is a node, its child entries are dequeued
for later exploration. If ǫ is an object, it is reported as the
answer object. Both DF and BF can be easily extended to
retrieve k (> 1) nearest neighbors (kNNs). Compared to
DF, BF is incremental as it returns the answer objects in
ascending order of their distances to the query point, and
hence k does not need to be known in advance, which allows
different termination conditions.

In addition, other versions of NN search have been inves-
tigated as well, such as constrained NN [6], group NN [16],
aggregate NN [17], all NN [32], range NN [9], and surface
kNN [4] queries, etc.

2.2 Continuous Nearest Neighbor Search
The CNN search has received considerable attention since

it was first introduced by Sistla et al. [23] in spatial-temporal
databases. The authors presented modeling methods and
query languages for the expression of CNN queries, but not
the processing approaches. The first algorithm for CNN
query processing, based on periodical sampling technique, is
proposed in [24]. Due to the natural disadvantage of sam-
pling, its performance highly depends on the number and
positions of those sampling points and the accuracy can-
not be guaranteed. In order to conduct exact search, two
CNN query algorithms based on R-trees are proposed in [25,
27]. The first algorithm is based on the concept of time-
parameterized (TP) queries, which treats a query line seg-
ment as the moving trajectory of a query point [25]. Thus,
the nearest object to the moving query point is valid only for
a limited duration and a new TP query is issued to retrieve
the next nearest object once the valid time of the current
query expires, i.e., when a split point is reached. Although
the TP approach avoids the drawbacks of sampling, it needs
issue m TP queries with m being the number of answer
objects. In order to improve the performance, the second
algorithm [27] retrieves all the answer points for the whole
query line segment in one single round.

In addition, there are some existing work related to other
variations of CNN search in the literature, such as (i) CNN
monitoring in the Euclidean space [12, 29, 30], (ii) CNN
monitoring in road network [14], and (iii) CNN monitoring in
a distributed environment [13]. As pointed out in Section 1,
although conventional CNN query has been well-studied, it
does not consider obstacles that exist in many real-life sce-
narios. Hence, existing solutions for CNN queries cannot be
directly applied to handle CVNN search efficiently.

2.3 Visible Nearest Neighbor Search
Although visibility computation algorithms have been well-

studied in the area of computer graphics and computational
geometry [1], there are only a few works on visibility queries
in the database community [10, 21, 22]. The existing meth-
ods utilize various indexing structures (e.g., LoD-R-tree [10],
HDoV-tree [22], etc.) to deal with visibility queries in visu-
alization systems. Since these specialized access methods
are designed only for the purpose of visualization without
maintaining any distance information, they are not capable
of supporting efficient CVNN query processing. Recently,
Nutanong et al. [15] introduce the VNN search which re-
trieves the nearest object that is visible to a given query
point (e.g., point d is the VNN of s4 in Figure 1(b)) as men-
tioned earlier. A VNN query algorithm, based on the fact
that a farther object cannot affect the visibility of a nearer
object, is proposed in [15]. The basic idea is to conduct NN
search and check its visibility condition in an incremental
manner. However, the algorithm is only for a fixed query
point, but not a line segment which contains multiple query
points.

3. PRELIMINARY
In this section, we first present problem definitions for

CVNN search and then explain some of its characteristics
that can facilitate the development of efficient algorithms
for CVNN query.

Given a set of data points P = {p1, p2, · · · , pn}, a set of
obstacles O = {o1, o2, · · · , om}, and a query line segment q
= [s, e] in a 2D space, visibility between two points p and
p′ is defined in Definition 1, based on which we formulate
VNN and CVNN searches in Definition 2 and Definition 3,
respectively.

Definition 1. Visibility. Given p, p′ ∈ P , p and p′ are
visible to each other iff the straight line connecting p and
p′(i.e., line [p, p′]) does not cut through ∀o ∈ O. A visible
region of a point p is defined as the union of all the points
p′ ∈ P such that p is visible to p′. ✷

Definition 2. Visible Nearest Neighbor (VNN). For
p′ ∈ P , p′ is the visible nearest neighbor of p iff: (i) p′ is
visible to p; and (ii) ∀p′′ ∈ P − {p′}, if p′′ is visible to p,
dist(p′′, p) ≥ dist(p′, p). ✷

Definition 3. Continuous Visible Nearest Neigh-
bor (CVNN). Given a data set P , an obstacle set O, and
a query line segment q, a CVNN search finds a result set RL
that contains a set of 〈pi, Ri〉 (i ∈ [1, t]) tuples such that (i)
∀i, j ∈ [1, t](i 6= j), Ri ∩ Rj = ∅; (ii) ∪t

i=1Ri = q; and (iii)
∀〈pi, Ri〉 ∈ RL, if pi 6= ∅, pi is the VNN of any point along
Ri. ✷

Based on the definition of CVNN search, we understand
that CVNN search considers both the proximity and visi-
bility of the data points to the query line segment. Con-
sequently, we develop Lemma 1 and Lemma 2 to facilitate
the proximity checking and visibility checking, respectively,
with Lemma 1 based on the dominance relationship defined
in Definition 4. Then, by considering both the proximity
and the visibility, Lemma 3 presents the condition that a
VNN answer point must satisfy.

Definition 4. Dominance. Given a point p, a data
set P and an interval R (= [R.l, R.r]), the dominance of
p over R is defined over two conditions: ∀p′ ∈ P − {p}, (i)
dist(p′, R.l) > dist(p,R.l) and (ii) dist(p′, R.r) > dist(p,R.r).
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Point p dominates R iff both conditions are satisfied. A
dominative region of a point p is defined as the set of all the
intervals R that are dominated by p. ✷

To illustrate the concept of dominance, Figure 3(a) depicts
an example where P = {a, b} and R = [s, e]. As dist(b, s)
> dist(a, s) and dist(b, e) > dist(a, e), point a dominates
R. The circle centered at s (e) with dist(a, s) (dist(a, e))
as radius is defined as the vicinity circle of s (e), denoted
by V C(s) (V C(e)). Any other point p that can violate a’s
dominance on R must be within either V C(s) or V C(e),
as stated in Lemma 1. For example, point c shown in Fig-
ure 3(b) has a shorter distance to e as it is within V C(e)
and its appearance partitions the interval R into two inter-
vals R1 ([s, s1]) and R2 ([s1, e]), with a dominating R1 and
c dominating R2, respectively. Point s1 is defined as the
split point, i.e., the point along the interval where the VNN
object changes.

Lemma 1. Assume point p dominates an interval R =
[s, e]. A new point p′ violates p’s dominance over R iff p′ is
within V C(s) or/and V C(e). ✷

Lemma 2. Given an interval R = [s, e] and a new data
point p, p will not be a VNN of any point along R if p is
invisible to every point in R. ✷

Lemma 3. Let V Rp be the visible region of a data point
p and DRp be the dominance region of p. Point p must be
the VNN for the interval R = V Rp ∩ DRp. ✷
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(c) After processing f

Figure 3: Example of result list updating

Lemma 1, Lemma 2, and Lemma 3 suggest an incremental
query processing algorithm that aims at reporting the result
set of CVNN with a single dataset traversal. Initially, RL is
set to 〈∅, [s, e]〉, meaning that currently the VNNs of all the
points in [s, e] are unknown. Thereafter, we incrementally
update RL during query processing. At each step, RL con-
tains the current result with respect to all the data points
processed so far. The final result contains each answer ob-
ject pi and its dominance region Ri.

A running example is shown in Figure 3 where the set
of data points P = {a, b, c, d, f} is processed in alphabetic
order, with obstacle set O = {o1, o2} and query line segment
q = [s, e]. At the beginning, RL is set to {〈∅, [s, e]〉}. Since a
is the first point encountered and its view is not blocked by
any obstacle in O, it becomes the current VNN of each point
in q, and RL is updated to {〈a, [s, e]〉}. When the second
point b is evaluated, we only need to check whether b falls
in the vicinity circles of s or e (i.e., whether b is closer to s

or e than its current VNN). The fact that b is outside both
circles guarantees that b does not dominate any point along
[s, e] and hence b is ignored.

Next, point c is evaluated. As c is inside V C(e) and it
is visible to every point in [s, e], a split point s1 is created.
It is the intersection between the query line segment (i.e.,
[s, e]) and the perpendicular bisector of the line segment
[a, c], denoted by ⊥a,c, meaning that points to the left of s1

are closer to a while points to the right of s1 are closer to
c. Consequently, RL is updated to {〈a, [s, s1]〉, 〈c, [s1, e]〉}.
Figure 3(b) shows the case after the processing of point c.
Then, point d is pruned because it is not visible to any point
along q, even though d violates c’s dominance on [s1, e] (see
Figure 3(b)). Then, point f is evaluated. It does not con-
tribute to the answer set of CVNN issued at [s, e] as its vis-
ible region (i.e., [s0, s2]) and dominance region (i.e., [s3, e])
do not overlap. After the processing of f (as shown in Fig-
ure 3(c)), the algorithm outputs the final result (i.e., RL =
{〈a, [s, s1〉, 〈c, [s1, e]〉}) to complete the search.

In addition, we observe two important properties, namely,
VNN discontinuity and invisible interval, that are unique to
the CVNN search.
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(b) Invisible interval

Figure 4: Illustration of problem properties

Property 1. VNN Discontinuity. A result point p
may be VNN to multiple intervals that are not adjacent. ✷

For instance, Figure 4(a) illustrates a situation where data
points a and b have been processed, and the corresponding
RL={〈b, [s, s1]〉, 〈a, [s1, s2]〉, 〈∅, [s2, s3]〉, 〈b, [s3, e]〉}. Point b
is the VNN for all the points along intervals [s, s1] and [s3, e]
that are not adjacent. This property implies that a binary
search heuristic that is used in conventional CNN search to
retrieve the dominance region for a given point cannot be
applied to CVNN search.

Property 2. Invisible Interval. RL of CVNN query
may have k (≥ 1) invisible intervals 〈∅, R〉, where no point
in a given data set P is visible to any point in R. ✷

Continue the running example. Suppose a new point c
is processed and it updates RL to {〈b, [s, s1]〉, 〈a, [s1, s2]〉,
〈∅, [s2, s3]〉, 〈c, [s3, s4]〉, 〈b, [s4, e]〉}, as illustrated in Figure 4(b).
In this case, [s2, s3] is an invisible interval.

4. CVNN QUERY PROCESSING
In this section, we present efficient algorithms for CVNN

queries, assuming that the data set P and the obstacle set O
are indexed by two separate R-trees. We first define several
pruning heuristics in Section 4.1, then elaborate the pro-
posed CVNN query processing algorithm in Section 4.2, and
finally analyze the correctness of our solution in Section 4.3.
We further extend our techniques to handle the case where
P and O are indexed by a unified R-tree, as discussed in
Section 4.4.

4.1 Pruning Heuristics
Like the conventional NN search methods discussed in Sec-

tion 2, CVNN search algorithms employ branch-and-bound
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techniques to prune the search space. A series of heuristics
are developed for effective space pruning. According to the
type of objects they prune, those heuristics are divided into
two categories, with one for data set P and the other for
obstacle set O.

4.1.1 Pruning on Data Set
Heuristic 1. Suppose the current result list RL = ∪1≤i≤t

〈pi, Ri〉, with Ri = [Ri.l, Ri.r]. Given an intermediate node
entry E and a query line segment q, the subtree of E may
contain some answer points only if mindist(E, q) < RLMAXD,
where mindist(E, q) denotes the minimum distance from the
MBR of E to q, and RLMAXD =MAX1≤i≤t (dist(pi, Ri.l),
dist(pi, Ri.r)). ✷

Figure 5(a) shows a data set P = {a, b, c}, an obstacle
set O = {o1, o2, o3, o4}, a query line segment q = [s, e], and
current RL = {〈b, [s, s1]〉, 〈a, [s1, s2]〉, 〈c, [s2, e]〉}. Rectangle
E represents the MBR of an intermediate node (i.e., a non-
leaf node). Since mindist(E, q) > RLMAXD = dist(c, e), E
does not contain any point that dominates any interval of q
and thus the search space covered by E can be safely pruned.
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(c) With visibility

Figure 5: Pruning skills

Heuristic 1 can serve as the initial pruning criteria as its
computational overhead is very small. However, an entry
E with mindist(E, q) < RLMAXD does not necessarily contain
any answer object, which means that the pruning condi-
tion can be improved further. To verify this, consider Fig-
ure 5(b), which is similar to Figure 5(a) except that the
RLMAXD is larger. Notice that although E satisfies Heuris-
tic 1 as mindist(E, q) (=mindist(E, s1)) < RLMAXD, E does
not contain any qualified data point that dominates an in-
terval of q. Consequently, Heuristic 2 is devised to prune
away such entries.

Heuristic 2. Given an intermediate node entry E and
a query line segment q, the subtree of E may contain an-
swer points only if there exists at least one interval R in RL
such that R is dominated by E (i.e., at least one point in E
dominates R, which can be decided by Lemma 1). ✷

Heuristic 2 gives a stronger pruning criterion, but it incurs
higher CPU cost compared with Heuristic 1, as it requires
the calculation of the minimal distance from E to each in-
terval in the current RL. Therefore, it is applied only for
the entries that meet Heuristic 1. However, the access of
some entries satisfying both Heuristic 1 and Heuristic 2 is
not always necessary. Consider Figure 5(c) where the MBR

of entry E is invisible to [s2, e] due to the obstruction of
obstacle o4. Hence, E can be discarded even though it sat-
isfies Heuristic 1 and Heuristic 2. Heuristic 3 enables this
pruning.

Heuristic 3. Given an intermediate node entry E and a
query line segment q, the subtree of E must be accessed iff
there exists an interval R in RL that is dominated by E as
well as E is visible to R. ✷

By taking the visibility into consideration, Heuristic 3 fur-
ther eliminates non-qualifying entries, but it incurs higher
CPU overhead. Therefore, it is utilized only for the entries
that satisfy both Heuristic 1 and Heuristic 2.
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(b) Processing E2 first

Figure 6: Sequence of entry accesses

In addition, the entry access order also plays an impor-
tant role. Consider Figure 6 in which point a has been pro-
cessed, but not entries E1 and E2. Here RL = {〈a, [s, s2]〉,
〈∅, [s2, e]〉}, and hence RLMAXD = ∞. Both E1 and E2 satisfy
Heuristics 1, 2, and 3 and thus the access to E1 and E2 is
triggered. Suppose that E1 is visited first, data points b and
c are processed, and RL is updated as shown in Figure 6(a).
Thereafter, E2 can be pruned away from further exploration
according to Heuristic 1. On the other hand, if E2 is accessed
first, E1 has to be visited as well (see Figure 6(b)). To min-
imize the number of node accesses, we propose the following
visiting order heuristic, which is based on the intuition that
entries closer to the query line segment are more likely to
contain qualified data points.

Heuristic 4. Entries E (satisfying Heuristics 1, 2, and
3) are accessed in a best-first fashion according to ascending
order of their mindist to the query line segment q. ✷

4.1.2 Pruning on Obstacle Set
A line segment q = [s, e] in a 2D space can partition the

data space into two half-planes, with HP⊥
q above q and the

other one HP⊤
q below q. Observe that if a data point p

lies in plane HP⊤
q (HP⊥

q ), i.e., p ∈ HP⊤
q (p ∈ HP⊥

q ), the
obstacles that can affect p’s visibility w.r.t. q must inter-
sect the half-plane HP⊤

q (HP⊥
q ). For instance, in Figure 7

the obstacles affecting the visibility of point a include o1

and o3; and the obstacles affecting c’s visibility contain o2

and o3. Based on this observation, we propose the obstacle
distribution heuristic below. Notice that Heuristics 6 and
Heuristics 7 provide a much stronger pruning than Heuris-
tics 5, but Heuristics 5 incurs a lower computation cost and
can be implemented as first-level pruning.

Heuristic 5. Given a data point p and a query line seg-
ment q, an obstacle o that may affect the visibility of p w.r.t.
q must have at least one point p′ ∈ o that locates in the same
half-plane partitioned by q as p does. ✷

Heuristic 6. Given a data point p and a query line seg-
ment q, the obstacles for sure affect the visibility of p w.r.t.
q if and only if they intersect or fall completely into the tri-
angle formed by p and q. ✷
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Figure 8: Pruning with angular domain
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Figure 9: Incremental

visit of obstacles

Heuristic 7. Given a data point p and a query line seg-
ment q, any obstacle o that may affect the visibility of p
w.r.t. q only if mindist(o, q) < mindist(p, q). ✷

As Heuristic 5 and Heuristic 7 are straightforward, we only
explain Heuristic 6 in the following. Given a point p and a
query line segment q = [s, e], Heuristic 6 indicates that any
obstacle o with o ∩ △pse = ∅ can be pruned away because
it has zero impact on p’s visibility w.r.t. q. Consequently,
we can reduce the number of obstacles that need evaluations
significantly by applying Heuristic 6. Now, we explain how
to evaluate whether an obstacle shares some common area
with △pse. Our approach is as follows. For a new obstacle
o, we compute in counter-clockwise direction its minimum
(maximum) angle, denoted by o.Al (o.Ar), between a spec-
ified query line segment q and the line segments connecting
the starting (ending) point s (e) of q and the vertexes of
o. For example, o1.Al = ∠cse and o1.Ar =∠seb, as shown
in Figure 8(a). When processing a candidate data point p,
we first calculate in counter-clockwise direction its maximal
(minimal) angle, denoted by p.Amax (p.Amin), between the
query line segment q and the line segment connecting p and
the starting (ending) point s (e) of q. Thereafter, any obsta-
cle o that satisfies o.Al > p.Amax or o.Ar < p.Amin does not
need to be processed since it cannot intersect or locate inside
△pse. Consider, for instance, Figure 8(b) where p.Amax =
∠pse and p.Amin = ∠sep; and hence, obstacle o2 can affect
p’s visibility w.r.t. q, but not obstacles o1, o3.

4.2 CVNN Search Algorithm
As pointed out in Heuristic 4, we can traverse the R-tree

built on a data set P (denoted by Tp) following a best-first
paradigm to answer CVNN query. For each new data point
p accessed, we need check whether p will update the current
result list RL which involves two main issues: (i) how to get
the visible region of p (denoted by V Rp) on a given query
line segment q = [s, e] in the presence of obstacles; and (ii)
how to evaluate p’s impact on a result list and how to do the
update. In what follows, we explain the detailed solutions
to above two issues and then present the details of CVNN
search algorithm.

4.2.1 Compute Visible Region
In order to derive the visible region of p, we need find

out all the obstacles that may affect the visibility of p on
the query segment q. The algorithm GetObs, as presented
in Algorithm 1, provides a solution. It accesses the obsta-
cles according to ascending order of their distances to q, and
stops the traversal once the accessed obstacle has its distance
to q larger than mindist(p, q). The result obstacles are stored
in a linked list Lo. We would like to highlight that as objects
in P are accessed according to the ascending order of their
distances to q, GetObs, for an object p ∈ P , does not need to

start from scratch. Suppose p2 is examined right after p1. As
mindist(p1, q) ≤ mindist(p2, q), all the obstacles that might
affect p1’s visibility, denoted as GetObs(p1), also have the
possibility to affect p2’s visibility. As GetObs(p1) is locally
available, GetObs corresponding to p2 only need to retrieve
obstacles with distances to q bounded by mindist(p1, q) and
mindist(p2, q). In other words, GetObs corresponding to a
data point pi+1 that is examined right after data point pi

only needs to find out all the obstacles with their distances
to q falling inside the range [mindist(pi, q), mindist(pi+1, q)].
Consequently, GetObs is an incremental process while the
GetObs, for all the data points in P , can be finished via one
traversal of O. For example, Figure 9 illustrates the incre-
mental process of GetObs algorithm. It is first employed to
obtain the obstacle o1 that may influence the visibility of
point a, maintained in Lo (i.e., Lo = {o1}); and then for
data point b, all the obstacles in current Lo for sure might
affect its visibility. GetObs is called again to find all the ob-
stacles other than those in Lo (i.e., o2 and o3), after which
Lo is updated to {o1, o2, o3}. If there is a new data point
accessed after b, all the obstacles in Lo can be reused and
the search on O can be continued to find the rest.

Algorithm 1 Get Obstacle (GetObs)

Input: an obstacle R-tree To, a priority queue maintaining
entries Ho, a query line segment q, search distance r, a linked
list storing obstacles Lo;
Procedure:
1: while e := deheap(Ho) 6= ∅ do
2: if mindist(e, q) > r then
3: return Lo;
4: else if e is an obstacle then
5: insert e into Lo;
6: else
7: ∀ei ∈ e, insert ei into Ho;

Once all the obstacles that might affect the visibility of p
are retrieved via GetObs and maintained by Lo, we identify
the invisible region IRo along q that is blocked by scanning
each obstacle o ∈ Lo and the visible region of p, denoted
as V Rp, can be derived based on V Rp = q − ∩o∈OIRo.
Algorithm 2 depicts the pseudo-code of the Visible Region
Computation Algorithm (VRC), which takes as input p,
q, and Lo, and outputs V Rp over q. Here, the function
Obstruction(q, p, o) is to return the regions inside q that are
invisible to p due to the block of o.

Example 1. We illustrate Algorithm 2 with the example
shown in Figure 10, where the obstacles affecting the visibil-
ity of p have been obtained and stored in Lo = {o1, o2, o3}.
First, VRC examines o1 and gets its invisible region IRo1

=
[s1, s3]. Consequently, V Rp is updated to q−IRo1

= {[s, s1],
[s3, e]}. Next, VRC examines o2 and gets its invisible region
IRo1

= [s2, s4] which updates V Rp to {[s, s1], [s4, e]}. Fi-
nally, o3 is evaluated. As its invisible region IRo3

is [s5, s6],
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V Rp is updated to {[s, s1], [s4, s5], [s6, e]}. ✷

Algorithm 2 Visible Region Computation (VRC)

Input: a data point p, a query line segment q = [s, e], and
a linked list maintaining obstacles Lo;
Output: p’s visible region V Rp;
Procedure:
1: for each obstacle o ∈ Lo do
2: if o ∩ HPq(p) 6= ∅ and o ∩△pse 6= ∅ then
3: IR := Obstruction(q, p, o)
4: for each region [l, r] ∈ IR do
5: V Rp := q − [l, r]
6: return V Rp

4.2.2 Update Result List
A Result List Update Algorithm (RLU) is proposed to in-

crementally update the result list for a CVNN search upon
the evaluation of a new data point. It takes as input the
current result list RL, a new point p, and p’s visible region
V Rp to evaluate the impact of p on RL. Specifically, for
every region R in RL, RLU distinguishes two cases: (i) if
R ∩ V Rp 6= ∅ (i.e., p is visible to R), the algorithm first
computes the intersection Rint (= R ∩ V Rp) and difference
Rdif (= R − V Rp) between R and V Rp; and then, it per-
forms the following operations. If VNN of R (denoted by
R.VNN) is empty, 〈p, Rint〉 and 〈∅, Rdif 〉 (if Rdif 6= ∅) are
inserted into a temporary result list TRL. Otherwise (i.e.,
R.VNN is not empty), RLU inserts 〈R.VNN, Rdif 〉 into TRL
if Rdif 6= ∅; and then, the algorithm invokes a RS-CVNN al-
gorithm to determine whether R.VNN can be fully/partially
replaced by p over region Rint. We defer the discussion of
RS-CVNN later. (ii) R ∩ V Rp = ∅ (i.e., p is invisible to R)
which means p has zero impact on region R and thus RLU
inserts 〈R.VNN, R〉 into TRL. At the end of the algorithm,
TRL keeps the new result list. The pseudo-code of RLU is
depicted in Algorithm 3. It is important to note that every
time when a new tuple 〈p′, R′〉 is inserted into TRL, it might
be merged with the existing region R′′ in TRL if R′ and R′′

are continuous and they share the same VNN.

Algorithm 3 Result List Update (RLU)

Input: a result list RL, a data point p, p’s visible
region V Rp, and the query segment q = [s, e];
Output: the updated result list;
Procedure:
1: TRL := {〈∅, [s, e]〉};
2: for each region R ∈ RL do
3: if R ∩ V RP 6= ∅ then
4: Rint := R ∩ V Rp; Rdif := R − V Rp;
5: if R.VNN = ∅ then
6: insert 〈p, Rint〉 into TRL, insert 〈∅, Rdif 〉 into

TRL if Rdef 6= ∅, and merge them with the ex-
isting regions in TRL if necessary;

7: else
8: insert 〈R.VNN, Rdif 〉 into TRL if Rdif 6= ∅, and

merge it with the existing regions in TRL if nec-
essary;

9: RS-CVNN(TRL, Rint, p); // see Algorithm 4
10: else
11: insert 〈R.VNN, R〉 into TRL and merge it with the

existing regions in TRL if necessary;
12: return TRL;

The RS-CVNN algorithm is used to check the validity of
R.VNN upon p, and fully/partially replace R.VNN with p
if necessary. The pseudo-code is described in Algorithm 4.

Notice that the region R (⊆ V Rp) is for sure visible to p
and hence we only need check the dominance relationship,
according to Lemma 1. RS-CVNN distinguishes four cases:
(i) If p does not dominate R, the original tuple 〈R.VNN,
R〉 remains valid, and is added to TRL (lines 1-2). (ii) If
p dominates entire R, the algorithm replaces R.VNN with
p and inserts 〈p, R〉 into TRL (lines 3-4). (iii) If p is only
within the vicinity circle of R.l, the algorithm calculates
the intersection s1 between the query line segment q and
the perpendicular bisector of segment [v, p] (i.e., ⊥v,p) with
v = R.VNN, and adds 〈p, [R.l, s1]〉 and 〈v, [s1, R.r]〉 to TRL
(lines 5-7). (iv) Similar to case (iii), if p is only within the
vicinity circle of R.r, the algorithm derives the intersection
s2 between the query line segment q and ⊥v,p, and inserts
〈v, [R.l, s2]〉 and 〈p, [s2, R.r]〉 into TRL (lines 8-10).

Algorithm 4 Region Split for CVNN (RS-CVNN)

Input: TRL, a region R, a data point p;
Procedure:
1: if p /∈ V C(R.l) and p /∈ V C(R.r) then
2: insert 〈v, R〉 into TRL; // R.VNN does not change
3: else if p ∈ V C(R.l) and p ∈ V C(R.r) then
4: insert 〈p, R〉 into TRL; // replace R.VNN with p
5: else if p ∈ V C(R.l) then
6: s1 := R ∩ ⊥v,p;
7: insert both 〈p, [R.l, s1]〉 and 〈v, [s1, R.r]〉 into TRL;
8: else
9: s2 := R ∩ ⊥v,p;

10: insert both 〈v, [R.l, s2]〉 and 〈p, [s2, R.r]〉 into TRL;
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VRC algorithm
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Figure 11: Example of

RLU algorithm

Example 2. We illustrate the RLU algorithm using the
data in Figure 11, where P = {a, b, c} and O = {o1, o2, o3}.
As seen from Figure 11, V Ra = {[s, s2]} and V Rb = {[s, s3]}.
Suppose that point a has been processed and current RL =
{〈a, [s, s2]〉, 〈∅, [s2, e]〉}. Now we call RLU to evaluate the
impact of a new point b on the RL. RLU checks each re-
gion in RL. First, [s, s2] is evaluated. As it overlaps with
V Rb, we derive Rint (= [s, s2]∩ [s, s3]) and Rdif (= [s, s2]−
[s, s2] = ∅), and calls RS-CVNN to examine whether a,
the current VNN of Rins, can be fully/partially replaced by
b. As b is within the vicinity circle of s, RS-CVNN com-
putes the intersection s1 between [s, s2] and ⊥a,b, i.e., the
perpendicular bisector of segment [a, b], and adds 〈b, [s, s1]〉
and 〈a, [s1, s2]〉 to TRL. Next, RLU checks the second re-
gion in RL (i.e., [s2, e]) and finds out it also overlaps with
V Rb. Consequently, both Rint (= [s2, e] ∩ [s, s3]) and Rdif

(= [s2, e] − [s2, s3]) are calculated. As the current VNN of
[s2, e] is ∅, RLU adds directly 〈b, [s2, s3]〉 and 〈∅, [s3, e]〉 to
TRL. Finally, RLU returns TRL = {〈b, [s, s1]〉, 〈a, [s1, s2]〉,
〈b, [s2, s3]〉, 〈∅, [s3, e]〉}. ✷

4.2.3 The Complete CVNN Query Algorithm
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Having explained the visible region computation algorithm
and the result list update algorithm, we are ready to present
the complete CVNN query processing algorithm, namely
CVNN, which is described in Algorithm 5. It takes as input
the R-trees Tp and To, on dataset P and obstacle set O,
respectively, and a query line segment q. Although the pro-
posed CVNN algorithm can be applied with both the depth-
first and best-first paradigms as discussed in Section 2, for
simplicity, we only elaborate the complete CVNN algorithm
following the best-first fashion.

In order to enable the best-first traversal, the algorithm
maintains two heaps Hp and Ho storing the data and ob-
stacle entries visited so far respectively, sorted by ascending
order of their minimal distance (i.e., mindist) to q. CVNN
starts from the root of Tp, and inserts all its child entries
into Hp (line 2). Then, at each step, CVNN visits the head
entry e in Hp that has the smallest mindist to q and performs
the following tasks (lines 3-14). (i) CVNN checks whether
mindist(e, q) ≥ RLMAXD. If yes, the algorithm terminates be-
cause the remaining entries in Hp can not contain any answer
point according to Heuristic 1 (described in Section 4.1). (ii)
If e is a data point, CVNN calls the GetObs algorithm to
obtain all the obstacles that may influence the visibility of
e, calls the VRC algorithm to derive the visible region of e
w.r.t. q, and updates the current result list RL based on the
RLU algorithm. (iii) If e is an intermediate node (i.e., a non-
leaf entry), CVNN visits its subtree only if it may contain
any qualifying data point. Note that here CVNN applies
Heuristic 2 and Heuristic 3 (discussed in Section 4.1). The
advantage of the algorithm over exhaustive scan is that the
access to some unnecessary nodes, i.e., those for sure not
containing any qualified objects, is eliminated. Finally, we
illustrate the CVNN algorithm using a running example.

Algorithm 5 CVNN Search (CVNN)

Input: a data R-tree Tp, an obstacle R-tree To, and a
query line segment q;
Procedure:
1: RL := {〈∅, [s, e]〉}; RLMAXD = ∞; Lo := ∅;
2: Hp := root(Tp); Ho := root(To);
3: while Hp 6= ∅ do
4: e := deheap(Hp);
5: if mindist(e, q) ≥ RLMAXD then
6: break;
7: else if e is a data point then
8: GetObs(To, Ho, q, mindist(e, q), Lo);
9: V Re := VRC(e, q, Lo);

10: RL :=RLU(RL, e, V Re);
11: else
12: for each child entry ei ∈ e do
13: if ei dominates some region in RL and it is visible

to q then
14: insert ei into Hp;
15: return RL;

Example 3. Consider the example depicted in Figure 12
with P = {a, b, c, d}, O = {o1, o2, o3, o4}, and q = [s, e].
Initially, the result list RL is set to {〈∅, [s, e]〉}. When the
first data point a (that is the closest to q without consider-
ing obstacles) is visited, CVNN invokes GetObs to obtain all
the obstacles that may affect the visibility of a (i.e., o1 and
o2). Then, it uses VRC to get V Ra = {[s, sa1

], [sa2
, sa3

]},
i.e., the a’s visible regions w.r.t. q. Next, RLU is called
to update the current RL, after which RL = {〈a, [s, sa1

]〉,
〈∅, [sa1

, sa2
]〉, 〈a, [sa2

, sa3
]〉, 〈∅, [sa3

, e]〉} as shown in Fig-

ure 12(a). The second point examined is b. As b dominates
[s, sa1

] and [sa1
, sa2

], the corresponding VNNs are replaced
by b, as shown in Figure 12(b) with RL = {〈b, [s, sa2

]〉,
〈a, [sa2

, sa3
]〉, 〈∅, [sa3

, e]〉}. Subsequently, it evaluates the
third point c and updates RL to {〈b, [s, sa2

]〉, 〈a, [sa2
, sc2 ]〉,

〈c, [sc2 , e]〉}, which is illustrated in Figure 12(c). Finally,
when the last point d is encountered, d is pruned directly
because mindist(d, q) > RLMAXD (= dist(c, e)). The algo-
rithm terminates with the final result RL = {〈b, [s, sa2

]〉,
〈a, [sa2

, sc2 ]〉, 〈c, [sc2 , e]〉}, as shown in Figure 12(d). ✷
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(b) After processing b
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(d) After processing d

Figure 12: Illustration of CVNN search processing

4.3 Analysis
In what follows, we reveal some characteristics about our

proposed CVNN query processing algorithm, analyse the
cost of the CVNN algorithm and prove its correctness.

Lemma 4. Every data point in a data set P will be ex-
amined during the CVNN search, unless one of its ancestor
nodes has been pruned. ✷

Lemma 5. It is guaranteed that any obstacle in an obsta-
cle set O added to Lo during the CVNN search may impact
the visibility of the current data point processed. ✷

Lemma 6. The CVNN algorithm traverses the data R-
tree Tp and the obstacle R-tree To at most once. ✷

Theorem 1. The time complexity of the CVNN algorithm
is O(N log |Tp| × (log |To| + |Lo| + |RL|)). ✷

Proof. Let |Lo| be the maximal number of obstacles in a
linked list Lo, |RL| be the maximal number of entries in a
result list RL, |Tp| and |To| be the tree size of Tp and To

respectively, and N be the number of data points accessed.
A CVNN algorithm invokes GetObs, VRC, and RLU al-
gorithms with complexities being O(log |To|), O(|Lo|), and
O(|RL|), respectively. Thus, the time complexity of the
CVNN algorithm is O(N log |Tp| × (log |To| + |Lo| + |RL|)).
�

Theorem 2. The CVNN algorithm retrieves exactly the
VNN of every point on a given query line segment, i.e., the
algorithm has no false misses and no false hits. ✷

Proof. Theorem 2 holds, as Lemma 4 makes sure that
the CVNN algorithm processes only those qualifying data
points in P that may be included in the final result list RL,
and all unqualified data points in P are pruned away safely
according to the Heuristics 1 through 4. �
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4.4 Discussion
Our previously presented CVNN search algorithm assumes

dataset O and obstacle set P are indexed by two different
R-trees. In the following, we explain how to extend it to
conduct the search based on a single R-tree that indexes
both data points and obstacles. The detailed extensions
are listed as follows: (i) It requires only one heap H to store
the candidate entries (containing data points, obstacles, and
nodes), ordered based on ascending order of their minimum
distances to the query line segment q. (ii) When process-
ing the top entry E removed from H , it distinguishes three
cases. (1) E is an obstacle. It adds E to a linked list Lo,
which keeps all the obstacles that may affect the visibility
of the data points processed so far w.r.t. q. (2) E is a data
point p. It computes the visible region of E w.r.t. q, and up-
dates the current result list RL if necessary. It is guaranteed
that all the obstacles that might affect the dominance of p
must have been visited before p. According to the Heuris-
tic 7 (proposed in Section 4.1), any obstacle o that may
impact the visibility of E w.r.t. q must satisfy the condi-
tion: mindist(o, q) < mindist(E, q). Consequently, when E is
visited, the algorithm must have obtained all the obstacles
with smaller mindist to q. Note that here we do not have to
call the GetObs algorithm to get all the obstacles that may
affect E’s visibility, because both data points and obstacles
are indexed by one unified R-tree. (3) E is an intermedi-
ate node, meaning that it may contain data points and/or
obstacles. It expands the subtree of E only if E may con-
tain any qualifying data point. Note that all the proposed
heuristics (described in Section 4.1) can still be applied for
pruning unnecessary node accesses significantly.

5. CVNN QUERY VARIANTS
The CVNN search has several interesting variations. Due

to the space limitation, we only discuss two variants in this
section, namely CVkNN and δ-CVNN queries.

5.1 The CVkNN Search
Given a data set P , an obstacle set O, and a query line

segment q = [s, e], CVkNN query is to retrieve k VNNs for
each point on q. A tuple 〈S, R〉 in the result list RL rep-
resents that all the points along interval R share the same
k VNNs, denoted by S. Different from conventional kNN
search, the answer set S might not exist (i.e., S = ∅) or
it might not hold k objects (i.e., |S| < k) because of the
presence of obstacles. The proposed algorithms for CVNN
queries can be easily extended to support CVkNN queries as
well. The detailed extensions are listed as follows. The dom-
inance conditions defined in Definition 4 needs updating.
The distance between the answer point p and the interval
R, i.e., dist(p,R.l) and dist(p,R.r), need to be replaced by
maximumdist(S, R.l) and maximumdist(S, R.r) respectively,
where maximumdist is defined as follows.

maximumdist(S, r) =

{

MAX∀si∈Sdist(si, r) if |S| = k
∞ otherwise

The Heuristics defined in Section 4 are directly appli-
cable except that, in Heuristic 1, RLMAXD = MAXi∈[1,|R|]

(maximumdist(Si, Ri.l), maximumdist(Si, Ri.r)), in which |R|
denotes the number of regions in R, and Si contains all the
VNNs for Ri. The pruning process is the same as the CVNN
retrieval. The handling of data points is also similar. Specif-

ically, each data point p is processed in the following steps.
The first step obtains all obstacles affecting the visibility of
p. The second step computes the visible regions of p (i.e.,
V Rp). The third step is to update current result list RL if
necessary, which is more complex than CVNN (i.e., k = 1).

We use following example to illustrate the result update
process for a CV2NN (k = 2) search, with a data set P =
{a, b, c}, an obstacle set O = {o1, o2, o3}, and q = [s, e] (as
shown in Figure 13). Suppose points a and b have been pro-
cessed and currently RL = {〈{b}, [s, s1]〉, 〈{a, b}, [s1, s2]〉,
〈{a}, [s2, s3]〉, 〈{a, b}, [s3, e]〉}, as shown in Figure 13(a). No-
tice that the number of the current VNN(s) for intervals
[s, s1] and [s2, s3] is only one due to the obstruction of ob-
stacles. Now the evaluation of a new data point c starts,
assuming that we have got V Rc = {[s, sc]} w.r.t. q.
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Figure 13: Illustration of updating RL (k = 2)

In order to simplify the discussion, we just focus on the
evaluation of c based on a given interval R, but the same pro-
cess can be applied to other intervals in RL. First, according
to the visibility, c partitions the interval R into two regions
Rint and Rdif with Rint = R ∩ V Rc and Rdif = R − V Rc.
Point c might change the result corresponding to Rint but
definitely not Rdif . Consequently, the evaluation can be
safely terminated if Rint = ∅, which means the interval R
is invisible to c. Now suppose Rint = [s, e], and its cor-
responding answer set is S. We need check whether (i)
maximumdist(S, s) > dist(c, s) and/or (ii) maximumdist(S, e)
> dist(c, e). Similar as RS-CVNN algorithm presented in
Algorithm 4, the new point c partitions the interval R ac-
cordingly based on conditions (i) and (ii). If neither condi-
tion is satisfied, c is discarded as it is not an answer object
to any point along R. Otherwise, c must satisfy at least one
condition and the interval R needs to be split. Notice that
the split point is identified by sweeping algorithm.

Take interval [s1, s2] as an example. Point c is fully vis-
ible to [s1, s2], and dist(c, s1) < maximumdist(S, s1) and
dist(c, s2) < maximumdist(S, s2). Consequently, sweeping
algorithm is called to find the split points along interval
[s1, s2]. As dist(c, s1) < dist(b, s1), c will replace b as the
new 2-VNN for s1. The intersection between q and ⊥b,c (i.e.,
A in Figure 13(b)) is computed (i.e., the first split point),
and 〈{a, c}, [s1, A]〉 is inserted into TRL. The next split point
is derived based on the intersection between q and ⊥a,c (i.e.,
C in Figure 13(b)). Based on bisectors ⊥b,c and ⊥a,c, the
entire interval [A, C] is closer to a and b, compared with c.
Consequently, 〈{a, b}, [A, C]〉 is inserted into TRL. Finally,
the interval [C, s2] is closer to b and c, compared with a,
and hence 〈{b, c}, [C, s2]〉 is inserted into TPL to finish the
update of c on 〈{a, b}, [s1, s2]〉.

5.2 The δ-CVNN Search
In practice, users may also enforce some constraints (e.g.,

distance, region, etc.) on CVNN queries. In view of this,
we introduce δ-CVNN search, a CVNN query with maximum
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visible distance δ constraint. Given a data set P , an obstacle
set O, a query line segment q, and distance threshold δ, a δ-
CVNN search is to return the VNN of every point on q with
its distance to q bounded by δ. The proposed algorithms
for CVNN queries can directly deal with δ-CVNN search
by integrating constrained condition (i.e., δ) during query
processing.

In addition to all the Heuristics defined in Section 4 that
are still applicable, we propose following heuristics to fully
utilize the distance constraint: (i) As we evaluate the nodes
based on best-first paradigm, the algorithm can be safely
terminated once an entry E with mindist to q larger than δ
is encountered; (ii) The searching space of δ-CVNN query
is limited by δ. For example, the shadowed area in Fig-
ure 14 represents the search space of a δ-CVNN query with
q = [s, e] and δ being the threshold. Hence, any entry (con-
taining data point, obstacle, and node) that is outside the
search range should be discarded; (iii) For a candidate data
point p, it has a influence region on q, i.e., the region R such
that the distance between p and any point r ∈ R is bounded
by δ, e.g., interval [s1, s2] is the influence region of a data
point p as shown in Figure 14. Any obstacle falling out of
△s1s2p does not affect p’s visibility.

We use the example data in Figure 12 to conduct the
δ-CVNN search. Figure 15 shows the final results (i.e.,
{〈b, [s, s1]〉, 〈a, [s1, s2]〉, 〈c, [s2, s3]〉, 〈∅, [s3, e]〉}), which is dif-
ferent from the answer of CVNN on the same data due to
the influence of δ.

p

es s1 s2

δ

δ

δ

Figure 14: Search area

and influence region

�� �� �� �3

a
c

b

d

o3

o1

o2

o4
obstacle

δ

Figure 15: Example of a

δ-CVNN query

6. PERFORMANCE EVALUATION
This section evaluates the performance of the proposed

algorithms. The algorithms were implemented in C++ and
the experiments were conducted on a Pentium IV 3.0 GHz
PC with 2GB RAM. We first describe the experimental set-
tings, and then present the experimental results and our
findings.

6.1 Experimental Settings
Our experiments are based on both synthetic and real

datasets, with the search space fixed at [0, 10000]×[0, 10000]
square shaped range. Four real datasets are deployed, namely
CA, Cities, LA and Rivers 4. CA and Cities contain 2D
points, representing 62, 556 locations in California and 5, 922
cities and villages in Greece, respectively; LA and Rivers in-
clude 2D rectangles, representing 131, 461 MBRs of streets
in Los Angeles and 24, 650 MBRs of rivers in Greece, re-
spectively. All the datasets are normalized in order to fit
the search range. Synthetic datasets are generated based on
uniform distribution and zipf distribution, with the cardinal-
ity varying from 0.1× |LA| to 10× |LA|. The coordinate of
each point in Uniform datasets is generated uniformly along

4CA, Cities, LA, and Rivers datasets are available in the
R-tree Portal (http://www.rtreeportal.org).

each dimension, and that of each point in Zipf datasets is
generated according to zipf distribution with skew coefficient
α = 0.8. We assume a point’s coordinates on both dimen-
sions are mutually independent. As CVNN search involves
a data set P and an obstacle set O, we deploy four different
combinations of the datasets, namely CL, CR, UL, and ZL,
representing (P, O) = (CA, LA), (Cities, Rivers), (Uniform,
LA), and (Zipf, LA), respectively. Note that the data points
in P are allowed to lie on the boundaries of the obstacles but
not in their interior.

Table 1: Parameter ranges and default values
Parameter Range

|P |/|O| 0.1, 0.2, 0.5, 1, 2, 5, 10
k 1, 3, 5, 7, 9

query length ql (% of the axis) 5, 10, 15, 20, 25
buffer size (% of tree size) 1, 2, 4, 8, 10 16, 32, 64

δ (% of the axis) 5, 10, 15, 20, 25 ∞

All data and obstacle sets are indexed by R*-trees [2], with
the page size fixed at 4KB. We also employ a memory cache
of 10% of index size with LRU as the replacement scheme to
buffer loaded pages. The query time, that is the summation
of the I/O time and CPU time where the I/O time is com-
puted by charging 10ms for each page fault as [26], is the
major performance metric used in our study. We evaluate
the efficiency and effectiveness of our proposed algorithms in
terms of average query time under various parameters which
are summarized in Table 1. The numbers in bold represent
the default settings for each parameter. In each set of experi-
ments, only one parameter is changed in order to evaluate its
impact on the performance, while all the other parameters
are fixed at default values. Each experiment runs 200 trials
of CVNN queries and the average performance is reported.
Each CVNN query is generated by (i) selecting uniformly a
point in the data space as the starting point of the query
line segment, and (ii) selecting an orientation (angle with
the x-axis) from the range [0, 2π) randomly, with its length
controlled by the parameter ql.

6.2 Performance Study
Effect of query length ql. Figure 16(a) shows the effi-

ciency of the CVkNN algorithm as a function of the query
length ql (k = 5). The letters on top of each column spec-
ify dataset combination name. e.g., CR denotes P = Cities
and O = Rivers. Obviously, the query cost of CVkNN, es-
pecially the CPU time, increases with ql. This is because, as
the query length becomes longer, both the number of candi-
date data points processed and the number of the splitting
regions in the specified query line segment increase, which
results in more distance computation, more visibility verifi-
cation, and more result list updating.

Effect of k. Figure 16(b) illustrates the performance
of the CVkNN algorithm under different k values, fixing
ql = 15%. The sign ≈ on top of some bars means the cost
is too high, compared with others. Instead of depicting the
bar in the Figure 16(b), we provide the real performance,
shown as the numbers above some bars. As expected, both
I/O cost and CPU time grow with k, because a higher value
of k implies a larger search range (for data points and ob-
stacles) and more distance computations. Moreover, as k
increases, the number of objects in the final result list in-
creases, which contributes to the more frequent update op-
erations and hence more expensive maintenance cost of the
result list.
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(d) vs. buffer (|P |=|O| for UL)

Figure 16: CVkNN performance under different parameters

Effect of |P |/|O|. Figure 16(c) depicts the cost of the
CVkNN algorithm as a function of the ratio |P |/|O|, fixing
k = 5 and ql = 15%. A crucial observation is that the cost
of the CVkNN algorithm first drops and then increases as
|P |/|O| changes its value from 0.1 to 10. In particular, the
query time of CVkNN decreases when |P |/|O| increases from
0.1 to 1. This is because, as the density of object set P grows,
the search space of CVkNN becomes smaller and the number
of obstacles that participate in the visibility verification of
data points is decreased. Consequently, the performance
increases. However, as |P |/|O| changes from 1 to 10, the
cost of CVkNN gradually increases. This is because the
interval dominated by each object becomes shorter, and the
result list contains more answer objects. In other words,
more candidate data points need evaluation, which in turn
increases the number of split points and result list update
cost. Notice that when P and O share similar cardinalities
(e.g., |P |/|O| = 0.5 or 1 in Figure 16(c)), the performance
of CVkNN is the best in the whole cost varying process.

Effect of query buffer size. As mentioned in Sec-
tion 6.1, all previous experiments are performed with an
LRU buffer that is set to 10% of the tree size. In this set of
experiments, we examine the performance of CVkNN with
various LRU buffer sizes, while fixing k and ql to their de-
fault values (i.e., 5% and 15% respectively). To obtain sta-
ble statistics, we measure the average cost of the last 100
queries, after the first 100 queries have been performed for
warming up the buffer. The experimental result is depicted
in Figure 16(d). It is observed that as the buffer size in-
creases, the I/O cost drops but the CPU cost remains almost
the same.
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Figure 17: CVkNN under Best-First and Depth-First

Best-First based CVkNN search versus Depth-First
based CVkNN search. As mentioned earlier, our pro-
posed CVkNN query processing approaches can be applied
with both the best-first (BF) and depth-first (DF) traversal
paradigms. In view of this, we implement both paradigms,
denoted as CVkNN-BF and CVkNN-DF. Figure 17 plots
their performance as a function of k and ql, respectively.
Clearly, CVkNN-BF outperforms CVkNN-DF significantly
for all cases, which is consistent with previous results on
conventional NN queries [8].

CVNN search on two R-trees versus CVNN search
on one R-tree. Figure 18 presents the query efficiency

when the data point and obstacle sets are indexed by two
separate R-trees (2T) and when they are indexed by one
single R-tree (1T), under a variety of factors (containing k,
ql, and |P |/|O|) which affect the performance of the algo-
rithms. It shows 1T is more efficient than 2T in all cases.
This is because when both data points and obstacles are in-
dexed by one R-tree; only one traversal of the unified R-tree
is required. Data point and obstacles that are close to each
other could be found in the same leaf node of the R-tree. For
the 2T case, two R-tree should be traversed and at least two
leaf nodes should be accessed to retrieve the data point and
the obstacles nearby. Based on this result, when we perform
expensive spatial data mining tasks, we recommend to build
a single R-tree for both data points and obstacles to obtain
better performance.
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Figure 18: CVkNN on two R-trees vs. CVkNN on one
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Effect of δ. Finally, Figure 19 shows the performance of
the algorithm for δ-CVNN queries, with different maximum
visible distance δ. Clearly, δ has a direct impact on the
performance, as it controls the size of the search space.

7. CONCLUSION
This paper proposes a novel type of spatial queries called

continuous visible nearest neighbor (CVNN) search, which
is not only interesting from a research point of view but
also useful in many practical applications involving spatial
data and obstacles such as location-based commerce, inter-
active online games, and decision support. We carry out a
systematic study of CVNN. First, we provide a formal def-
inition of the problem and reveal its unique characteristics.
Then, we present a suite of effective pruning heuristics and
develop an efficient algorithm to tackle the problem. Next,
we extend our methods to handle several CVNN variants,
including CVkNN and δ-CVNN queries. Finally extensive
experiments are conducted to verify the performance of our
proposed algorithms.

As for our future work, we plan to extend our techniques
to other CVNN query variations (e.g., trajectory VNN, con-
strained CVNN, ranked CVNN, etc.). In addition, we are
interested in efficient algorithms for processing complex spa-
tial queries (e.g., reverse nearest neighbor search, etc.) in
the presence of obstacles. We would like to consider other
distance metrics, like shortest path or travel time in road
network.
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