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Continuous Wave Peristaltic Motion in a Robot 
 

Abstract 

 

by 

 

ALEXANDER BOXERBAUM 

 

 

 

This dissertation is a study of peristalsis, the method of locomotion 

earthworms use, and how to best achieve this in a robotic platform. A technique is 

presented that uses a braided mesh exterior to produce smooth waves of motion 

along the body of a worm-like robot. This braided mesh can be powered by a one 

degree-of-freedom cam mechanism, which is demonstrated, or by several 

independent motors. A new analytical model of peristalsis is presented and 

predicted robot velocity is compared to a 2-D simulation and a working prototype. 

It has been often assumed that this motion requires strong anisotropic ground 

friction. However, our analysis shows that with uniform, constant velocity waves, 

the forces that cause accelerations within the body sum to zero. Instead, transition 

timing between aerial and ground phases and the ability to generate strain play a 

critical role in the final robot speed. Lastly, we present a soft-body controller that 

uses simulated neuronal populations. This controller is designed for the next 

generation of soft, hyper-redundant systems and can intrinsically generate waves 

of a desired behavior while smoothly incorporating large amounts of simulated 

sensory input.  

 



 

 

 9 

 

 
Figure 1: A robot that creates peristaltic motion with a continuously deformable 

exterior surface.  
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1 Introduction 

 

1.1 HOW IT ALL GOT STARTED 

 

 My involvement with in soft robotics began when I was asked to make a computer 

rendering of a possible robot for a grant solicitation called the DARPA ChemBot project. 

The solicitation called for a robot that could change shape dramatically and potentially 

navigate complex environments. When I joined the group, the concept was to make a long 

inchworm-like robot that consisted of several large soft segments actuated by shape 

memory alloy spring actuators (SMAs) and inflatable braided mesh structures (Figure 2). 

The robot could roll up into a tight ball in order to achieve the desired form-factor change. 

This concept was based strongly on an endoscopic assist robot designed by Elizabeth 

Mangan under Professors Chiel and Quinn (Chapter 2.3).   
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Figure 2: A computer rendering I made of an early concept for the DARPA ChemBot 

project. Two and a half segments are shown squeezing under a door. The pad at the front 

has directional spikes for inchworm-like attachment and locomotion. An apparatus at the 

front is based on the aplysia mouth and could take small samples from the environment. 

 

 As I worked through the design of this next-generation robot, several things stood 

out as being problematic. We intended to actuate each air-muscle with a micro-valve and 

pump system that was going to difficult to fit into a robot with a 1 cm diameter, which was 
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one of the requirements of the grant. We also knew that this method of locomotion 

generated a lot of slip. Even with an offboard power supply, the previous robot moved 

very slowly (Chapter 2.3) [Mangan 2002]. Lastly, the motion seemed distinctly un-

wormlike to me. Worms have up to 150 segments that form only one to two waves, so the 

wave moves down the body very smoothly. However, the segments of this robot were 

relatively long, with as few as four segments along the length of the body. This created 

dead zones between actuated areas where the segments were attached. If in unstructured 

environments, these areas were to touch the ground, they would probably get stuck. These 

problems pushed me to rethink how worms achieve their motion.  

 At one of our grant meetings, it occurred to me that we could simply do away with 

the segments, and squeeze a continuous braided mesh using hoop-shaped SMAs. I 

imagined that a bolus of fluid would move along the body, squeezed by the SMAs at the 

trailing edge. This bolus would expand the SMAs at the leading edge of the wave (Figure 

3). We did a good deal of analysis to show that this fluid could circulate through the robot 

effectively, and that the SMAs could be actuated fast enough to generate the desired 

speed.  

Getting power to the SMA actuators presented challenges. The soft body of the 

robot is constantly changing length, and running wires along them would be tedious at any 

scale. However, the braided mesh itself defines a path of zero strain, so it made sense to 

run the wires along this path. But at that point, it makes sense to make the braided mesh 

out of the wiring harness itself and save on weight. This robotic concept is described in 

detail in Chapter 4.2. 
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Figure 3: Final concept robot design for the DARPA ChemBot grant. The robot could roll 

up into a ball, and squeeze under a door frame. Unlike our first design, the peristaltic 

waves would move smoothly down the body. 

 

 As we considered the design further, we began to realize the many drawbacks of 

SMAs. They are at best 10% efficient, and often very slow. They also need a force in 

order to return them to their extended state, and get as hot as 150C, hot enough to melt 

many materials. They may also have a short fatigue life. One possible alternative that I 

explored used micro-hydraulic tubing to run the hoop actuators. The hydraulic actuators 

would expand the hoops against a return spring. The tubing would also act as the braided 

mesh, similar to how the SMA concept used the wiring harness as a braided mesh. This 

would also allow a single hydraulic pump at the end of the robot. This concept is 

discussed in Chapter 4.3.  
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 Finally, I came up with a cable driven system that would be a dynamic inverse of 

the hydraulic arrangement. Hoop actuator cables would squeeze the robot against a 

lengthwise return spring, which would be coupled due to the braided mesh. These cables 

could be routed through the hollow braided mesh and controlled at the end of the robot 

with a single cam mechanism. With the lengthwise return springs, the bolus of fluid from 

earlier versions was no longer needed, leaving the entire robot interior free for payload 

space.  

 While I often received enthusiastic responses when I presented our worm robot 

concept at conferences, some people expressed skepticism that it would work. Since I 

suspected this was part of the reason finding grant money was so difficult, it made sense to 

simply go ahead and try to build a prototype. I knew building a very small scale prototype 

would be much more difficult, so I chose a scale that could be assembled by hand with off 

the shelf components to demonstrate the principle of motion and the actuation method. 

This design went through several iterations, resulting in the final prototype (Figure 1). All 

of Chapter 5 is dedicated to describing this design process. 

 While several groups have studied peristalsis, we found the previously developed 

analytical tools lacking for an implementation like ours that could generate smooth waves 

of motion. We therefore began to develop a differential model of peristalsis that could be 

understood using integrals, as opposed to large summation techniques. Several interesting 

and counterintuitive conclusions can be drawn from the model, including that the internal 

forces due to the accelerating and decelerating segments can cancel. I also modified the 

idealized model to account for losses due to both slip and the mechanical coupling within 
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segments (loss of strain). This approach is detailed in Chapter 3, and I compare the 

analytical model to the motion of the robot in Chapter 9. 

  In contrast to the continuum assumptions of the analytical model, I also developed 

a 2-D dynamic simulation using Working Model 2D (Design Simulation Technologies, 

version 9.0). Each simulated body segment consists of a modified four-bar mechanism, 

where each bar is split into three pieces joined by a torsional spring. This approximates the 

ability of the braided mesh to bend, an essential capability for wave formation. The 

number of segments tested ranged between six and twelve. Each ‘muscle’ or actuator was 

simulated using a stiff spring-damper system, in which the rest length of the spring was 

driven by a periodic function. This method is described in Chapter 7 and compared to the 

analytical model in Chapter 9. 

We thus have three different ways of studying peristalsis: an analytical model, a 2-

D dynamic simulation and a physical model. Each approach highlights different properties 

of peristalsis, and I discuss and compare them in Chapter 11.  

 

1.2 A BRIEF HISTORY OF A SOFT BODY CONTROLLER 

With the success of the final robot, we were strongly encouraged to continue our 

study of peristaltic locomotion. While the prototype worked very well on flat ground, it 

could only passively adapt to the terrain. More complex environments require active 

turning and rearing. Towards this end, I began to work on soft-bodied control architectures 

with two other graduate students, Andrew Horchler and Kendrick Shaw. Together with 

our advisors Roger Quinn and Hillel Chiel, we wrote an NSF grant aimed at developing a 

new kind of controller based on simulating neuronal populations. In the long term, we aim 
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to model these populations using a set of dynamical systems called stable heteroclinic 

channels (SHCs). 

I had previously developed a model of the human primary visual cortex using the 

Wilson Cowan model of neuronal behavior (Chapter 2.6). This method has many features 

in common with SHCs, but characterizing a given Wilson-Cowan network as such is 

problematic. Wilson Cowan neuronal models use very diffuse connections among large, 

continuous groups of neuronal populations, which makes the process of mathematically 

verifying limit cycles or heteroclinic channels difficult or impossible. Nonetheless, my 

familiarity with the dynamical properties of Wilson Cowan models allowed me to identify 

a straightforward way to develop a soft-body controller that could generate a diverse and 

controllable set of patterned activation (Chapter 8). I was able to test this control algorithm 

on a quasi-static model of a worm robot with up to 150 degrees of freedom. This allowed 

me to simulate stretch receptors in the worm, which likely play a key role in wave 

propagation. By blending stretch receptor signals with the existing dynamics of the control 

network, I as able to show how such a signal could possibly modulate patterned muscle 

activations (Chapter 9) and increase efficiency over the open-loop controller. This 

approach will hopefully inform the morphology of a future SHC approach.  

Soft-bodied robotics remains one of the most challenging areas in robotics, one 

that also offers great rewards. I conclude this work by outlining some avenues of future 

research in Chapter 12. With our recent advances in understanding, I feel that soft-bodied 

robots are very close to the point where they will have unprecedented locomotive abilities, 

and this in turn will open up many new applications.  
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Over the course of my research, I have transitioned from studying the mechanics 

of peristalsis to studying the control of it. While these two areas are somewhat distinct, it 

has become clear to me how one has led into the other. Many times, insights gained from 

studying the mechanics of the motion directly informed the structure of the control 

network. I hope this work will help advance the state of the art in both the mechanics and 

control of soft-bodied robots.  
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2 Background 

2.1 POTENTIAL APPLICATIONS 

There is much to learn from studying soft-bodied invertebrates, such as leeches, 

worms, caterpillars and slugs. There are countless applications for a robot that could begin 

to approach the level of performance these animals achieve. This research will focus 

mainly on peristaltic crawling. At a larger scale, such a robot could be used for water main 

maintenance, where the robot could navigate within a functioning water main to detect 

leaks. It could be used for search and rescue, where the robot could move through rubble 

piles, and push large obstacles out of the way where need be. It could be used to diagnose 

large complex machinery without disassembly, such as jet engines and airplane wings, 

which often have fuel tanks that need to be regularly inspected and cleaned. A wormlike 

cable sleeve could be used to prevent robotic cable tethers from getting hung up on 

obstacles during search and rescue missions. Likewise, a wormlike fire hose would also 

benefit from this.   

At a smaller scale, a wormlike robot could be used for reconnaissance within a 

building. It could be used to burrow through soil to install deep cables. It could be used to 

take samples deep underground with little disturbance to the environment. Several 

biomedical applications also likely exist. One could use a peristaltic robot as an 

endoscopic assist, so that the endoscope is being gently pulled instead of pushed through 

the large intestine. It could also be used to explore the small intestine in a similar manner, 

or swallowed as a camera pill that can actually locomote and take biopsies. One could 
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even possibly make a worm robot small enough to travel within arteries and act as a self-

deploying stent. These are just a few of the possible applications that we have come across 

over the years, but there are likely many more. It is clearly an area of research worth 

pursuing.  

There are several areas of ongoing research that have important consequences to this 

work. It is important to have a familiarity with the desired behavior of the animal (Chapter 

2.2), and recent robotic implementations (Chapter 2.3). Some knowledge of the 

neuroethology of animals that exhibit the behavior is important (Chapter 2.4), as well as 

attempts to model the control networks in the animal (Chapter 2.5). Lastly, a familiarity 

with the dynamic properties of neural control circuits is needed (Chapter 2.6).  

 

2.2 STUDIES OF PERISTALTIC LOCOMOTION 

Soft bodied animals achieve their robust and flexible behaviors by deploying 

muscle groups arranged in ordered configurations—longitudinally, circumferentially, or 

helically. These animals flexibly move in a variety of ways, including peristaltic crawling, 

anchor-and-extend, and swimming [Brusca 1990]. These soft structures can be grouped 

into two categories: hydrostatic skeletons [Skierczynski 1996] and muscular hydrostats 

[Kier 1985]. Hydrostatic skeletons have a central fluid-filled cavity. Contraction of a 

muscle component of the cavity induces an expansion of other parts of the cavity and of 

its surrounding muscle, allowing the fluid to act as a mechanical power transmission. In 

contrast, muscular hydrostats, such as tongues, trunks and tentacles have no central fluid 

filled cavity and therefore have higher power-to-mass ratios. Robots modeled after 

hydrostatic skeletons could potentially replace a fluid filled cavity with large payload 
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space, while robots modeled after muscular hydrostats would likely have a better power to 

weight ratio.  

Peristaltic locomotion has several interesting properties that at first might seem 

counter-intuitive. The waves of expansion and contraction flow in the opposite direction 

of the robot motion [Gray 1938]. This is a direct result of the anisotropic strain properties 

of the body [Alexander 2003]. When a section leaves the ground, a new ground contact 

point forms directly behind it. The contracting section will accelerate outward axially, but 

that motion is constrained on the rear side by the new ground contact point, so the segment 

must move forward (Figure 4). 

 
Figure 4: An illustration from the first known motion-capture of worm peristalsis (out of 

copyright) [Gray 1938]. Rearward travelling waves (down) create a forward progression 

(up) over time (horizontal axis). Note that while the head appears to slip backwards, it is 

likely not ever touching the ground. In contrast, the segments along the rest of the body do 

not slip backwards. The progression of given segments is shown in wavy lines from left to 

right, where segments in ground contact are shown with a dark dot.  
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Chapman investigated the role of the body fluid in the locomotion of the earthworm. 

Using a mathematical model of an incompressible fluid, he predicted the strength 

relationship between longitudinal and circumferential muscles. He then took 

measurements from earthworms of the cross-sectional areas of both and found that the 

longitudinal muscles have ten times the mechanical advantage as the circumferential 

muscles. The author suggests that this may be in part due to the need to widen the hole 

that the earthworm travels through, and generate friction [Chapman, 1949]. These results 

are also consistent with much later findings that during burrowing, the soil is pushed 

almost entirely perpendicular to the motion path [Barnett 2009]. Worms burrow by using 

their bodies as thin wedges. Longitudinal muscles may also be significantly larger because 

of their involvement with a thrashing escape response. Chapman’s group found a 

theoretical relationship between length and circumference based on a hydrostatic fluid. 

They noted that this relationship gives the worm its maximum mechanical advantage 

when the circumference is large (ie, fat worms), but the strain is greatest when the worm is 

already very narrow and long [Chapman, 1949]. We will see later that this relationship is 

inverted with a braided mesh approximation of a hydrostatic body. 

The kinematics [Quillin 1999] and dynamics [Quillin 2000] of earthworm 

locomotion have been most recently studied in detail by Quillin, who defines worm speed 

as: 

   (2-1) 

While this observational model accurately characterizes earthworm locomotion on flat 

ground, it does not capture or explain the causes of slippage, and therefore tends to 
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overestimate the predicted speed of worm-like robots. For this reason, an observational 

measure of ‘efficiency’ is frequently used to describe the discrepancy, defined as the ratio 

of the effective stride length over the predicted stride length [Zarrouk, et al. 2010].  

 (2-2)  

  There are many factors that affect the speed and efficiency of peristalsis. 

Alexander has focused on the need for anisotropic friction, where the worm or robot is 

always touching the ground, but slides forward with less resistance than when it slides 

backwards. The setae of earthworms contribute to this asymmetry, as well as the 

decreased diameter of the worm during forward motion. He suggests that because of the 

small mass of earthworms (1-9 grams), these friction forces dominate over any inertial 

forces. [Alexander 2003]. While there are certainly times when this is the case, his 

analysis assumes that the forward moving coefficient of friction is on the order of 0.1, 

whereas it may in fact be zero if the worm is lifting the segments off the ground. 

Furthermore, because the robots that we are aware of weigh significantly more than an 

earthworm, the dynamic effects on robots are likely much more substantial.  

Zarrouk et al. take a similar approach to Alexander, but also model the slip caused 

by the flexibility of the substrate (such as an artery wall, intestine, or possibly soil). They 

use a quasi-static approach, and assume that the accelerations and decelerations of the 

mass of the robot do not affect the motion. In this model, friction between the worm and 

the substrate is needed to overcome external forces such as gravity, and forces caused by 

dragging the forward-moving segments across the substrate. These forces push the body 

backwards proportional to the stiffness of the substrate [Zarrouk 2010].  

Efficiency =
Observed Stride Length

Predicted Stride Length
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  Both of these analyses leave open the possibility that the dynamic forces within the 

worm could potentially cancel, meaning that peristalsis would only require friction (or 

ground reaction forces) in order to accelerate or borrow. The conditions that make this 

possible are explored in Chapter 3. 

 

 

2.3 ROBOTS THAT ATTEMPT PERISTALSIS 

Designing, building and controlling hyper-redundant robots is challenging [Tesch 

2009, Transeth 2009]. Therefore, robotic implementations typically simplify the problem 

by reducing or grouping the degrees of freedom [Menciassi 2004, Lee 2010, Trimmer 

2006], and or by replacing continuously deformable soft bodies with rigid joints [Wang 

2007, Omori 2009]. These simplifications come at a cost to multifunctional flexibility and 

performance. Vertebrates such as snakes and salamanders are also hyper-redundant, but 

not soft, and for this reason, robotic implementations inspired by them have had more 

success [Hirose 1993, Ijspeert 2007]. However, snakelike undulations do not work in the 

most confined spaces or where burrowing is required. I will briefly discuss several robots, 

which in some cases were developed concurrently or after our robot prototypes. 

The Biorobotics group at Case Western has a long history of working with soft 

robotics. An underwater Shape Memory Alloy robot with a hydrostatic skeleton was 

developed by Ravi Vaidyanathan and my co-advisors, Roger Quinn and Hillel Chiel. It 

consisted of three segments, each of which had the ability to actuate left-right and up-

down using bands of Nitinol wire. The robot had a maximum speed of 0.6 cm/second, or 

2.5 body lengths per minute, but this required a combination of angled spiked feet on 
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Styrofoam that allowed it to generate large anisotropic friction. The robot also required a 

large offboard power supply. Nonetheless, it may have been the first underwater 

hydrostatic robot, and it was able to turn and navigate around obstacles [Vaidyanathan 

2000].  

Based on this work, a wormlike robot was developed using long artificial muscles 

in series (Figure 5). The artificial muscle consisted of a braided mesh that was used to 

create a material with anisotropic strain properties. Compression along one axis caused 

expansion in another. In this case, the material was woven into a cylindrical shape and a 

bladder inflated the cylinder, pushing outward radially, which caused axial contraction 

[Mangan 2002]. This robot had much in common with most robots attempting peristaltic 

motion: a small number of identical segments (often three) attached in series, each of 

which could alternately contract axially and expand radially [Trivedi 2008 (review), Dario 

2004, Menciassi 2004, Wang 2007; Omori 2009, Seok 2010]. In these robots, the area in 

between each segment is not actuated. This ubiquitous trend in robot design is consistent 

with the way peristaltic motion is explained in the literature, in which a small number of 

segments are used to approximate continuous small muscle movements for clarity 

[Alexander 2003]. There also may be a tendency among engineers to reduce and simplify 

the design as much as possible. However, earthworms have as many as 150 segments 

generating a single wave. This allows the wave to travel smoothly down the body [Quillin 

1999].  The segmented approach is more suited to modeling animals that do have large 

segments, such as caterpillars [Trimmer 2006] or inchworms [Vaidyanathan 2000, Cheng 

2010], where whole body motion is coupled with strong anisotropic friction or gripping in 

order to achieve locomotion. A notable exception to a segmented soft body approach is an 
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amoeba-inspired robot that does not use peristaltic motion, but has a novel whole-body 

method of locomotion [Ingram 2005].  

The previous robot  by Mangan et al. [2002] moved much more slowly than 

expected. It would often appear to slip backwards, or have difficulty progressing when an 

obstacle landed between actuators. This led to a maximum robot speed of 0.3 meters per 

minute, where over 80% of the theoretical speed was lost. The slipping, which may be 

common among all robots attempting peristaltic motion, has led investigators to conclude 

that friction was important for this mode of locomotion [Alexander 2003, Menciassi 2004, 

Zimmermann 2007, Zarrouk 2010]. Also, the robot’s power requirements were 

substantial: it required an off-board pressurized air supply. These issues were the impetus 

for re-evaluating our understanding of peristaltic motion and its implementation in a 

robotic platform.  

 
Figure 5: (Left) A previous worm-like robot with discrete actuators surrounded by a 

braided mesh. (Right) The inner actuator core that inflates the mesh [Mangan, et al. 2002].  
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After we began presenting many of the ideas developed in this thesis, another 

group began exploring the use of a braided mesh and SMA actuators. Instead of using a 

bolus of fluid to expand the SMAs as we proposed, they chose to fix the total length of the 

robot with a rigid structure so contracting elements forced other expanding elements open. 

This approach had some success, but could not return the hoop actuators to their original 

rest length. And instead of creating a smooth wave of motion, like many other groups they 

chose to simplify the design by only having five segments along the body [Seok 2010]. 

While their overall design proved to be very robust to rough treatment, the above design 

choices likely contributed to slip. Their final robot speed was 0.2 meters per minute, or 1 

body length per minute.   

 

2.4 STUDIES OF THE NEUROETHOLOGY OF PERISTALSIS 

The neuroethology of earthworms has been studied in some detail. I will outline 

several findings that contribute to the structure of the simulated neuronal controller that is 

developed in Chapter 8.  

Many early studies relied on novel techniques for deducing some properties of the 

system. In one experiment, it was shown that if a worm was cut in two sufficiently far 

from the head, and then a string was tied between the two parts, that the wave of motion 

would propagate uninterrupted from head to tail through the string (described by [Gray 

1938]). Similarly, a worm suspended from its head by a string will naturally generate 

waves of motion. However, if the worm is dipped into a solution such that it is neutrally 

buoyant, this motion will stop [Gray 1938]. These findings strongly suggest that stretch 

receptors play a direct role in transmitting the neuro-muscular control signal down the 
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length of the worm. In contrast, decreasing activity has been found in the nerve cord in 

vitro, from head to tail during fictive locomotion [Gray, 1938]. However, this fictive 

locomotion did not have the same frequency, strength or regularity of an intact worm. This 

suggests that there may be a gradual transition from head to tail between top-down pattern 

generator locomotion and sensory-driven locomotion. Ultimately, the nature of the neuro-

ethology of peristalsis is still not understood. Models such as the one presented in Chapter 

8 could potentially play a role in understanding possible architectures. 

Several sensors have been identified in the earthworm Lumbricus Terrestris. These 

include exteroceptors such as touch sensors (via a cuticle), chemo sensors, photo sensors, 

and proprioceptors such as the pressure of the coelomic fluid and stretch receptors within 

the muscle body. Interestingly, some studies have found that while each segment 

contained all of the above sensors, the ganglia within each segment respond to stimulus 

from several nearby segments. That is, sensory input is likely diffuse and continuous. It is 

also interesting to note that the pressure of one segment directly affects the pressure of an 

adjacent segment [Chapman 1949], providing a mechanical coupling that has 

consequences for the dynamics of motion, and must also affect proprioception. Lastly, the 

neuro-morphology of each segment is highly regular, increasing the likelihood that 

organized reflexes could play a key role in locomotion [Gardner 1975]. 

  

2.5 RHYTHMIC BIOLOGICALLY INSPIRED CONTROLLERS 

Biologically inspired control strategies are particularly exciting because these 

systems in nature simply work much better than the state of the art. Animals across a 

broad spectrum are extremely good at integrating large amonuts of sensory input and 
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acting in a manner that is beneficial to the survival of the species. This method of control 

may be inherently non-logical. That is to say, a worm does not reason its way along as it 

burrows. Nor do humans, for that matter, use their logical facilities to walk down a 

hallway. While animals do learn, they do not have to use logic to do so. So what exactly is 

it that we all are doing when we navigate our enviornments? Whatever it is, it has the 

ability to run in the background, which makes it very powerful. We can actually reason 

and think while we walk. It is only through the development of habbits, or in this case, 

habitual motions, that we learn these tasks and do them well [Aristotle 1962]. This is all to 

say that if we want to make robotic platforms that navigate even moderately complex 

environments, then we should be learning how to program in this other language, the 

incredibly robust and adaptive language of neuro-muscular systems.  

There are many major challenges to developing these control systems. It is often 

said that a controller needs to be robust yet adaptable [Rabinovich 2008]. That is to say, 

robust against noise, and still able to change behaviors. These two goals can be difficult to 

achieve at the same time. At one extreme, you have a controller that does one thing 

robustly, regardless of its environment (which can only be useful in a highly controlled 

environment), and at the other, you have a controller that can do anything, but never 

knows when to do what. As robots move out of the factory and into far more complex 

environments, they will need to be far more adaptable than the state of the art.  

While the above distinction is useful, the situation is far more complex at the 

ground level of the controller. One problem is that noise is implicitly defined either as 

information that doesn’t matter, or doesn’t correlate to something in the world. This 

assumes one knows what matters. The random firings of neurons can play an important 
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role in the dynamics of the system. Furthermore, adaptablity simply means changing 

behaviors when it is optimal to do so (under some standard of optimality). So all of this 

could be simplified to say that a controller is robust and adaptable when it does what you 

want it to. Slightly less pessimistically, we can say that given all the information that 

could possibily be available to a controller, that a good controller has the ability to sense 

the environment enough to act in some optimal way. 

Many groups have used neuroethological studies and neurally-inspired control to 

tackle the problem of generating robust motor coordination for hyper-redundant systems. 

By coupling central pattern generator (CPG) controllers to different degrees of freedom, it 

is possible to create coordinated rhythmic behavior in hyper-redundant robots (e.g., 

swimming in robotic lamprey [Ayers 2000] and knifefish [Zhang 2008], walking and 

swimming in a salamander robot [Ijspeert 2008], and undulatory locomotion in a snake 

robot [Matsuo 2008]). The CPGs are based on limit cycle oscillators that drive each 

segment with a stable rhythmic pattern. Adjacent segments are then coupled via a phase 

offset to achieve waves along the length of the body.  

The approach of Wadden, et al. [Wadden 1997] has some similarities to our 

approach. While there are a finite number of CPG like elements, they are diffusely 

connected to as many as seven other elements in order to model swimming behavior in the 

lamprey. They use Hodgkin-Huxley model neurons, which are often more detailed than is 

needed for most engineering applications and require a great many parameters to be 

specified. This approach was able to generate smooth waves of varying frequencies. 

Another group very recently presented a neuromechanical model of the nematode, 

C. Elegans. While this work was developed concurrently with our research, many of our 
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findings are similar, in spite of working on different animals that exhibit different motions. 

Nematodes locomote with an up-down wavelike whole-body motion. This species of 

nematode only has 302 neurons (it is about 1mm long) and the system has been 

completely mapped. Furthermore, the functions of many of the neurons have been 

explored through genetic studies and targeted cell killing. They model the entire neuronal 

structure within a simulated muscular structure that can navigate simulated environments 

such as water, agar, and soil. The neurons are simulated as binary units that are either on 

or off, and are switched when their synaptic inputs reach above threshold values. It was 

recently shown that this species of nematode smoothly change their body motion as the 

viscosity increases. This group postulated that stretch proprioceptors alone could result in 

this change of motion with no top-down modulation, and their simulation shows this may 

be feasible [Boyle 2012].  

In order to get their network to generate waves of motion, they made several 

choices that mirror our work in wormlike peristaltic networks. They weakly inhibit 

opposing muscle groups to prevent co-contraction (and probably help wave propagation). 

The stretch receptors directly excite the local group of neurons when stretched. However, 

the stretch receptor influence is highly asymmetrical, in that it affects only neurons 

posterior to the stretch [Boyle 2012]. The reach of a given stretch receptor then determines 

the spatial wavelength. While a good deal is known about the neuro-morphology of 

nematodes there is no specific evidence regarding these design choices, so it is very 

interesting that both their group and ours have come to similar design choices. 

They claim that the network itself is not a central pattern generator (CPG), which 

we take to mean that it does not show sustained patterned activity without sensory input 
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[Pearson]. While this may be true in the traditional sense of a CPG, it may be possible that 

the network as a whole would respond in a patterned way to tonic excitatory inputs - if the 

experimenters were attempting to find such a method of excitation. Nonetheless, it is 

interesting that only the sensory feedback is a-symmetrically connected to the network, 

and the internal excitatory connections are not, and in this model, it is sufficient to 

generate patterned activity under environmental stimuli. 

 

 

2.6 WILSON-COWAN MODEL OF NEURONAL POPULATIONS 

The spatially-extended Wilson-Cowan model of neural population activity was 

originally developed as a tool for modeling the primary visual cortex. The synaptic 

connections of this region of the brain have an interesting shift-twist symmetry, whereby 

the connections are similar among layers of the cortex if you both rotate and translate a 

given layer. By combining this symmetry with an approach that averages the activity of a 

population of neurons, they were able to find several analytical solutions to the differential 

equations that describe the time rate of change of the neuronal populations long before 

numerical methods became widely available [Ermentrout 1979]. These solutions describe 

certain stable spatial activity patterns that also correspond to visual phenomena that have 

been widely reported across cultures (Figure 6). 
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Figure 6: Graphical representations of four classes of “Form Constants” that have been 

observed across cultures [Bressloff 2002]. They are considered phosphenes, or visual 

pheonomena that do not correspond to light coming into the eye.  

 

As part of a class in computational neuroscience, I built a numerical simulation of 

the primary visual cortex using Wilson-Cowan dynamics that also incorporates stochastic 

phenomena and simulated sensory input from the retina (Figure 7). This allowed us to find 

non-symmetric steady-state solutions to the state equations that also correspond to 

observed phenomena. While exploring this system, I discovered that shifted inhibitory 

connections caused lines to move over time. This gave me the idea that a similar 

dynamical system could be applied to generating continuous peristaltic locomotion. Since 

the neuro-morphology of the earthworm is highly regular, we can assume that it is shift-

symmetrical, and thus use these powerful modeling techniques.  
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Figure 7: A screen shot of a simulation of the primary visual cortex as it is being exposed 

to an image of a bridge. This region of the brain finds and begins to connect line segments 

within an image, and tracks them over time as they move. The color is representative of 

the angle of the line in cortical cordinates, which the brain is able to sense. 
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3 A New Theory of Peristaltic Locomotion 

 

3.1 INTRODUCTION 

Once we began looking at ways of making continuously deformable structures, we 

realized that previous analyses of peristalsis had focused on the segmentation of 

earthworms. Even the most accurate previous models of earthworm locomotion 

[Alexander 2003] were limited in their conclusions by assuming segments were in either 

one of two states. While these models can have arbitrarily large numbers of segments, 

there has been little consideration for treating the body as a continuum structure. 

Earthworms can have up to 150 segments, but typically only express one to two waves per 

body length. In addition, the mechanical coupling of the segments tends to further smooth 

the waveform. For these reasons, we have developed a continuum model of peristalsis that 

accounts for the internal kinematics and dynamics of the motion. The derivations below 

begin with any waveform (strain function) and then proceed to examine temporally 

periodic waveforms. 

 

3.2 A DIFFERENTIAL MODEL OF POSITION AND VELOCITY 

We can develop a differential model of peristalsis by first looking at discrete 

segments, and then taking the limit of small segments to reach the continuum limit. This 

approach was originally developed with the help of my co-advisors, Roger Quinn and 

Hillel Chiel, and later refined with the help of Kendrick Shaw.  
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Consider a small axial element on the front of the body of a worm or wormlike 

robot with an undeformed (resting) length of l (shown in Figure 8 as a small rectangle). 

Let us assume that the strain this element will experience can be defined by a 

function, (l,t), where l is a distance from the back of the element to the head of the robot 

when all of the segments are experiencing zero strain (which we will refer to as 

undeformed coordinates). This strain is defined according to the engineering convention 

as 

l
*

l

l
, which becomes

l
*

l
1

,
      

 (3-1) 

in the continuum limit.  Here l
*
 is the new deformed length of the segment under strain 

and l
*
 is the new distance to the head of the deformed robot (which we will refer to as 

deformed coordinates, and signify using an asterisk).     

We next calculate how a deformation changes the position of the element at position Li 

in undeformed coordinates.  The change in length of an individual segment is just the 

strain times its original length, i.e. (Li,t) l.  The change in distance to the head of the 

worm, which we will call P
*
, is the sum of the changes in length of all of the segments 

between this segment and the head of the worm (see figure 3, which shows how this sum 

is built up as the wave of deformation proceeds along the length of the robot),   

P
*
(Li,t) = Li

*
Li = (L j ,t) l

j=1

i

= ( j l,t) l
j=1

Li / l

.   

 (3-2) 

The rightmost equality is due to the identical undeformed length, l, of all of the 

segments, so that Lj = j l. A similar summation approach was used by Alexander 
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[Alexander 2003]. However, here we will take the limit as the segment size becomes small 

to create a continuum model.  In this limit, we see that the change in position induced by 

the deformation is 

P
*
(Li,t) = lim

l 0+
( j l,t) l

j=1

Li / l

= (l,t) dl
0

Li

.

 (3-3) 

Although many types of deformations are possible, traveling waves are of particular 

interest for peristaltic locomotion, so we will examine them in detail.  We will focus on 

smooth, bounded deformations with a constant shape and wave velocity Vwave relative to 

the head of the worm in undeformed coordinates, so that  

(l,t) = (l t V
wave
) . (3-4) 

This is equivalent to saying that a given segment will change shape in a manner 

identical to the segment right in front of it, but at a later time. One can think of it as a fixed 

deformation wave that passes through the worm or robot at a constant speed, Vwave.  
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Figure 8: The first three segments of a wormlike body and their deformations over four 

time steps. Two different coordinate systems are used, one measuring distance from the 

head of the robot to a point on the body in the undeformed robot, and the other measuring 

distance from the head to a point on the body in the robot during the deformation 

(signified by a '*').  The difference between the two is the sum of the deformations 

between the point on the body and the head (equation 3-2). This sum becomes the integral 

of the strain function as the segments become differentially small and the structure 

becomes a continuously deformable body (equation 3-3).  Thanks to Kendrick Shaw for 

helping with this figure.  

 

 

Substituting equation 3-4 into equation 3-3 and differentiating with respect to time, we 

can find the velocity in deformed coordinates of a point on the worm relative to the head 

at the (undeformed) position L at time t,  
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V
P

*
(L,t) =

d

dt
P
*
(L,t) =

P
*

t
+

P
*

L

L

t
=

P
*

t
+ 0 =

t
(l t V

wave
) dl

0

L

=
t

(u) du
t Vwave

L t Vwave

=V
wave
( ( t V

wave
) (L t V

wave
))

  (3-5) 

Since L is constant, the partial derivative of P* with respect to time is the only term that 

carries through. Lastly, a substitution of variables allows us to evaluate the integral since 

we have assumed a constant wave speed, Vwave,. The result is a product of the wave 

velocity and the difference of strains at the two points.  Thus increasing the differential 

strain or increasing the wave speed will proportionally increase all velocities between 

points on the worm and thus increase the speed of the worm.  

If we choose any two points on the robot L1 and L2 (in undeformed coordinates), we 

can calculate the relative velocity between the two points in deformed coordinates using 

equation 3-5: 

Vdiff
*
(L1,L2 , t) = VP

*
(L1, t) V

P

*
(L2 , t) = Vwave ( (L2 t Vwave) (L1 t Vwave)).  (3-6) 

Note that this relative velocity will be zero when the strain is equal at the two points.  This 

has important consequences for the design and performance of a peristaltic robot.  If two 

ground contact points are traveling at different velocities on a rigid substrate, one or both 

of the contacts must slip.  Because the diameter of a point on the robot is a function of the 

strain at that point, all points of ground contact must maintain identical diameters to avoid 

slipping.  Thus any contact that occurs at a point of different diameter due to tipping or 

drooping under gravity will result in some degree of slip.   
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3.3 CALCULATING POSITION, ACCELERATION, AND GROUND CONTACT FORCES 

We will use a few additional results from the analytical model to evaluate the 

performance of the robot.  The position of the head of the robot as a function of time is 

easy to measure on the robot, and thus a useful point of comparison with the analytical 

model. Using equation 3-6, if one of the two points is in contact with the ground and not 

slipping, and the other point is the head, then the velocity of the head can be described as, 

Vp

*
t( ) = tVwave( )Vwave  .   (3-7) 

By taking another derivative with respect to time, the acceleration between the front of the 

robot and the nearest ground contact point is 

A
P

*
t( )

.  (3-8) 

Note that posterior parts of the robot will experience these same velocities and 

accelerations after a delay of L/Vwave. So the maximum acceleration of a given segment 

scales with the square of the velocity of the wave, and the time derivative of the strain 

function. This has implications for the scalability of worm robots. It is not surprising that 

even with smooth traveling waves, the profile of the deformation wave affects the 

maximum accelerations that are experienced. For instance, a square wave would require 

infinite acceleration. 

The sum of the forces that produce the accelerations given in (3-8) must be equal and 

opposite to the ground reaction forces at the ground contact points. Therefore we can find 

the total ground reaction force, F, by integrating spatially over the segments that have left 

the ground. 

=
dVp

dt
=
d

dt
t Vwave( )Vwave = Vwave

2   t Vwave( )
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,  (3-9) 

where  is the linear density of the robot. Thus, the required ground reaction forces are 

proportional to the linear density, the square of the velocity of the deformation wave and 

the strain.  Note that even if the deformation wave, , is not periodic, it is likely to return 

to zero at some point, i.e, the differential segment returns to its initial length. When it 

does, the velocity of that segment will also return to zero according to (3-7). Likewise 

with the forces, if  returns to zero as new ground contact occurs, then, as (3-9) shows, the 

force at both ground contact points will also go to zero. In effect, the internal forces of the 

waveform must cancel. An important condition for this is that the structure is continuously 

deformable. 

Looking at a single wave, one can see that (3-9) must hold in order to not have an over 

constrained system, but only for each wave independently. Thus, once a waveform has 

started, it is best for it to pass through the robot unchanged. The next waveform, however, 

can be different, but if its total displacement is different, then there will be forces acting 

on the body, and those forces will be proportional to acceleration of the body relative to 

the last wave’s resultant velocity. This means that given these circumstances, external 

forces are not needed to maintain locomotion. If one draws a box around the worm and 

considers it as a free body, the ground contact forces are the forces that will accelerate the 

center of mass of the worm. So by showing in Equation 3-9 that the ground contact forces 

equal zero, by Newton’s second law, the center of mass of the worm must not be 

accelerating - it must have a constant velocity. Kendrick Shaw was able to find the 

velocity of the center of mass in a more extensive derivation and verified that this is 

F = V
wave

2   (t l /V
wave

)V
wave( )( )

0

tV
wave

dl

= V
wave

2
( tV

wave
)
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indeed the case [Boxerbaum 2012]. In this way, the motion is analogous to a wheel rolling 

on flat ground: points along the circumference are accelerating, but the wheel’s center of 

mass rolls at a constant velocity and requires no external forces. Unlike a wheel, 

peristalsis still requires internal forces due to the accelerating and decelerating mass of the 

body. Therefore, mechanical work is still required for the system.  

This analysis has made several assumptions, such as that there are no errors in slip or 

strain. To make the model more useful for analyzing the performance of an actual robot, 

slip and strain losses will be incorporated into the model in the next section. 

  

3.4 ADDING SLIP AND STRAIN ERROR TO THE ANALYTICAL MODEL 

While our analytical model shows that good ground contact timing can eliminate a 

cause of slippage, it cannot yet predict the magnitude of that slippage. Future 

incorporation of friction models similar to [Zarrouk 2010] will help to that end. Also, the 

strain that occurs in a soft body may be less than predicted. We can measure the slippage 

and the strain that occurs in a robot prototype or simulation. Here, we propose a 

straightforward modification of the analytical model that allows us to describe both the 

slip and strain loss. Given a periodic deformation wave expressed by  and a constant 

wave velocity, the position of a point P
*
 in deformed coordinates can be found as a 

function of time by replacing L with t*Vwave and dl with dt*Vwave in equation 3-3. Now, 

P
*
t( ) =Vwave

tV
wave( )dt

0

t

 .  (3-9) 

If there were no slip or strain losses, this equation would describe the motion of our robot 

described later. However, we can account for these losses with minor changes: 
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P
*
t( ) =Vwave Qstrain tVwave( ) Qslip( )( )dt

0

t

. (3-10) 

Qstrain is the differential equivalent of the traditional efficiency function. If a differential 

element only expands to 80% of its intended maximum length, then Qstrain = 0.8. This 

value can be measured directly from the robot or simulation. If you know the actual strain 

that is being produced, either from motion capture data or simulation outputs, then Qstrain is 

not needed. Qslip is the factor that accounts for slippage. The integrand of Equation 3-10 is 

still the velocity of the point on the body, so Qslip can be found experimentally by finding 

the time at which the point has zero velocity, and starts to move backwards. Both factors 

can vary with time, depending on external forces and variations in morphology or control. 

Since our prototypes will be continuous and shift symmetrical, we will assume the values 

remain constant. If measurements of Q from the prototype or simulation are not 

straightforward or reliable, these factors can also be found by comparing the analytical 

model to a simulation or prototype and applying a least squares curve fit method. This can 

help diagnose the kind of inefficiency that is occurring that reduces the robot’s speed.  
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4 A New Robotic Platform that Generates Continuous Waves of 

Peristalsis 

 

4.1 ANISOTROPIC STRAIN VIA A BRAIDED MESH 

Earthworms have continuous sheets of both axial and circumferential muscle fibers 

that work together to create waves of peristaltic motion. During forward locomotion, these 

two muscle groups are coupled by segments of hydrostatic fluid, creating a hydrostatic 

skeleton, and are typically activated in alternation at a given location along the body. In 

the new robot design, we use a braided mesh similar to that used in pneumatically-

powered artificial muscles [Quinn 2003] to create this coupling between axial and 

circumferential motion with a single hoop actuator. The robot is still cylindrical in shape, 

but the outer wall now consists of a single continuous braided mesh (Figure 1). Any 

location along the braided mesh can be fully expanded or contracted. Hoop actuators are 

located at intervals along the long axis, close enough together that smooth, continuous 

waves can be formed. When these hoop actuators are activated in series, a waveform 

travels down the length of the body. The result is a fluid motion more akin to peristaltic 

motion than that generated by previous robots [Boxerbaum 2009].  

 

4.2 ACTUATION USING SHAPE MEMORY ALLOYS 

The kinematics of peristaltic motion are entirely scale invariant. At any given 

scale, a cross-hatched mesh needs to be constructed with the correct stiffness, and a 

suitable actuation method found. Here, I briefly propose two methods of construction at a 

very small scale. 
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A robot with a diameter on the order of one centimeter would have applications in 

medicine, including examination of the entire gastrointestinal tract, as well as applications 

in search and rescue environments and military reconnaissance. Shape Memory Alloys 

(SMAs) are a good candidate for actuation at this scale. Micro helix SMAs have strain 

ratios of up to 200% and can be actuated in 0.2 seconds [Menciassi 2004]. One challenge 

of working at such a small scale is how to get the SMA actuator to return to its initial 

position. It must cool down, and a force must be applied to restore it. Seok, et al. address 

this problem of re-extending the actuators by mechanically fixing the length of the robot, 

so one constricting SMA forces others open. This method succeeded in producing 

locomotion, with losses due to the uneven expansion cycle [Seok 2010]. Here, we propose 

a method of returning the SMA to its original state that relies on a hydrostatic fluid. This 

fluid could also serve to cool the SMAs, and speed up the cycle, as other groups have 

shown [Mascaro 2003]. We also propose that the wiring for the SMA actuators can also 

constitute the braided mesh (Figure 9) [Boxerbaum 2009].  
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Figure 9: SoftWorm robotic concept using shape memory alloys and a hydrostatic fluid as 

a return spring.  

 

 
Figure 10: A cross sectional view of the SMA concept. The brown arrows indicate the 

flow of the exterior braided mesh. The blue arrows indicate the flow of the bolus of fluid 

that expands the contracted sections. The red arrows indicate expanding and contracting 

hoop actuators. 

 

In this implementation, shown in Figure 9, a bolus of fluid (large blue arrows) 

moves between the outer skin and the inner payload of the robot by the sequential 

constriction of hoop SMA actuators (red inward-pointing arrows). As the fluid is squeezed 

at the trailing edge of the wave, it causes radial expansion at the leading edge of the wave 

(red outward-pointing arrows). The result is the generation of continuous peristaltic waves 

along the robot, causing it to move in the opposite direction of the wave (brown arrows).  
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4.3 ACTUATION USING HYDRAULICS 

An alternative method of actuation at small scales is being explored as well. The 

braided mesh of the robot could be made of hollow tubing and serve as hydraulic lines for 

micro-hydraulic actuators at each hoop (Figure 11). Hydraulic actuators are generally only 

effective as pushing actuators, requiring the natural state of the robot to be elongated and 

narrow. Expansion at one of the hoop actuators would be achieved by applying pressure at 

the end of the hydraulic line. This would also allow for mechanical coupling of the hoop 

actuators, and allow them to be driven by a single end-mounted motor. This setup could 

achieve faster waves, and therefore faster robot speeds than the SMA implementation, but 

it would require an effective micro-hydraulic piston to be developed. 

 
Figure 11: Micro-hydraulic actuator concept. Here, the hoop actuators expand against a 

contractile force to create the wave motion.  
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5 Actuation Using A Motor, Cam and Cables  

 

5.1 INTRODUCTION 

The question then became, how do we build a soft wormlike robot that 

demonstrates the new principle of locomotion described in Chapter 3 as simply as 

possible? The answer is to make it bigger. This allowed me to assemble the robot by hand, 

and use conventional, off the shelf materials. Not including the cost of the motor, which 

was left over from a previous project, the first prototype cost under $200.  

 

5.2 HOW IT WORKS 

Two large-scale prototypes of this new robotic concept have been completed and 

tested. With a maximum diameter of 25 cm, they are scaled to function in fresh water 

mains (Table 1). Like the micro-hydraulic concept, the robot is hollow. This would allow 

inspection and servicing to be performed without shutting off water flow. But, instead of 

expanding segments, the actuators contract radially, causing axial expansion. Furthermore, 

instead of using a bolus of fluid to return the hoop actuators to their initial state, latex 

springs are used as a return spring along the length of the robot (Figure 12). This greatly 

simplifies the design.  
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Figure 12: The first prototype keeps its anisotropic strain properties by weaving bicycle 

brake cable sheathing and securing it with latex tubing that also acts as a return spring. 

This method of construction did not keep the mesh in good alignment after several trials. 

In this figure, a single hoop actuator has been installed and is in the constricted position. 

 

Table 1: Robot Properties 

Total mass (without batteries) 3.8 kg 

Motor mass 0.9 kg 

Total rest length 50 cm 

Rest length of section  

with actuators 

33 cm 

Length of section with  

actuators  under a 2kg load 

59 cm 

Outer diameter 22 cm 

Inner diameter  18 cm 

Cam diameter 16 cm 

Cam arm radius 5 cm 

Hoop actuator stroke length 20 cm 

 

Similar to the previous concepts presented in Chapter 4, the braided mesh that 

provides the anisotropic strain properties has an elegant dual function – it also routes steel 
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actuator cables which transmit power through the robot. The mesh is made of bicycle 

brake cable sheathing, which is hollow and rigid along its long axis. Steel cables run 

through the sheathing out to individual hoop actuators where there is a mechanism that 

interrupts the brake cable sheathing and routes the cable around the circumference (Figure 

14). Two cables run through each sheath and split in opposite directions to meet on the far 

side, creating a hoop actuator. This doubles the stroke length of the actuator compared 

with a single cable wrapped around the whole circumference.  

In both prototypes, the steel actuator cables are pulled in sequence by a cam driven 

by a single drive motor at one end of the robot (Figure 15). While future versions will 

have individually controlled actuators in order to study sensorimotor wave propagation 

and adaptive behavior (Chapter 8), this mechanism creates peristaltic motion with no 

computational overhead and with a waveform that provides good speed. In this way, 

forward and backward motion is controlled as a single degree of freedom using a single 

DC motor. 

 

 

5.3 JOINTS, CLAMPS AND CABLE GUIDES 

In the first prototype, the mesh of brake cable sheathing keeps its shape because it 

is woven and secured with the latex tubing at most junctures (Figure 12). This technique 

did not prove robust in repeated testing, and the uneven bending of the sheathing increased 

the maximum cable friction. The second prototype remedies this problem by using swivel 

joints at each crossing (Figure 13). These joints are specialized to provide several 

functions. Wherein the first prototype had hoop actuator cables that simply wrapped 

around the robot, in the second prototype, specialized swivel joints guide the hoop 
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actuator cable around the circumference and transmit its forces to the mesh in a much 

more controlled fashion. Other swivel joints secure the latex return spring along the long 

axis of the robot. In future versions, this latex return spring can be replaced with actuated 

cables to add additional degrees of freedom and turning ability. Securing the mesh with 

swivel joints essentially braids the mesh, and allows the mesh material to have a constant 

bending radius. Alternatively, encasing the mesh in a soft polymer skin would also 

preserve the alignment of the strands and act as a return spring.  

Each hoop actuator has a special swivel joint with a clamping mechanism (Figure 

13 A). This secures both strands of the hoop actuator, and allows the rest length of each 

actuator to be tuned. This addresses a mechanical limitation we discovered in the first 

prototype. The most distant actuators require more force to actuate because of their long 

runs through the brake cable sheathing. In the first prototype, the cable clamping 

mechanism was integrated into the cam mechanism head at one end of the robot, and the 

cable was pulled by a drive motor (Figure 15, top). The clamp was frequently not strong 

enough to resist the large forces in the cables for the most distal actuators. So, typically 

after a few waveforms, the cables slipped out, causing the most distant actuators to fail. 

Even with several failed actuators, the robot still moved forward at a slower speed, 

suggesting that the design is robust to partial actuator failure. 
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5.4 ACTUATOR HEADS 

 

It was a challenge to create a mechanism to route the actuator cables out from 

inside their sheaths and around the robot circumference. Because of the way the body 

deformed, care had to be taken to stay above or at the minimum bending radius, no matter 

what the orientation of the robot (Figure 14). Ilya Minsky, a Senior Project student, played 

a role in the final design and manufacturing of this part.  

 
 

Figure 13: The second prototype secures the braided mesh, the hoop actuators and 

the latex return spring with several hundred specialized swivel joints. They secure 

the end of the hoop actuator cables (A), guide and secure the latex return spring 

(B), and guide the hoop actuator cables (C).  

A                B                   C 
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Figure 14: A specialized swivel joint terminates the brake cable sheathing and routes the 

nested cable in two directions to form the hoop actuator around the circumference of the 

body. The rubber foot in the foreground provides traction with the ground. 

 

 

5.5 MOTOR AND CAM MECHANISM 

 

The cam mechanism is designed to pull the cables with a waveform that is roughly 

sinusoidal in both time and space. The exact waveform is a combination of both sine and 

cosine waves that is cycloid-like, and has a near singularity due to the geometry (Figure 

22). The shape of the waveform can be adjusted easily by changing the length of the cam 

arm. In the current setup, two waves are present at all times. Closely paired cables visible 

in Figure 5-4 are routed to two hoop actuators spaced apart by half the length of the robot. 

Their proximity to each other on the perimeter of the cam indicates that these two 

actuators will have nearly identical states at any given time. With this style of cam 

mechanism, any whole number of waves along the body is possible. Both prototypes were 
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designed such that two full waves propagated along the length of the body in order to 

prevent early ground contact, while still providing at least five hoop actuators per wave. 

Three waves would run the risk of not being able to deform enough, which increases inter-

segmental mechanical coupling. This can decrease total strain, as is shown in simulation 

(Chapter 7). In the first prototype, ten hoop actuators were distributed along the length of 

the robot, utilizing only half the available brake cable sheathings. The second prototype 

had twelve hoop actuators, and the mesh was constructed of only twelve strands in order 

to reduce weight and the number of swivel joints (Figure 16). 
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Figure 15: Two versions of the cam mechanism that drives all actuators and 

creates two traveling waves along the length of the robot. The location of the 

cable port about the circumference indicates the phase shift relative to the other 

actuators. In the first prototype (top), the cables are secured at the cam head and 

they experience a sharp turn when entering the cable sheathing. In the second 

prototype (bottom) the cables are secured at the actuator, and only wrap around 

the cam head, and the cable ports have been redesigned to prevent sharp bending 

of the cable.  
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Figure 16: Cable wiring diagram for the second prototype with twelve actuators and 

twelve strands. The green strands wrap clockwise relative to the cam mechanism, while 

the red strands wrap counterclockwise. Each actuator location is paired at the cam head 

with a location half the length of the robot away.  

 

We initially attempted to use polyester string as an actuator cable, because of its 

very small minimum bend radius. These strings repeatedly broke under loading. While 

Kevlar or Spectra string may still be good alternatives, steel cable was chosen specifically 

for its strength and its natural pairing with the Teflon lining of the brake cable sheathing. 

The larger minimum bend radius of steel cable meant that special care had to be taken in 

how the cables were routed.  

The cam mechanism went through several design revisions. The first design was 

able to produce a travelling waveform in the robot, but had two major drawbacks. The 
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design I constructed to keep the cables within the minimum bending radius was 

geometrically incorrect; it only worked in one of the two dimensions the cable moved in 

(Figure 15, top). This caused a tight bend in the cables, which quickly damaged them. This 

problem was fixed in the second design (Figure 15, bottom). 

The other challenge took three iterations to find a robust solution. The head of the 

cam mechanism translates in a curved path, but does not necessarily rotate. This device is 

what pulls the cables, and in the first iteration, it also acted as the cable clamp location 

(Figure 15, top). However, the tension in the cable is actually greatest at the cam head, 

which made them prone to slipping. In the second iteration, the cable clamps were moved 

to the hoop actuators, as discussed in the previous section. Instead, at the cam head, the 

cables wrapped around a mandrel. In this arrangement, a new problem developed. When 

the motor is not actively pulling on a cable, the return spring that is integrated into the 

braided mesh is pulling the cable back through the sheathing. However, this does not 

always happen, either due to a lack of tension in the return spring, or to environmental 

factors such as crawling through a tube that is smaller than the maximum diameter of the 

robot. In this case, the cable bends outward at the cam mechanism, and sometimes other 

cables will get entangled in it. I attempted to fix this problem by inserting thin sheets of 

Teflon between each cable (Figure 15, bottom). This approach worked for a while, but 

with Teflon being inherently plastic, it eventually deformed and became ineffective.  

The final iteration of the cam head resolves this problem by integrating six 

mandrels into a single cam head (Figure 17). Each mandrel holds two sets of cables that 

belong to actuator pairs separated by one wavelength. This device effectively keeps the 

cables separate even when large amounts of slack in the cable exist (Figure 18).  
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Figure 17: The final cam head design. The close up (right) shows the assembled device 

that keeps all wires separate by using several brass mandrels shown in the disassembled 

device (left). When the cables are not pulled back through the sheathing, either due to 

environmental conditions or due to a lack of proper tension in the cable, this new cam 

head prevents any tangling of the cables.   

 

 
Figure 18: A still taken from high-speed video of the final worm cam mechanism. There is 

slack in the top four cable pairs, but the cam head prevents them from tangling.  

 

Video of all trials was recorded from an angle orthogonal to the direction of motion. 

The second prototype trials were processed using WINanalyse (Mikromak) software to 

extract position and velocity data. The white plastic fasteners with the rubber feet were 

used as fiducials for this task.  
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5.6 A FEW FINAL FIXES 

After several hours of continuous operation, I noticed that the two hoop actuators 

most distant from the cam mechanism were sometimes not operating correctly. The 

frictional forces that develop in the tube grow exponentially with length because the shape 

of the tube is helical, causing positive locking through the capstan effect. The most distant 

actuator cable wraps around the worm twice before getting to the hoop actuator, and then 

once around the robot. Including the turns within the actuator head and cam mechanism, 

this constituted almost four full loops. As a result, the force required to actuate the most 

distant actuators is significantly higher, and one can see the robot rock slightly as it pulls 

on these cables. These large forces eventually caused the brake cable sheathing to fail at 

the cam mechanism. Conversely, when the motor was not pulling on the cables, the return 

springs were not strong enough to fully pull the cable back through the sheathing, causing 

the cable buckling discussed in the previous section.   

There are several ways to address this problem. One can make the robot smaller. 

While scaling the robot would preserve the number of loops, it would also lessen the 

distance the cable is in contact with the sheathing. One could also decrease the number of 

actuators per wave. This would decrease the number of loops. With the existing design, 

these fixes would mean starting over. Based on a suggestion from Nicole Kern, I decided 

to rewire the last actuator cable sheaths so they had a nearly straight shot from the cam 

mechanism to the hoop actuators. I did this by simply modifying the hoop actuator head so 

that it still attached to the braided mesh, but a separate sheath was added to run straight 

back to the cam mechanism, bypassing the mesh entirely. Because the distance between 

the hoop actuator and the cam is always changing, this cable still needed to bend, but the 

force required to actuate the robot was reduced significantly. This greatly improved robot 
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performance by increasing the effective strain rate and decreasing the required motor 

torque. The robot stopped rocking altogether.  

 

5.7 TURNING AND FUTURE STEERING 

Worms have a set of longitudinal muscles per segment that can cause turning in 

both the horizontal and vertical plane. These muscles are activated in a coordinated way 

such that whole body turning is implemented. Often the head of the worm feels out the 

path of least resistance, which is then followed by the body. For this reason, we propose 

controlling a future wormlike robot by using a combination of whole body turning and 

articulated head movements.  

In order to test the feasibility of whole-body turning, we added an extra elastic 

cord to one side of the braid and tensioned it. This tensioning caused one side of the braid 

to remain more circumferentially expanded, while the opposite side was more contracted. 

This bends the robot towards the side that is circumferentially expanded. This kind of 

turning is mechanically coupled to forward locomotion, so one would expect that 

maximum speed and turning radius are related. Future work could explore this relationship 

both with the robot and in simulation. Despite the complexity of the geometry, this 

approach did not appear to interfere with the curved forward motion of the robot (Figure 

19). With the tested asymmetrical tension, a turning radius of 0.65 meters was observed. 

The average robot speed was 3.5 meters per minute, only slightly less than the speed when 

going straight forward of 4 meters per minute.  
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Figure 19: A composite image taken from three stills of a video of the robot turning. With 

the given asymmetrical tension, the average turning radius was 0.65 meters. The Images 

from left to right were taken at t=0, 22 and 44 seconds. 

 

The next generation of wormlike robots could use two elastic or semi-elastic cords, 

one left and right of center, and the other top and bottom. The tension between the two 

sides could be adjusted by a motor that could spool out cord from one side to the other.  
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6 Derivation of the Kinematics of the Large Scale Prototype 

 

6.1 THE KINEMATICS OF THE BRAIDED MESH 

The mechanical strain that occurs with the simple braided mesh described above 

can be directly calculated from the geometry of four crossing strands (Figure 20). We will 

assume the strands are rigid in order to treat them as a four-bar mechanism. However, 

there must be bending in these fibers in order for distinct waves to form. The scale of the 

weave is not important for this derivation, as it only describes the anisotropic properties of 

a continuous ideal material. The hoop actuator contracts along the circumferential length d 

by a displacement c, changing its length to d':  

    (6-1) 

The input c is often a periodic function that describes the contractions as a function of 

time or position. While the anisotropic strain properties do not depend on the scale of the 

braiding in this kinematic approach, the two values d and c must be scaled appropriately to 

one another. Here, we define d as the maximum circumference of the entire braided mesh, 

so c is the total change in length of the hoop actuator. 
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                     Circumferentially Expanded              Circumferentially Contracted 

Figure 20: A single element of the braided mesh is used to derive the anisotropic strain 

properties of the material. The dimension c is the input, the change in circumferential 

length due to the hoop actuator. The change in axial length is e’-e.  

 

The dimension along e will expand by an amount that is a function of the initial 

shape of the diagonal element, defined here by the angle . From the Pythagorean theorem 

and the law of sines, we have: 

d '
2

+ e'
2

= (2 f )
2

   e'= (2 f )
2

d '
2      

 (6-2) 



 

 

 63

     

f

sin( /2)
=

d / 2

sin( /2 /2)
   f =

d

2 cos( /2)
  (6-3)    

 

The above equations can be combined to find the new axial length e': 

      

 (6-4) 

Lastly, we will define the strain of the material as: 

       

 (6-5) 

where 

      

 (6-6) 

Combining (6-4), (6-5), and (6-6) we now have an equation for the axial strain of the 

braided mesh as a function of the hoop actuator activation c and the geometry of the mesh 

defined by the rest circumference d and start angle : 

      

 (6-7) 

e = d tan( /2)
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We have seen that a strain function of this kind plays a critical role in determining 

the motion of the robot or animal. 

 

6.2 THE KINEMATICS OF THE CAM MECHANISM 

The cam mechanism is designed to pull on the cables with a waveform that is 

roughly sinusoidal in both time and space. The exact waveform is a combination of both 

sine and cosine waves that has a near singularity due to the geometry (Figure 22). The 

shape of the waveform can be adjusted easily by changing the length of the cam arm 

(Figure 21, line b). In the current setup, two waves are present at all times. Closely paired 

cables visible in Figure 21 are routed to two hoop actuators spaced apart by half the length 

of the robot. Their proximity to each other on the perimeter of the cam indicates that these 

two actuators will have nearly identical states at any given time. With this style of cam 

mechanism, any whole number of waves along the body is possible. Both prototypes were 

designed such that two full waves propagated along the length of the body in order to 

prevent early ground contact, while still providing at least five hoop actuators per wave. In 

the first prototype, ten hoop actuators are distributed along the length of the robot, 

utilizing only half the available brake cable sheathings. The second prototype has twelve 

hoop actuators, but the mesh is constructed of only twelve strands in order to reduce 

weight and the number of swivel joints.  
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Figure 21: The cam mechanism that drives all actuators and creates two traveling waves 

along the length of the robot. The location of the cable origin about the circumference 

indicates the phase shift relative to the other actuators. The distance a is the radius of the 

cam mechanism. The distance b is the length of the crank arm that pulls the cables. The 

distance c is the length the actuator cables have been pulled from their rest length.  

 

 
Figure 22: Three possible actuator displacement waveforms (c), created by the cam 

mechanism with different relationships between a and b. We chose a cam mechanism 

design that would maximize strain, so b is as close to a in length as possible, given 

mechanical limitations. 
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7 A 2-D Dynamic Simulation of The Robot Using  

8 “Working Model” 

 

8.1 METHODS 

A 2-D dynamic simulation was created using Working Model 2D (Design 

Simulation Technologies, version 9.0) to evaluate this method of locomotion, and to 

capture the discrete nature of individual segments that are not represented in the analytical 

model. Each simulated body segment consists of a modified four-bar mechanism, where 

each bar is split into three pieces joined by a torsional spring (Figure 23). This 

approximates the ability of the braided mesh to bend, an essential capability for wave 

formation. The number of segments tested ranged between six and twelve. Each ‘muscle’ 

or actuator was simulated using a stiff spring-damper system, in which the rest length of 

the spring was driven by a periodic function: 

hoop actuator length = d - 2 sqrt(a2 +b2 - 2ab cos Vwave t -  
Nwaves 2pi

N segments

 

 
  

 

 
  

 

 

 
 

 

 

 
  

 (7-1) 

where d, a and b are constants (d =.5 m; a = 0.08 m; b = 0.07 m). Nwaves and Nsegments are 

the number of waves and segments along the body (Nwaves =1,2,3; Nsegments=12), and  is 

the number of the actuator that provides the phase shift (  =1 through 12). This function is 

based on a cam mechanism in the robot that is used to activate all the actuators, and is 

described in Section VI. The density of the robot and the stiffness of the braided mesh and 

the actuators were chosen prior to the design of the final prototype robot, so comparisons 

between the two will remain qualitative (Table 2). One of the advantages of this 
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simulation is access to a large amount of data, including the positions, velocities, and 

accelerations of points on the robot, including its center of mass.  

 
Figure 23: A 2-D simulation of the robotic concept with two whole waves. The actuators 

are shown in green, and are modeled as stiff spring-dampers, where the rest length of the 

spring is varied as the control input via Equation 27. The blue spring-dampers are the 

return springs, which are not actuated. The flexibility of the braided mesh is simulated 

using rigid bodies and torsion springs. Please see Appendix A, Extension 1 for examples 

of the motion.  
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Table 2: Simulation Properties 

Total mass 0.19 kg 

Torsional stiffness used to 

simulate flexion of fibers 

6 N-m/radian 

Coefficient of static friction 

Coefficient of kinetic friction 

0.3 

0.2 

Actuator stiffness 

Damping 

640 N/m 

1 N-s/m 

Axial spring stiffness 

Rest length 

127 N/m 

0.15 m 

One Wave, Minimum length, 

Maximum length 

0.073 m/segment, 

0.27 m/segment 

Integration method Runge Kutta 

 

Because this simulation does not have a continuous exterior wall, the ground 

contact transitions are imperfect. Here, the deformation of each segment is the result of 

interactions between many actuators, as is the case with true soft-body dynamics. By 

changing the number of waves over the length of the body, and therefore the number of 

actuators per wave, we were able to study the effects of segmentation and soft-body 

interactions on locomotion speed.   
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9 Using Simulated Neuronal Populations as a Control Network 

9.1 INTRODUCTION  

The robot described in the first half of this dissertation demonstrates many 

principles of effective peristaltic locomotion. However, with the twelve circumferential 

actuators effectively coupled into a single degree-of-freedom, only wave speed can be 

modulated and the prototype is unable to adapt to environmental changes. Our analysis 

highlights the importance of transition timing between aerial and ground phases (Chapter 

3), something that cannot be optimized without a more flexible control scheme. To attain 

this, it would be desirable to have independent control of each actuator and thus the ability 

to also modulate wave amplitude and wave frequency as functions of time and position 

along the body. This, of course, greatly complicates the control problem.  

This chapter explores a biologically inspired method of soft-body robotic control. 

Our ultimate goal is to test these control strategies on a soft robotic platform with many 

degrees of freedom, and to show that the control strategy is robust and can adapt to its 

surroundings. Here, I demonstrate one possible control architecture using simulated 

neuronal populations. I first show how this architecture can naturally generate rhythmic 

patterns that would cause peristalsis in a robot. Both the spatial and temporal frequency of 

these patterns can be easily modulated with two variables. This would be akin to 

descending signals that control the worm’s desired behavior. I then show that this top-

down signal can be modulated by strain sensor input, which has been shown to play a role 

in wave propagation in worms [Gray 1938, Gardner 1975]. This second network 
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architecture is only a slightly modified version of the open loop network, so I will present 

the open loop network first, and then show how it was modified to incorporate sensory 

feedback.  

Designing neural control networks is very challenging. We have found three things 

are essential to the process: a familiarity with the desired behavior, some knowledge of the 

neuroethology of animals that exhibit the behavior, and lastly a familiarity with the 

dynamic properties of neural control circuits. Our experience studying peristaltic motion 

has led to principles for effective motion, which have been laid out in the first half of this 

dissertation. Combined with our limited knowledge of earthworm neural circuitry 

(Chapter 2.4), we will proceed to develop a neural model for the adaptive control of 

peristaltic motion.  

 

9.2 AN OPEN LOOP NEURONAL CONTROLLER 

To control a soft wormlike robot, the circumferential and longitudinal actuators 

must be coordinated to allow peristaltic locomotion, turning, burrowing, and adaptation to 

the surroundings. In our model, the longitudinal and circumferential actuators are 

controlled by separate arrays of simulated neuronal populations. These populations have a 

spatial configuration that mirrors the muscle architecture of a worm, and populations 

closer to each other have stronger connections. The simulation presented here consists of a 

column of 150 actuator pairs along the body length. 

The dynamics of our system are based on the spatially-extended Wilson-Cowan 

model of the primary visual cortex [Ermentrout 1979]. In the classical model, excitatory 

and inhibitory populations are arranged in two stacked 2-D arrays, and populations near 
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each other innervate one another more strongly. Such a system has been shown to produce 

statically stable patterns, as opposed to oscillatory behaviors (Chapter 2.6). Here, we 

modify the classic cortical arrangement by replacing the single inhibitory population array 

with two separate arrays of inhibitory populations, Ia and Ip, for each excitatory array, 

whose connections are shifted anteriorly and posteriorly, respectively. There are two 

excitatory arrays, Ecirc and Elong, which drive the circular and longitudinal actuators, and 

have a spatial configuration that mirrors the muscle architecture of a worm (Figure 24). 

The simulation presented here consists of a column of 150 actuator pairs along the body 

length.  

The general form of the state variable equations can be described as: 

,  (8-1) 

where Udot is the time rate of change of the vector U, which represents the average level 

of activity in a given array which stretches along the body of the worm. Within an array, 

all constants are the same, and connections are shift-symmetrical. Under no other external 

input, an active region of U will decay at a rate of –U⁄ , where  is a time constant of the 

population. The function  (x) = 1.05 ⁄ (1 + 20 exp( 7x))  0.05 is a generalized logistic, 

which has a y-intercept of (0) = 0 and is bounded by the range -0.1< (x) <1; strong 

negative inputs yield weak bounded negative outputs, which contributes to the stability of 

the system. The  operator convolves a population vector Ui with an associated kernel, Ûi, 

a Gaussian distribution that defines the spatial connectivity of each population. In general, 

the excitatory kernels (Ê) have a much tighter spread than the inhibitory kernels (Î), 

corresponding to the more localized excitation in the network. The constant n is the total 
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number of arrays in the simulation. All kernels are normalized, and the total weight of the 

connection is determined by the scalar constant, wi, which provides the easiest way to tune 

the behavior of the system. The sign of w indicates whether the connection is excitatory or 

inhibitory.  

Our open loop controller can be described more specifically with the following 

state equations that describe one of the two E matrices, Ecirc: 

  (8-2) 

The vector, C = (0.5(Ia-long +Ip-long))  Îc, is a coupling term that connects this group with 

three additional mirrored equations that describe the state of the opposing set of actuators. 

This keeps the two excitatory networks phase locked with each other. We assume that 

excitatory neurons have a quicker response time, so e = 1 and  i = 1.5. The scalar 

constants are wee = 3.2, wei = 2.4, wice = 1.6, wii = 0.6 and are also shown in Figure 24. 
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Figure 24: For the purpose of showing several connection trends, the nearly continuous 

dynamics of a single muscle activation group are represented as three nodes along the 

body. It is important to note that each synaptic connection shown here is applied to 

multiple populations through a Gaussian distribution to its neighbors. The excitatory 

populations (green) directly stimulate the actuators, while also locally stimulating two 

inhibitory networks (blue). These two networks in turn inhibit the excitatory network more 

broadly, but are shifted in opposite directions along the network. 

 

 

Figure 25: An excitatory (blue) and inhibitory (red) Gaussian kernel combine when 

excited to produce a “Mexican hat” influence (magenta) (a). Similar influences can be 

created with two offset inhibitory kernels (b). If the inhibitory populations have 

asymmetrical influence, a variety of patterns can emerge (c). In a and b, motion is not 

sustained without external influence. In c, waves of motion naturally occur. 
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In the classical Wilson-Cowan model, a single inhibitory population has broader yet 

weaker connections than the excitatory population. In this case, the combined influence of 

the connections to the excitatory populations forms what has been called a “Mexican hat” 

distribution (Figure 25 a). In our variation, the two kernels, Îa and Îp, are respectively 

offset negatively and positively by equal and opposite amounts relative to zero mean and 

combine to form a “Mexican hat” as well (Figure 25 b). However, biasing the weights of 

the shifted inhibitory populations gives rise to a variety of additional spatial influences 

(Figure 25 c). Many of the effects of these various arrangements were discovered 

inadvertently while building a model of the visual cortex (Chapter 2.6).  

Because the state equations use convolutions, boundary conditions need to be set at 

both the head and tail to define the values just outside the valid simulation space. Both 

zero-padded and reflective (mirror image) boundary conditions resulted in sustained 

excitatory activity where the waveform terminated. In some cases, this edge activity 

propagated through the simulation and caused a noticeable shift in the temporal frequency. 

A circular boundary condition, so that the head connects to the tail, eliminated these edge 

effects, but locked the simulation into patterns that have a whole number of waves over 

the length of the body. The boundary condition that qualitatively most reduced edge 

effects was a soft zero-padding that linearly forced only the excitatory populations to zero 

over the first and last 10% of the length of the simulation at the beginning of each time 

step. This is equivalent to saying that while the density of excitatory neurons remains 

constant over the length of the body, it decreases to zero at the head and tail. 

The initial conditions of all populations were set to zero. Stable patterns would 

typically emerge from these initial conditions within 50 time-steps. The results of this 
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simulation are presented in Chapter 10.1. 

9.3 A CLOSED LOOP NEURONAL CONTROLLER 

There are many ways that sensory input can be integrated into the system. The 

effects can be excitatory, inhibitory, or even logic-style operators, and they can innervate 

any layer of the network. We can glean many hints about the neuroethology of 

earthworms from the literature (Chapter 2.4), but we do not have enough of a picture to 

simply build a model from the research. To select among the many alternatives, I 

compared simulated strain sensor data to the specific contributions of various network 

components (Figure 26) and found a strong correlation between strain sensor activity of a 

given kind of muscle and its excitatory signal. This is not surprising since when the body 

is not under load, muscle excitation causes a deformation to the soft body.  

 
Figure 26: (A) is the excitatory array activation of Ehoop (blue) and Ecirc (Green) over time. 

(B) is the signal from the hoop muscle strain sensor (see Chapter 8.4). When not under 

external loading, the hoop muscle strain sensor correlates strongly to the Ehoop array. 

 

We had success by blending the effects of sensory input and excitatory dynamics 

in different ratios as a function of position along the body. Compared to our previous 

model described in Chapter 8.2, all of the innervations of an excitatory array have been 

adjusted by adding sensory feedback from the strain sensor corresponding to that array. 
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The amount of feedback depends on the position of the neuronal population along the 

body. Several relationships have been tested. This blending of inputs is achieved by 

applying separate weighted arrays that are the length of the simulated body and in the 

range of 0 to 1 ([G] and [1-G]) to both the sensory feedback and the excitatory 

connections (Figure 27). [G] scales the local strength of the excitatory connection via the ° 

operator, which is the Hadamard product, or entrywise product. [G] and [1-G] are defined 

such that they sum to unity at any point along the length of the worm. [G] can have many 

different characteristic profiles, and several are explored in Chapter 10.2. The new state 

equation for a single excitatory layer now takes the form: 

 

,  (8-3) 

where S is the stretch receptor input, which has broad connectivity identical in scale to an 

inhibitory connection, but without an anterior or posterior offset. While we currently only 

have a linear muscle model, this broad connectivity provides a similar low-pass filter that 

a more elaborate muscle model would provide.   

 
Figure 27: One possible blending of excitatory connections ([G]) and stretch receptor 

inputs ([1-G]).  
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Figure 28: For the purpose of showing several connection trends, the nearly continuous 

dynamics of a single muscle activation group are represented as five nodes along the body. 

It is important to note that each synaptic connection shown here is applied to multiple 

populations through a Gaussian distribution to its neighbors. The excitatory populations 

(Elong, green middle layer) directly stimulate the lengthwise actuators (not shown), while 

also locally stimulating the anterior and posterior inhibition networks (blue). These two 

networks in turn inhibit the excitatory network more broadly, but are shifted in opposite 

directions along the network. Towards the tail, the excitatory connections are combined 

with strain sensor input (S, in red) from the muscle that the network controls. The weights 

of the inhibitory connections, wi, can control the direction, speed and wavelength of the 

naturally occurring waves in a top-down manner. Not shown are the weak inhibition 

across the Elong and Ecirc networks that keep the networks phase locked.  

 

9.4 MODEL OF WORM POSTURE AND STRETCH RECEPTORS 

In order to model the effect of stretch receptors on our control system, Kathryn 

Daltorio and I made a basic model of worm posture as a function of a given set of muscle 

activations and vertical environmental constraints, i.e., under the assumption that the 

environment is essentially frictionless. These forces we ignore here probably do play a 

very important role in managing properties of the wave, especially during burrowing, 

where the worm must prevent slip as it applies a force. However, we have shown that 

tangential ground reactions are small if the wave is symmetric and steady state, so this 

model can begin to look at how stretch receptors can play a role in wave propagation. 

Each segment’s position is solved by balancing the forces on a braided mesh 
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element (Figure 29). We assume that the excitatory layers Elong and Ecirc correlate linearly 

with muscle force generation, Fx and Fy. These forces are resisted by a non-linear spring 

with a rest length, L. We assume the weight of the structure can be ignored. If there are no 

other opposing forces, the posture of each mesh element can be solved independently 

since all the forces are internal. 

 
Figure 29: A single braided mesh element used to derive robot pose as a function of 

muscle activity.  

 

 Because this is a constrained system with known forces we can use the principle of 

virtual work. We use the Pythagorean theorem on the rigid lengths to define the coupling, 

where h is the height of the element and x is the extension of the spring.  L is the resting 

length of the element and aL is the resting height of the element. 

   (8-4) 

Note that if we want to be able to extend to x = L, a must be greater than sqrt(3) in order 

h = 1+ a2( )L2 x + L( )
2
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to maintain nonzero height. Taking the variation and rearranging results in 

.    (8-5)
 

If k(x) is the spring force (shown schematically in Figure 29), we can model it as  

k(x) = A tan(x/L 
. 

pi/2), where A is a constant. This nonlinear spring ensures that the 

position of the resultant element is bounded regardless of the input forces. Thus the 

equation to be numerically solved at each time step is:  

 

  (8-6) 

We assume the stretch receptor measures x, the displacement from the rest length 

(Figure 30 for a plot of x, and Figure 29 for diagram of x relative to a braided mesh 

element).  Elong is only stimulated by positive values of x, and Ecirc only by negative values.  

We used constants L = .55 mm, a =sqrt(3.1). 

 

 
Figure 30: The extension in the length of an element x normalized by the rest length L is 

demonstrated for several constant ratios of Fx to Fy.  Fx is plotted on the lower axis, and 

Fy is directly proportional. This provides a characterization of the effective properties of 

the element. Due to the anisotropic properties of the braided mesh and the non-linear 

spring, the kinematics of very large forces are bounded. In the case of the constraining 

tube in Figure 9, the length was not permitted to shrink below the rest length (x/L>0). 
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For the purposes of simulating the position of each segment, the above method was 

used to create a lookup table whose inputs were the Fx and Fy values from the muscle 

model at each time step. External forces and kinematic constraints can be added as well. In 

order to test the simulated worm behavior in a tube that decreases diameter, we applied a 

kinematic filter such that the maximum height of a worm segment was less than a given 

value. The results of this experiment are presented in Chapter 10.2.  
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10 Results From the Prototypes and Mechanical Simulations 

10.1  COMPARISON OF THE 2D SIMULATION TO THE ANALYTICAL MODEL 

In soft structures, the segments are highly mechanically coupled. To study this, we 

compared the Working Model simulations described in Chapter 7 of a twelve-segmented 

worm robot that had one, two, or three waves over the length of the body at any time 

(Figure 31). The velocity of the deformation waveform, Vwave, is the same because the 

leading edge of the waveform takes the same time to cross the whole body. However, 

since the number of waves per body length increases, the frequency of undulation 

increases as well. Nonetheless, the area under the predicted strain curve is the same, so 

their predicted average speeds are also the same (Equation 3-6). 

In contrast to the analytical prediction, we see that the fewer the number of waves 

along the body, the faster the simulated robot. But the fastest result, at one wave per body 

length, also has the most retrograde motion, or slip. So there are two phenomena affecting 

the simulated body speed, and they are effectively described by the correction factors, 

Qstrain and Qslip defined above (Equation 3-10). 
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Figure 31: The simulated horizontal displacement of a single segment as a function of 

time for three different waveforms. Because all three trials have the same deformation 

wave speed, Vwave, and the area under the theoretical strain curve is the same, these trials 

would have the same speed if it were not for soft body effects such as strain loss and 

slipping. The body length is an average of 1.5 meters, giving average speeds of 0.17 body-

lengths/s for the one-wave trial (top trace), 0.12 body-lengths/s for the two-wave trial 

(middle trace), and 0.078 body-lengths/s for the three-wave trial (bottom trace).  

 

 

We compared our analytical model to the simulation by applying a least squares 

curve fit for the coefficients Qstrain and Qslip described in Equation 3-10. The kinematics of 

the braided mesh were taken from the derivation Chapter 6.1. The hoop actuator position 

was found using the kinematics of the cam mechanism described in Chapter 6.2. 

We found that combining both coefficients provided a good agreement (Figure 32 

and Figure 33). Taken independently, the Qstrain coefficient was better at adjusting the 

analytical models of all three waveforms to match the simulation results (one and three 

waves shown). This suggested the final strain was significantly less than the theoretical 4-

bar model predicted (Equation 6-7). We then measured the maximum strain in the one-
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wave 2D simulation manually, and found it to be 1.8, compared to the predicted a peak 

value of 4.2 (Equation 3-1). This is a strain efficiency of 0.43, which is very close to the 

Qstrain value of 0.4 found using the least squares method.  

 
Figure 32: Position and velocity data taken from the three-wave simulation (dark trace) is 

compared to the analytical model (light trace). The data cannot be modeled well by using 

the slip coefficient alone (left). Using the strain coefficient instead greatly improves the fit 

(center), but the best fit was achieved by using both coefficients (right).  
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Figure 33: Position and velocity data taken from the one-wave simulation (dashed trace) is 

compared to the analytical model (solid trace). Like the three-wave simulation, the one-

wave simulation is modeled most accurately using both Q coefficients (Right), as opposed 

to one or the other (Left and Center). However, here slip losses dominate instead of strain 

losses. The maximum slip is over-estimated due to inaccuracies in modeling the strain 

function. 

 

This method of adjusting the Q values still tends to over-estimate the slip that 

occurs because the theoretical strain function has a sharp transition about the ground 

contact point that does not occur in the soft-bodied structure (Figure 33, right). In other 

words, while the slip rate may be constant over a cycle, the strain efficiency is not. The 

strain efficiency is the worst around the time of ground contact. In simulation, it is 

straightforward to measure the strain directly, so we used this data to compare the 

measured strain rate at a given location to the velocity at that location. The analytical 

model states that the velocity of a segment will be equal to the strain at that segment times 

the speed of the deformation wave, minus a slip constant (Equation 3-10). Figure 34 
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shows that the analytical model does an excellent job of predicting the velocity of a 

segment once the simulated robot has reached a maximum average speed after two cycles.   

 
Figure 34: A comparison between the velocity predicted by the measured strain of a 

segment (solid trace) to the velocity of that segment in simulation (dashed trace). Since we 

are measuring the strain directly, Qstrain is not needed to adjust the curve profile. Initially, 

the velocity is less than predicted, as the robot slips more during the initial acceleration. In 

the first half second, the body is also adjusting its pose to the initial position commands. 

Once a maximum average speed is achieved, the velocity and strain data correlate very 

well (average error squared =0.0054, Qslip =0.31).  

 

 

Comparing the Q values of the one-wave and three-wave simulations, we can see 

that the three-wave model has much more strain loss (Qstrain= 0.24, as opposed to Qstrain= 

0.4) and the one-wave model has more slip loss (Qslip / Qstrain = 2 for one wave as opposed 

to 0.92 for three waves). Note that the two coefficients scale differently because the strain 

coefficient is multiplicative, whereas the slip coefficient is subtractive (Qstrain=1, Qslip=0 
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means 100% efficiency). Because of the slip and strain, the three-wave model has 

difficulty generating the desired strain. This may be because of coupling across segments, 

since only four actuators are defining each of the three waves, as opposed to twelve 

actuators used for a single wave. On the other hand, the one-wave simulation slips more 

both in absolute terms and as a percentage of the stride length. Examination of the 

simulation video suggests this is due to the fact that a single wave cannot effectively keep 

the swing phase segments off the ground. As segments contact the ground at inappropriate 

times, they apply forces on the stance phase segments that counteract forward motion, as 

our analytical model predicted.  This negative motion is reduced when there are two or 

more ground contact points, as it prevents the body from sagging. These results suggested 

using two waves in the robot prototypes. 

 

10.2 ROBOT PROTOTYPES 

The first prototype generated the desired waveforms successfully for short periods 

of time. A speed of 0.97 m/min was achieved over a distance of 0.9 meters. The speed was 

intentionally slow in order to help diagnose problems. After that distance, individual 

actuator cables began to slip, causing non-uniform wave propagation. The robot still 

moved forward until four of the ten actuators had become non-functional. This suggests 

that in more rugged environments, the device will be robust to individual actuator failures.  

The second prototype addressed a number of issues that arose during testing of the 

first prototype, most of which involved refining the method of guiding the actuator cables. 

The swivel joints at each mesh juncture greatly improved the reliability of the device and 

increased the speed of the robot by significantly reducing the friction along the actuator 
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cables. By moving the cable clamping location from the cam mechanism to the far side of 

the hoop actuator, cable slippage was completely eliminated.  

These improvements allowed the drive motor to operate at 54 rpm, allowing the 

robot to travel at 4 meters per minute (Figure 35). Fluid waves of motion were observed 

with little retrograde motion. The small rubber feet that the worm moved on were 

completely symmetrical, and did not noticeably resist backwards motion any more than 

forward motion. Because the body was rigid enough to prevent early ground contact and 

the task did not involve burrowing, strong anisotropic friction forces were not necessary to 

achieve good speeds.  

 

 

Figure 35: Stills from a video of the second prototype moving over 1.0 seconds. The 

diagonal lines indicate the smooth continuous rearward progression of waves. 

 

 

The analytical model was compared to motion capture data taken from the second 

prototype trials. In the same procedure used to model the simulation, we took dimensions 
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directly from the robot and found the Q values. The deformation wave speed, Vwave was 

measured directly from the motion capture data by observing the rotation of the cam 

mechanism. It takes two full rotations of the cam mechanism for a wave to travel from the 

front to the back of the robot. (Figure 36, Left).  

 

Figure 36: Comparison of velocity and position in the analytical model (solid trace) to 

trials of the
 
second prototype (dashed trace). The prototype data was captured using video 

and WINanalyse. Left: the analytical model is based on dimensions taken from the robot. 

Using a least squares fit, Qstrain was found to be 0.54, very close to the measured value of 

0.52 at the extreme strain. Qslip was found to be 0.3. Both these values compare favorably 

to the simulation, however this approach overestimates the slip, as one can clearly see the 

maximum negative velocity is much less than the model suggests. Right: re-modelling the 

strain function to not exceed a certain value improves the data modeling.  
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Using a least squares fit method to find the Q values results in an analytical model 

that best fits the position data (Figure 36, Left). However, the velocity curve dips well 

below zero around the time of ground contact, to a more negative value than that recorded 

by the motion capture data. This prompted us to look at what was happening around the 

time of ground contact. While we expected the start angle  to be around 30 degrees, after 

the robot started moving, the angle only returned to 45 degrees. In other words, the 

beginning and end of every strain cycle were being clipped. There could be a number of 

factors contributing to this. We observed that the cable itself was slack around the cam 

mechanism during stance phase, so the hoop actuator had not returned to its fully 

expanded state. The return spring that causes axial contraction, and thus expands the hoop 

actuator, may not be strong enough to oppose the friction forces within the cable 

sheathing. Increasing the tension in this spring would improve the strain function, but 

make it more difficult for the hoop actuator to contract. 

Since this kind of strain loss is not smooth, the Q factors have trouble modeling it. 

As an alternative, we added a numerical clipping plane, such that the strain function was 

truncated to a minimum value that was optimized along with the Q factors. This technique 

yielded the best results for both position and velocity accuracy (Figure 36, right), and 

reduced the Qslip from 0.3 to 0.09, suggesting that the error in the strain function model 

was causing the appearance of more slip than was actually occurring. 

 

10.3 DISCUSSION OF THE PROTOTYPES 

We have identified several advantages of using a continuously deformable outer 

mesh to achieve peristalsis. It allows for a straightforward method of accelerating and 
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decelerating the segments of the body in such a way that the internal forces cancel. It 

simplifies ground contact timing, a critical factor in keeping the system from becoming 

over-constrained. And lastly, a continuously deformable structure is far less likely to be 

impeded by obstacles, as it has no dead band between segments. While these benefits do 

not preclude the need for friction in order to climb or burrow, locomoting in this manner 

will still be advantageous in these more challenging situations.  

Given a continuously deformable robot, the analytical model defines only two ways 

to move faster: by building waveforms with higher strain rates, or by generating faster 

waves (Equation 3-5). The shape of the waveform deformation is limited by the need to 

have ground contact, and to prevent premature ground contact in the segments about to 

touch down. 

Premature ground contact was frequently observed in our 2-D simulation, even in 

the rearmost segments. When the ground contact point switches from one segment to the 

next, the second segment often contacts the ground before it has fully expanded radially. 

Therefore, after ground contact, it will continue to expand radially, instead of contracting 

as part of the next cycle. This means that the wave gets unnaturally stretched due to too 

many kinematic constraints, and at least one of the ground contact points must slip. In this 

situation, anisotropic frictional properties are beneficial by forcing the robot to slip 

forwards, rather than backwards.  

Problems can also occur during the ground-to-aerial transition. The analytical 

model shows that the acceleration of the segment would be greatest during the very 

beginning of the aerial phase when the change in strain is the greatest. Figure 37 is derived 

from Equation 6-7 and shows that, given a set displacement, c, the initial angle, , is a 
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critical factor in the amount of axial strain that is achieved. However, in both simulation 

and prototype, the strain that was supposed to occur during this time period did not 

develop. While the most strain is achieved with small start angles, the forces required to 

move are high, due to the small mechanical advantage. Because the mesh is soft and 

flexible, high actuator forces can be impractical. The braiding along the hoop actuators 

will not transfer the forces to the immediately adjacent mesh before buckling. It would be 

advantageous to have the smallest initial angle possible that does not induce buckling. 

 

    

Figure 37: Strain as a function of the initial angle , with a fixed displacement. 

 

Our second prototype achieved a speed of 4.5 or 6 body lengths per minute, 

depending whether the cam mechanism is included as part of the body length. This is a 

fast speed for peristaltic locomotion. Comparatively, earthworms travel at speeds of 1.2 to 

3.6 body lengths per minute [Quillin 1999], and the previous peristaltic robot using four 

discrete segments from our group traveled at 0.8 body lengths per minute [Mangan  2002]. 

While the Q correction factors do show that there can be some improvement in both 

developing the desired strain and preventing slipping, the biggest contributor to a loss of 
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speed was most likely the inability of the mesh to fully return to its rest position 

(maximum diameter) where the most axial strain is developed. As the flexible 2-D 

simulation showed, mechanical coupling can have an effect on effective strain rates, 

especially with two or three waves. Lastly, early ground contact may have played a role in 

reducing speed, as gravity tends to pull the robot towards the ground prematurely. 

Nonetheless, these obstacles were substantially overcome by a method of actuation that 

can produce high frequency waveforms with ease.  

 

10.4 PROTOTYPE CONCLUSIONS  

With the help of my colleagues, I have developed a novel analysis of peristaltic 

motion, have captured its essential predictions in an analytical model, and have tested the 

predictions of the model by building prototypes and comparing the model predictions to 

the empirical results. We found that our previous robot, and nearly all other robots that 

claim to use peristaltic motion, move much more slowly than predicted because of the 

kinematics and dynamics caused by very long actuators that greatly exaggerate the 

segmentation of the robot. Our study of the kinematics of peristaltic motion, both in 

simulation and using analytical tools, suggests a new design of a worm-like robot with a 

continuously deforming outer mesh. I presented several methods of constructing such a 

robot with a continuously deforming exterior at different scales, and reported on the 

completion of two large-scale prototypes. Several novel mechanisms allow for 

simplification of the control problem by coupling the degrees of freedom. Both an 

analytical model and simulation effectively describe the motion of the prototypes while 

suggesting ways to further improve speed and efficiency. Using a continuously 
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deformable outer mesh has resulted in great improvements in speed and performance over 

previous worm-like robotic platforms.  
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11 Results From the Control Network 

 

11.1  ANALYSIS OF THE OPEN LOOP CONTROL NETWORK  

The open loop control network described in Chapter 8.2 produced a wide variety 

of waveforms by modulating the strength of the connections from the two sets of 

inhibitory populations to the excitatory populations. As shown in Figure 38, the waveform 

can travel both forward and backwards at a wide range of speed and even come to a 

complete stop (static wave), and can change its spatial frequency.  

 
Figure 38: Waveform shape and varying inhibitory strengths. In row one, the vertical axis 

represents the position along the long axis of the body, and the color intensity denotes 

activity in either the circular (blue) or longitudinal (red) actuator controllers. The 

horizontal axis is time for all traces. At t=0, there are 1.5 waveforms along the body (row 

two). The waveform initially travels towards the head, causing backwards motion, then 

switches between A and B, causing forward motion. The third row shows the normalized 

weights of the posterior and anterior inhibitions as they change with time as a result of 

descending signals. The fourth and fifth rows show the difference and sum respectively of 

the inhibitory weights. These quantities correlate well to properties of the resultant 

motion. A and B are the local maximum and minimum of the difference, and correspond 

to the greatest positive and negative temporal frequency. D and E are the local maximum 

and minimum of the sum, and correspond to the least and greatest spatial frequency. First 

50 time-steps not shown. 
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As an analogy, one can look at the excitatory layer as a heavily damped springlike 

element that is being pushed on both sides by the two inhibitory elements. If the forces 

increase (w’s increase), then the spring compresses more. If the forces are the same, the 

spring does not translate. However, if they are not the same, then the spring moves away 

from the greater force. The greater the difference between anterior and posterior 

inhibition, the faster the spring moves. This is shown in Figure 38 in the fourth and fifth 

rows. When the difference in anterior and posterior inhibition is high, the temporal 

frequency is high, and the waves travel in the direction of least inhibition (Figure 38 A, 

B). When there is no difference, the waveform becomes static. The sum of the two 

inhibitory weights positively correlates to the spatial frequency (Figure 38, E). These 

correlations are largely decoupled with each other, allowing for a wide range of 

controllable waveforms (Figure 39). 

 

Figure 39: The decoupled effect of anterior and posterior inhibition weights on waveform 

shape. Thanks to Andrew Horchler for help with this figure.  
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11.2 ANALYSIS OF THE CLOSED LOOP CONTROL NETWORK  

I tested several different techniques for integrating strain sensor information into 

the control of a wormlike robot. Based on our knowledge of worm neuroethology, I have 

focused on strain sensors. While I tried many different arrangements, the only family of 

arrangements I found that were stable and desirable were when the strain sensor 

information from a given muscle control network was integrated with the excitatory 

connections, Elong and Ecirc.  

Within this family, I tested many techniques of blending excitatory connections 

and strain sensor input (Figure 40). The dynamics of the network described in the previous 

section without sensory input had desirable properties, but were inherently open-loop 

(Figure 40, upper left). On the other extreme, sensory input alone was not enough to 

generate stable wave patterns (Figure 40, upper right), even when the wave started under 

the natural dynamics of the system (Figure 40, lower left). As an alternative, we reduced 

the excitatory connections from head to tail, such that in the absence of any sensory input, 

the system dropped to zero activity about half way down the body (Figure 40, lower right). 

However, in the second half of the body, there are still excitatory connections, and 

combined with the presence of strain sensor feedback, the wave stays above threshold and 

continues down the body (Figure 40, center). If the worm is burrowing, but making little 

or no progress, this would be a desirable behavior, and potentially more energy efficient.  
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Figure 40: Five different [G] filters and their resultant behaviors. Elong (green) and Ecirc 

(blue) are shown from head to tail on the y axis, and over time along the x axis. To the left 

of each simulation is a representation of the ratio of strain sensor (red) to neuronal 

dynamics (teal) from the head to the tail.   

I was also able to demonstrate this network’s ability to respond appropriately to a 

given sensory input. An external constraint was applied to the kinematic simulation such 

that the final expanded diameter of the robot would not exceed a fixed value. This is akin 

to a worm traveling in a fixed tube whose diameter decreases half way down the tube. 

This in turn affected the strain sensors. Near the tail where the wave propagation is 

dependent on the strain sensors, the lengthwise actuator wave drops off early (Figure 41). 

Because of the new kinematics of the tube constraint, this does not cause a loss in speed, 

and therefore it is effectively more efficient than its open loop counterpart (Figure 42).  
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      Time  

Figure 41: The system responds to a simulated environment by changing its activity. (A) is 

the open loop signal, and (C) is the closed loop control signal, where Ecirc is shown in 

blue, and Elong in green. (B) and (D) are the respective body positions over time, where 

dark gray is fully expanded axially, and white is fully contracted. The red line in each 

trace indicates the gradual transition from a large tube to a smaller tube, and to the right of 

the line, the robot can no longer fully expand, as indicated by the absence of dark gray 

lines. The closed loop network (C) adapts to the change in diameter by decreasing 

activation of the Elong. 
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Figure 42: The speed for both open and closed loop control decreases when the constraint 

is applied (in between vertical lines). Only in the closed loop case does the muscle activity 

decrease in response to the constraint.  The speed is determined by assuming the worm 

does not slip at the widest point, and the mean percent force activation is the sum of all 

activations across Ecirc and Elong averaged across all segments. The data has been smoothed 

with a running average. Thanks to Kathryn Daltorio for help with this figure. 
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11.3 DISCUSSION OF THE CONTROLLER 

Based on our analysis of peristaltic motion, the shape of the waveform (spatial 

frequency) and the speed of the waveform (temporal frequency) are essential parameters 

for controlling behavior in a worm robot. The open-loop controller described in Chapter 

9.3 can change these parameters in a robust and straightforward way. Of particular interest 

is the fact that any given waveform can be brought to a complete stop (zero temporal 

frequency) for arbitrary amounts of time. This would be useful in a robot when it needs to 

process sensory input before proceeding. It would also make it trivial to activate and de-

activate sub-oscillations that could dramatically transform the resultant motion.   

The system is robust to sudden changes in descending signals, regardless of the 

timing or magnitude of the change (Figure 38 A–C). While changes in the speed of the 

waveform can take place almost instantaneously, changes in the shape of the waveform 

itself are much slower. This could prove very beneficial in the robotic platform because 

our analytical model showed that sudden changes in the shape of the waveform can cause 

slip.  

Many sensors play important roles in locomotion. I chose stretch receptors as a 

starting point for two reasons: there are existing theories on how stretch receptors may 

affect wave propagation, and I was able to build a straight-forward model of the robot 

kinematics such that I could simulate stretch receptor signals. The latter requirement was a 

challenge, and it would be very beneficial to have a full dynamic or quasi-static model of 

the worm or robot that could incorporate ground reaction forces, and possibly even soil 

compaction. Without this model, it is hard to know if the system is responding effectively. 

Alternatively, a robot could provide a real test bed for different control architectures. With 
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our current stretch receptor model, the question became “What can we show with this 

simple model?” rather than, “how can we build a fully functioning control network?” 

Nonetheless, this work is an important step in the right direction.  

The closed loop system described in Chapter 8.3 has some properties that are 

commonly found in biology: opposing muscles are applied to each segment, each repeated 

segment process is networked to its neighbors, and there is no explicit environmental 

model other than the connected network dynamics. The way in which the strain sensor 

propagates the wave is almost the opposite of a proportional-derivative (P-D) controller. 

When an axially expanded segment senses that the one in front of it is contracting, instead 

of fighting this change, the segment begins to contract. This is how the wave of motion 

propagates in simulation, and is consistent with observations of the role of stretch 

receptors in worms. This implies that if a segment is attempting to expand into a rigid 

tube, it will only exert so much force before stopping. While this may be beneficial for 

energy consumption, the worm must also generate enough outward force to provide 

friction for tasks such as burrowing. I suspect that for this reason, other sensory input, 

such as pressure and touch sensors may have different dynamic effects on the system, 

more akin to a P-D control loop, to ensure that enough burrowing force can be generated. 

With our next generation worm robot prototype and simulation, one can begin to explore 

these more complex relationships by adding internal forces and improved muscle 

modeling. 
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11.4 CONTROLLER CONCLUSIONS 

With the help of my colleagues, I have built a controller for peristaltic motion in a 

robot that uses the Wilson-Cowan model to simulate large excitatory and inhibitory 

neuronal populations. By combining models of peristalsis, the neuroethology of 

earthworms and the dynamic properties of neural control circuits, I have created a 

simulated neural architecture that shows many desirable characteristics. It is robust to 

sudden changes in descending signals. It can quickly and accurately adjust both the shape 

of the deformation wave, as well as the speed of the wave, two key parameters to 

controlling peristaltic locomotion. This arrangement can easily tune its period and even 

come to a complete stop for indefinite amounts of time.  The controller was modified in a 

straightforward way so that it could respond appropriately to simulated sensory feedback. 

I believe that this kind of system will be well suited to controlling the continuously 

deforming outer body of our novel robot.  
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12 Future Work 

12.1 INTRODUCTION 

While there are many exciting directions one can take this research, I have limited 

this discussion to some of the more immediate challenges and possibilities. Please also see 

Chapter 4, where two designs for small-scale devices are discussed that have not been 

built, but are presented earlier because they contributed significantly to the design process 

of the final prototypes.  

 

12.2 THE NEXT GENERATION LARGE-SCALE PROTOTYPE 

I see two possible directions for a next-generation large-scale prototype. One 

would be an extension of the reduced actuation approach, and the other would have many 

degrees of freedom and be used for studying soft-body control. 

I was able to show how turning could be implemented in the reduced actuation 

prototype. It would be relatively straightforward to add steering (actuated turning) by 

adding lengthwise actuator cables, possibly connected in series with a spring element. It 

may also be beneficial to have whole body turning, and then a more articulated head with 

its own turning mechanism. In some situations, steering at the head may be all that is 

required, as the body will passively follow where the head goes. A left-right turning robot 

could also be used to study up-down body tension by simply shifting the center of mass. 

Lastly, it may also be interesting to have two lengthwise cable pairs, such that 3D turning 

can be explored. In this case, it may be beneficial to have the pairs be 90 degrees apart in 

an orthogonal arrangement. But it may also make sense to have them paired more closely 
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in certain directions, if, for instance, lifting requires greater force than turning (Thanks to 

Andrew Horchler for this last idea). 

I would also suggest that the next reduced actuation robot be roughly two-thirds 

the size of the existing prototype – just big enough that a hand can fit down the middle for 

maintenance and assembly. The smaller size should reduce the friction in the cable 

sheathings. Like the final large-scale prototype that I built, I would suggest running the 

last few actuator cables separately from the braided mesh, to reduce friction. It may also 

be better to simply run all the cables directly to the actuator heads. This would free up the 

braided mesh to be designed with the best properties. The bicycle break cable sheathing 

has a tendency to sag with time, allowing the robot to slowly deform in undesirable ways.  

The reduced friction of this approach would also mean that a smaller, lighter motor could 

be selected (Thanks to Nicole Kern for this suggestion).  

Another design concept that would allow us to make a smaller robot would be to 

fabricate the braided mesh such that it has a seam that runs the length of the robot. In this 

way, the robot could be “unzipped” in order to access the inside for maintenance or 

assembly. This would only be feasible if the mesh were not being used to route the 

actuator cables.  

The lengthwise return springs could also be improved upon. In the current setup, 

latex cords run the length of the robot, but they are secured at each joint. In this way, each 

segment is independently spring-loaded. I thought this would be desirable because one 

could tune the stiffness of the segment independently. However, one drawback to this 

approach is that the spring force drops to near zero as the segment becomes fully 

expanded. This prevents the spring from having enough force to finish pulling the cable 
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through the sheathing, thus preventing the segment from fully expanding radially. The 

speed loss from this is substantial, because the length change would be greatest over this 

lost motion. As an alternative, it may be better to have lengthwise return springs that cross 

many segments. In this way, the pre-tension can be higher, and the restoring force would 

be closer to a constant value, since the total change in length would be a smaller ratio of 

the total length. For instance, the distance from head to tail is always constant, so a spring 

stretching from one end to the other would not change length, but only apply a force equal 

to the pre tension.  

 

12.3 LARGE SCALE PROTOTYPE WITH MANY DEGREES OF FREEDOM 

A large-scale prototype with individual motors at each hoop actuator would allow 

for a great deal more control. Such a robot could be used as a mechanical simulation 

platform for the control architectures outlined in Chapter 8. The weight distribution would 

also be more even, and the robot would have a natural low center of gravity. Also, the 

moment caused by the motor torques could cancel by simply placing the motors in 

alternating orientations. 

In terms of efficiency, it is not immediately clear which of these two approaches 

would be more efficient. The reduced actuation approach has a very small number of large 

motors, which is much more efficient, but loses much more energy to friction losses in the 

sheathing. A survey of these tradeoffs could be useful before proceeding.  
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12.4 A PRINTED SMALL PROTOTYPE 

The manufacture and assembly of a wormlike robot at very small scales poses 

several difficult challenges. A robot such as the large-scale prototype has hundreds of 

small moving parts, and attempting to assemble them at a small scale would be nearly 

impossible without special techniques. As an alternative, I began to explore rapid 

prototyping techniques with the help of two Senior Project students, Annette Toluse and 

Zac Jesse. The idea was to use the same cam driven concept as the larger prototype, but 

have the entire device consist of a single piece of printed ABS plastic. Instead of having 

swivel joints, the two helix sets would sit one inside the other, and would be connected 

with a soft silicone casing. One exciting application for such a robot would be as an 

endoscopic assist, where the robot is powered entirely by a drive cable within the tool 

passageway of an existing endoscope (Figure 43). 
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Figure 43: A rendering of a peristaltic endoscope concept. The braided mesh would be 

powered by a cam mechanism similar to the large-scale prototype. This cam mechanism 

could be powered by either a small motor, or by a cable running through the tool path in 

the endoscope. This arrangement has the significant benefit of applying gentle forces at 

the end of the endoscope, as opposed to large pushing forces applied externally.  

 

 

Given the resolution limit of the best printer available to us, we predicted that the 

robot had to be at least 4 cm in diameter so that the smallest features were still functional. 

In theory, a smaller printer could make ever smaller devices. After a fair amount of design 

work, a test design was printed as a single piece (Figure 44). While many of the features 

were successful, others were too coarse to be functional. The braiding itself was also too 

stiff.  
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Figure 44: A first prototype of a printed wormlike robot that is 4 cm in diameter. The 

entire device is shown on top, while a detail of the unfinished cam mechanism is shown on 

bottom. Fishing wire is used as an actuation cable, which sits inside a thin Teflon tube, 

which in turns rests inside a groove in the ABS plastic. It can also be seen running through 

small guide holes inside the robot (top) to make a hoop actuator. At this scale, the texture 

of the printing would likely cause problems for the cables.  
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One of the greatest challenges to the large-scale prototype cam mechanism was 

friction in the cable sheathing. According to a Coulomb friction theory, it does not matter 

how large the robot is – only how many times the sheathing turns before reaching the 

hoop actuator. But initial testing done during this Senior Project suggested that the friction 

forces in the cable sheathing are substantially less at smaller scales than in the larger 

robot, likely due to the shorter length for potential friction spots to form. It also appears 

that a close pairing of cable and sheathing diameter is important. If the cable is 

significantly smaller than the sheathing, the forces are much higher. This may be due to a 

wedging effect, where the cable deforms the Teflon, causing it to act like a V-belt in a 

groove.  

I think this approach has potential. Future work should focus on rapid prototyping 

techniques that have higher resolution and produce less scalloping regardless of 

resolution. Also, a satisfactory method of routing the cables needs to be found. We 

experimented with Teflon tubes inside the ABS structure, but Teflon will not adhere to 

virtually any substance, making it difficult to position. It turns out that the ribbed structure 

of the printed prototype did prevent the Teflon from sliding within the device, but in the 

long term, this will likely cause the Teflon to wear to failure. Lastly, a better technique 

needs to be found in order to secure the inner and outer helixes. It may be possible to 

design a printed joint, or make a joint out of a different polymer using shape deposition 

techniques [Dollar 2006]. 
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12.5 A PASSIVE DYNAMIC PIPE CRAWLIER 

Using a braided mesh to achieve peristalsis may have many advantages for 

navigating pipes. The robot can be entirely hollow, potentially allowing the robot to work 

inside water mains without depressurizing the line. While exploring this possibility, I 

came across a method that may allow the robot to locomote against the flow of water in an 

entirely passive manner. This would be roughly analogous to the way a sailboat can sail 

upwind. The success of this approach relies on the answer to several very complex fluid 

dynamics questions, which I will not try to solve here. Instead, I will outline the proposed 

method and reasoning for why it may work.  

This device would consist of a braided mesh embedded in a hollow polymer 

cylinder. This arrangement is identical to the structure of Festo brand air muscles, but 

made with significantly softer polymers such that the structure is very flexible. The device 

should have a rest diameter slightly larger than the tube through which it will crawl. When 

the device is in the water main, it will then exert a small passive radial force that will 

allow it to stay adhered to the outer wall. The device can be almost entirely shift-

symmetric along its long axis. At the leading edge or lip of the device (the upstream 

direction) a special mechanism would be designed to encourage the edge of the device to 

leave the wall of the water main. This mechanism may be just the shape of the lip itself, or 

in more advanced actuated methods of locomotion, it could be an actuator such as a shape 

memory alloy. Once the lip of the device leaves the water main wall, it will be obstructing 

the flow of water. This will further encourage the lip to collapse inward, and water will 

begin to flow outside the device, as well as through it. However, since the device is made 

of a braided mesh, the inward collapse of the braiding will also cause the lip to move 

forward. This phase of the motion will be limited by a minimum diameter of the braided 
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mesh as it squeezes the polymer within its braid. At this minimum diameter, the lip or lip 

mechanism will invert such that the downstream flow of fluid will push the lip back out 

towards the water main wall. Once the lip has made contact with the wall, a bolus of fluid 

will remain trapped between the wall and the device. This bolus of fluid will be naturally 

pushed down the length of the device because it causes a constriction of flow within the 

water that is passing through the device. As the bolus travels downstream, it will cause the 

device to move upstream, in a manner identical to other examples of continuous wave 

peristalsis (Figure 45).  

If this method of locomotion is successful, then it could be augmented with a 

minimum amount of actuators to affect other behaviors in a very efficient manner. For 

instance, it could quickly travel downstream by simply delaminating from the wall. It 

could also potentially turn corners. However in one possible turning method, the device 

closely resembles a “Feynman Sprinkler” (Figure 46), one of the most notorious fluid 

physics problems of all time [Creutz, 2005]. So predicting the motion of such a turn would 

be very difficult without experimentation.  
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Figure 45: A concept for a passive pipe crawler that uses water flow to travel up stream. A 

possible pressure distribution that would cause locomotion is shown in the inset.  

 

Figure 46: A pipe crawling robot navigating a corner. Such an arrangement resembles a 

“Feynman Sprinkler,” and it is not immediately clear what forces would affect the head of 

the robot.  
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12.6 FUTURE CONTROLLER WORK 

There are several future directions for the controller network. The code as I have 

developed it could be quickly modified to study turning. While each layer of neuronal 

populations is currently only one unit wide, a single line of code can widen that so that it 

is several units wide. In this configuration, the new dimension could represent separate 

lengthwise actuators. It may be that such a network would automatically turn to avoid 

obstacles without any further tuning of the parameters, due to the stretch receptor 

feedback.  

The worm body simulation could use much more development. A quasi-static 

model is desirable that also handles horizontal forces between segments, and possibly 

even highly non-linear ground reaction models that could simulate soil. This would allow 

for a better tuning of the existing neural control network.  

Lastly, this research can also inform current work being done with Stable 

Heteroclinic Channels (SHC’s). It may be possible to convert the Wilson-Cowan 

dynamics to a system that is verifiably a SHC network with a minimum of effort. Even if 

this is not the case, I suspect that many features of the network I developed, such as the 

general morphology and the specific use of strain sensor feedback, will be just as 

important with an SHC network that models peristalsis.  
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13 Final Thoughts 

 

Over the several years that I have been studying this form of locomotion, I have 

never tired of it. Perhaps this is because of the simple novelty of a system that appears to 

flow one way, but in fact flows the other. But that alone would wear off over time. I think 

what has kept me engaged is that time and again my assumptions have been challenged by 

the subject matter and by my colleagues. My intuition has been constantly refined - up to 

the very last day of writing this. This is startling, and kind of silly, in some regards, 

because sometimes it occurs to me that I have spent years studying a worm. But peristalsis 

is a fascinating and mesmerizing example of soft-body motion and control, and I think this 

area of research will be important to both robotics and biology. I hope that this work has 

made a contribution to our understanding in both fields.  
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APPENDIX: 

MATLAB CODE FOR A WILSON COWAN SOFT BODY CONTROLLER 

 
%% Alexander Boxerbaum 

%% Dissertation Code 

%% 3-30-2012 

  

%% Outline: 

  

% This is a simulation of postulated neuronal activity in an earthworm and  

% its effect on the muscles and body pose of a worm un-affected by dynamics. 

% Specifically, it generates waves of activity in two directions that could 

% be used to control muscles and interface with sensory input (or 

% simulaitons of it). This simulation is based on earlier work where I used 

% the Wilson Cowan model of neuronal behavior to simulate the primary 

% visual cortex. Please see my Dissertaion, Chapter 8, for a detailed 

% description of the overall structure of the code. 

  

% While most of the simulation is embedded in this document, it relies on 

% several external functions. These function titles are listed and briefly 

% described here: 

  

% Sigmoid(x):     

% This is a sigmoid function that takes a value and maps to 

% a range of -0.1 to 1. The dynamics of the system rely on this function heavily. 

  

% longFlatOffsetHat(Spread, MaxRadius,Offset):  

% This is the function that builds the gaussain convolution matricies that define the 

% interconnectedness of the neuronal populations.  

  

% LengthSolver(HorizontalTension, VerticalTension, K1, K2): 

% This function returns the segment length based on the forces applied to 

% it and its natural spring properties. It is derived from the kinematics 

% of a single braided mesh element with a spring connecting the horizontal 

% nodes. It is a very slow function (because it needs to find zeros of 

% nasty equations), so this code uses the function to build a lookup table  

% instead of constantly calling it.  

  

  

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%% Start from scratch: Clear the memory; don't report processing stats 

clear all  

close all 

profile off 

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%% PROGRAM FEATURES:  

  

Noise = 1;                       

% if 1, turn noise machine on. 

 

SoftEndBoundaryCondition = 1;    

% if 1, then the excitatory layers loose strength at the head and tail.  

% This helps limit boundary effects. 

 

Clipped = 1;                     

% if 1, crop all values outside the  range to -.1<x<1. Keeps noise generation bounded.  

 

StaticModel = 1;                 

% If 1, simulate the effects of the muscles on a static model 

 

CPGDecrement=1;                  

% If 1, the decending signal fades near the tail. 

 

Animation = 0;                   

% If 1, then animate the worm position as a function of time. This feature takes  

% screen grabs, so you cannot use your computer while it animates! 

 

MotionAnalysis = 1; 

 

KernelDisplay = 0;               

% If 1, then display the various convolution kernels that have been generated. 

 

SoilModel =1; 

 

ClosedLoop =1; 

  

WieTestCycle = 0;               

% WieTestCycle: If 1, then the WeiLeft and Right values are changed over time; this is 

% good for diagnostic purposes, and is akin to having varying descending 

% signals modulate the pattern generators. 

  

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%% TIME PARAMETERS 

  

dt = 1 ;                    % The numerical size of a differential time element 

ImageHeight = 1800;          % The display height of the simulation.  

RunTime = 1*ImageHeight;    % The total simulation time is a multiple of the image height. 

  

%This multiple (1 in this case) is the number of vertical strips of data 

%that will be displayed from left to right. 

  

Timesteps = RunTime /dt; 
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%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%% DISPLAY AND SCALE PARAMETERS 

  

% The worm is currently one unit wide and 150 units long. Future work could 

% expand the width to represent different lengthwise muscles to explore 

% turning. Higher resolution can be achieved by making the simulation 

% longer, but the excitatory and inhibitory convolution kernels must also 

% be scaled. 

  

Height = 1;            

WormLength = 150; 

Circumcision = 18;  

% Circumcision is the number of populations at the head that do not map to the muscle bodies.  

  

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%% PARAMETERS for E and I layer connectivity 

  

alpha = .220;   % This is NOT alpha from the W-C equations. It scales  

                % all the W parameters equally inside the Sigmoid Function 

                 

% In general, Layer connectivity strengths begin with a capital W, 

% followed by where they come from, and then where they are going. For instance 

% Wie, means that it is an inhibitory connection innervating an excitatory 

% layer. 

  

WeeLong =13; %12;    % The self-excitatory effect of the ELong group (Lengthwise actuator stimulation). 

WeeHoop =12; 

;    % The self-excitatory effect of the EHoop group (hoop or circular actuator stimulation). 

  

WeLML = 9;        

% The strength of the effect from stretch sensor feedback. LML stands for Lengthwise Muscle Length.  

% It can bre positive or negative, depending on which side of the LMLOffset it is on. 

 

LMLOffset = .5;   

% .56 The midpoint of the stretch receptor.  

 

RestLength = .5;  

%.55 The dimensionless midpoint of a single strain element when all  

% forces are zero; the zero displacement of the non-linear spring. 

  

Wei = 7;        % The excitatory effect on inhibitory cells. 

WieCross =  10; % The inhibitory effect on excitatory cells across the circumferential and longatudinal layers.  

Wii = 3;        % The inhibitory effect of inhibitory cells on inhibitory cells. 

  

if ClosedLoop 

    WieLeft  = 1.5;  

    WieRight = 8;   % WieLeft 

else 

    WieLeft  = 3;  

    WieRight = 8; 

end 

% WieLeft and WieRight are the shifted inhibitory signals that have a  

% strong descending control over the shape of the waveform.  

 

     

WieCenter =4;   % If WieTestCycle is on, then these three constants are    

WieMag = 4;     % used to vary the WieLeft and Right values over time for  

WiePeriod= 200; % testing purposes. 

  

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%% PARAMETERS for the interplay between the sensory input and cpg network 

  

SenseStrength= 2; %   

CPGStrength = 1.5;%  

  

% The vector 'Decrement' defines the strength of the CPG network, where the  

% strength of the Sensor network is (1-Decrement), evaluated at the location  

% along the wormlength. These values define the shape of the vector, which 

% is built later. To debug this function, the Plot command is helpful.  

 

if ClosedLoop 

    DecStart = 25;     

% the number of pixels that constitutes the head, such that the signal controlling it is entirely  

% CPG based. Setting this value to the worm length gets rid of any decrement of the CPG signal. 

else 

    DecStart = 1130;    % Effectively turns off sensory feedback by changinge the gradient blending 

end 

DecCenter = .7;   % .74 Multiplied by the Worm Length to define the point at which the decrement stops. 

DecMin = 0.32;  % 0.32The constant minimum value of the CPG strength after the decrement. 

DecMax = 1; 

  

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%% PARAMETERS for E and I convolution kernel building 

  

OffsetLeft  = -13;    % The size of the offset used for offset convolutions. 

OffsetRight  = 13;    % OffsetLeft and Right are for the posterior and anterior shifted Inhibitory connections. 

OffsetCenter  = 0;    % OffsetCenter is used for the non-shifted inhibitory connections, such as IhatCenter.  

  

ExcitatoryRadius = 32;  

% ExcitatoryRadius: maximum radius (px) of influence of the E and I 

% convolutions. Should be wide enough such that the farthest reaches of the 

% kernels are ~0. You can visually check this with Kernel Check Figure. 

  

Espread = 30;         % A measure of the distance of influence of each element in E, the Ehat kernel 

Ispread = 6*Espread;  % A measure of the distance of influence of each element in I, the Ihat kernels. 

EspreadLarge = 90;    % A measure of the distance of influence of each element in E, the EhatLarge kernel.  

                             

MaxOutput = 1;        % When "Clipped" is on, these paramaters set the  

MinOutput = -.1;      % upper and lower clipping values. The dynamics of  

                      % the system naturally stay within these bounds, but 

                      % the noise generator can create values outside of 

                      % this. Clipping ensures stability when this happens. 

  

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%% TIME CONSTANTS 
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tau = 1.5;            % The time constant difference between Edot and Idot. 

  

te = 1;%.8  ;       % Time constants for E and I. 

ti = 1;%.8  ;  

  

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%% Other parameters 

  

ne = 0.09;   % Noise per time step. The magnatude of the noise also depends on the timestep length. 

ni = 0.09;   % 

  

BoundaryCondSpreadInside = 1/10;    % How deep the fuzzy boundary condition goes relative to the height. 

BoundaryCondSpreadOutside = 1/10;  

LRspread = 25;                      % Left-Right boundary condition fuzzification 

  

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%% Load Ground contact Data: 

if SoilModel 

GroundContactData = double(imread('GroundResistance3.bmp')); 

  

GroundContactData = (GroundContactData/255'); 

  

  

end 

  

%% HATS %% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%% Lets build convolutions for E and I: 

  

Ehat =  longFlatOffsetHat(Espread, ExcitatoryRadius,0);             % The Ihat has a wider spread than Ehat. 

EhatLarge = longFlatOffsetHat(EspreadLarge, ExcitatoryRadius,0);    % The Ihat has a wider spread than Ehat. 

     

IhatLeft   = longFlatOffsetHat(Ispread, ExcitatoryRadius,OffsetLeft);  

IhatRight  = longFlatOffsetHat(Ispread, ExcitatoryRadius,OffsetRight);  

IhatCenter = longFlatOffsetHat(Ispread, ExcitatoryRadius,OffsetCenter);  

  

if KernelDisplay ==1 

     

% IMPORTANT NOTE: IhatLeft will appear shifted to the RIGHT. This is 

% correct because the resultant effect will be that the excitatory cells to 

% the LEFT of the inhibitory cells will have the strongest connections. 

  

    figure(10) 

    title('Various Convolution Kernels:') 

  

    axes('Position',[0 0 1 .2]) 

    %axis image 

    imshow(Ehat,[min(min(Ehat)),max(max(Ehat))]) 

    colormap(gray) 

  

    axes('Position',[.0 .2 1 .2]) 

    %axis image 

    imshow(IhatLeft,[min(min(IhatLeft)),max(max(IhatLeft))]) 

    colormap(gray) 

  

    axes('Position',[.0 .4 1 .2]) 

    %axis image 

    imshow(IhatRight,[min(min(IhatLeft)),max(max(IhatLeft))]) 

    colormap(gray) 

    axes('Position',[.0 .6 1 .2]) 

    %axis image 

    imshow(IhatCenter,[min(min(IhatLeft)),max(max(IhatLeft))]) 

    colormap(gray) 

end 

  

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%% Pre-allocation of the State Variables and Data Storage: 

  

% Note that the current starting conditions are 0 for Excitatory and 1 for 

% Inhibitory. This can be changed with little impact on the simulation.  

  

ELong = zeros(Height, WormLength)*1; % In the absense of other defined conditions, set to 0 

ILeft = ones(Height, WormLength)*1;   

IRight = ones(Height, WormLength)*1;   

  

EHoop = zeros(Height, WormLength); % In the absense of other defined conditions, set to 0 

IHoopLeft = ones(Height, WormLength); 

IHoopRight = ones(Height, WormLength);  

  

MovieStorage = zeros(Height, WormLength,10,RunTime);  

% MovieStorage: This array holds a lot of information that can be processed 

% after the simulation is done running. The structure of the array will 

% seem strange because it is designed so that the final data can be 

% cut and tiled to fit the display window nicely.  

  

%% Strain Calculations 

% This provides a first order approximation of the strain in various parts 

% of the robot. We assume that the dynamics are all feed forward, and only 

% affected by the muscle tension. 

if StaticModel 

     

    HML = zeros(Height, WormLength);     % Hoop Muscle Length 

    LML = ones(Height, WormLength)*.9;     % Lengthwise Muscle Length 

    LMLold =ones(Height, WormLength)*.99; 

    HMLold =zeros(Height, WormLength); 

     

end 

  

%% Various data logging of stretch and peak stretch locations 

PeakHeight = zeros(2,RunTime); 

PeakHeightLocations =zeros(2,RunTime); 

Stretch = zeros(1,RunTime); 

  

Decrement  = ones(1,WormLength);             % 

  

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%% Building Two different Boundary conditions. 
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% BoundaryCondLR creates a soft boundary condition for the neuronal 

% activity in the form of a row vector that ranges between zero and one. 

% It is primarily used to damp the activity of the Excitatory 

% layers so they do not dwell near the edges of the simulation space. You 

% can view any boundary condition using the plot function. 

  

BoundaryCondLR= ones((WormLength),1);    %  

for i = 1:LRspread 

    BoundaryCondLR(i) = ((i-1)/LRspread).^1.3; 

end 

for i = (WormLength):-1: (WormLength-LRspread) 

   BoundaryCondLR(i) = (-(i-(WormLength))/LRspread).^1.3;  

end 

  

% MechBoundaryCond tapers the display height of the segments of the worm at the 

% head and tail. 

MechBoundaryCond= ones((WormLength),1);  % 

for i = 1:40 

    MechBoundaryCond(i) = ((i-1)/40).^.4;  

end 

for i = (WormLength-Circumcision):-1: (WormLength-Circumcision-30) 

    MechBoundaryCond(i) = (-(i-(WormLength-Circumcision))/30)^.4;  

end 

for i = (WormLength-Circumcision):1: (WormLength) 

    MechBoundaryCond(i) = 0;  

end 

  

% MechBoundaryCond2 tapers the height of the segments of the worm at the 

% head and tail, but the tail reaches all the way to the head. This is 

% sometimes used to force ground contact dominance to the front of the 

% worm. It applies to the HML2 matrix, and is not always used. 

MechBoundaryCond2= ones((WormLength),1);  % 

for i = 1:80 

    MechBoundaryCond2(i) = ((i-1)/80).^.3;  

end 

for i = (WormLength-Circumcision):-1: (WormLength-Circumcision-30) 

    MechBoundaryCond2(i) = (-(i-(WormLength-Circumcision))/30)^.6;  

end 

for i = (WormLength-Circumcision):1: (WormLength) 

    MechBoundaryCond2(i) = 0;  

end 

  

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%% Building the Decremnet function to reduce the CPG influence at the tale 

  

if CPGDecrement==1; 

     

    for i = DecStart:(WormLength) 

        Decrement(i) = DecMin + 1*((1.8*(i - WormLength * DecCenter))^4)/(1.4*(WormLength * DecCenter))^4; 

    end 

    Decrement = min(max(Decrement,DecMin),DecMax); 

    Decrement = fliplr(Decrement); 

%Decrement = Decrement*.8    ; 

end 

  

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%% Building a lookup table for the inverse kinematics: 

% The LengthSolver function can be built directly into the model, but by 

% creating a lookup table, the simulation is twice as fast.  

  

if StaticModel==1 

    

    KinRes=30;  % The number of data points along each axis of the lookup table.  

    % The higher the number, the higher the resolution of the lookup table.  

    

    % KinLookup: This is the lookup table for the dynamics solver. You can 

    % view it using imshow(KinLookup). 

    KinLookup = zeros(KinRes); 

  

    for j=1:KinRes 

        for k=1:KinRes 

  

    KinLookup(j,k) =LengthSolver2((j-1)/KinRes, (k-1)/KinRes, 0.65, RestLength);   

    % (HorizontalTension, VerticalTension, K, RestLength) 

        end 

    end 

     

end 

  

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%% RUN THE SIMULATION: 

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%% This simulation uses Euler's Method. This was originally because of some  

%% complex matrix manipulation between timesteps. This is no longer done,  

%% so it may be possible to use ode45. 

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

  

for t = 1:dt:RunTime 

    

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%% If WieTestCycle is on, then vary the Wie weights accordingly.  

% Many of these variations are currently turned off by setting the start 

% condition to something outside the time bound of the simulation.  

  

    if WieTestCycle ==1; 

        if t>30 

        WieRight = (WieCenter+WieMag*sin(t/WiePeriod)); 

        WieLeft = (WieCenter-WieMag*sin(t/WiePeriod/.8-pi/1.5)); 

        end    

        step = 100; 

        change = 2; 

        delay = 700;%-350; 
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        if t-delay >step 

            WieRight = 6; 

            WieLeft  = .5; 

        end 

        if t -delay >step*2 

            WieRight = 6; 

            WieLeft  = 4; 

        end   

        if t -delay >step*3 

            WieRight = 8; 

            WieLeft  = 2; 

        end     

  

        if t -delay >step*4 

            WieRight = 3; 

            WieLeft  = 3; 

        end 

        if t -delay >step*5 

            WieRight = 1; 

            WieLeft  = 8; 

        end   

        if t -delay >step*6 

            WieRight = .7; 

            WieLeft  = 2.5; 

        end 

        if t -delay >step*7 

                WieRight = (WieCenter-WieMag*sin(t/WiePeriod)); 

                WieLeft = (WieCenter+WieMag*sin(t/WiePeriod/.8-pi/1.5)); 

        end     

        if (mod((t),50))>25&& t<1 

            EHoop(1:Height, 130:150) =  zeros(Height, 21); 

            IHoopRight(1:Height, 130:150) =  ones(Height, 21); 

            ELong(1:Height, 130:150) =  ones(Height, 21); 

        elseif t<1 

            ELong(1:Height, 130:150) =  zeros(Height, 21); 

  

            IRight(1:Height, 130:150) =  ones(Height, 21); 

            EHoop(1:Height, 130:150) =  ones(Height, 21); 

        end 

    end 

  

       

      

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%% Calculate the change in the muscle positions 

     

    LMLNormalized = LML-LMLOffset; 

    %LMLNormalized = bsxfun(@times, LMLNormalized, BoundaryCondLR'); 

  

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%% Differential Equations! The Heart of the Simulation.  

  

    % All of the state variables described below are in the Wilson-Cowan 

    % Form:  

    % Xprime * TimeConstant = -X + Sigmoid(Influences) 

    % where the influences are layers of neuronal populations spatially  

    % weighted by convolution kernels.  

  

    %%ELong is shown in Green 

    ELongPrime = (      -ELong +     Sigmoid(  alpha * (CPGStrength * (WeeLong * Decrement .*  conv2(ELong, Ehat, 'same')... 

    - WieCross * conv2((IHoopRight+IHoopLeft)/2, EhatLarge, 'same') - WieLeft * conv2(ILeft, IhatLeft, 'same')     ... 

    - WieRight * conv2(IRight, IhatRight, 'same')) + SenseStrength *(1-Decrement) .*(-WeLML* min(conv2((LMLNormalized), ...  

    Ehat, 'same'),0) ) ) ) )/te; 

  

    IRightPrime     = ( -IRight +    Sigmoid(  alpha * (CPGStrength * (Wei * Decrement .*   conv2(ELong, Ehat, 'same') ... 

    - Wii * conv2(IRight, IhatCenter, 'same') ) + SenseStrength * (1-Decrement) .*(-WieLeft  ...  

    * conv2(min((LMLNormalized),0), Ehat, 'same')  ) ) ))/ti/tau;  

 

    ILeftPrime      = ( -ILeft  +    Sigmoid(  alpha * (CPGStrength * (Wei * Decrement .*   conv2(ELong, Ehat, 'same') ... 

    - Wii * conv2(ILeft, IhatCenter, 'same') )  + SenseStrength * (1-Decrement) .*(-WieRight ... 

    * conv2(min((LMLNormalized),0), Ehat, 'same') ) ) ))/ti/tau;  

     

    %%EHoop is shown in Blue 

    EHoopPrime = (      -EHoop +     Sigmoid(  alpha * (CPGStrength * (WeeHoop * Decrement .* conv2(EHoop, Ehat, 'same') ... 

     - WieCross * conv2((IRight+ILeft)/2, EhatLarge, 'same')         - WieLeft * conv2(IHoopLeft, IhatLeft, 'same')... 

     - WieRight * conv2(IHoopRight, IhatRight, 'same')) + SenseStrength * (1-Decrement) ... 

    .*(WeLML* max(conv2((LMLNormalized), Ehat, 'same'),0) ) ) ) )/te; 

  

    IHoopRightPrime = (-IHoopRight + Sigmoid(  alpha * (CPGStrength * (Wei * Decrement .*   conv2(EHoop, Ehat, 'same')... 

    - Wii * conv2(IHoopRight, IhatCenter, 'same') ) + SenseStrength * (1-Decrement) .*( WieLeft ... 

    * conv2(max((LMLNormalized),0), Ehat, 'same')  ) ) ))/ti/tau;  

 

    IHoopLeftPrime  = (-IHoopLeft  + Sigmoid(  alpha * (CPGStrength * (Wei * Decrement .*   conv2(EHoop, Ehat, 'same') ... 

    - Wii * conv2(IHoopLeft, IhatCenter, 'same') )  + SenseStrength * (1-Decrement) .*( WieRight ... 

    * conv2(max((LMLNormalized),0), Ehat, 'same') ) ) ))/ti/tau; 

         

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%% Apply LEFT-RIGHT BOUNDARY CONDITION 

  

     if SoftEndBoundaryCondition 

  

        ELong = bsxfun(@times, ELong, BoundaryCondLR'); 

        EHoop = bsxfun(@times, EHoop, BoundaryCondLR');         

  

        if StaticModel==1  %!!!Not sure if this should be on!!! 

            HML = bsxfun(@times, HML, BoundaryCondLR'); 

            LML = bsxfun(@times, LML, BoundaryCondLR'); 

        end 

     end 

  

%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 

%% Integrate with or without noise 
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    if Noise 
        NoiseVector=randn(Height,WormLength,6); 
         
        ELong = ELong + ELongPrime*dt + sqrt(dt)*(NoiseVector(:,:,1))*ne; 
        IRight = IRight + IRightPrime*dt + sqrt(dt)*(NoiseVector(:,:,2))*ni; 
        ILeft = ILeft + ILeftPrime*dt + sqrt(dt)*(NoiseVector(:,:,3))*ni; 
         
        EHoop = EHoop + EHoopPrime*dt + sqrt(dt)*(NoiseVector(:,:,4))*ne; 
        IHoopRight = IHoopRight + IHoopRightPrime*dt + sqrt(dt)*(NoiseVector(:,:,5))*ni; 
        IHoopLeft = IHoopLeft + IHoopLeftPrime*dt + sqrt(dt)*(NoiseVector(:,:,6))*ni; 
        
    else 
        ELong = ELong + EPrime *dt; 
        IRight = IRight + IRightPrime*dt; 
        ILeft = ILeft + IRightPrime*dt; 
         
        EHoop = EHoop + EHoopprime*dt; 
        IHoopRight = IHoopRight + IHoopRightPrime*dt ; 
        IHoopLeft = IHoopLeft + IHoopLeftPrime*dt ; 
         
    end 
     
    if Clipped 
        ELong = min(max(ELong,MinOutput),MaxOutput); 
        IRight = min(max(IRight, MinOutput),MaxOutput); 
        ILeft = min(max(ILeft, MinOutput),MaxOutput); 
        EHoop = min(max(EHoop, MinOutput),MaxOutput); 
        IHoopRight = min(max(IHoopRight, MinOutput),MaxOutput); 
        IHoopLeft = min(max(IHoopLeft, MinOutput),MaxOutput); 
         
        if StaticModel 
            HML = min(max(HML,0),MaxOutput); 
            LML = min(max(LML,0),MaxOutput); 
        end 
    end 
%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 
%% Calculate the position of the worm segments 
  
    if StaticModel 
         
        LMLold=LML; %store the previous time step 
        HMLold=HML; 
  
        mark=cputime; 
         
        for i=2:(WormLength-1) 
  
                kk= round(max((EHoop(i) )* KinRes,1));   
                jj =round(max(ELong(i)   * KinRes,1)); 
          
            if SoilModel==1  && (150-i*3)<(t-901) % starts at 600, goes to 1050 
                 
                LML(i)=max(KinLookup(jj,kk),0.49); 
                 
            else 
                LML(i)=KinLookup(jj,kk); 
            end 
             
  
        end 
        LML = conv(LML,Ehat, 'same'); 
        HML = 2*(0.5^2-(LML/2).^2).^0.5; 
        HML = HML.*MechBoundaryCond'; 
        HML2 = HML.*MechBoundaryCond2'; 
    end 
     
%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%% 
%% Calculate the stretch between ground contact points.  
%% This can be used for diagnostic purposes, or future sensory feedback. 
%  
%     if t>50 
%  
%     [PeakHeight(:,t) PeakHeightLocations(:,t)] = findpeaks(HML,'npeaks',2, 'minpeakdistance',30); 
%  
%  
%     if (PeakHeightLocations(2,t)-PeakHeightLocations(1,t))||0 
%  
%         Stretch(t) = (PeakHeightLocations(2,t)-PeakHeightLocations(1,t)); 
%  
%     end 
%      
%     else 
%         Stretch(t) = 0; 
%     end 
%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 
%% Store current frame: 
  
    MovieStorage(:,:,1,t)=ELong; 
    MovieStorage(:,:,2,t)=EHoop; 
    MovieStorage(:,:,3,t)=IRight; 
    MovieStorage(:,:,4,t)=IHoopRight; 
    MovieStorage(:,:,5,t)=ILeft; 
    MovieStorage(:,:,6,t)=IHoopLeft; 
     
    if StaticModel 
        MovieStorage(:,:,7,t)=HML2; 
        MovieStorage(:,:,8,t)=LML; 
        MovieStorage(:,:,9,t)=LMLNormalized; 
        MovieStorage(:,:,10,t)=HML; 
    end    
  
end  % Start New Timestep! 
  
%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 
%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 
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%% These parameters are used to display the data properly:  
[a,b,c,d]=size(MovieStorage); 
  
e = round(d/ImageHeight); 
  
% Pre-allocation: 
NeuronalActivity = zeros((a*ceil(d/e)),(b*e+e*2),3); 
WormPosImage     = zeros((a*ceil(d/e)),(b*e+e*2),3); 
  
%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 
%% Parsing the data for visualization. 
% Here, we take the data stored in MovieStorage, and redistribute it to two 
% different images, NeuronalActivity and WormPosImage. By changing the 
% third index of the MovieStorage matrix, you can display different data 
% sets. By changing the third index of the two images, you can change the 
% effective display color. 
  
for vv = 1:e 
    for uu = 1:ImageHeight; 
        %The activity of different layers of neurons. Currently displaying 
        %the Excitatory layers of both the hoop and lengthwise actuators.  
        NeuronalActivity((uu*a):((uu+1)*a-1),((vv-1)*b+1+vv*2):(vv*b+vv*2),2) =  ... 
        MovieStorage(:,:,1,uu+ImageHeight*(vv-1));% + MovieStorage2(:,:,7,uu+ImageHeight*(vv-1))/3;    
        NeuronalActivity((uu*a):((uu+1)*a-1),((vv-1)*b+1+vv*2):(vv*b+vv*2),3) = ... 
        MovieStorage(:,:,2,uu+ImageHeight*(vv-1));% + MovieStorage2(:,:,7,uu+ImageHeight*(vv-1))/3; 
    
        % worm position image 
        WormPosImage((uu*a):((uu+1)*a-1),((vv-1)*b+1+vv*2):(vv*b+vv*2),1) = MovieStorage(:,:,8,uu+ImageHeight*(vv-1));%   
        WormPosImage((uu*a):((uu+1)*a-1),((vv-1)*b+1+vv*2):(vv*b+vv*2),2) = MovieStorage(:,:,10,uu+ImageHeight*(vv-1));%  
        WormPosImage((uu*a):((uu+1)*a-1),((vv-1)*b+1+vv*2):(vv*b+vv*2),3) = MovieStorage(:,:,7,uu+ImageHeight*(vv-1));%  
    end 
end 
  
figure(3333) 
set(gcf, 'Units', 'pixels') 
set(gcf, 'Position', [10,10,round(1300), 1000])  
%If you are working on a small screen, you can change the image size here in pixels. 
  
axes('Position',[0.02 0.01 .24 .98]) 
imshow(NeuronalActivity) 
  
axes('Position',[0.28 0.01 .24 .98]) 
if SoilModel 
    imshow(GroundContactData,[0,1]) 
end 
  
axes('Position',[.53 .01 .24 .98]) 
imshow(WormPosImage(:,:,1),[0,1]) 
  
axes('Position',[.77 .01 .24 .98]) 
imshow(WormPosImage(:,:,3),[0,1]) 
  
%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%% 
%% If Animation is on, animate the results of the muscle signal 
%% condition the worm position data 
  
if Animation || MotionAnalysis 
  
    if Animation 
        aviobjI = avifile('WormANimation_1.avi','fps',30)  % Open a movie file. 
    end 
    % IMPORTANT, If you do not change the movie file name here, it will 
    % write over your old movie. ALSO, these movies are huge (1-3GB!). If I like the 
    % video and I want to keep it, I immediately use Quicktime PRO 7 to 
    % compress the movie and delete the original.  
     
    %Smooth the worm position data (temporally?):  
    WormPosImage(:,:,1)= conv2(WormPosImage(:,:,1),[.03,.07,.1,.2,.2,.2,.1,.07,.03]', 'same'); 
    WormPosImage(:,:,3)= conv2(WormPosImage(:,:,3),[.03,.07,.1,.2,.2,.2,.1,.07,.03]', 'same'); 
    WormPosImage(:,:,2)= conv2(WormPosImage(:,:,2),[.03,.07,.1,.2,.2,.2,.1,.07,.03]', 'same'); 
     
    if Animation 
        SegHandle=zeros(1,WormLength-Circumcision); 
    
    figure(66) 
    set(gcf, 'DoubleBuffer', 'on') 
    set(gcf, 'Units', 'pixels') 
    set(gcf, 'Position', [10,10,1400, 70]) 
    axes('Position',[0 0  1 1]) 
    set(gca, 'XTick', 0) 
    set(gca, 'YTick', 66) 
    axis([2,240,-.55,.55]) 
    hold on 
    end 
     
    CenterPointX = zeros(RunTime,1); 
  
    [p,NewMaxWidthLocation] =max((WormPosImage(:,:,3)),[],2) 
        
         
    for tt = 50:RunTime 
         
        if tt==50 
            TotalLengthNew= 0;%200-oldAverageLength/2; 
            TotalLengthOld= 0; 
            WormTail=0; 
            WormMovement = 0; 
             
            for seg = 1:(WormLength-Circumcision) 
                 
                if seg==1 
                    TotalLengthNew = WormTail 
                else 
  
                    TotalLengthNew = TotalLengthNew+WormPosImage(tt,seg,1); 
                end 
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                    if Animation 

                    SegHandle(seg) = fill( [TotalLengthOld,TotalLengthOld,TotalLengthNew,TotalLengthNew],... 

                        [(-WormPosImage(tt,seg,2)/2),(WormPosImage(tt,seg,2)/2),(WormPosImage(tt,seg,2)/2),... 

                        (-WormPosImage(tt,seg,2)/2)],(NeuronalActivity(tt,seg+1,:)*.8+.1), 'LineSmoothing', 'on'); 

                    end 

                if seg==NewMaxWidthLocation(tt) 

                 

                    GPoint1 = TotalLengthNew; 

                    GPoint2 = TotalLengthNew;    

                     

                    % Draw the ground contact point 

                    if Animation 

                        SegHandle(seg) = fill( [TotalLengthOld,TotalLengthOld,TotalLengthNew,TotalLengthNew],... 

                        [(-WormPosImage(tt,seg,2)/2),(WormPosImage(tt,seg,2)/2),(WormPosImage(tt,seg,2)/2),... 

                        (-WormPosImage(tt,seg,2)/2)],[1,0,0], 'LineSmoothing', 'on'); 

                    end         

                end 

                if seg== round(WormLength/2) 

                    CenterPointX(tt)=TotalLengthNew; 

                end 

            end  

        else 

             

           % GPoint3 = GPoint2;               

            GPoint2 = GPoint1; 

  

             

            WormTail = WormTail - WormMovement; 

            TotalLengthOld = WormTail; 

             

            for seg = 1:(WormLength-Circumcision) 

              

                if seg==1 

                    TotalLengthNew = WormTail; 

                else 

                    TotalLengthOld = TotalLengthNew; 

                    TotalLengthNew = TotalLengthNew+WormPosImage(tt,seg,1); 

                end 

                 

                if Animation 

                    set( SegHandle(seg), 'XData',[TotalLengthOld,TotalLengthOld,TotalLengthNew,TotalLengthNew],... 

                         'YData',[(-WormPosImage(tt,seg,2)/2),(WormPosImage(tt,seg,2)/2),(WormPosImage(tt,seg+1,2)/2),... 

                         (-WormPosImage(tt,seg+1,2)/2)],... 

                         'FaceColor',(NeuronalActivity(tt,seg+1,:)*.8+.1)); 

                end 

                 

                if seg==NewMaxWidthLocation(tt) 

                 

                    GPoint1 = TotalLengthNew; 

                    if Animation 

                        set( SegHandle(seg), 'XData',[TotalLengthOld,TotalLengthOld,TotalLengthNew,TotalLengthNew],... 

                            'YData',[(-WormPosImage(tt,seg,2)/2),(WormPosImage(tt,seg,2)/2),(WormPosImage(tt,seg+1,2)/2),... 

                            (-WormPosImage(tt,seg+1,2)/2)],... 

                            'FaceColor',[1,0,0]); 

                    end 

                end 

                 

                if seg==NewMaxWidthLocation(tt-1) 

                     

                    WormMovement = (WormMovement + (TotalLengthNew - GPoint2)); 

                end 

                 

                if seg== round(WormLength/2) 

                    CenterPointX(tt) = TotalLengthNew; 

                end 

                 

            end 

                % oldAverageLength = TotalLengthNew-200+oldAverageLength/2; 

        end 

         

        if Animation 

        drawnow 

         

        frame = getframe(66); 

        aviobjI = addframe(aviobjI,frame); 

        end 

    end 

    if Animation 

        aviobjI = close(aviobjI) 

    end 

end 

  

if MotionAnalysis 

    figure(44) 

    plot(CenterPointX, 'linewidth',2) 

    axis([50,RunTime,0,300]) 

end 

  

  

   

~~~~~~~~~~~~~~~~~~~ 

% Sigmoid function  

% Alexander Boxerbaum 

% December 1, 2008 

  

%% This function returns a value based on a sigmoid Function. It is 

%% normalized to change mostly between the domain of zero and one,  

%% and maps onto the range of -0.1 to 1. The range limits have important  

%% consequences for the dynamics.  

  

function out = Sigmoid(x) 

%    out=1./(1+exp(-x)); 

  

out = (1./(1+exp(-(x*7-3))) - 1/(1+exp(3))) * 1.05; 

  

%out = max(out,0); 
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end 

  

 

~~~~~~~~~~~~~~~~~~~ 

 

% Alexander Boxerbaum 

% February, 2012 

  

% longFlatOffsetHat(Spread, MaxRadius,Offset):  

% This is the function that 

% builds the gaussain convolution matricies that define the 

% interconnectedness of the neuronal populations.   

  

function out = longFlatOffsetHat(se, r, shift) 

  

%% Lets make a flexible distribution of influence for a given neuron 

% 

  

mm = 2*r + 1 ;%+ abs(shift); 

  

% [m,n] = size(X); 

out = zeros(1,mm); 

  

for j = 1:mm 

  

   out(j) =  exp( -((j-r-1-shift)^2)/se ); 

  

end 

  

out = out/sum(sum(out));  % Normalize 

~~~~~~~~~~~~~~~~~~~ 

 

% Alexander Boxerbaum, February 2012. 

% editted Kati Daltorio Feb 2012 

  

% LengthSolver(HorizontalCompression, VerticalCompression, K, RestLength): 

  

% This function returns the segment length based on the forces applied to 

% it and its natural spring properties. It is derived from the kinematics 

% of a single braided mesh element with a spring connecting the horizontal 

% nodes. It is a very slow function (because it needs to find zeros of 

% nasty equations), so the above code uses the function to build a lookup table  

% instead of constantly calling it.  

  

%Kati: 

%I rederived equation from virtual work equations 

  

  

function out = LengthSolver2(Fl, Fc, A, L) % (HorizontalTension, VerticalTension, K, RestLength) 

  

out=fzero(@(X) ForceSum(Fl, Fc, A, L, X),[.01 (L*2-.06)]); % fzero is a matlab solver that finds the zeros of the function ForceSum 

defined below.  

  

  

function FS= ForceSum(Fl, Fc, A, L, X) 

a = 2*sqrt(1.5^2-(.5)^2); %ratio of resting height to resting length 

FS= tan((X-L)*(pi/2) /L)*A ... %part from the spring 

    + Fl ...%X-direction forces that compress spring 

    - Fc * (L+X)/... h where h = ... 

           sqrt( (1+a^2)*L^2 - (X+L)^2 ); % but now Fc better be compressive on element, extending spring if negative like this 

    %- Fc*tan(asin(X/(2*L)));  % Alex's term 
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