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Continuous-wave gravitational radiation from pulsar glitch recovery
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ABSTRACT

Non-axisymmetric, meridional circulation inside a neutron star, excited by a glitch and per-

sisting throughout the post-glitch relaxation phase, emits gravitational radiation. Here, it is

shown that the current quadrupole contributes more strongly to the gravitational wave signal

than the mass quadrupole evaluated in previous work. We calculate the signal-to-noise ratio

for a coherent search and conclude that a large glitch may be detectable by second-generation

interferometers like the Laser Interferometer Gravitational-Wave Observatory. It is shown that

the viscosity and compressibility of bulk nuclear matter, as well as the stratification length-

scale and inclination angle of the star, can be inferred from a gravitational wave detection in

principle.

Key words: dense matter – gravitational waves – hydrodynamics – stars: neutron – pulsars:

general – stars: rotation.

1 IN T RO D U C T I O N

Rotation-powered radio pulsars are promising sources of high-

frequency gravitational waves. Their spin frequencies often lie in

the hectohertz ‘sweet spot’ of current detectors, e.g. the Laser Inter-

ferometer Gravitational-Wave Observatory (LIGO). The rotation of

their crusts can be measured extremely precisely, enabling coherent

searches which improve the signal-to-noise ratio by the square root

of the number of wave cycles observed. Such coherent searches have

already beaten electromagnetic spin-down limits on the quadrupole

moment of the Crab (Abbott et al. 2008) and are close for other

pulsars (Abbott et al. 2007a). There are two main obstacles to de-

tection. (1) Dephasing occurs if the radio pulses are used to construct

a gravitational wave phase model but the fluid interior rotates at a

slightly different speed to the crust. (2) The quadrupoles predicted

so far are relatively small in isolated pulsars without any ongoing

accretion activity, e.g. unstable oscillations such as r-modes (Brink,

Teukolsky & Wasserman 2004; Nayyar & Owen 2006; Bondarescu,

Teukolsky & Wasserman 2007), precession (Jones & Andersson

2002), internal magnetic deformations (Bonazzola & Gourgoulhon

1996; Cutler 2002), quasiradial fluctuations (Sedrakian et al. 2003;

Sidery, Passamonti & Andersson 2010) and hydrodynamic turbu-

lence (Melatos & Peralta 2010). Accreting millisecond pulsars can

reach larger quadrupoles through magnetically confined mountains

(Melatos & Payne 2005; Payne & Melatos 2006; Vigelius & Melatos

2009) or thermal mountains (Ushomirsky, Cutler & Bildsten 2000;

Haskell, Jones & Andersson 2006).

In this paper, we investigate another source of gravitational ra-

diation from isolated pulsars, namely the radiation emitted during

the recovery phase following a pulsar glitch (van Eysden & Melatos

⋆E-mail: mfb@unimelb.edu.au

2008). Glitches are small, abrupt jumps �ν in the rotation frequency

ν which range in fractional size from 10−11 to 10−4 across the pulsar

population and over four decades in individual objects. Currently,

out of ∼1800 known pulsars, 101 have been observed to glitch, with

a total of 285 individual events (Melatos, Peralta & Wyithe 2008).

Glitches occur randomly in all but two objects (PSR J0537−6910

and PSR J0835−4510), which spin up quasi-periodically (Melatos

et al. 2008). Most pulsars which have glitched at all have only

glitched once. Of the 35 per cent that have glitched multiple times,

and with the exception of the quasi-periodic pair, the glitch sizes

and waiting times are well fitted by power-law and Poissonian prob-

ability density functions, respectively (Melatos et al. 2008), consis-

tent with an avalanche mechanism (Warszawski & Melatos 2008;

Melatos & Warszawski 2009).

Most theories of pulsar glitches build on the vortex unpinning

paradigm introduced by Anderson & Itoh (1975). Superfluid vor-

tices pin to lattice sites or defects in the crust and are prevented from

migrating outward as the crust spins down electromagnetically. At

some stage, many vortices unpin catastrophically, transferring an-

gular momentum to the crust. While it is unknown what triggers the

collective unpinning, it is likely to excite a non-axisymmetric flow

for two generic reasons. (1) Pinning causes the crust and super-

fluid to rotate differentially, inevitably driving non-axisymmetric

meridional circulation and even turbulence, as observed in labora-

tory experiments (Munson & Menguturk 1975; Nakabayashi 1983;

Junk & Egbers 2000) and numerical simulations (Peralta et al.

2005, 2006a,b; Melatos & Peralta 2007; Peralta et al. 2008; Peralta

& Melatos 2009) of spherical Couette flow. (2) Avalanche trigger

mechanisms, like self-organized criticality, which are favoured by

the observed glitch statistics, intrinsically lead to an inhomogeneous

and hence non-axisymmetric superfluid velocity field, with spatial

fluctuations correlated on all scales, from the smallest to the largest

(Jensen 1998; Melatos et al. 2008).
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1706 M. F. Bennett, C. A. van Eysden and A. Melatos

The gravitational wave signal from a pulsar glitch separates into

two parts. First, there is a burst corresponding to non-axisymmetric

vortex unpinning and rearrangement during the spin-up event itself.

To date, observations have failed to resolve the spin-up time-scale.

In the Vela pulsar, which was monitored continuously for several

years, it occurs over less than 40 s (McCulloch et al. 1990; Dodson,

McCulloch & Lewis 2002). Second, there is a decaying continuous-

wave signal during the quasi-exponential relaxation phase (lasting

days to weeks) following the spin-up event (Shemar & Lyne 1996).

The latter signal arises as viscous interactions between the crustal

lattice and core superfluid erase the non-axisymmetry in the super-

fluid velocity field and restore the crust and core to corotation (or at

least steady differential rotation). Sidery et al. (2010) constructed

a two-fluid ‘body-averaged’ model of a glitch and calculated that

the burst signal emitted during the spin-up event by coupling to

quasi-radial oscillations is too weak to be detected. In this paper,

we focus on the second part of the signal, which has the advantage

of enduring for many rotation periods, enabling a coherent search

with increased signal to noise.

Two techniques have been proposed to date to search for gravi-

tational radiation emitted during the spin-up event and post-glitch

relaxation. Clark et al. (2007) developed a Bayesian selection cri-

terion for comparing f-mode ring-down to white noise. Hayama

et al. (2008) investigated coherent network analysis, which does

not assume any particular waveform. Both methods would be aided

by the availability of a specific signal template, like the one calcu-

lated in this paper. Importantly, by combining such a template with

data, gravitational wave experiments can constrain the equation of

state of bulk nuclear matter, complementing particle accelerator

experiments which have recently produced results that disagree

with astrophysical data. Heavy ion and nuclear resonance exper-

iments measuring the compressibility of nuclear matter imply a

soft equation of state (Sturm et al. 2001; Vretenar, Nikšić & Ring

2003), whereas neutron star observations imply a hard equation of

state, albeit at lower energies (Hartnack, Oeschler & Aichelin 2006;

Lattimer & Prakash 2007). Likewise, heavy-ion colliders mea-

sure a viscosity close to the conjectured quantum lower bound

(Adare et al. 2007), whereas the relaxation time-scale of pulsar

glitches suggests a value many orders of magnitude larger (Cutler &

Lindblom 1987; Andersson, Comer & Glampedakis 2005; van Eys-

den & Melatos 2010). Gravitational wave observations will help

to resolve these and other issues; bulk matter at nuclear den-

sity cannot be assembled in terrestrial laboratories with current

technology (van Eysden & Melatos 2008; Owen 2009; Xu et al.

2009).

In this paper, we calculate the gravitational radiation generated

from the spin up of the stellar interior following a pulsar glitch.

We estimate its detectability with the current generation of long-

baseline interferometers, and show that certain important constitu-

tive properties of a neutron star can be extracted from gravitational

wave data, at least in principle. The calculation is based on van

Eysden & Melatos (2008), extended to treat current quadrupole

radiation. In Section 2, we solve the general hydrodynamic prob-

lem of non-axisymmetric, stratified, compressible spin-up flow in a

cylinder, driven by Ekman pumping, following an abrupt increase

in the angular velocity of the container. The initial and bound-

ary conditions implemented by van Eysden & Melatos (2008)

are modified slightly to make them more realistic. In Section 3

we predict the gravitational radiation emitted during the relax-

ation phase following a glitch. We calculate the signal-to-noise

ratio and estimate the detectability of the signal in Section 4. In

Section 5, we show how to extract the compressibility, stratifica-

tion and viscosity of the stellar interior from gravitational wave

data.

2 EKMAN FLOW FOLLOWI NG A G LI TCH

Radio pulse timing experiments have so far failed to resolve tempo-

rally the abrupt increase in the angular velocity of the neutron star

crust during a glitch (McCulloch et al. 1990; Dodson et al. 2002).

Hence, in the absence of more detailed information, we model a

glitch as a step increase in the angular velocity � of a rotating,

rigid, cylindrical container filled with a Newtonian fluid (Abney &

Epstein 1996; van Eysden & Melatos 2008). A cylinder is a coarse

approximation to a spherical star, but it admits analytic solutions

and has a long history of being used to model neutron stars and

in geomechanical studies (Pedlosky 1967; Walin 1969; Abney &

Epstein 1996; van Eysden & Melatos 2008).

Differential rotation between the container and interior fluid

drives Ekman pumping, which spins up the interior over time; see

Benton & Clark (1974) for a review of Ekman pumping. The spin

up of an axisymmetric container was first treated analytically by

Greenspan & Howard (1963). For an incompressible fluid, the en-

tire volume is spun up on the Ekman time-scale, tE = E−1/2�−1,

where E = ν/(� L2) defines the dimensionless Ekman number

in terms of the kinematic viscosity ν and the size L of the con-

tainer. Subsequently, it was shown that compressibility and stratifi-

cation reduce the spun-up volume by hindering flow along the side

walls (Walin 1969; Abney & Epstein 1996; van Eysden & Melatos

2008). With less volume to spin up, the Ekman time-scale is lower.

Non-axisymmetric spin up was analysed by van Eysden & Melatos

(2008).

In this section, we solve the problem of the non-axisymmetric,

stratified, compressible spin up of a cylinder, extending van Eys-

den & Melatos (2008). We write down the linearized hydrodynamic

equations in Section 2.1, solve for the general spin-up flow in Sec-

tion 2.2, apply initial and boundary conditions in Sections 2.3 and

2.4 and discuss precisely how and why these conditions differ from

previous analyses. The final, time-dependent solutions for the pres-

sure, density and velocity fields are presented in Section 2.5. We

discuss the initial conditions for a glitch in Section 2.6. For full

details of the calculation, the reader is referred to section 2 of van

Eysden & Melatos (2008).

2.1 Model equations

Consider a cylinder of height 2L and radius L, containing a com-

pressible, Newtonian fluid with uniform kinematic viscosity ν, and

rotating about the z axis with angular velocity � = �ez . In the

rotating frame, the compressible Navier–Stokes equation reads

∂v

∂t
+ v · ∇v + 2� × v

= −
1

ρ
∇p + g + ν∇2v +

ν

3
∇ (∇ · v) + ∇

(

1

2
�2r2

)

.
(1)

The fluid satisfies the continuity equation

∂ρ

∂t
+ ∇ · (ρv) = 0, (2)

and the energy equation is written in a form that relates the convec-

tive derivatives of the pressure and density,
(

∂

∂t
+ v · ∇

)

ρ =
1

c2

(

∂

∂t
+ v · ∇

)

p. (3)
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Gravitational radiation from glitch recovery 1707

The symbols v, ρ, p, g and c represent the fluid velocity, density,

pressure, gravitational acceleration and the speed of sound, which

is determined by the equation of state. Following Abney & Epstein

(1996), gravity is taken to be uniform and directed towards the

mid-plane of the cylinder,

g =

{

−gez if z > 0,

+gez if z < 0,
(4)

where g is constant.

We work in cylindrical coordinates (r, φ, z) and consider the re-

gion z ≥ 0, as the flow is symmetric about z = 0. Equations (1)–(3)

are rewritten in dimensionless form by making the substitutions t

�→ tEt, r �→ Lr, z �→ Lz, v �→ L δ�v, ρ �→ ρ0ρ, p �→ ρ0gLp and

∇ �→ (1/L)∇, where the scalefactor ρ0 is chosen to be the equilib-

rium density at z = 0. The scaled equations obtained in this way

[see equations (6)–(8) in van Eysden & Melatos (2008)] feature

three dimensionless quantities: the Rossby number ǫ = δ�/�,

the Froude number F = L�2/g and the scaled compressibility

K = gL/c2.

2.2 Spin-up flow

At time t = 0, the angular velocity of the cylinder accelerates

instantaneously from � to � + δ�. If ǫ is small, as in a pulsar

glitch, the problem linearizes and we can solve for the equilibrium

and spin-up flows separately by making the perturbation expansions

ρ �→ ρ + ǫδρ, p �→ p + ǫδp, and v �→ δv. In the frame rotating at

�, the equilibrium velocity is zero and the spin-up flow is of order

ǫ.

We assume that the equilibrium state is steady and axisymmetric,

with ρ = ρ(r, z) and p = p(r, z). Ignoring centrifugal terms propor-

tional to F, and taking ρ−1dρ/dz to be uniform for simplicity, as in

previous work (Walin 1969; Abney & Epstein 1996; van Eysden &

Melatos 2008), we find

ρ(z) = e−Ksz, (5)

p(z) = K−1
s e−Ksz, (6)

where Ks = L/zs = −Lρ−1dρ/dz is a constant which depends on

the stratification length-scale, zs.

The spin-up flow is unsteady and non-axisymmetric, with δρ =

δρ(r, φ, z, t), δp = δp(r, φ, z, t), and δv = δv (r, φ, z, t). We solve

equations (17)–(21) in van Eysden & Melatos (2008) for the spin-up

flow using the method of multiple scales, expanding δv, δp and δρ

as perturbation series in the small parameter E1/2, e.g. δρ = δρ0 +

E1/2δρ1 + O(E) (Walin 1969; Abney & Epstein 1996; van Eysden

& Melatos 2008). Following section 2.3 in van Eysden & Melatos

(2008), the O(E0) continuity equation is automatically satisfied and

the order O(E1/2) equations reduce to

1

r

∂

∂r

(

r
∂


∂r

)

+
1

r2

∂
2


∂φ2
−

4Ks

N 2

∂


∂z
+

4

N 2

∂
2


∂z2
= 0, (7)

where N 2 = (Ks − K) /F is the dimensionless Brunt–Väisälä fre-

quency and we define 
 = −∂(δp0/ρ)/∂t .

Equation (7) can be solved by separation of variables. The general

solution that is regular as r → 0 has the form


(r, φ, z, t) = F

∞
∑

m=0

Jm(λr) [Am cos(mφ) + Bm sin(mφ)]

× Zm(z)Tm(t), (8)

where m ≥ 0 is an integer and λ is determined by the boundary

conditions. The prefactor F is included as 
 is expected to be of

this order. This is the same result found by van Eysden & Melatos

(2008) but is slightly more general than the equivalent in Abney &

Epstein (1996), as it allows for the possibility that FN2 and K are of

similar magnitude, a likely scenario in a neutron star (van Eysden

& Melatos 2008).

2.3 Boundary conditions

The boundary conditions on 
 are set by the boundary conditions

on the O(E0) velocity fields,

δv0
r = −

1

2Fr

∂

∂φ

(

δp0

ρ

)

, (9)

δv0
φ =

1

2F

∂

∂r

(

δp0

ρ

)

, (10)

as 
 is defined in terms of δp0 and is therefore O(E0) too. [To

impose boundary conditions on the O(E1/2) flow, we would need

to know δp1.] Assuming no penetration at the side wall, we have

∂
/∂φ = 0 at r = 1 and hence


(r, φ, z, t) = F

∞
∑

m=0

∞
∑

n=1

Jm(λmnr)

× [Amn cos(mφ) + Bmn sin(mφ)]

× Zmn(z)Tmn(t), (11)

where λmn is the nth root of Jm(λ) = 0.

To find Zmn, we use the O(E1/2) axial flow,

δv1
z =

1

FN 2

∂


∂z
− 
, (12)

as δv0
z = 0. We require δv1

z = 0 at z = 0, so that the flow is symmetric

about the mid-plane. The normalization of Zmn is arbitrary, and we

choose Zmn(1) = 1, giving

Zmn(z) =
(FN 2 − β−)eβ+z − (FN 2 − β+)eβ−z

(FN 2 − β−)eβ+ − (FN 2 − β+)eβ−
, (13)

with

β± =
1

2

[

Ks ±
(

K2
s + N 2λ2

mn

)1/2
]

. (14)

Another boundary condition applies to the top and bottom faces

of the cylinder, which determines Tmn. The mass flux into and out

of the Ekman boundary layer at z = ±1 is related to the circulation

just outside this layer by (Pedlosky 1967; Walin 1969; Abney &

Epstein 1996; van Eysden & Melatos 2008)

δvz|z=±1 = ∓
1

2
E1/2 [∇ × (δv − vB)]z

∣

∣

∣

∣

z=±1

, (15)

where vB is the dimensionless velocity of the boundary in the frame

rotating at �. Ekman pumping continues until the local fluid ve-

locity, here δv, matches the boundary velocity vB. For a rigid con-

tainer, the final angular velocity equals � + δ� in the inertial

observer’s frame, corresponding to vB = reφ in the rotating frame.

To find Tmn, we differentiate (15) with respect to time and substitute

equation (12) into the left-hand side of (15) (note: δv0
z = 0), and

equations (9) and (10) into the right-hand side of (15). After some

algebra, we find that the (m, n)th mode relaxes exponentially as 
 ∝

exp(−ωmnt), with

ωmn =
λ2

mn

[(

FN 2 − β−

)

eβ+ −
(

FN 2 − β+

)

eβ−
]

(

4FK + λ2
mn

) (

eβ+ − eβ−

) . (16)
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1708 M. F. Bennett, C. A. van Eysden and A. Melatos

Integrating 
 with respect to time, the general solution for the

pressure perturbation can be written as

δp0(r, φ, z, t)

ρ(z)
= C(r, φ, z) + F

∞
∑

m=0

∞
∑

n=1

Jm(λmnr)

× (Amn cos mφ + Bmn sin mφ)

× Zmn(z)e−ωmn t , (17)

where Amn and Bmn absorb a factor of ω−1
mn , and C(r, φ, z) is the

constant of integration. C(r, φ, z) is constrained by the boundary

condition (15) and must match the boundary velocity at z = 1. Using

(9) and (10), we obtain

vBr (r, φ, 1) = −
1

2Fr

∂C(r, φ, 1)

∂φ
, (18)

vBφ(r, φ, 1) =
1

2F

∂C(r, φ, 1)

∂r
. (19)

2.4 Initial conditions

All that remains is to specify the initial conditions, which deter-

mine Amn and Bmn. Without specializing to a particular trigger for

the spin-up event at t = 0 or modelling the vortex unpinning and rear-

rangement that presumably accompanies it, we consider the general

situation where these processes establish some instantaneously non-

axisymmetric pressure field throughout the interior. [Five possible

physical causes of the non-axisymmetry are discussed in detail in

section 1 of van Eysden & Melatos (2008).] We denote the initial

state at t = 0 by the symbol δP0(r, φ, z) = δp (r, φ, z, 0)/ρ(z). Spec-

ifying δP0(r, φ, z) is equivalent to specifying the initial velocity

or density, which are related through (9), (10), (12) and the O(E0)

equation of motion,

δρ0 = −
∂δp0

∂z
. (20)

The choice of δP0(r, φ, z) is arbitrary, but it should satisfy the

boundary conditions outlined in Section 2.3. We eliminate C(r, φ,

z) by evaluating (17) at t = 0, obtaining

δp0(r, φ, z, t)

ρ(z)
= δP 0(r, φ, z) + F

∞
∑

m=0

∞
∑

n=1

Jm(λmnr)

× (Amn cos mφ + Bmn sin mφ)

× Zmn(z)(e−ωmnt − 1). (21)

The coefficients Amn and Bmn are determined at z = 1 from δP0(r,

φ, z) and C(r, φ, 1). In general, we have

Amn =
2

πFJ 2
m+1(λmn)

∫ 2π

0

dφ

∫ 1

0

dr rJm(λmnr) cos(mφ)

×
[

δP 0(r, φ, 1) − C(r, φ, 1)
]

.
(22)

Bmn is given by the same formula, with cos(mφ) replaced by

sin(mφ).

2.5 Velocity, density and pressure solutions

Equations (9), (10), (12), (20) and (21) yield complete solutions for

the velocity, density and pressure fields. Upon transforming back to

dimensional variables and out of the rotating frame into the inertial

observer’s frame, we can write the results as follows:

vr (r, φ, z, t) = δvr (r, φ, z, 0) +
1

2
L2δ�

∞
∑

m=0

∞
∑

n=1

m

r
Jm(λmnr/L)

×

[

(FN 2 − β−)eβ+z/L − (FN 2 − β+)eβ−z/L

(FN 2 − β−)eβ+ − (FN 2 − β+)eβ−

]

× {Amn sin[m(φ − �t)] − Bmn cos[m(φ − �t)]}

× (e−E1/2ωmn�t − 1), (23)

vφ(r, φ, z, t) = �r + δvφ(r, φ, z, 0)

+
1

2
Lδ�

∞
∑

m=0

∞
∑

n=1

λmnJ
′
m(λmnr/L)

×

[

(FN 2 − β−)eβ+z/L − (FN 2 − β+)eβ−z/L

(FN 2 − β−)eβ+ − (FN 2 − β+)eβ−

]

× {Amn cos[m(φ − �t)] + Bmn sin[m(φ − �t)]}

× (e−E1/2ωmn�t − 1), (24)

vz(r, φ, z, t) =
1

4
Lδ�E1/2

∞
∑

m=0

∞
∑

n=1

λ2
mnJm(λmnr/L)

×

(

eβ+z/L − eβ−z/L

eβ+ − eβ−

)

× {Amn cos[m(φ − �t)] + Bmn sin[m(φ − �t)]}

× (e−E1/2ωmn�t − 1),
(25)

ρ(r, φ, z, t) = ρ0e−z/zs + δρ(r, φ, z, 0)

+
ρ0L�δ�

g

∞
∑

m=0

∞
∑

n=1

Jm(λmnr/L)

×

[

(FN 2 − β−)β−e−β−z/L − (FN 2 − β+)β+e−β+z/L

(FN 2 − β−)eβ+ − (FN 2 − β+)eβ−

]

× {Amn cos[m(φ − �t)] + Bmn sin[m(φ − �t)]}

× (e−E1/2ωmn�t − 1), (26)

p(r, φ, z, t) = ρ0gzse
−z/zs + δp(r, φ, z, 0)

+ ρ0L
2�δ�

∞
∑

m=0

∞
∑

n=1

Jm(λmnr/L)

×

[

(FN 2 − β−)e−β−z/L − (FN 2 − β+)e−β+z/L

(FN 2 − β−)eβ+ − (FN 2 − β+)eβ−

]

× {Amn cos[m(φ − �t)] + Bmn sin[m(φ − �t)]}

× (e−E1/2ωmn�t − 1). (27)

The initial velocity, density and pressure are related to the chosen

initial state δP0(r, φ, z) through

δvr (r, φ, z, 0) = −
1

2Fr

∂δP 0(r, φ, z)

∂φ
, (28)

δvφ(r, φ, z, 0) =
1

2F

∂δP 0(r, φ, z)

∂r
, (29)
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Gravitational radiation from glitch recovery 1709

δρ(r, φ, z, 0) = −
∂

[

ρ(z)δP 0(r, φ, z)
]

∂z
, (30)

δp(r, φ, z, 0) = ρ(z)δP 0(r, φ, z). (31)

In the limit t → ∞, an incompressible fluid spins up completely

via Ekman pumping and approaches a steady-state solution, which

matches the boundary at z = 1. In contrast, for a compressible,

stratified fluid, part of the volume is untouched by Ekman pumping.

In the latter case, the persistent, unaccelerated initial flow and the

associated gradient in vφ dissipate by viscous diffusion and adjust

via inertial oscillations over the long time-scale E−1�−1.

2.6 δP0(r, φ, z) for a glitch

In this paper, we assume that a glitch spins up the crust rigidly

and axisymmetrically but that it initially excites non-axisymmetric

motions in the fluid interior; that is, δv0
r and δv0

φ are superpositions

of cos(mφ) and sin(mφ) modes immediately after the glitch. Pos-

sible physical mechanisms are outlined in section 1 of van Eysden

& Melatos (2008). The crust spins up rigidly to angular velocity

� + δ�, which corresponds to C(r, φ, 1) = Fr2 in equation (22),

satisfying (18) and (19) as required. The arbitrary initial pressure

perturbation δP0(r, φ, z), which specifies the initial flow velocity

through (9), (10) and (12), is a sum of non-axisymmetric modes

satisfying the boundary conditions (e.g. no penetration of the side

walls). In dimensionless form, in the rotating frame, we can write

δP 0(r, φ, z) = F

∞
∑

m=1

Cmrm(r2 − 1) cos(mφ). (32)

No sin (mφ) terms or z dependence are included for simplicity, and

the relative weights of the modes are parametrized by the constants

Cm. We take Cm = 1 for all m in this paper.

The above initial condition is slightly more realistic than the one

adopted by van Eysden & Melatos (2008), who posited that the

perturbed (spin-up) flow develops from δv0
r = δv0

φ = 0 immediately

after the glitch to a permanently non-axisymmetric steady-state

flow at the boundary [see equations (40) and (41) in van Eysden &

Melatos (2008)]. There are two problems with the latter scenario.

First, it involves non-axisymmetric, and therefore non-rigid, motion

of the top and bottom faces of the cylindrical container, which in

reality would exert large stresses on the stellar crust, probably caus-

ing it to crack. Second, it artificially emits gravitational radiation in

the steady state, even at t ≫ E−1�−1 (cf. Section 3.2 below).

3 G R AV I TAT I O NA L WAV E SI G NA L

The gravitational radiation generated by the non-axisymmetric spin-

up flow in Section 2 is the sum of a mass quadrupole contribution,

calculated previously by van Eysden & Melatos (2008), and a cur-

rent quadrupole contribution. The current quadrupole is typically

smaller than the mass quadrupole by a factor of ∼c/v. However,

using the results of Section 2, the non-axisymmetric velocity per-

turbation is larger than the density perturbation by a factor of F,

implying a wavestrain ratio hmass/hcurrent ∼ Fc/v ∼ � c/g. We com-

pute the current quadrupole wavestrain in this paper and refer to

van Eysden & Melatos (2008) for the mass quadrupole.

3.1 Current quadrupole

The far-field metric perturbation generated by a superposition of

current multipole moments can be written as (Thorne 1980)

hT T
jk =

G

c5D

∞
∑

l=2

l
∑

m=−l

∂
lS lm(t)

∂t l
T

B2,lm
jk (33)

in the transverse, traceless gauge, where t is the retarded time, D is

the distance from source to observer and T
B2,lm
jk is a tensor spherical

harmonic which is a function of source orientation. The (l, m)th

multipole moment, Slm (t), is given by (Melatos & Peralta 2010)

S lm = −
32π

(2l + 1)!

[

l + 2

2l(l − 1)(l + 1)

]1/2

×

∫

d3x r l x · curl(ρv)Y lm∗ (34)

for a Newtonian source, where Y lm denotes the usual scalar spher-

ical harmonic. In this paper, we only consider the leading-order,

quadrupole (l = 2) term. Importantly, S2m depends only on the

Fourier mode with frequency m� in the spin-up flow described by

equations (23)–(27). In other words, the l = 2 metric perturbation

is a linear superposition of terms of which each is generated by a

unique mode in the spin-up flow.

The plus and cross polarizations of the gravitational wave strain

can be expressed compactly in terms of S21 and S22. The axisymmet-

ric Ekman flow leads to a quadrupole moment ∂
2S20/∂t2 = O(E),

which we neglect in this paper. Denoting the inclination angle be-

tween the rotation axis of the star and the observer’s line of sight by

i, we can write

h+(t) =
G

2c5D

(

5

2π

)1/2

× {Im[S̈21(t)] sin i + Im[S̈22(t)] cos i}, (35)

h×(t) =
G

4c5D

(

5

2π

)1/2

× {Re[S̈21(t)] sin 2i + Re[S̈22(t)](1 + cos2 i)}, (36)

where the overdots symbolize differentiation with respect to time.

3.2 Gravitational wave strain

We compute the far-field metric perturbation at a hypothetical de-

tector by combining the flow solutions in Section 2.5 with the

boundary and initial conditions in Section 2.6. Appendix A shows

how to rewrite the integral in (34) to involve only the pressure per-

turbation δp0, simplifying the evaluation of Slm. The final result for

the current quadrupole moment, for 0 < m ≤ 2, takes the form

S2m(t) =
(−1)m+18π(10π)1/2

15m
ρ0L

6δ�

×

∞
∑

n=1

[

(Umn − Vmn)e−im�t + Vmne−(E1/2ωmn+im)�t
]

,
(37)

with

Umn = δn,1

∫ 1

0

dr

∫ 1

0

dz rm+1z2−mÛrm(r2 − 1)e−Ks z, (38)
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1710 M. F. Bennett, C. A. van Eysden and A. Melatos

Vmn =

∫ 1

0

dr

∫ 1

0

dz rm+1z2−mÛAmnJm(λmnr)

×

[

(FN 2 − β−)e−β−z − (FN 2 − β+)e−β+z

(FN 2 − β−)eβ+ − (FN 2 − β+)eβ−

]

, (39)

where

Û = z
∂

2

∂r2
+

z

r

∂

∂r
−

zm2

r2
− r

∂
2

∂r∂z

+ 2F

(

r2 ∂
2

∂z2
− rz

∂
2

∂r∂z
− 2z

∂

∂z

)

(40)

is a differential operator acting on everything to its right in equa-

tions (38) and (39). Umn and Vmn are straightforward to calculate

analytically, but the full expressions are too lengthy to quote here.

Substituting (37) into (35) and (36), we obtain the following

expressions for the plus- and cross-polarizations as functions of

time:

h+(t) = h0

∞
∑

n=1

[

sin i
{

(U1n − V1n) sin �t + V1ne−E1/2ω1n�t

×
[

2E1/2ω1n cos �t −
(

Eω2
1n − 1

)

sin �t
]

}

−
1

2
cos i

{

4(U2n − V2n) sin 2�t + V2ne−E1/2ω2n�t

×
[

4E1/2ω2n cos 2�t −
(

Eω2
2n − 4

)

sin 2�t
]

}

]

,

(41)

h×(t) =
h0

2

∞
∑

n=1

[

sin 2i
{

(V1n − U1n) cos �t + V1ne−E1/2ω1n�t

×
[(

Eω2
1n − 1

)

cos �t + 2E1/2ω1n sin �t
]

}

−
1

2
(1 + cos2 i)

{

4(V2n − U2n) cos 2�t + V2ne−E1/2ω2n�t

×
[(

Eω2
2n − 4

)

cos 2�t + 4E1/2ω2n sin 2�t
]

}

]

,

(42)

with

h0 =
4πGρ0L

6δ� �2

3c5D
. (43)

Equations (41) and (42) contain terms of order (Eω2
mn)0, (Eω2

mn)1/2

and (Eω2
mn)1. The derivation of the spin-up flow in Section 2 assumes

E1/2 ≪ 1. Over the range of values for K, N and E that we consider

in Sections 4 and 5, it is also true that E1/2ωm1 ≪ 1. The quantity

E1/2ωmn does become large for large n (ωmn → n π/2 as n → ∞), but

the exponential suppresses the large-n terms and the infinite sum

converges. For our purposes, truncating (41) and (42) at leading

order O(E0) gives a good approximation.

In the scenario described in Section 2.6, the non-axisymmetric

initial perturbation is erased by Ekman pumping on the time-scale

tE, and the fluid spins up to rotate axisymmetrically with the bound-

ary at z = 1. The effects of stratification and compressibility reduce

the effectiveness of Ekman pumping, reducing the spin-up volume.

As a result, some regions of the interior are incompletely spun up

and preserve some of their initial non-axisymmetric flow for t ≫

tE, unlike in the incompressible problem. The non-axisymmetry

persists, emitting gravitational radiation continuously, until viscous

diffusion wipes it out on the time-scale E−1�−1 (Greenspan &

Howard 1963; Benton & Clark 1974). As the time-scale E−1�−1 �

103 yr is comparable to, or greater than, the age of many glitching

pulsars, one encounters the interesting possibility that neutron stars

harbour a ‘fossil’ non-axisymmetric flow in their interior, preserved

by stratification, which continually emits gravitational radiation,

and whose structure reflects the history of differential rotation and

superfluid vortex rearrangement in the star. This possibility merits

careful investigation in the future. It is not the same as the artificial,

non-axisymmetric, non-rigid rotation of the crust postulated (for

mathematical convenience) by van Eysden & Melatos (2008) (cf.

also Section 2.6).

4 D ETECTA BILITY

We now estimate the detectability of the gravitational wave signal

derived in Section 3 by calculating the signal-to-noise ratio expected

to be achieved by current- and next-generation long-baseline inter-

ferometers. The signal differs from a traditional continuous-wave

source (e.g. an elliptical neutron star), because it decays over days to

weeks (approximately 105–108 wave cycles). It is therefore coun-

terproductive to integrate coherently past a certain time (if one

ignores the fossil quadrupole discussed in Section 3.2). We find

that the signal-to-noise ratio depends sensitively on the buoyancy,

compressibility and viscosity of the neutron star interior. For cer-

tain, plausible ranges of these variables, the signal is detectable in

principle by Advanced LIGO.

4.1 Signal-to-noise ratio

The response of a laser interferometer to plus- and cross-

polarizations h+(t) and h×(t) can be written as

h(t) = F+(t)h+(t) + F×(t)h×(t). (44)

The beam-pattern functions F+ and F× depend on the rotation of

the Earth and the sky position of the source (Jaranowski, Królak &

Schutz 1998). For the signal in Section 3, it is convenient to split h(t)

into components that oscillate at the spin frequency of the star and

its first harmonic, denoted by h1(t) and h2(t), respectively. Writing

h1,2(t) = F+(t) h1,2+(t) + F×(t) h1,2×(t) and keeping terms of order

O(E0) in (41) and (42), we find

h1+(t) = h0 sin i sin �t

×

∞
∑

n=1

(

U1n − V1n + V1ne−E1/2ω1n�t
)

, (45)

h2+(t) = −2h0 cos i sin 2�t

×

∞
∑

n=1

(

U2n − V2n + V2ne−E1/2ω2n�t
)

, (46)

h1×(t) = −
h0

2
sin 2i cos �t

×

∞
∑

n=1

(

U1n − V1n + V1ne−E1/2ω1n�t
)

, (47)

h2×(t) = h0(1 + cos2 i) cos 2�t

×

∞
∑

n=1

(

U2n − V2n + V2ne−E1/2ω2n�t
)

. (48)
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Gravitational radiation from glitch recovery 1711

The signal-to-noise ratio d for a quasi-dichromatic source (i.e. a

source consisting of two narrow-band peaks at frequencies f ∗ and

2f ∗) is given by equations (80)–(82) in Jaranowski et al. (1998).

The result is

d2 =
2

Sh(f∗)

∫ T0/2

−T0/2

dt [h1(t)]2 +
2

Sh(2f∗)

∫ T0/2

−T0/2

dt [h2(t)]2 . (49)

In (49), Sh(f ) is the spectral noise density of the interferometer at

frequency f , T0 denotes the total length of the coherent integration,

and f ∗ = �/2π is the stellar spin frequency.

The integration time for a coherent search is normally limited

by computational expense rather than the length of the data stream.

Even when the radio ephemeris is known through radio observa-

tions, the radio and gravitational wave phases may not be equal,

increasing the number of templates required for a search [e.g. the

F -statistic search for the Crab (Abbott et al. 2008)]. We assume a

computational limit of two weeks for the remainder of this paper.

For the glitch recovery signal, the integration time is the minimum

of the computational limit and the glitch recovery time-scale; inte-

grating beyond the point where the signal decays away merely adds

noise. The exact value of T0 which maximizes d depends on the

search algorithm, but it is always of order the e−1 time constant for

h(t), i.e. h(T0)/h(0) = e−1. For the general estimates below, we take

T0 = (E1/2ω21�)−1, the e−1 decay time-scale of the leading (n = 1)

term in equations (45)–(48). The m = 2 mode decays more quickly

than the m = 1 mode, but the difference is moderate (1 ≤ ω21/ω11 ≤

2) over the parameter space that we consider.

Fig. 1 illustrates how T0 depends on stellar parameters. The four

panels in Fig. 1 display contours of T0 (in days) on the K-N plane

for four different values of E. The value of E in a neutron star is

uncertain but Fig. 1 demonstrates that it plays a significant role in

determining T0. One requires E ∼ 10−17 for the best match between

(E1/2ω21�)−1 and observed post-glitch recovery time-scales. This

value is artificially lower than that expected from neutron–neutron

scattering, E ∼ 10−7(�/rads−1)−1 (Cutler & Lindblom 1987;

Andersson et al. 2005; van Eysden & Melatos 2010) because it is the

effective value that arises when modelling the two-component Hall–

Vinen–Bekarevich–Khalatnikov superfluid (Peralta et al. 2005;

Andersson & Comer 2006) as a single Newtonian fluid (Easson

1979; Abney & Epstein 1996; van Eysden & Melatos 2008).

To calculate d, we evaluate (49) with T0 = (E1/2ω21�)−1 and

make several simplifying assumptions. First, we approximate h(t)

by the leading (n = 1) terms in the infinite sums in (45)–(48).

For typical values of N and K, this introduces an error of �10

per cent. Second, following Jaranowski et al. (1998), we average

the functions sin(m�t) and cos(m�t), which oscillate much more

rapidly than F+, F×, and exp(−t/T0), over the observation period.

The result is

d2 =
(1 − e−2)h2

0A1(K,N )

Sh(f∗)

×

∫ T0

0

dt

[

sin2 i F 2
+ +

1

4
sin2 2i F 2

×

]

+
(1 − e−2)h2

0A2(K,N )

Sh(2f∗)

×

∫ T0

0

dt
[

4 cos2 i F 2
+ + (1 + cos2 i)2 F 2

×

]

, (50)

with

Ai(K, N ) =
1

1 − e−2
(Ui1 − Vi1)2

+
2e

1 + e
(Ui1 − Vi1)Vi1 +

1

2
V 2

i1. (51)

As discussed in Section 3.2, the signal is the sum of a persistent

periodic signal associated with the fossil non-axisymmetry (which

decays on the long time-scale E−1�−1 ≫ T0) and the decaying

signal generated by the Ekman flow. To be conservative, we only

consider the latter signal, setting Umn = Vmn. Hence, (51) reduces

to Ai(K, N) = V2
i1/2.

The signal-to-noise ratio depends on the right ascension α, dec-

lination δ and polarization angle ψ of the source as well as the

location and orientation of the interferometer and the diurnal phase

of the Earth. These quantities are usually known for any specific

Figure 1. Contours of integration time T0 (in days) as a function of the normalized compressibility K and Brunt–Väisälä frequency N. The integration time is

chosen such that h(t = T0) = e−1 h(t = 0). The Ekman number increases from the top left to the bottom right panels: (a) E = 10−11, (b) E = 10−14, (c) E =

10−17, (d) E = 10−20.
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1712 M. F. Bennett, C. A. van Eysden and A. Melatos

Figure 2. Histogram of known glitching pulsars (dark shading) and observed glitches (light shading) as a function of frequency. Curves of anticipated spectral

noise density for second- and third-generation interferometers are overlaid. [Note: glitches emit gravitational radiation at both f ∗ and 2f ∗ (see Section 3).] Left

panel displays Advanced LIGO configurations: zero detuning, high power (solid), black hole optimized (dashed), neutron star optimized (dash-dotted). Right

panel displays ET configurations: conventional (solid), xylophone (dashed).

source. However, to estimate detectability in general, we average d

over α, δ, ψ and i (Jaranowski et al. 1998):

〈. . .〉α,δ,ψ,i =
1

2π

∫ 2π

0

dα ×
1

2

∫ 1

−1

d(sin δ)

×
1

2π

∫ 2π

0

dψ ×
1

2

∫ 1

−1

d(cos i) (. . .). (52)

The beam pattern functions average to
〈

∫ T0

0

dtF 2
+

〉

α,δ,ψ

=

〈
∫ T0

0

dtF 2
×

〉

α,δ,ψ

=
T0

5
sin2 ζ, (53)

where ζ is the angle between the arms of the detector. We give more

details of this result in Appendix B. Substituting (53) into (51) and

averaging over i, we obtain the following expression for the average

signal-to-noise ratio:

〈d〉α,δ,ψ,i =
2

5
(1 − e−2)1/2h0 T

1/2
0 sin ζ

×

[

A1(K,N )

Sh(f∗)
+

4A2(K, N )

Sh(2f∗)

]1/2

. (54)

4.2 Second- and third-generation interferometers

We now evaluate the signal-to-noise ratio (54) achieved by the

second-generation interferometer LIGO, in both its Initial and Ad-

vanced configurations, and the third-generation, subterranean Ein-

stein Telescope (ET).

There are various detector configurations proposed for Advanced

LIGO1. The best overall sensitivity across the entire frequency spec-

trum is achieved with zero detuning of the signal recycling mirror

and high laser power. Below 40 Hz, the configuration optimized

for 30 M⊙ black hole binary inspirals provides the best sensitivity.

Above 40 Hz, the configuration optimized for 1.4 M⊙ neutron star

binary inspirals provides the best sensitivity. However, the differ-

ences between the three configurations are small.

Two configurations have been proposed for ET: a conventional

interferometer (Hild, Chelkowski & Freise 2008), and a dual-band

xylophone configuration consisting of two colocated interferom-

eters, one optimized for low frequencies and the other for high

frequencies (Hild et al. 2010). Below 30 Hz, the xylophone config-

uration is more sensitive than the conventional configuration, by a

factor of up to ∼10 in the 5–10 Hz band.

1 LIGO Document Control Center: document number LIGO-T0900288-v3

Fig. 2 compares the spectral noise density of the different detector

configurations. It also bins the number of known glitching pulsars

and observed glitches as a function of frequency to illustrate which

configurations are best suited for glitch searches. It is important to

recall that the results of Section 3 predict gravitational radiation at

both the pulsar frequency f ∗ and 2f ∗, with the pulsar orientation de-

termining which frequency has the stronger signal. The xylophone

configuration of ET is the best choice for a glitch search. More

glitches have been observed in objects with f < 30 Hz (83 per cent),

where the xylophone is more sensitive, than f > 30 Hz (17 per cent)

(Peralta 2006; Melatos et al. 2008). Additionally, the increase in

sensitivity of the ET xylophone configuration over the conventional

configuration is far greater below 30 Hz than the decrease above

30 Hz. In contrast, Advanced LIGO is not sensitive below 10 Hz

and there is only a small difference in sensitivity between the dif-

ferent configurations over the frequency range where most glitches

lie. As mentioned above, the black-hole-optimized Advanced LIGO

configuration is the most sensitive below 40 Hz but its advantage is

slight and possibly outweighed by its slightly poorer performance

at higher frequencies, where the strongest signals (from the fastest-

spinning objects) arguably lie.

Fig. 3 displays contours of the average signal-to-noise ratio for

Initial LIGO, Advanced LIGO (zero detuning and high laser power,

neutron star optimized and black hole optimized), and ET (con-

ventional and xylophone) as a function of compressibility K and

Brunt–Väisälä frequency N. The figure is produced for an object

with f ∗ = 100 Hz, E = 10−17, at a distance D = 1 kpc from

Earth, with radius R = 10 km, mass M = 1.4 M⊙, ρ0 = 3M/4π

R3 and g = GM/R2 (Ekman pumping occurs in a thin surface

layer, where g is uniform). The step increase in angular velocity

is taken to be δ�/� = 2 × 10−4, corresponding to the largest

glitch observed to date (Melatos et al. 2008). The spectral noise

densities [Sh(f ∗), Sh(2f ∗)] used for the six detector configurations

are: Initial LIGO (1.74 × 10−45 Hz−1, 8.54 × 10−46 Hz−1); zero-

detuning, high-power Advanced LIGO (1.59 × 10−47 Hz−1, 1.39 ×

10−47 Hz−1); neutron-star-optimized Advanced LIGO (1.18 ×

10−47 Hz−1, 9.03 × 10−48 Hz−1); black-hole-optimized Advanced

LIGO (3.77 × 10−47 Hz−1, 1.84 × 10−47 Hz−1); conventional ET

(6.68×10−50 Hz−1, 6.68×10−50 Hz−1); and xylophone ET (1.56×

10−49 Hz−1, 1.12 × 10−49 Hz−1).

It is clear from Fig. 3 that detectability drops off sharply for

K > 10. Buoyancy prevents Ekman pumping from spinning up

the whole of the stellar interior (van Eysden & Melatos 2008).

For large stratification (Ks ≫ FN2), Ks ≈ K, only a small volume

of the interior is spun up and the current quadrupole is greatly

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 409, 1705–1718
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Gravitational radiation from glitch recovery 1713

Figure 3. Contours of angle-averaged signal-to-noise ratio 〈d〉 versus normalized compressibility K and Brunt–Väisälä frequency N, for four existing and

planned interferometers: (a) Initial LIGO; (b) Zero-detuning, high-power Advanced LIGO; (c) Neutron star optimized Advanced LIGO; (d) Black hole

optimized Advanced LIGO; (e) Conventional ET; (f) Xylophone ET. Source parameters: f ∗ = 100 Hz, δ�/� = 2 × 10−4, E = 10−17, D = 1 kpc. The

detector spectral noise densities used are (Sh(f ∗), Sh(2f ∗)): Initial LIGO (1.75 × 10−45 Hz−1, 8.53 × 10−46 Hz−1); zero-detuning, high-power Advanced LIGO

(1.59 × 10−47 Hz−1, 1.39 × 10−47 Hz−1); neutron-star-optimized Advanced LIGO (1.18 × 10−47 Hz−1, 9.03 × 10−48 Hz−1); black-hole-optimized Advanced

LIGO (3.77 × 10−47 Hz−1, 1.84 × 10−47 Hz−1); conventional ET (6.68 × 10−50 Hz−1, 6.68 × 10−50 Hz−1); and xylophone ET (1.56 × 10−49 Hz−1, 1.12 ×

10−49 Hz−1).

reduced, with A1,2 ∝ e−2K . There is little difference between the

three Advanced LIGO configurations in panels (b)–(d), or the two

ET configurations displayed in panels (e) and (f) in Fig. 3. All have

similar sensitivity at 100 Hz. For ET, we find 〈d〉 � 3 for K � 10

and N � 1 and there is a reasonable possibility of detection. We

require smaller values, e.g. N � 0.5 and K � 3, to achieve 〈d〉 � 3

with Advanced LIGO.

To generalize the results in Fig. 3 to an arbitrary object, we note

that 〈d〉 scales with Ekman number as 〈d〉 ∝ E1/4 (square root of

the number of cycles in the coherent integration). For relaxation

time-scales of 3–300 d (Peralta 2006), and assuming K = N = 1,

E ranges from 10−21 to 10−17, which corresponds to an order of

magnitude of variation in 〈d〉. The signal-to-noise ratio also scales

with the spin parameters through the characteristic wavestrain, viz.

h0 = 6 × 10−26

(

δ�/�

10−4

) (

f∗

102 Hz

)3 (

D

1 kpc

)−1

. (55)

The relative change in angular velocity δ�/� is not necessarily

equal to the observed glitch size δν/ν. In a vortex unpinning model,

the two quantities are related through δν/ν ∼ (Is/Ic)(�r/R)(δ�/�),

where Is/Ic ∼ 102 is the ratio of superfluid to crust moment of inertia,

and �r/R ∼ 10−6 is the normalized radial distance the unpinned

vortices move (Alpar, Nandkumar & Pines 1986; Melatos & Peralta

2010). Therefore, equating the observed glitch size to δ�/� yields

a conservative estimate, given that δ�/� may in fact be up to ∼104

times larger.

A coherent search synchronized to a radio ephemeris assumes

that the radio and gravitational wave signals have the same phase.

This is not necessarily true. For example, in the landmark coherent

F -statistic search for the Crab pulsar in LIGO S5 data, Abbott et al.

(2008) allowed for a fractional phase mismatch of up to 10−4. In

our multiple scales analysis, we assume by construction that the

non-axisymmetric modes are stationary in the frame rotating with

the pre-glitch angular velocity and remain so throughout the Ekman

pumping process. In reality, the crust spins up to � + δ� and drags

the axisymmetric part of the flow asymptotically to this increased

angular velocity. Whether the angular velocity of the m �= 0 modes

also increases during this process is unclear. It depends on exactly

how the superfluid vortices repin following a glitch and rearrange

themselves in a sheared Ekman flow, which is unknown at present.

The number of templates required for a search can be estimated

by modelling the frequency as f (t) = f0 + ḟ0t . For a coherent
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1714 M. F. Bennett, C. A. van Eysden and A. Melatos

search, the difference in phase between the model and gravitational

wave signals over the integration time must satisfy �ϕ < π. For

a two-week integration, this corresponds to a maximum template

spacing of δf 0 = 3 × 10−6 Hz and δḟ0 = 4 × 10−12 s−2.

During the glitch recovery, the frequency derivative is much larger

than usual for an isolated pulsar spinning down electromagnetically.

We approximate ḟ0 ≈ �ν/T0. Conservatively, this yields ḟ0 ∼

10−7 s−2 for a 100-Hz pulsar undergoing the largest glitch observed

to date (�ν/ν ∼ 10−4) with an unusually short relaxation period of

1 d. This translates into a range of �ḟ0 = 10−7 s−2 to search over

and hence 3 × 104 templates in ḟ0. To allow for some mismatch

between the radio and gravitational wave phases, we follow Abbott

et al. (2008) who searched over a window of ± 6 × 10−3 Hz centred

on the radio frequency, i.e. �f 0 = 1.2 × 10−2 Hz. Overall, therefore,

a total of ∼108 templates are required for a glitch search.

The parameters N, K and E change the shape of the signal in

two ways: the relaxation time is controlled predominantly by E,

while the relative difference between the signals at f ∗ and 2f ∗ (in

amplitude and relaxation time) is controlled by N and K. Our signal-

to-noise ratio estimates in Fig. 3 are based on the incoherent sum

of the detector response at f ∗ and 2f ∗, so the relative phasing be-

tween f ∗ and 2f ∗ does not affect the detectability and the number

of templates required. This would change in a more sophisticated

search that combined the f ∗ and 2f ∗ responses coherently.

To this point, we assume that radio observations provide the fre-

quency, recovery time-scale and trigger epoch for a glitch search.

We now consider the scenario where this information is not known,

as in a blind search. In the region of parameter space that we con-

sider, 0.1 ≤ N ≤ 10, 0.1 ≤ K ≤ 10 and 10−20 ≤ E ≤ 10−8, the

minimum bandwidth of the Fourier-transformed wavestrain is ≈

6 × 10−12 f ∗. Hence, searching over the frequency range 1–600 Hz

requires ∼1012 templates in f 0 multiplied by ∼104 templates in ḟ0

as discussed above.

In addition, the sky position, time of occurrence and recovery

time are unknown for a blind search. In a LIGO search for unknown

periodic sources (Abbott et al. 2007b), the sky is divided into 31 500

patches. The lack of an electromagnetic trigger means that the data

must be searched in many blocks, starting, for example, 1 d apart

(coherent integration over a shorter recovery time is unlikely to be

detectable) and integrating over increasing lengths of time, up to the

computational limit, to account for the fact that T0 is unknown. A

proper estimate of the associated computational expense lies outside

the scope of this paper.

5 C ONSTITUTIVE PRO PERTIES OF BU LK

NUC LEA R MATTER

Fig. 3 clearly demonstrates that the strength of the gravitational

wave signal depends sensitively on the constitutive properties of

bulk nuclear matter (e.g. the equation of state) and its dissipative or

transport coefficients (e.g. viscosity). We show that these properties

can be inferred in principle from the detailed shape of the gravi-

tational wave signal. The results of this approach can be linked to

terrestrial experiments, e.g. with heavy ion colliders, although there

is an important distinction between ∼ GeV collisions of ∼102 nu-

cleons in a terrestrial particle accelerator and ∼1057 static nucleons

at ∼ MeV energies in a neutron star.

In a real search, one seeks to extract parameters like K and N

by fitting a template to the interferometer data in the time domain

(Clark et al. 2007; Hayama et al. 2008). However, to illustrate the

scientific potential of the fitting exercise, we Fourier transform h+(t)

and h×(t) and focus on the gross features of the spectrum. We neglect

the permanent fossil quadrupole (see Section 3.2) and assume that

there is no interference between peaks. The four peak amplitudes

and four peak widths (at f ∗ and 2f ∗) of h+(f ) and h×(f ) provide

enough information to solve for K, N, E, i and h0 by matching to

the theoretical predictions in (45)–(48). We take ratios to eliminate

h0 (which depends on the unknowns ρ0, R, δ� and D) and focus on

the remaining parameters.

Fig. 4 displays six slices through the four-dimensional parameter

space. Contours are shown for the amplitude ratio |h+(f ∗)|/|h+(2f ∗)|

and the width ratio Ŵ+(f ∗)/Ŵ+(2f ∗), where Ŵ+,×(f ∗) is the full width

at half-maximum of the peak in |h+,×(f )| centred at f ∗. The figure

is drawn for the parameter ranges 0.1 ≤ K ≤ 10, 0.1 ≤ N ≤ 10,

10−20 ≤ E ≤ 10−8 and 0 ≤ i ≤ π. We evaluate the first 20 terms in

the infinite sums in (45)–(48). In those panels where K, N, E and i

are held fixed, we use the fiducial values K = 1, N = 1, E = 10−17

and i = π/4, respectively.

The inclination angle determines the relative strength of the m =

1 and m = 2 modes of h+ and h× through the tensor spherical har-

monic T
B2,lm
jk in (33). The contours of |h+(f ∗)|/|h+(2f ∗)| are nearly

vertical in panels (d), (e) and (f) of Fig. 4. In fact, if we con-

sider additional amplitude ratios, we can infer i independently from

the other parameters. Dividing the Fourier transforms of (45) by

(47), and (46) by (48), we obtain |h+(f∗)|/|h×(f∗)| = sec i and

|h+(2f ∗)|/|h×(2f ∗)| = 2 cos i/(1 + cos2 i), respectively. These ex-

pressions overdetermine i, yielding its value and an independent

cross-check. The inclination angle can also be inferred from the ra-

dio or gamma-ray pulse profile and polarization swing by assuming

a particular emission model (Lyne & Manchester 1988; Hibschman

& Arons 2001; Bai & Spitkovsky 2010; Chung & Melatos, in prepa-

ration). The width ratios are independent of i; the time-scale over

which the signal decays does not depend on the location of the

observer. This is illustrated in panels (d)–(f) of Fig. 4, where the

contours of Ŵ+(f ∗)/Ŵ+(2f ∗) are horizontal.

The compressibility K and Brunt–Väisälä frequency N are in-

extricably linked in the sense that they feed into both the ampli-

tude and width ratios in a complicated manner. However, once we

determine i according to the formula above, we can immediately

extract K and N from panel (a) of Fig. 4 as the value of E does

not influence any of the amplitude or width ratios (see below). By

plotting contours of the measured ratios of |h+(f ∗)|/|h+(2f ∗)| and

Ŵ+(f ∗)/Ŵ+(2f ∗) on the K-N plane, we can read off the values of

N and K from the intersection point of the contours. One might be

tempted to use other amplitude and width ratios as a cross-check

on K and N, or to break the degeneracy in the case of multiple

intersection points. However, most of the ratios are related trivially

through the inclination angle and supply no additional information,

e.g. Ŵ×(f ∗) = Ŵ+(f ∗), Ŵ×(2f ∗) = Ŵ+(2f ∗), |h×(f +)| = cos i |h+(f +)|

and |h×(2f+)| = (cos i + sec i)|h+(2f+)|/2.

The Ekman number E is important in determining the recovery

time-scale and hence the Fourier width. It also appears in h0 through

T0. However, it influences all peaks in the same way and drops

out of all amplitude and width ratios. In panels (b), (c) and (f)

of Fig. 4, the amplitude and width ratio contours are vertical. As

mentioned in Section 4, an approximate value of E can be inferred

from the e-folding time of h(t), as K and N only weakly influence

this quantity. However, if K and N are known, e.g. by following

the procedure described in the above paragraph, we can determine

E from the absolute peak widths. Finally, h0 can be determined

from the absolute peak amplitudes once the values of all the other

parameters are known.

Future gravitational wave measurements of the compressibility,

viscosity and Brunt–Väisälä frequency of bulk nuclear matter can

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 409, 1705–1718
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Gravitational radiation from glitch recovery 1715

Figure 4. Ratio of fundamental and first-harmonic Fourier amplitudes |h+(f ∗)|/|h+(2f ∗)| (dashed blue contours) and full widths at half-maximum

Ŵ+(f ∗)/Ŵ+(2f ∗) (solid red contours) for six slices of the four-dimensional parameter space (N, K, E, i). In each panel, two variables are fixed, with

K = 1, N = 1, E = 10−17 and i = π/4 as appropriate.

be compared to a range of terrestrial experiments and theoretical

calculations. The compressibility is commonly expressed in terms

of the compression modulus κ , which is related to our normalized

compressibility through K = AmpgR/κ , where A is the mean atomic

number and mp the proton mass (van Eysden & Melatos 2008).

Heavy-ion collisions and nuclear resonance experiments measure κ

(Sturm et al. 2001; Vretenar et al. 2003; Piekarewicz 2004; Hartnack

et al. 2006). Compressibility can also be inferred from the symme-

try energy measured in heavy-ion collisions or obtained through

neutron-skin thickness measurements (Chen, Ko & Li 2005; Li,

Chen & Ko 2008; Xu et al. 2009). The shear viscosity is often ex-

pressed in terms of the ratio η/s, where s is the specific entropy. It is

related to the Ekman number by E = (A′kB/mpR2�)(η/s) where 1 ≤

A′ ≤ 2 is the entropy per nucleon in units of Boltzmann’s constant

(van Eysden & Melatos 2008). The shear viscosity has also been

measured in heavy-ion collisions (Adler et al. 2003; Adare et al.

2007). Neutron stars are stably stratified because the concentration

of charged particles increases with density but chemical equilibrium

is maintained (Reisenegger & Goldreich 1992). Stratification pro-

vides a buoyancy force proportional to the Brunt–Väisälä frequency

squared, which has been calculated theoretically (Reisenegger &

Goldreich 1992; Lai 1994; Passamonti et al. 2009).

In Table 1 we quote a selection of experimental and theoretical

values for K, N and E under neutron star conditions. Dimensionless

values of N and E assume �/2π = 100 Hz. In line 1, the com-

pression modulus is inferred from the ratio of the K+ multiplicity

in Au+Au and C+C collisions at ∼ GeV energies (Sturm et al.

2001; Hartnack et al. 2006). In line 2, the compression modulus is

obtained by fitting a relativistic mean-field model to the distribution

of isoscalar monopole and isovector dipole strengths of Zr and Pb

(Vretenar et al. 2003; Piekarewicz 2004). In line 3, the compression

modulus is obtained from the measured nuclear symmetry energy

from isospin diffusion in heavy-ion collisions (Chen et al. 2005;

Li et al. 2008). Line 4 lists the ratio of shear viscosity to specific

entropy measured in Au+Au collisions at an energy of 200 GeV

(Adler et al. 2003; Adare et al. 2007). Theoretical calculations of

shear viscosity by Cutler & Lindblom (1987) for neutron–neutron

and electron–electron scattering, corresponding to the normal and

superfluid states, respectively, are listed in lines 5 and 6. More ex-

otic states, which may exist in the neutron star core, will have a

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 409, 1705–1718
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1716 M. F. Bennett, C. A. van Eysden and A. Melatos

Table 1. Experimental and theoretical results for compressibility, viscosity and Brunt–Väisälä frequency.

Quantity Experiment/Theory (E/T) Result Dimensionless Reference

K Au+Au and C+C collisions (∼ GeV) (E) κ ≈ 200 MeV K = 0.97 1, 2

Nuclear resonances (E) κ ≈ 240–270 MeV K = 0.72 − 0.81 3, 4

Nuclear symmetry energy (E) κ = 210 MeV K = 0.93 5, 6

E Au+Au collisions (200 GeV) (E) η/s ≈ h-/4π kB E = 8 × 10−20 7, 8

Neutron–neutron scattering (T) η = 2 × 1020 g cm−1 s−1 E = 5 × 10−9 9

Electron–electron scattering (T) η = 6 × 1020 g cm−1 s−1 E = 1 × 10−8 9

Quark–quark scattering (T) η = 5 × 1015 g cm−1 s−1 E = 1 × 10−13 10

N Chemical composition (T) N∗ ∼ 500 s−1 N = 0.8 11, 12

Centrifugal correction (T) N = 0.32 − 0.84 N = 0.32 − 0.84 13

1, Sturm et al. (2001); 2, Hartnack et al. (2006); 3, Vretenar et al. (2003); 4, Piekarewicz (2004); 5, Chen et al. (2005);

6, Li et al. (2008); 7, Adler et al. (2003); 8, Adare et al. (2007); 9, Cutler & Lindblom (1987); 10, Jaikumar et al. (2008);

11, Reisenegger & Goldreich (1992); 12, Lai (1994); 13, Passamonti et al. (2009).

different viscosity. Line 7 lists the shear viscosity due to quark–

quark scattering (Jaikumar, Rupak & Steiner 2008). In lines 8 and 9,

we quote calculated values for the Brunt–Väisälä frequency, the lat-

ter including centrifugal forces in a rapidly rotating star (Reiseneg-

ger & Goldreich 1992; Lai 1994; Passamonti et al. 2009).

6 C O N C L U S I O N S

In this paper, we calculate analytically the gravitational radia-

tion emitted during the post-glitch recovery phase by the non-

axisymmetric Ekman flow excited by a glitch. The calculation is

done in the context of an idealized, cylindrical star with a uni-

form viscosity, compressibility and stratification length-scale. We

compute the signal-to-noise ratio for current- and next-generation

long-baseline interferometers and find the following promising re-

sult: for a large glitch (δ�/� = 10−4) from a neutron star D =

1 kpc from Earth and spinning at f ∗ = 100 Hz, the angle-averaged

signal-to-noise ratio 〈d〉 exceeds 3 for N � 0.5, K � 10 and E ∼

10−17 with Advanced LIGO and N � 1, K � 10 and E ∼ 10−17 with

ET.

Perhaps the most obvious shortcoming of our idealized model is

its cylindrical geometry. There is a noble history of using a cylinder

to model spherical astronomical objects and also in classical geo-

physical studies of the Earth (Pedlosky 1967; Walin 1969; Abney

& Epstein 1996; van Eysden & Melatos 2008), because it admits

analytic solutions, which in general have not yet been found for

a sphere. We ignore magnetic fields for simplicity, although they

are large in neutron stars (Cutler 2002), interact with the super-

fluid (Mendell 1998), and therefore modify Ekman pumping. We

model the interior of a neutron star as a single Navier–Stokes fluid,

whereas in reality it is a multicomponent superfluid, consisting

of superfluid neutrons and superconducting protons which interact

with each other via mutual friction and entrainment (e.g. Lattimer

& Prakash 2004; Andersson & Comer 2006). The spin-up process

in a coupled multicomponent fluid of this kind, in the presence of

gravitational stratification and compressibility, is an unsolved and

difficult problem.

In our model, the crust accelerates instantaneously from � to � +

δ� and remains at this higher angular velocity. A more realistic

model would conserve total angular momentum by solving self-

consistently for the response of the crust to the viscous back-reaction

torque (van Eysden & Melatos 2010). In the context of the present

model, we can approximate this effect crudely by replacing the

glitch size δ�/� at t = 0 with the permanent frequency jump after

the recovery ceases. None of the conclusions change qualitatively.

Understanding the glitch mechanism remains an unsolved prob-

lem. Glitch waiting times are exponentially distributed and their

sizes fit a power law (Melatos et al. 2008), indicative of inhomoge-

neous collective behaviour on large scales, e.g. vortex avalanches.

In contrast, nuclear structure calculations suggest that the area den-

sity of pinning sites (e.g. lattice defects) is much greater than the

area density of vortices (Jones 2002; Donati & Pizzochero 2003),

suggesting that the system is homogeneous on large scales (pinned

Abrikosov array). The gravitational wave signal calculated here

helps to discriminate between these two views, as it is a measure of

the internal non-axisymmetry. From a simple, random walk argu-

ment, the largest relative glitch size that arises from vortex move-

ment in a star containing n vortices is δ�/� ∼ n−1/2. If the value of

δ�/� inferred from a gravitational wave detection approaches this

maximum, it is safe to infer that large-scale inhomogeneities are

present. Note that we take Cm = 1 in Section 2.6. However, if only a

fraction of the internal flow is non-axisymmetric, Cm should be re-

duced in proportion. In vortex unpinning models δ�/� can be up to

4 orders of magnitude larger than the observed glitch size (see Sec-

tion 4.2), leaving considerable scope to get detectable gravitational

wave signals.

Vortex unpinning theories of glitches rely on the build-up of a

lag between the crust, which spins down electromagnetically, and

the superfluid, whose rotation is fixed by the number of vortices,

until a glitch is triggered. We know that the lag does not disappear

completely after the glitch (i.e. corotation is not restored) because

a reservoir effect (i.e. glitch size ∝ waiting time) is not observed

in glitch data (Wong, Backer & Lyne 2001); only a small, random

fraction of the lag relaxes during a single event, and that fraction

is determined by the microscopic history of the system, as in any

avalanche process. In this model, we assume conservatively that the

crust and fluid co-rotate before the glitch. However, in the more

realistic scenario just described, there is ongoing differential rota-

tion between crust and core, suggesting that glitching pulsars may

continuously emit gravitational radiation.

Another possibility leading to a continuous gravitational wave

signal beyond just the post-glitch recovery period is the ‘fossil

flow’ discussed in Section 3. Stratification prevents Ekman pumping

from spinning up the whole interior, leaving a remnant of the initial

non-axisymmetric flow untouched. This flow emits gravitational

radiation until damped over the much longer diffusion time-scale.

If so, we may be able to extend the coherent integration time beyond

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 409, 1705–1718
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Gravitational radiation from glitch recovery 1717

the recovery time-scale, increasing the likelihood of detection. Even

more intriguing is the possibility that any neutron star which has

experienced differential rotation in its past retains some part of this

fossil flow for �103 yr, thereby bearing an imprint of the star’s

formation and rotation history. We plan to study the matter fully in

a following paper.

For a typical neutron star at a distance of 1 kpc, the signal-

to-noise calculations in Section 4 argue that there is a reasonable

chance that interferometers like Advanced LIGO or ET will detect

the largest glitches. The outlook is more optimistic if we consider

nearby ‘dark’ neutron stars. For the estimated galactic population

of ∼109 neutron stars (cf., ∼1800 radio pulsars discovered to date),

recent Monte Carlo simulations predict that the closest objects are

located ∼8 pc from the Earth (Ofek 2009). At this distance, Initial

LIGO is able to detect the largest glitches with 〈d〉 � 3 for N �

1 and K � 10 and Advanced LIGO is sensitive to smaller glitches

with δ�/� � 10−6. However, the signal frequency, glitch epoch

and sky position are unknown electromagnetically, so searching

for ‘dark’ glitches is a difficult proposition. None the less, our

results suggest cautious optimism about the chances of detecting a

glitching (or otherwise differentially rotating) neutron star with the

next generation of gravitational wave interferometers.
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APPENDI X A : SI MPLI FYI NG x · curl(ρv)

It is straightforward to evaluate Slm by substituting (23)–(27) di-

rectly into (34). However, the calculation is easier and more trans-

parent if we first simplify the integrand in (34) to depend only on

δp. Expanding according to ρ �→ ρ0 + δρ, v �→ v0 + δv = r�eφ +

δv, we express the integrand to first order as

x · ∇ × (ρ0v0 + δρv0 + ρ0δv). (A1)
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The first term in (A1) is independent of time. It does not emit

gravitational radiation, so we discard it. The second term in (A1)

reads

x · ∇ × (δρv0) = �

(

2z + rz
∂

∂r
− r2 ∂

∂z

)

δρ (A2)

=
�

g

(

r2 ∂
2

∂z2
− rz

∂
2

∂r∂z
− 2z

∂

∂z

)

δp. (A3)

To move from (A2) to (A3) we use the Navier–Stokes equation (1)

to first order in Rossby number and zeroth order in Ekman number.

In the rotating frame and neglecting the centrifugal term, as in

Section 2, it reads

2ρ0(� × δv) = −∇δp − gδρ, (A4)

from which we obtain

δρ = −
1

g

∂δp

∂z
. (A5)

The third term in (A1) can be rewritten in a similar way. From (A4),

we find

2�ρ0ez × (ez × δv) = ∇ × (δpez), (A6)

where (er, eφ , ez) are the basis vectors in cylindrical coordinates.

Noting that δv0
z = 0, as the axial flow is O(E1/2), we are left with

ρ0δv = −
1

2�
∇ × (δpez), (A7)

and the third term in (A1) is

x · ∇ × (ρ0δv) =
1

2�

(

z∇2 − r
∂

2

∂r∂z
− z

∂
2

∂z2

)

δp. (A8)

Combining (A3) and (A8), and replacing ∂
2/∂φ2 by − m2, we arrive

at

x · ∇ × (ρv) =

⎡

⎣

1

2�

(

z
∂

2

∂r2
+

z

r

∂

∂r
−

zm2

r2
− r

∂
2

∂r∂z

)

+
�

g

(

r2 ∂
2

∂z2
− rz

∂
2

∂r∂z
− 2z

∂

∂z

)

⎤

⎦δp0.
(A9)

There is a subtle issue around neglecting the centrifugal correc-

tion to (A4), which is of order F. If we evaluate Slm by substituting

(23)–(27) directly into (34), we implicitly include centrifugal terms

in x · ∇ × (ρv) (by virtue of failing to exclude them explicitly).

This approach is internally inconsistent, because centrifugal terms

of this order are excluded from the flow fields (23)–(27) following

the assumption in Section 2.2 leading to (5) and (6). It is therefore

preferable to evaluate (34) for Slm using (A9), so that the centrifu-

gal correction to the zeroth-order structure is consistently excluded

from both the flow fields and Slm.

APP ENDIX B: BEAM PATTERN FUNCTIONS

The complete expressions for the beam pattern functions are

(Jaranowski et al. 1998)

F+(t) = sin ζ [a(t) cos 2ψ + b(t) sin 2ψ], (B1)

F×(t) = sin ζ [b(t) cos 2ψ − a(t) sin 2ψ], (B2)

with

a(t) =
1

16
sin 2γ (3 − cos 2λ)(3 − cos 2δ) cos[2(α − φr − �r t)]

−
1

4
cos 2γ sin λ(3 − cos 2δ) sin[2(α − φr − �r t)]

+
1

4
sin 2γ sin 2λ sin 2δ cos[α − φr − �r t]

−
1

2
cos 2γ cos λ sin 2δ sin[α − φr − �r t]

+
3

4
sin 2γ cos2 λ cos2 δ, (B3)

b(t) = cos 2γ sin λ sin δ cos[2(α − φr − �r t)]

+
1

4
sin 2γ (3 − cos 2λ) sin δ sin[2(α − φr − �r t)]

+ cos 2γ cos λ cos δ cos[α − φr − �r t]

+
1

2
sin 2γ sin 2λ cos δ sin[α − φr − �r t]. (B4)

The right ascension and declination of the gravitational wave source

are given by α and δ, respectively, and ψ is the polarization angle.

The latitude of the detector is denoted by λ, �r is the angular veloc-

ity of the Earth and φr is the diurnal phase of the Earth. The angle

counterclockwise between east and the bisector of the interferome-

ter arms is γ , and the angle between the arms of the interferometer

is ζ . We average over α, δ and ψ according to Jaranowski et al.

(1998)

〈. . .〉α,δ,ψ =
1

2π

∫ 2π

0

dα ×
1

2

∫ 1

−1

d(sin δ) ×
1

2π

∫ 2π

0

dψ (. . .).
(B5)

We evaluate 〈
∫ T0

0
dtF 2

+〉α,δ,ψ and 〈
∫ T0

0
dtF 2

×〉α,δ,ψ for use in Sec-

tion 4. Averaging (B1) and (B2) over ψ , we obtain
〈

∫ T0

0

dtF 2
+

〉

ψ

=

〈
∫ T0

0

dtF 2
×

〉

ψ

=
1

2
sin2 ζ

∫ T0

0

dt
(

[a(t)]2 + [b(t)]2
)

. (B6)

All the dependence on α and δ is contained in a(t) and b(t). After

some straightforward but lengthy algebra, we find that the depen-

dence on all other angles drops out, leaving

〈

[a(t)]2 + [b(t)]2
〉

α,δ
=

2

5
. (B7)

Substituting (B7) into (B6) and evaluating the now-trivial time in-

tegration, we obtain the result stated in equation (53):
〈

∫ T0

0

dtF 2
+

〉

α,δ,ψ

=

〈
∫ T0

0

dtF 2
×

〉

α,δ,ψ

=
T0

5
sin2 ζ. (B8)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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