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Abstract
In this paper, we study the error behavior of the nonequispaced fast Fourier transform
(NFFT). This approximate algorithm is mainly based on the convenient choice of
a compactly supported window function. Here, we consider the continuous Kaiser–
Bessel, continuous exp-type, sinh-type, and continuous cosh-type window functions
with the same support and same shape parameter. We present novel explicit error
estimates for NFFT with such a window function and derive rules for the optimal
choice of the parameters involved in NFFT. The error constant of a window function
depends mainly on the oversampling factor and the truncation parameter. For the
considered continuous window functions, the error constants have an exponential
decay with respect to the truncation parameter.

Keywords Nonequispaced fast Fourier transform · NFFT · Error estimate ·
Oversampling factor · Truncation parameter · Continuous window function
with compact support · Kaiser–Bessel window function

Mathematics Subject Classification (2010) 65T50 · 94A12 · 42A10

1 Introduction

The nonequispaced fast Fourier transform (NFFT) (see [6, 7, 16, 20] and [15, Chap-
ter 7]) is an important generalization of the fast Fourier transform (FFT). The
window-based approximation leads to the most efficient algorithms under different
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approaches [8, 18]. Recently, a new class of window functions were suggested in
[3] and asymptotic error estimates are given in [4]. After [20], the similarities of the
window-based algorithms for NFFT became clear. Recently, we have analyzed the
window-based NFFT used so far and presented the related error estimates in [17].
Now, we continue this investigation and present new error estimates for some other
window functions. More precisely, we consider the continuous Kaiser–Bessel win-
dow function and two close relatives of the sinh-type window function, namely the
continuous exp-type and cosh-type window functions. All these window functions
have the same support and the same shape parameter. We show that these window
functions are very useful for NFFT since they produce very small errors.

In this paper, we present novel explicit error estimates (3) with so-called error
constants (1). The error constants of NFFT are defined by values of the Fourier
transform of the window function. We show that an upper bound of Eq. 1 depends
only on the oversampling factor σ > 1 and the truncation parameter m ≥ 2 and
decreases with exponential rate with respect tom. In numerous applications of NFFT,
one uses quite often an oversampling factor σ ∈ [ 5

4 , 2
]
and a truncation parameter

m ∈ {2, 3, . . . , 6}. Therefore, we will assume that σ ≥ 5
4 .

The outline of the paper is as follows. In Section 2, we introduce the set Φm,N1 of
continuous, even window functions with support

[ − m
N1

, m
N1

]
, where m ∈ N \ {1}

and N1 = σN ∈ 2N (with N ∈ 2N and 2m � N1) are fixed. We emphasize that
a continuous window function ϕ ∈ Φm,N1 tends to zero at the endpoints ± m

N1
of its

compact support
[ − m

N1
, m

N1

] ⊂ [ − 1
2 ,

1
2

]
. In Section 3, we show that the simple

rectangular window function Eq. 4 is not convenient for NFFT.
The main results of this paper are contained in Sections 4–7. For the first time,

we present explicit estimates of the error constants (1) for fixed truncation parameter
m and oversampling factor σ . In Section 4, we derive explicit error estimates for
the continuous Kaiser-Bessel window function (8). In comparison, we show that the
popular standard Kaiser–Bessel window function (20) has a similar error behavior as
Eq. 8. A very useful continuous window function is the sinh-type window function
(22) which is handled in Section 5.

The main drawback for the numerical analysis of the exp-type and cosh-type win-
dow function is the fact that an explicit Fourier transform of this window function
is unknown. In Sections 6 and 7, we develop a new technique. We split the con-
tinuous exp-type/cosh-type window function into a sum ψ + ρ, where the Fourier
transform of the compactly supported function ψ is explicitly known and where the
compactly supported function ρ has small magnitude. Here, we use the fact that both
window functions (28) and (49) are close relatives of the sinh-type window func-
tion (22) which was introduced by the authors in [17]. The Fourier transform of ρ is
explicitly estimated for small as well as large frequencies, where σ and m are fixed.
We present many numerical results so that the error constants of the different win-
dow functions can be easily compared. After this investigation, we favor the use of a
continuous window function with small error constant, which can be very fast com-
puted, such as the sinh-type, standard/continuous exp-type, or continuous cosh-type
window function.
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2 Continuous window functions for NFFT

Let σ > 1 be an oversampling factor. Assume that N ∈ 2N and N1 := σN ∈ 2N
are given. For fixed truncation parameter m ∈ N \ {1} with 2m � N1, we introduce
the open interval I := ( − m

N1
, m

N1

)
and the set Φm,N1 of all continuous window

functions ϕ : R → [0, 1] with the following properties:
• Each window function ϕ is even, has the support Ī , and is continuous on R.
• Each restricted window function ϕ|[0,m/N1] is decreasing with ϕ(0) = 1.
• For each window function ϕ, the Fourier transform

ϕ̂(v) :=
∫

I

ϕ(t) e−2π i vt dt = 2
∫ m/N1

0
ϕ(t) cos(2π vt) dt

is positive for all v ∈ [−N/2, N/2].
Examples of continuous window functions ofΦm,N1 are the (modified) B-spline win-
dow functions, algebraic window functions, Bessel window functions, and sinh-type
window functions (see [17] and [15, Chapter 7]). More examples are presented in
Sections 4–7.

In the following, we denote the torus R/Z by T and the Banach space of contin-
uous, 1-periodic functions by C(T). Let IN := {−N/2, . . . , N/2 − 1} be the index
set for N ∈ 2N.

We say that a continuous window function ϕ ∈ Φm,N1 is convenient for NFFT, if
the C(T)-error constant

eσ (ϕ) := sup
N∈2N

eσ,N (ϕ) (1)

with

eσ,N (ϕ) := max
n∈IN

∥∥
∑

r∈Z\{0}

ϕ̂(n + rN1)

ϕ̂(n)
e2π i rN1 (·)∥∥

C(T)
(2)

fulfills the condition eσ (ϕ) � 1 for conveniently chosen oversampling factor σ > 1.
The norm in C(T) is defined by ‖f ‖C(T) := maxx∈T |f (x)|.

Now we show that the error of the nonequispaced fast Fourier transform (NFFT)
with a window function ϕ ∈ Φm,N1 can be estimated by the error constant (1). The
NFFT (with nonequispaced spatial data and equispaced frequencies) is an approxi-
mate, fast algorithm which computes approximately the values p(xj ), j = 1, . . . ,M ,
of any 1-periodic trigonometric polynomial

p(x) :=
∑

k∈IN

ck e
2π i kx

at finitely many nonequispaced nodes xj ∈ [ − 1
2 ,

1
2

)
, j = 1, . . . ,M , where ck ∈ C,

k ∈ IN , are given coefficients. By the properties of the window function ϕ ∈ Φm,N1 ,
the 1-periodic function

ϕ̃(x) :=
∑

k∈Z
ϕ(x + k) , x ∈ T ,
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is continuous on T and of bounded variation over
[ − 1

2 ,
1
2

]
. Then, from the Conver-

gence Theorem of Dirichlet–Jordan (see [22, Vol. 1, pp. 57–58]), it follows that ϕ̃

possesses the uniformly convergent Fourier expansion

ϕ̃(x) =
∑

k∈Z
ϕ̂(k) e2π i kx

with the Fourier coefficients

ϕ̂(k) =
∫

R

ϕ(x) e−2π i kx dx =
∫ 1

0
ϕ̃(x) e−2π i kx dx .

We approximate the trigonometric polynomial p by the 1-periodic function

s(x) :=
∑

�∈IN1

g� ϕ̃
(
x − �

N1

) ∈ C(T)

with the coefficients

g� := 1

N1

∑

k∈IN

ck

ϕ̂(k)
e2π i k�/N1 , � ∈ IN1 .

The computation of the values s(xj ), j = 1, . . . , M , is very easy, since ϕ is com-
pactly supported. The computational cost of the algorithm is O(N1 logN1 + (2m +
1)M), see [15, Algorithm 7.1] and [11] for details.

We interpret s − p as the error function of the NFFT which we measure in the
norm of C(T).

Theorem 1 Let σ > 1, N ∈ 2N, and N1 = σN ∈ 2N be given. Further let m ∈
N \ {1} with 2m � N1.

Then the error function of the NFFT can be estimated by

‖s − p‖C(T) ≤ eσ (ϕ)
∑

n∈IN

|cn| . (3)

The proof of Theorem 1 is based on the equality

s(x) − p(x) =
∑

n∈IN

∑

r∈Z\{0}
cn

ϕ̂(n + rN1)

ϕ̂(n)
e2π i (n+rN1) x , x ∈ T .

For details of the proof see [17, Lemma 2.3] and [13, Lemma 2.1].
In order to describe the behavior of C(T)-error constant (1), we have to study the

Fourier transform of a window function ϕ with the support Ī .

3 Rectangular window function

In this section, we present a simple discontinuous window function which is not con-
venient for NFFT. Later, we will use this discontinuous window function in Remarks
1 and 3, where we estimate the C(T)-error constants for the standard Kaiser-Bessel
window function and the original exp-type window function, respectively.
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The simplest window function is the rectangular window function

ϕrect(x) :=

⎧
⎪⎨

⎪⎩

1 x ∈ I ,

1
2 x = ± m

N1
,

0 x ∈ R \ Ī ,

(4)

Now, we show that the rectangular window function (4) is not convenient for NFFT.
The Fourier transform of Eq. 4 has the form

ϕ̂rect(v) = 2m

N1
sinc

2πmv

N1
, v ∈ R . (5)

The discontinuous window function ϕrect does not belong to Φm,N1 .

Lemma 1 For each n ∈ IN \ {0}, the Fourier series
n

N1

∑

r∈Z

1

r + n
N1

e2π i rN1 x

converges pointwise to the 1
N1

-periodic function of the form

πni

N1

(
1 − e−2π i n/N1

)−1 e−2π i n x , x ∈ (0,
1

N1
) .

Proof For fixed n ∈ IN \{0}, we consider the Fourier series of the special 1
N1

-periodic

function gn(x) := e−2π i nx for x ∈ (0, 1
N1

) with

gn(0) = gn(
1

N1
) := 1

2

(
1 + e−2π i n/N1

)
.

For n = 0, we have g0(x) = 1. Then, the rth Fourier coefficient of gn reads as
follows:

N1

∫ 1/N1

0
gn(t) e

−2π i rN1 t dt = 1

π i

(
1 − e−2π i n/N1

) 1

r + n
N1

for r ∈ Z. By the Convergence Theorem of Dirichlet–Jordan, the Fourier series of gn

is pointwise convergent such that for each x ∈ R and n ∈ IN \ {0}

gn(x) = 1

π i

(
1 − e−2π i n/N1

) ∑

r∈Z

1

r + n
N1

e2π i rN1 x .

This completes the proof.

Lemma 2 The C(T)-error constant of the rectangular window function (4) can be
estimated by

0.18 <
1

2
− 1

π
≤ eσ (ϕrect) ≤ 1

2
+ π

4
< 1.3 , (6)

i.e., the rectangular window function (4) is not convenient for NFFT.
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Proof By Eq. 5 we obtain for n = 0 and r ∈ Z that

ϕ̂rect(rN1)

ϕ̂rect(0)
=

{
1 r = 0 ,

0 r ∈ Z \ {0}
and hence

∑

r∈Z\{0}

ϕ̂rect(rN1)

ϕ̂rect(0)
e2π i rN1 x = 0 .

By Eq. 5 we have for n ∈ IN \ {0} and r ∈ Z, ϕ̂rect(n+rN1)

ϕ̂rect(n)
= n

n+rN1
. Thus, we obtain

by Lemma 1 that for x ∈ (0, 1
N1

) and n ∈ IN \ {0}
∑

r∈Z\{0}

ϕ̂rect(n + rN1)

ϕ̂rect(n)
e2π i rN1 x = n

N1

∑

r∈Z\{0}

1

r + n
N1

e2π i rN1 x

= πni

N1

(
1 − e−2π i n/N1

)−1 e−2π i nx − n

N1
.

Using
∣∣1 − e−2π i n/N1

∣∣ = 2
∣∣ sin πn

N1

∣∣ , it follows that

∣∣πni

N1

(
1 − e−2π i n/N1

)−1 e−2π i nx − n

N1

∣∣ ≥ |n|
N1

(π

2
| sin πn

N1
|−1 − 1

)

= |n|
2N1

π − 2 | sin πn
N1

|
| sin πn

N1
| ≥ 1

2π

(
π − 2 | sin πn

σN
|) ≥ 1

2π
(π − 2) .

Analogously, we estimate

∣∣πni

N1

(
1 − e−2π i n/N1

)−1 e−2π i nx − n

N1

∣∣ ≤ |n|
N1

(π

2
| sin πn

N1
|−1 + 1

)

= |n|
2N1

π + 2 | sin πn
N1

|
| sin πn

N1
| ≤ 1

4

(
π + 2 | sin πn

N1
|) ≤ 1

4
(π + 2) .

Consequently, the rectangular window function is not convenient for NFFT since the
corresponding C(T)-error constant eσ (ϕrect) can be estimated by Eq. 6.

Lemma 3 The Fourier transform of rectangular window function (4) has the
following property:

(
1 − 2

π

) m

N1

∣∣sinc
πm

σ

∣∣ ≤ ∥∥
∑

r∈Z\{0}
ϕ̂rect(n + rN1) e

2π irN1 ·∥∥
C(T)

≤ 3m

N1
. (7)

Proof By Eqs. 1 and 2, we obtain

max
n∈IN

∥∥
∑

r∈Z\{0}
ϕ̂rect(n + rN1) e

2π irN1 ·∥∥
C(T)

≥ eσ (ϕrect) min
n∈IN

|ϕ̂rect(n)| .

Then from Lemma 2 and Eq. 5 it follows immediately the lower estimate in Eq. 7.
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Now we show the upper estimate in Eq. 7. For each n ∈ IN \ {0}, the 1
N1

-periodic
Fourier series

fn(x) :=
∑

r∈Z
ϕ̂rect(n + rN1) e

2π irN1x = 2m

N1

∑

r∈Z
sinc

2πm (n + rN1)

N1
e2π irN1x

= 1

πN1
sin

2πmn

N1

∑

r∈Z

1

r + n
N1

e2π irN1x

is pointwise convergent by Lemma 1 such that

fn(x) =
{

i
2m sin 2πmn

N1

(
1 − e−2π in/N1

)−1 e−2π inx x ∈ (
0, 1

N1

)
,

1
4m sin 2πmn

N1
cot πn

N1
x ∈ {0, 1

N1
} .

In the case n = 0, we have f0(x) := ∑
r∈Z sinc(2πmr) e2π irN1x = 1 . For arbi-

trary x ∈ R and m ∈ N, it holds obviously
∣∣ sin(2mx)

∣∣ ≤ 2m | sin x| and so∣∣1 − e−2π in/N1
∣∣ = 2

∣∣ sin πn
N1

∣∣ . We obtain for n ∈ IN \ {0} that

max
x∈R

|fn(x)| ≤ 1

2N1

∣∣ sin
2πmn

N1

∣∣ ∣∣ sin
πn

N1

∣∣−1 ≤ m

N1
.

Thus for n ∈ IN \ {0} and x ∈ [
0, 1

N1

]
, we receive

∑

r∈Z\{0}
ϕ̂rect(n + rN1) e

2π irN1x = fn(x) − 2m

N1
sinc

2πmn

N1

and hence
∥∥

∑

r∈Z\{0}
ϕ̂rect(n + rN1) e

2π irN1 ·∥∥
C(T)

≤ 3m

N1
.

In the case n = 0, the above estimate is also true, since
∑

r∈Z\{0}
ϕ̂rect(rN1) e

2π irN1x = 0 .

This completes the proof.

4 Continuous Kaiser–Bessel window function

In the following, we consider the so-called continuous Kaiser–Bessel window func-
tion

ϕcKB(x) :=
⎧
⎨

⎩

1
I0(β)−1

(
I0

(
β

√
1 − (

N1x
m

)2) − 1
)

x ∈ I ,

0 x ∈ R \ I
(8)

with b := 2π(1 − 1
2σ ), σ > 1, β := bm, N ∈ 2N, and N1 ∈ 2N, see [13], where

I0(x) :=
∞∑

k=0

1

(k!)2
(x

2

)2k
, x ∈ R ,
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denotes the modified Bessel function of first kind. Furthermore, we assume that m ∈
N\{1} fulfills 2m � N1. We emphasize that the shape parameter β in Eq. 8 depends
on m and σ . Obviously, ϕcKB ∈ Φm,N1 is a continuous window function. Note that
a discontinuous version (20) of Eq. 8 (see Remark 1) was considered in [9], but the
C(T)-error constant of Eq. 20 was not determined.

By [14, p. 95] and Eq. 5, the Fourier transform of the continuous Kaiser–Bessel
window function (8) has the form

ϕ̂cKB(v) = 2m

(I0(β) − 1)N1

( sinh
(
β

√
1 − ( 2πv

N1b

)2)

β

√
1 − ( 2πv

N1b

)2
− sinc

2πmv

N1

)

for |v| <
N1b
2π and

ϕ̂cKB(v) = 2m

(I0(β) − 1)N1

(
sinc

(
β

√
(2πv

N1b

)2 − 1
) − sinc

2πmv

N1

)

for |v| ≥ N1b
2π . One can show that ϕ̂cKB|[0, N1b

2π )
is positive and decreasing such that

min
n∈IN

ϕ̂cKB(n) = ϕ̂cKB
(N

2

) ≥ 2m

(I0(β) − 1)N1

[ sinh
(
2πm

√
1 − 1/σ

)

2mπ
√
1 − 1/σ

− σ

πm

]
. (9)

Using the scaled frequency w = 2πmv/N1, we obtain

ϕ̂cKB
(N1w

2πm

) = 2m

(I0(β) − 1)N1
·
⎧
⎨

⎩

(
sinh(

√
β2−w2)√

β2−w2
− sincw

)
|w| < β ,

(
sinc(

√
w2 − β2) − sincw

) |w| ≥ β .
(10)

Note that we have N1b
2π = N1 − N

2 > N
2 by the special choice of b.

Lemma 4 For |w| ≥ β we have

∣∣sinc(
√

w2 − β2) − sincw
∣∣ ≤ 2β2

w2
.

Proof Since the sinc-function is even, we consider only the case w ≥ β. For w = β,
the above inequality is true, since |sinc 0 − sincβ| ≤ 1 + |sincβ| < 2 . For w > β

we obtain

∣∣sinc(
√

w2 − β2) − sincw
∣∣ = ∣∣ sin

√
w2 − β2

√
w2 − β2

− sinw

w

∣∣

≤ 1

w

∣∣ sin
√

w2 − β2 − sinw
∣∣ + ∣∣ sin

√
w2 − β2

∣∣( 1
√

w2 − β2
− 1

w

)

≤ 2

w

∣∣ sin
1

2

(√
w2 − β2 − w

)∣∣ + ∣∣ sin
√

w2 − β2
∣∣( 1

√
w2 − β2

− 1

w

)
.
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From

√
w2 − β2 − w = w

(
1 −

√

1 − β2

w2

) = w
1 − (

1 − β2

w2

)

1 +
√
1 − β2

w2

≤ β2

w
(11)

it follows that
∣∣ sin

1

2

(√
w2 − β2 − w

)∣∣ ≤ 1

2

(√
w2 − β2 − w

) ≤ β2

2w
.

Furthermore, we receive by Eq. 11 that

∣∣ sin
√

w2 − β2
∣∣( 1

√
w2 − β2

− 1

w

) = ∣∣ sin
√

w2 − β2
∣∣ w − √

w2 − β2

w
√

w2 − β2

≤ ∣∣ sin
√

w2 − β2
∣∣ β2

w2
≤ β2

w2
.

This completes the proof.

In our study, we use the following:

Lemma 5 Let f : (0, ∞) → (0, ∞) be a decreasing function which is integrable
on each interval [1−|u|, ∞) with arbitrary u ∈ (−1, 1). Furthermore, we extend f

by f (−x) := f (x) for all x > 0.
Then for each u ∈ (−1, 1), it follows:

∑

r∈Z\{0,±1}
f (u + r) ≤ 2

∫ ∞

1−|u|
f (t) dt ,

∑

r∈Z\{0}
f (u + r) ≤ 2 f (1 − |u|) + 2

∫ ∞

1−|u|
f (t) dt .

Proof. For arbitrary u ∈ (−1, 1) and r ∈ N, we have

f (u + r) ≤ f (r − |u|) . (12)

Using Eq. 12, the following series can be estimated by
∞∑

r=2

f (u + r) ≤
∞∑

r=2

f (r − |u|) ,

∞∑

r=2

f (u − r) ≤
∞∑

r=2

f (r − |u|) .

Hence, it follows by the integral test for convergence of series that

∑

r∈Z\{0,±1}
f (u + r) =

∞∑

r=2

f (u + r) +
∞∑

r=2

f (u − r) ≤ 2
∞∑

r=2

f (r − |u|)

≤ 2
∫ ∞

1
f (x − |u|) dx = 2

∫ ∞

1−|u|
f (t) dt .

Page 9 of 34    53Adv Comput Math (2021) 47: 53



Hence, we conclude that

∑

r∈Z\{0}
f (u + r) ≤ 2 f (1 − |u|) + 2

∫ ∞

1−|u|
f (t) dt .

We illustrate Lemma 5 for some special functions f , which we need later.

Example 1 For the function f (x) = x−μ, x > 0, with μ > 1, Lemma 5 provides
that for each u ∈ (−1, 1) it holds

∑

r∈Z\{0}
|u + r|−μ ≤ 2 (1 − |u|)−μ + 2 (1 − |u|)1−μ

μ − 1
. (13)

Especially for μ = 2, it follows that

∑

r∈Z\{0}
|u + r|−2 ≤ 4 − 2 |u|

(1 − |u|)2 ≤ 4

(1 − |u|)2 . (14)

For the function f (x) = e−ax , x > 0, with a > 0, we obtain by Lemma 5 that for
each u ∈ (−1, 1),

∑

r∈Z\{0}
e−a |u+r| ≤ (

2 + 2

a

)
ea |u|−a . (15)

Choosing the function f (x) = 1
ax

e−√
a x , x > 0, with a > 0, Lemma 5 implies that

for each u ∈ (−1, 1),

∑

r∈Z\{0}

1

a |u + r| e
−√

a |u+r| ≤ 2

a (1 − |u|) e
−√

a−a |u| + 4

a
E1

(√
a (1 − |u|)) , (16)

where E1 denotes the exponential integral E1(x) := ∫ ∞
x

1
t
e−t dt , x > 0.

Lemma 6 For all n ∈ IN we estimate

∑

r∈Z\{0}

∣∣ϕ̂cKB(n + rN1)
∣∣ ≤ 8m

(I0(β) − 1)N1
.

Proof By Eq. 10 and Lemma 4, we obtain for all frequencies |v| ≥ N1b
2π = N1 − N

2
that

∣∣ϕ̂cKB(v)
∣∣ ≤ mb2N1

2 (I0(bm) − 1) π2v2
.

Thus, we have for each n ∈ IN

∑

r∈Z\{0}

∣∣ϕ̂cKB(n + rN1)
∣∣ ≤ bβ

2 (I0(β) − 1)N1π2

∑

r∈Z\{0}

(
r + n

N1

)−2

≤ 2bβ

(I0(β) − 1)N1π2

(
1 − |n|

N1

)−2 ≤ 2bβ

(I0(β) − 1)N1π2

(
1 − 1

2σ

)−2
,
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since by Eq. 14 it holds for all n ∈ IN ,

∑

r∈Z\{0}

(
r + n

N1

)−2 ≤ 4
(
1 − |n|

N1

)−2 ≤ 4
(
1 − 1

2σ

)−2 .

By the special choice of b = 2π
(
1 − 1

2σ

)
, we obtain the above inequality.

From Lemma 6, it follows immediately that for all n ∈ IN ,

∥∥
∑

r∈Z\{0}
ϕ̂cKB(n+rN1) e

2π irN1 ·∥∥
C(T)

≤
∑

r∈Z\{0}

∣∣ϕ̂cKB(n+rN1)
∣∣ ≤ 8m

(I0(β) − 1)N1
.

(17)

Theorem 2 Let b = 2π (1 − 1
2σ ), σ > 1, β = bm, N ∈ 2N, and N1 = σN ∈ 2N.

Furthermore, m ∈ N \ {1} with 2m � N1 is given.
Then, the C(T)-error constant of the continuous Kaiser–Bessel window function

(8) can be estimated by

eσ (ϕcKB) ≤ 16mπ
√
1 − 1/σ

[
e2πm

√
1−1/σ −e−2πm

√
1−1/σ −4

√
σ 2 − σ

]−1
. (18)

Note that for σ ≥ 5
4 , it holds 2π

√
1 − 1/σ ≥ 2π/

√
5 and hence

e−2πm
√
1−1/σ ≤ e−2πm/

√
5 < 0.06m . (19)

Proof By the definition (1) of the C(T)-error constant, it holds

eσ (ϕcKB) = sup
N∈2N

eσ,N (ϕcKB)

with

eσ,N (ϕcKB) = max
n∈IN

∥∥
∑

r∈Z\{0}

ϕ̂cKB(n + rN1)

ϕ̂cKB(n)
e2π irN1 ·∥∥

C(T)

≤ 1

minn∈IN
ϕ̂cKB(n)

max
n∈IN

∥∥
∑

r∈Z\{0}
ϕ̂cKB(n + rN1) e

2π irN1 ·∥∥
C(T)

,

where it holds (9), i.e.,

ϕ̂cKB
(N

2

) ≥ 1

(I0(β) − 1)N1π
√
1 − 1/σ

[
sinh

(
2πm

√
1 − 1/σ

) − 2
√

σ 2 − σ
]

= 1

2 (I0(β) − 1)N1π
√
1 − 1/σ

[
e2πm

√
1−1/σ − e−2πm

√
1−1/σ − 4

√
σ 2 − σ

]
.

Thus, from Eq. 17, it follows the assertion (18).
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Remark 1 As in [9] and [4], we consider also the standard Kaiser–Bessel window
function

ϕKB(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

1
I0(β)

I0
(
β

√
1 − (

N1x
m

)2)
x ∈ I ,

1
2 I0(β)

x = ± m
N1

,

0 x ∈ R \ Ī

(20)

with the shape parameter β = mb = 2πm (1 − 1
2σ ), σ > 1, N ∈ 2N, and N1 ∈ 2N.

Furthermore, we assume that m ∈ N \ {1} fulfills 2m � N1. This window function
possesses jump discontinuities at x = ± m

N1
with very small jump height I0(β)−1,

such that Eq. 20 is “almost continuous.” The Fourier transform of Eq. 20 is even and
reads by [14, p. 95] as follows:

ϕ̂KB(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2m
I0(β) N1

sinh
(
β

√

1−
(
2πv
N1b

)2)

β

√

1−
(
2πv
N1b

)2 |v| < N1b
2π ,

2m
I0(β) N1

sinc
(
β

√( 2πv
N1b

)2 − 1
) |v| ≥ N1b

2π .

Thus, ϕ̂KB|[0, N1b

2π )
is positive and decreasing such that

min
n∈IN

ϕ̂KB(n) = ϕ̂KB
(N

2

) ≥ 1

I0(β)N1π

sinh
(
2πm

√
1 − 1/σ

)

√
1 − 1/σ

.

Splitting ϕKB in the form

ϕKB(x) = (
1 − 1

I0(β)

)
ϕcKB(x) + 1

I0(β)
ϕrect(x) , x ∈ R ,

we can estimate for all n ∈ IN ,

∥∥
∑

r∈Z\{0}
ϕ̂KB(n + rN1) e

2π irN1 ·∥∥
C(T)

≤ (
1 − 1

I0(β)

) ∑

r∈Z\{0}

∣∣ϕ̂cKB(n + rN1)
∣∣

+ 1

I0(β)

∥∥
∑

r∈Z\{0}
ϕ̂rect(n + rN1) e

2π irN1 ·∥∥
C(T)

.

Then, from Lemma 6 and Eq. 7, it follows that

max
n∈IN

∥∥
∑

r∈Z\{0}
ϕ̂KB(n + rN1) e

2π irN1 ·∥∥
C(T)

≤ 11m

I0(β)N1
.

Consequently, we obtain the following estimate of the C(T)-error constant of Eq. 20

eσ (ϕKB) ≤ 11mπ

√

1 − 1

σ

[
sinh(2πm

√
1 − 1/σ)

]−1

= 22πm

√

1 − 1

σ

[
e2πm

√
1−1/σ − e−2πm

√
1−1/σ

]−1
.
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For σ ≥ 5
4 , we sustain by Eq. 19 that

eσ (ϕKB) ≤ 22πm

√

1 − 1

σ

[
e2πm

√
1−1/σ − 0.06m

]−1
. (21)

5 sinh-type window function

For fixed shape parameter β = bm with m ∈ N \ {1}, b = 2π
(
1 − 1

2σ

)
, and

oversampling factor σ ≥ 5
4 , we consider the sinh-type window function

ϕsinh(x) :=
{

1
sinhβ

sinh
(
β

√
1 − (N1x/m)2

)
x ∈ I ,

0 x ∈ R \ I .
(22)

Obviously, ϕsinh ∈ Φm,N1 is a continuous window function which was introduced by
the authors in [17] (with another shape parameter β = 4m). Let N ≥ 8 be an even
integer. For a sampling factor σ ≥ 5

4 and b = 2π (1− 1
2σ ), we form N1 = σN ∈ 2N

and the shape parameter β = bm, where m ∈ N \ {1} with 2m � N1.
Substituting t = N1x/m, we determine the even Fourier transform

ϕ̂sinh(v)=
∫

R

ϕsinh(x) e−2π i vx dx = 2m

N1 sinhβ

∫ 1

0
sinh

(
β

√
1 − t2

)
cos

2π mvt

N1
dt .

Using the scaled frequency w := 2πmv/N1, the Fourier transform of Eq. 22 reads
by [14, p. 38] as follows:

ϕ̂sinh
(N1w

2πm

) = πmβ

N1 sinhβ

⎧
⎨

⎩

(β2 − w2)−1/2 I1
(√

β2 − w2
)

w ∈ (−β, β) ,

1/4 w = ±β ,

(w2 − β2)−1/2 J1
(√

w2 − β2
)

w ∈ R \ [−β, β] .
(23)

By the power series expansion of the modified Bessel function I1, we obtain for
w ∈ (−β, β),

(β2 − w2)−1/2 I1
(√

β2 − w2
) = 1

2

∞∑

k=0

1

4k k! (k + 1)! (β2 − w2)k

such that ϕ̂sinh(v) is decreasing for v ∈ [
0, N1

(
1 − 1

2σ

)]
. The frequency v = N

2
corresponds to the scaled frequency w = πm

σ
< β = 2πm

(
1− 1

2σ

)
. Hence, we have

min
n∈IN

ϕ̂sinh(n) = ϕ̂sinh
(N

2

)

= mπβ

N1 sinhβ

(
β2 − π2m2

σ 2

)−1/2
I1

(
√

β2 − π2m2

σ 2

)

= β

2N1 sinhβ

(
1 − 1

σ

)−1/2
I1

(
2πm

√

1 − 1

σ

)
.
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By m ≥ 2 and σ ≥ 5
4 , we maintain

2πm

√

1 − 1

σ
≥ 4π

√

1 − 1

σ
≥ x0 := 4π√

5
.

By the inequality (see [1] or [17, Lemma 3.3])
√
2πx0 e

−x0 I1(x0) ≤ √
2πx e−x I1(x) , x ≥ x0 ,

we preserve for all x ≥ x0,

I1(x) ≥ √
x0 e

−x0 I1(x0) x−1/2 ex >
2

5
x−1/2 ex

and hence

ϕ̂sinh
(N

2

) ≥ β

5N1
√
2πm sinhβ

(
1 − 1

σ

)−3/4 e2πm
√
1−1/σ . (24)

Now we estimate ϕ̂sinh
(

N1w
2πm

)
for |w| > β = bm. For |w| > β, σ ≥ 5

4 , and N ≥ 8, it
holds

N1|w|
2πm

> N1
(
1 − 1

2σ

) = N
(
σ − 1

2

) ≥ 3N

4
≥ 6 .

By an inequality of the Bessel function J1 (see [12] or [17, Lemma 3.2]), we have for
all x ≥ 6,

|J1(x)| ≤ 1√
x
.

Using Eq. 23, it follows that for |w| > β,
∣∣ϕ̂sinh

(N1w

2πm

)∣∣ = βπm

N1 sinhβ
(w2 − β2)−1/2

∣∣J1
(√

w2 − β2
)∣∣

≤ βπm

N1 sinhβ
(w2 − β2)−3/4

i.e., for |v| > N1
(
1 − 1

2σ

)
,

|ϕ̂sinh(v)| ≤
√

πm√
2N1 sinhβ

( v2

N2
1

− (
1 − 1

2σ

)2)−3/4(
1 − 1

2σ

)
. (25)

For each n ∈ IN with |n±N1| > N1
(
1− 1

2σ

)
, we obtain by Eq. 23 and |J1(x)| ≤ 1

2 |x|
that

|ϕ̂sinh(n ± N1)| ≤ πmβ

2N1 sinhβ
. (26)

In the case −N
2 + N1 = N1

(
1 − 1

2σ

)
, we get by Eq. 23 that

ϕ̂sinh
( − N

2
+ N1

) = πmβ

4N1 sinhβ
,

i.e., we can use Eq. 26 for all n ∈ IN .
For all n ∈ IN and r ∈ Z \ {0, ±1}, we have by σ ≥ 5

4 that

∣∣ n

N1
+ r| ≥ 2 − 1

2σ
≥ 2 − 2

5
= 8

5
.
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Since the decreasing function h : [ 8
5 , ∞) → R,

h(x) := x3/2
(
x2 − (

1 − 1

2σ

)2)−3/4 =
(
1 − (

1 − 1

2σ

)2
x−2

)−3/4
,

is bounded by

h
(8
5

) =
(
1 − 25

64

(
1 − 1

2σ

)2)−3/4
<

(
1 − 25

64

)−3/4
<

3

2
,

we receive for all n ∈ IN and r ∈ Z \ {0, ±1},
∣∣ϕ̂sinh(n + rN1)

∣∣ ≤
√

πm√
2N1 sinhβ

((
r + n

N1

)2 − (
1 − 1

2σ

)2)−3/4

≤ 3
√

πm

2
√
2N1 sinhβ

∣∣r + n

N1

∣∣−3/2 .

Therefore, we get by Eq. 13 that for all n ∈ IN ,

∑

r∈Z\{0, ±1}

∣∣ϕ̂Bessel(n + rN1)
∣∣ ≤ 3

√
πm

2
√
2N1 sinhβ

∑

r∈Z\{0, ±1}

∣∣r + n

N1

∣∣−3/2

≤ 3
√
2πm

N1 sinhβ

(
1 − 1

2σ

)−1/2

and hence by Eq. 26,
∑

r∈Z\{0}

∣∣ϕ̂Bessel(n + rN1)
∣∣ ≤ 1

N1 sinhβ

[
πmβ + 3

√
2πm

(
1 − 1

2σ

)−1/2
]
. (27)

Then, from Eqs. 23 and 26, it follows that

eσ,N (ϕsinh) ≤ 1

ϕ̂sinh(N/2)
max
n∈IN

∑

r∈Z\{0}

∣∣ϕ̂Bessel(n + rN1)
∣∣

≤
[
5πm

√
2πm + 3

(
1 − 1

2σ

)−3/2
] (

1 − 1

σ

)3/4 e−2πm
√
1−1/σ .

Using 5π
√
2π < 40, we summarize:

Theorem 3 Let N ∈ 2N, N ≥ 8, and σ ≥ 5
4 be given, where N1 = σN ∈ 2N.

Furthermore, let m ∈ N \ {1} with 2m � N1 and β = 2πm
(
1 − 1

2σ

)
.

Then, the C(T)-error constant of the sinh-type window function (22) can be
estimated by

eσ (ϕsinh) ≤
[
40m3/2 + 3

(
1 − 1

2σ

)−3/2
] (

1 − 1

σ

)3/4 e−2πm
√
1−1/σ ,

i.e., the sinh-type window function (22) is convenient for NFFT.

For a fixed oversampling factor σ ≥ 5
4 , the C(T)-error constant of Eq. 22 decays

exponentially with the truncation parameter m ≥ 2. On the other hand, the computa-
tional cost of NFFT increases with respect to m (see [15, pp. 380–381]) such that m

should be not too large. For σ = 2 and m = 4, we obtain eσ (ϕsinh) ≤ 3.7 · 10−6.
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6 Continuous exp-type window function

For fixed shape parameter β = bm with m ∈ N \ {1}, b = 2π
(
1 − 1

2σ

)
, and

oversampling factor σ ≥ 5
4 , we consider the continuous exp-type window function

ϕcexp(x) :=
{

1
eβ−1

(
eβ

√
1−(N1x/m)2 − 1

)
x ∈ I ,

0 x ∈ R \ I .
(28)

Obviously, ϕcexp ∈ Φm,N1 is a continuous window function. Note that a discontinu-
ous version of this window function was suggested in [3, 4]. A corresponding error
estimate for the NFFT was proved in [4], where an asymptotic value of its Fourier
transform was determined for β → ∞ by saddle point integration. We present new
explicit error estimates for fixed shape parameter β of moderate size.

In the following, we present a new approach to an error estimate for the NFFT with
the continuous exp-type window function (28). Unfortunately, the Fourier transform
of Eq. 28 is unknown analytically. Therefore, we represent (28) as sum

ϕcexp(x) = ψ(x) + ρ(x) , (29)

where the Fourier transform of ψ is known and where the correction term ρ has small
magnitude |ρ|. We choose

ψ(x) :=
{

2
eβ−1

sinh
(
β

√
1 − (N1x)2/m2

)
x ∈ I ,

0 x ∈ R \ I

and

ρ(x) :=
{

1
eβ−1

(
e−β

√
1−(N1x)2/m2 − 1

)
x ∈ I ,

0 x ∈ R \ I .

The Fourier transform of ψ reads as follows (see [14, p. 38]):

ψ̂(v) = 2πmβ

(eβ − 1)N1
(30)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2πm

((
1− 1

2σ

)2− v2

N2
1

)−1/2
I1

(
2πm

√(
1− 1

2σ

)2− v2

N2
1

) |v|<N1
(
1− 1

2σ

)
,

1
4 v=±N1

(
1− 1

2σ

)
,

1
2πm

(
v2

N2
1
−(

1− 1
2σ

)2)−1/2
J1

(
2πm

√
v2

N2
1
−(

1− 1
2σ

)2) |v|>N1
(
1− 1

2σ

)
.

Since ρ is even and ρ|[0, m
N1

] is increasing, we have 0 ≥ ρ(x) ≥ ρ(0) = 1
eβ−1

(e−β −
1) = −e−β (Table 1).

Since ρ has small absolute values in the small support Ī , the Fourier transform ρ̂

is small too and it holds

|ρ̂(v)| = ∣∣
∫

I

ρ(x) e−2π i vx dx
∣∣ ≤ 2m

N1
e−β .
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Table 1 Upper bounds of the
function −ρ for
m = 2, 3, . . . , 6 and σ = 2

m −ρ(0) = e−β

2 8.06 · 10−5

3 7.24 · 10−7

4 6.51 · 10−9

5 5.85 · 10−11

6 5.25 · 10−13

Substituting t = N1x/m, we determine the Fourier transform

ϕ̂cexp(v) =
∫

I

ϕcexp(x) e−2π i vx dx =
∫

I

ψ(x) e−2π i vx dx +
∫

I

ρ(x) e−2π i vx dx

= 2m

(eβ − 1)N1

[
2

∫ 1

0
sinh

(
β
√
1 − t2

)
cos

2πmvt

N1
dt

+
∫ 1

0

(
e−β

√
1−t2 − 1

)
cos

2πmvt

N1
dt

]
.

For simplicity, we introduce the scaled frequency w := 2πmv/N1 such that

ϕ̂cexp
(N1w

2πm

) = 2m

(eβ − 1)N1

[
2

∫ 1

0
sinh

(
β
√
1 − t2

)
cos(wt) dt

+
∫ 1

0

(
e−β

√
1−t2 − 1

)
cos(wt) dt

]
. (31)

From [14, p. 38], it follows that
∫ 1

0
sinh

(
β
√
1 − t2

)
cos(wt) dt

= πβ

2

⎧
⎨

⎩

(β2 − w2)−1/2 I1
(√

β2 − w2
)

w ∈ (−β, β) ,

1/4 w = ±β ,

(w2 − β2)−1/2 J1
(√

w2 − β2
)

w ∈ R \ [−β, β] ,

where I1 denotes the modified Bessel function and J1 the Bessel function of first
order. Therefore, we consider

ρ̂
(N1w

2πm

) = 2m

(eβ − 1)N1

∫ 1

0

(
e−β

√
1−t2 − 1

)
cos(wt) dt

= m

(eβ − 1)N1

∫ 1

−1

(
e−β

√
1−t2 − 1

)
eiwt dt (32)

as correction term of Eq. 31. Now, we estimate the integral

I(w) :=
∫ 1

−1

(
e−β

√
1−t2 − 1

)
eiwt dt (33)

by complex contour integrals.
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Lemma 7 For each w ∈ R with |w| ≥ β = bm, m ∈ N \ {1}, we have
|I(w)| ≤ (

2 + 2

e

)
β

4
√
5 |w|−5/4 + 4 |w|−1 e−√|w| + (

2 e−√
2β + 1

)
e−|w| .

Proof Here, we use the same technique as in [4, Lemma 10], where the integral
∫ 1

−1

(
eβ

√
1−t2 − 1

)
eiwt dt

for |w| ≥ β4 was estimated. Since I(w) = I(−w), we consider only the casew ≥ β.
Let C1 be the line segment from −1 to −1 + i. Furthermore, C2 is the line segment
from −1+ i to 1+ i, C3 is the line segment from 1+ i to 1, and C4 is the line segment
from 1 to −1. Since the principal square root function is holomorphic in C except the
nonpositive real axis, the complex function

g(z) := (
e−β

√
1−z2 − 1

)
eiwz

is holomorphic in C except the set (−∞, −1] ∪ [1, ∞). Hence, g is holomorphic on
the interior of the closed curve C := C1 ∪ C2 ∪ C3 ∪ C4 and continuous in D ∪ C,
since a simple calculation shows that

lim
z→−1
z∈D

g(z) = lim
z→1
z∈D

g(z) = 0 .

Then, the stronger form of Cauchy’s Integral Theorem (see [5]) provides

I(w) = I1(w) + I2(w) + I3(w) (34)

with the contour integrals

Ik(w) =
∫

Ck

(
e−β

√
1−z2 − 1

)
eiwz dz , k = 1, 2, 3 .

Note that I3(w) is the complex conjugate of I1(w) such that |I3(w)| = |I1(w)|.
The line segment C2 can be parametrized by z = t + i, t ∈ [−1, 1] such that

I2(w) = e−w

∫ 1

−1

(
e−β

√
2−t2−2it − 1

)
eiwt dt

and hence

|I2(w)| ≤ e−w

∫ 1

−1

∣∣e−β
√

2−t2−2it
∣∣ dt + 2 e−w .

Then, we have
∣∣e−β

√
2−t2−2it

∣∣ = e−β Re
√

2−t2−2it . Since for t ∈ [−1, 1],
|2 − t2 − 2i t | =

√
t2 + 4 ∈ [2, √

5] ,

we obtain the estimate
√
2 ≤ Re

√
2 − t2 − 2it ≤ 4

√
5 for t ∈ [−1, 1].

Note that Re
√
2 − t2 − 2it > 0 for all t ∈ [−1, 1]. Thus, we have

|I2(w)| ≤ 2 e−w
(
e−√

2β + 1
)
.

A parametrization of the line segment C1 is z = −1 + i t , t ∈ [0, 1], such that

I1(w) = i e−iw
∫ 1

0

(
e−β

√
2it+t2 − 1

)
e−wt dt .
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For w ≥ β > 0, we split I1(w) into the sum of two integrals

I1,0(w) := i e−iw
∫ w−1/2

0

(
e−β

√
2it+t2 − 1

)
e−wt dt ,

I1,1(w) := i e−iw
∫ 1

w−1/2

(
e−β

√
2it+t2 − 1

)
e−wt dt .

Since 2 ≤ |√2i + t | ≤ 4
√
5, t ∈ [0, 1] , the integral I1,0(w) is bounded in magnitude

by

|I1,0(w)| ≤ max
t∈[0, w−1/2]

(
1 − e−β

√
t

4√5)
∫ w−1/2

0
e−wt dt .

From ∫ w−1/2

0
e−wt dt = 1 − e−√

w

w
≤ 1

w

and

max
t∈[0, w−1/2]

(
1 − e−β

√
t

4√5) = 1 − e−β 4√5/w ≤ β
4

√
5

w

it follows that
|I1,0(w)| ≤ (

1 + e−1) β
4
√
5w−5/4 .

Above, we have used the simple inequality 1 − e−x ≤ x for x ≥ 0.
Finally, we estimate the integral I1,1(w) as follows:

|I1,1(w)| ≤
∫ 1

w−1/2
e−β

√
t Re

√
2i+t−wt dt +

∫ 1

w−1/2
e−wt dt .

From Re
√
2i + t > 0 for all t ∈ [0, 1] and

∫ 1

w−1/2
e−wt dt = w−1 (

e−√
w − e−w

) ≤ w−1 e−√
w

it follows that

|I1,1(w)| ≤
∫ 1

w−1/2
e−wt dt + w−1 e−√

w ≤ 2w−1 e−√
w .

Thus, we receive for w ≥ β,

|I(w)| ≤ |I1(w)| + |I2(w)| + |I3(w)| = 2 |I1(w)| + |I2(w)|
≤ 2 |I1,0(w)| + 2 |I1,1(w)| + |I2(w)|
≤ (

2 + 2

e

)
β

4
√
5w−5/4 + 4w−1 e−√

w + (
2 e−√

2β + 1
)
e−w .

This completes the proof.

Remark 2 In the proof of Lemma 7, it was shown that for real w with |w| ≥ β, the
contour integral I1(w) can be estimated by

|I1(w)| ≤ (
1 + 1

e

)
β

4
√
5 |w|−5/4 + 2 |w|−1 e−√|w| .
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Splitting the integral I1(w) in the form

I1(w) = i e−iw
( ∫ (log

√
w)/w

0
+

∫ 1

(log
√

w)/w

)(
e−β

√
2i t+t2 − 1

)
e−wt dt ,

this yields the better estimate for |w| ≥ β,

|I1(w)| ≤ ( 1√
2

β
4
√
5

√
log |w| + 2

) |w|−3/2 .

Lemma 8 Let β = bm be given. Then for each w ∈ R, it holds the estimate

−sincw − γ (m, σ) ≤
∫ 1

0

(
e−β

√
1−t2 − 1

)
cos(wt) dt ≤ −sincw + γ (m, σ)

with the small positive constant

γ (m, σ) :=
∫ 1

0
e−β

√
1−t2 dt .

Proof For each w ∈ R, we have

∣∣
∫ 1

0

(
e−β

√
1−t2 − 1

)
cos(wt) dt + sincw

∣∣ = ∣∣
∫ 1

0
e−β

√
1−t2 cos(wt) dt

∣∣

≤
∫ 1

0
e−β

√
1−t2 dt = γ (m, σ)

such that

max
w∈R

∣∣
∫ 1

0

(
e−β

√
1−t2 − 1

)
cos(wt) dt + sincw

∣∣ ≤ γ (m, σ) ,

see Table 2.

Using Eq. 31 and Lemma 8, we receive for w ∈ (−β, β),

ϕ̂cexp
(N1w

2πm

) ≥ 2m

(eβ − 1)N1

[
πβ (β2 − w2)−1/2 I1

(√
β2 − w2

)
(35)

− sincw − γ (m, σ)
]
. (36)

Table 2 Maximum error
γ (m, σ) between
∫ 1
0

(
e−β

√
1−t2 − 1

)
cos(wt) dt

and −sincw for
m = 2, 3, . . . , 6 and σ = 2

m γ (m, 2)

2 1.17 · 10−2

3 5.08 · 10−3

4 2.84 · 10−3

5 1.81 · 10−3

6 1.25 · 10−3
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The function h : [0, β] → R defined by

h(w) := πβ (β2 − w2)−1/2 I1
(√

β2 − w2
) − sincw

= πβ

2

∞∑

s=0

(β2 − w2)s

22s s! (s + 1)! − sincw

has the derivative

h′(w) = −πβ

∞∑

s=1

(β2 − w2)s−1

22s (s − 1)! (s + 1)! − d

dw
sincw . (37)

Obviously, it holds h′(0) = 0, and h′(w) < 0 for w ∈ (0, π]. For w ∈ [π, β] and
m ≥ 2, we obtain

∣∣ d

dw
sincw

∣∣ ≤ 1

π2
+ 1

π

and hence by Eq. 37,

h′(w) < −πβ

8
+ 1

π2
+ 1

π
< 0 .

Thus, h(w) is decreasing with respect to w ∈ [0, β].
For β = bm and v = N1w

2πm
∈ ( − N1

(
1 − 1

2σ

)
, N1

(
1 − 1

2σ

))
, the inequality (35)

implies

ϕ̂cexp(v) ≥ 2m

(eβ − 1)N1

[
2

((
1 − 1

2σ

)2 − v2

N2
1

)−1/2
I1

(
2πm

√
(
1 − 1

2σ

)2 − v2

N2
1

)

− sinc
2πmv

N1
− γ (m, σ)

]
.

Consequently, the Fourier transform ϕ̂cexp(v) is positive and decreasing for

v ∈ [
0, N1

(
1 − 1

2σ

))
.

Hence, we obtain

min
n∈IN

ϕ̂cexp(n) = ϕ̂cexp
(N

2

)

≥ 2m

(eβ −1)N1

[b

2

(
1− 1

σ

)−1/2
I1

(
2πm

√

1− 1

σ

)−sinc
πm

σ
−γ (m, σ)

]

≥ 2m

(eβ − 1)N1

[b

2

(
1 − 1

σ

)−1/2
I1

(
2πm

√

1 − 1

σ

) − 1 − γ (m, σ)
]
.

From m ≥ 2 and σ ≥ 5
4 , it follows that

2πm

√

1 − 1

σ
≥ 4π

√

1 − 1

σ
≥ x0 := 4π√

5
.

Hence, by the inequality (see [1] or [17, Lemma 3.3])
√
2πx0 e

−x0 I1(x0) ≤ √
2πx e−x I1(x) , x ≥ x0 ,
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we sustain that

I1(x) ≥ √
x0 e

−x0 I1(x0) x−1/2 ex , x ≥ x0 .

Thus, for x = 2πm
√
1 − 1/σ , we get the estimate

I1
(
2πm

√

1 − 1

σ

) ≥ 2

5
√
2πm

(
1 − 1

σ

)−1/4 e2πm
√
1−1/σ .

Thus, we obtain the following

Lemma 9 Let N ∈ 2N and σ ≥ 5
4 be given, where N1 = σN ∈ 2N. Furthermore,

let m ∈ N with 2m � N1, β = bm, and b = 2π
(
1 − 1

2σ

)
.

Then, we have

ϕ̂cexp
(N

2

) ≥ 2m

(eβ − 1)N1

[ b

5
√
2πm

(
1 − 1

σ

)−3/4 e2πm
√
1−1/σ − 1 − γ (m, σ)

]
.

By Eq. 2, the constant eσ,N (ϕ̂cexp) can be estimated as follows:

eσ,N (ϕ̂cexp) ≤ 1

ϕ̂cexp(N/2)
max
n∈IN

∥∥
∑

r∈Z\{0}
ϕ̂cexp(n + rN1) e

2π i rN1 ·∥∥
C(T)

,

where it holds by Eq. 29,
∥∥

∑

r∈Z\{0}
ϕ̂cexp(n+rN1) e

2π i rN1 ·∥∥
C(T)

≤
∑

r∈Z\{0}
|ψ̂(n+rN1)|+

∑

r∈Z\{0}
|ρ̂(n+rN1)| .

Lemma 10 Let N ∈ 2N and σ ≥ 5
4 be given, where N1 = σN ∈ 2N. Furthermore,

let m ∈ N with 2m � N1, β = bm, and b = 2π
(
1 − 1

2σ

)
.

Then, it holds for all n ∈ IN ,
∑

r∈Z\{0}
|ψ̂(n + rN1)| ≤ β

(eβ − 1)N1

[
2πm + 10√

2πm

(
1 − 1

2σ

)−1/2
]
.

Proof For all n ∈ IN and r ∈ Z \ {0} with (n, r) = ( − N
2 , 1

)
, it follows that

|n + rN1| > N1 − N

2
= N1

(
1 − 1

2σ

)

and hence by σ ≥ 5
4 ,

∣∣ n

N1
+ r

∣∣ > 1 − 1

2σ
≥ 3

5
.

Thus, by Eq. 30, we receive
ψ̂(n + rN1)

= β

(eβ − 1)N1

(( n

N1
+ r

)2 − (
1− 1

2σ

)2)−1/2
J1

(
2πm

√
( n

N1
+ r

)2 − (
1 − 1

2σ

)2) .

In the case (n, r) = ( − N
2 , 1

)
, from Eq. 30, it follows that

ψ̂
( − N

2
+ N1

) = ψ̂
(
N1

(
1 − 1

2σ

)) = πmβ

2(eβ − 1)N1
.
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Now, we estimate the sum
∑

r∈Z\{0}
|ψ̂(n + rN1)| = |ψ̂(n + N1)| + |ψ̂(n − N1)|

+
∑

r∈Z\{0,±1}
|ψ̂(n + rN1)| .

For n ∈ IN and r ∈ Z \ {0, ±1}, we have by σ ≥ 5
4 ,

∣∣ n

N1
+ r

∣∣ ≥ 2 − 1

2σ
≥ 7

5

and therefore by m ≥ 2,

2πm

√
( n

N1
+ r

)2 − (
1 − 1

2σ

)2 ≥ 4π

√
(
2 − 1

2σ

)2 − (
1 − 1

2σ

)2

= 4π

√

3 − 1

σ
≥ 4π

√
11

5
> 6 .

By an inequality for the Bessel function J1(x) (see [12] or [17, Lemma 3.2]), it holds
for all x ≥ 6,

|J1(x)| ≤ 1√
x

such that for x = 2πm
√

(r + n/N1)2 − (1 − 1/(2σ))2,

∣∣J1
(
2πm

√
( n

N1
+ r

)2 − (
1 − 1

2σ

)2)∣∣

≤ 1√
2πm

(( n

N1
+ r

)2 − (
1 − 1

2σ

)2)−1/4
.

The decreasing function h : [ 5
4 , ∞) → R defined by

h(x) := x3/2 (
x2 − (

1 − 1

2σ

)2)−3/4 =
(
1 − (

1 − 1

2σ

)2
x−2

)−3/4
,

is bounded by

h
(5
4

) =
(
1 − 16

25

(
1 − 1

2σ

)2)−3/4 ≤ (
1 − 16

25

)−3/4 = (5
3

)3/2
<

5

2
.

Thus, we receive for all n ∈ IN and r ∈ Z \ {0, ±1},
(( n

N1
+ r

)2 − (
1 − 1

2σ

)2)−1/2 ∣∣J1
(
2πm

√
( n

N1
+ r

)2 − (
1 − 1

2σ

)2)∣∣

≤ 1√
2πm

(( n

N1
+ r

)2 − (
1 − 1

2σ

)2)−3/4 ≤ 5

2
√
2πm

∣∣ n

N1
+ r

∣∣−3/2 .
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Hence, for all n ∈ IN , we obtain by Eq. 13 that
∑

r∈Z\{0,±1}
|ψ̂(n + rN1)| ≤ 5β

2
√
2πm (eβ − 1)N1

∑

r∈Z\{0,±1}

∣∣ n

N1
+ r

∣∣−3/2

≤ 10β√
2πm (eβ − 1)N1

(
1 − 1

2σ

)−1/2 .

Now, we estimate ψ̂(v) for v = n ± N1, n ∈ IN . For v = −N
2 + N1 = N1

(
1 − 1

2σ

)
,

it holds by Eq. 30,

ψ̂
( − N

2
+ N1

) = ψ̂
(
N1

(
1 − 1

2σ

)) = πmβ

2 (eβ − 1)N1
. (38)

For all the other v = n ± N1 = −N
2 + N1, n ∈ IN , we have

|n ± N1| >
(
1 − 1

2σ

)
N1

such that by Eq. 30, ψ̂(n ± N1) reads as follows:

β

(eβ − 1)N1

((
1 ± n

N1

)2 − (
1 − 1

2σ

)2)−1/2
J1

(
2πm

√
(
1 ± n

N1

)2 − (
1 − 1

2σ

)2) .

Since

2πm

√
(
1 ± n

N1

)2 − (
1 − 1

2σ

)2
> 0

can be small for n ∈ IN , we estimate the Bessel function J1(x), x ≥ 0, by Poisson’s
integral (see [21, p. 47]):

|J1(x)| = x

π

∣∣
∫ π

0
cos(x cos t) (sin t)2 dt

∣∣ ≤ x

π

∫ π

0
(sin t)2 dt = x

2
,

such that

|ψ̂(n ± N1)| ≤ πmβ

(eβ − 1)N1
.

By Eq. 38, this estimate of |ψ̂(n ± N1)| is valid for all n ∈ IN . This completes the
proof.

Now for arbitrary n ∈ IN , we have to estimate the series
∑

r∈Z\{0}
|ρ̂(n + rN1)| .

By Eq. 32 and Lemma 7, we obtain for any v ∈ R \ {0},

|ρ̂(v)| ≤ 2m

(eβ − 1)N1

[(
1 + 1

e

) β

2πm

4

√
5

2πm

( |v|
N1

)−5/4

+ N1

πm |v| e
−√

2πm |v|/N1 + (
e−√

2β + 1

2

)
e−2πm |v|/N1

]
.
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Thus, we obtain that

∑

r∈Z\{0}
|ρ̂(n + rN1)| ≤ 2m

(eβ − 1)N1

[(
1 + 1

e

) β

2πm

4

√
5

2πm
S1(n)

+ 2 S2(n) + (
e−√

2β + 1

2

)
S3(n)

]

with

S1(n) :=
∑

r∈Z\{0}

∣∣ n

N1
+ r

∣∣−5/4
, (39)

S2(n) :=
∑

r∈Z\{0}

1

2πm |r + n/N1| e
−√

2πm |r+n/N1| , (40)

S3(n) :=
∑

r∈Z\{0}
e−2πm |r+n/N1| . (41)

The inequalities (13), (15), and (16) imply that

S1(n) ≤ ( 4σ

2σ − 1
+ 8

) (
1 − 1

2σ

)−1/4
, (42)

S2(n) ≤ 2σ

(2σ − 1) πm
e−√

2πm−πm/σ + 2

πm
E1

(√
2πm − πm/σ

)
, (43)

S3(n) ≤ (
2 + 1

πm

)
e−2πm+πm/σ . (44)

Thus, we obtain the following

Lemma 11 Let N ∈ 2N and σ ≥ 5
4 be given, where N1 = σ N ∈ 2N. Furthermore,

let m ∈ N \ {1} with 2m � N1, β = bm, and b = 2π
(
1 − 1

2σ

)
.

Then, for each n ∈ IN , it holds the estimate

∑

r∈Z\{0}
|ρ̂(n + rN1)| ≤ 1

(eβ −1)N1

[(
1+ 1

e

) β

π

4

√
5

2πm

( 4σ

2σ − 1
+ 8

) (
1− 1

2σ

)−1/4

+ 8σ

(2σ − 1) π
e−√

2πm−πm/σ + 8

π
E1

(√
2πm − πm/σ

)

+ (
e−√

2β + 1

2

) (
4m + 2

π

)
e−2πm+πm/σ

]
.

Hence, from Lemmas 10 and 11, it follows that

max
n∈IN

∥∥
∑

r∈Z\{0}
ϕ̂cexp(n + rN1) e

2π irN1 ·∥∥
C(T)

≤ β

(eβ − 1)N1
b(m, σ) (45)
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with the constant

b(m, σ) := 2πm + 10√
2πm

(
1 − 1

2σ

)−1/2

+ (
1 + 1

e

) 1

π

4

√
5

2πm

( 4σ

2σ − 1
+ 8

) (
1 − 1

2σ

)−1/4

+ 8σ

(2σ − 1) πβ
e−√

2πm−πm/σ + 8

πβ
E1

(√
2πm − πm/σ

)

+ 4πm + 2

βπ

(
e−√

2β + 1

2

)
e−2πm+πm/σ . (46)

Using Lemma 9, we obtain by

eσ,N (ϕcexp) ≤ 1

ϕ̂cexp(N/2)
max
n∈IN

∥∥
∑

r∈Z\{0}
ϕ̂cexp(n + rN1) e

2π irN1 ·∥∥
C(T)

the following:

Theorem 4 Let N ∈ 2N and σ ≥ 5
4 be given, where N1 = σN ∈ 2N. Furthermore,

let m ∈ N with 2m � N1, β = bm, and b = 2π
(
1 − 1

2σ

)
.

Then, the C(T)-error constant of the continuous exp-type window function (28)
can be estimated by

eσ (ϕcexp) ≤ β b(m, σ)

2m

[ b

5
√
2πm

(
1− 1

σ

)−3/4 e2πm
√
1−1/σ −1−γ (m, σ)

]−1
(47)

In other words, the continuous exp-type window function (28) is convenient for
NFFT.

Note that for σ ∈ [ 5
4 , 2

]
and m ≥ 2, it holds by Eq. 46,

β b(m, σ)

2m
= πb(m, σ)

(
1 − 1

2σ

) ≤ 3π2

2
m + b0 < 15m + b0

with b0 < 17.
In order to compute the Fourier transform ϕ̂ of window function ϕ ∈ Φm,N1 , we

approximate this window function by numerical integration. In our next numerical
examples, we apply the following method. Since the window function ϕ ∈ Φm,N1 is
even and supported in [− m

N1
, m

N1
], we have

ϕ̂(v) =
∫

R

ϕ(x) e−2π i vx dx = m

N1

∫ 1

−1
ϕ
( m

N1
t
)
e−2π imvt/N1 dt

= 2m

N1

∫ 1

0
ϕ
( m

N1
t
)
cos

2π mvt

N1
dt .

We evaluate the last integral using a global adaptive quadrature [19] for ϕ̂(k),
k = 0, . . . , N . In general, these values can be precomputed; see [2, 10].
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Remark 3 As in [3, 4], we can consider also the original exp-type window function

ϕexp(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

exp
(
β
√
1 − (N1x/m)2 − β

)
x ∈ I ,

1
2 e

−β x = ± m
N1

,

0 x ∈ R \ Ī

(48)

with the shape parameter β = mb = 2πm
(
1 − 1

2σ

)
, σ ≥ 5

4 , N ∈ 2N, and N1 =
σN ∈ 2N. Furthermore, we assume that m ∈ N \ {1} fulfills 2m � N1. This window
function possesses jump discontinuities at x = ± m

N1
with very small jump height

e−β , such that Eq. 48 is “almost continuous.”
We split (48) in the form

ϕexp(x) = (
1 − e−β

)
ϕcexp(x) + e−β ϕrect(x) , x ∈ R ,

with the window functions (28) and (4). Then, the Fourier transform of Eq. 48 reads
as follows:

ϕ̂exp(v) = (
1 − e−β

)
ϕ̂cexp(v) + e−β ϕ̂rect(v) , v ∈ R ,

By Lemma 9, it follows that

ϕ̂exp
(N

2

) = min
n∈IN

ϕ̂exp(n)

= min
n∈IN

[(
1 − e−β

)
ϕ̂cexp(n) + e−β ϕ̂rect(n)

]

≥ 2m

N1 eβ

[ b

5
√
2πm

(
1 − 1

σ

)−3/4 e2πm
√
1−1/σ − γ (m, σ)

]
.

Using Eqs. 45 and 7, we estimate for all n ∈ IN ,

∥∥
∑

r∈Z\{0}
ϕ̂exp(n + rN1) e

2π irN1 ·∥∥
C(T)

≤ (
1 − e−β

) ∑

r∈Z\{0}
|ϕ̂cexp(n + rN1)|

+ e−β
∥∥

∑

r∈Z\{0}
ϕ̂rect(n + rN1) e

2π irN1 ·∥∥
C(T)

≤ 1

N1 eβ
(β b(m, σ) + 3m) .

Thus, we obtain

eσ (ϕexp) ≤ (β b(m, σ)

2m
+ 3

2

) [ b

5
√
2πm

(
1 − 1

σ

)−3/4 e2πm
√
1−1/σ − γ (m, σ)

]−1
.

Thus, the discontinuous window function (48) possesses a similar C(T)-error
constant as the continuous exp-type window function (28).
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7 Continuous cosh-type window function

For fixed shape parameter β = bm = 2πm
(
1− 1

2σ

)
and oversampling factor σ ≥ 5

4 ,
we consider the continuous cosh-type window function

ϕcosh(x) :=

⎧
⎪⎨

⎪⎩

1
coshβ−1

(
cosh

(

β

√

1 −
(

N1x
m

)2
)

− 1
)

x ∈ I ,

0 x ∈ R \ I .

(49)

Obviously, ϕcosh ∈ Φm,N1 is a continuous window function. Note that recently a
discontinuous version of this window function was suggested in [3, Remark 13]. But
up to now, a corresponding error estimate for the related NFFT was unknown. Now
we show that the C(T)-error constant eσ (ϕcosh) can be estimated by a similar upper
bound as eσ (ϕcexp) in Theorem 4. Thus, the window functions (28) and (49) possess
the same error behavior with respect to the NFFT.

In the following, we use the same technique as in Section 6. Since the Fourier
transform of Eq. 49 is unknown analytically, we represent Eq. 49 as the sum

ϕcosh(x) = ψ1(x) + ρ1(x) ,

where the Fourier transform of ψ1 is known and where the correction term ρ1 has
small magnitude |ρ1|. We choose

ψ1(x) :=
{

1
coshβ−1 sinh

(
β

√
1 − (N1x)2/m2

)
x ∈ I ,

0 x ∈ R \ I

and

ρ1(x) :=
{

1
coshβ−1

(
e−β

√
1−(N1x)2/m2 − 1

)
x ∈ I ,

0 x ∈ R \ I .

Since ρ1 is even and ρ1|[0, m
N1

] is increasing, we have

0 ≥ ρ1(x) ≥ ρ1(0) = e−β − 1

coshβ − 1
= − 2

eβ − 1
.

Since ρ1 has small values in the compact support Ī , the Fourier transform ρ̂1 is small
too and it holds

|ρ̂1(v)| = ∣∣
∫

I

ρ(x) e2π i vx dx
∣∣ ≤ 4m

(eβ − 1)N1
.

Substituting t = N1x/m, we determine the Fourier transform

ϕ̂cosh(v) =
∫

I

ϕcosh(x) e−2π i vx dx =
∫

I

ψ1(x) e−2π i vx dx +
∫

I

ρ1(x) e−2π i vx dx

= 2m

(coshβ − 1)N1

[ ∫ 1

0
sinh

(
β
√
1 − t2

)
cos

2πmvt

N1
dt

+
∫ 1

0

(
e−β

√
1−t2 − 1

)
cos

2πmvt

N1
dt

]
.
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For simplicity, we introduce the scaled frequency w := 2πmv/N1 such that

ϕ̂exp
(N1w

2πm

) = 2m

(coshβ − 1)N1

[ ∫ 1

0
sinh

(
β
√
1 − t2

)
cos(wt) dt

+
∫ 1

0

(
e−β

√
1−t2 − 1

)
cos(wt) dt

]
.

From [14, p. 38], it follows that
∫ 1

0
sinh

(
β
√
1 − t2

)
cos(wt) dt

= πβ

2

⎧
⎨

⎩

(β2 − w2)−1/2 I1
(√

β2 − w2
)

w ∈ (−β, β) ,

1/4 w = ±β ,

(w2 − β2)−1/2 J1
(√

w2 − β2
)

w ∈ R \ [−β, β] ,

where I1 denotes the modified Bessel function and J1 the Bessel function of first
order.

Using Lemma 8, we receive for w ∈ (−β, β),

ϕ̂cosh
(N1w

2πm

)≥ 2m

(coshβ−1)N1

[πβ

2
(β2−w2)−1/2I1

(√
β2−w2

)−sincw−γ (m, σ)
]
.

This means for β = bm and v = N1w
2πm

∈ ( − N1
(
1 − 1

2σ

)
, N1

(
1 − 1

2σ

))
,

ϕ̂cosh(v) ≥ 2m

(coshβ − 1)N1

[b

4

((
1− 1

2σ

)2− v2

N2
1

)−1/2
I1

(
2πm

√
(
1 − 1

2σ

)2 − v2

N2
1

)

− sinc
2πmv

N1
− γ (m, σ)

]
.

Since the function h : [0, β) → R defined by

h(w) := πβ

2

(
β2 − w2)−1/2

I1
(√

β2 − w2
) − sincw > 0

is decreasing and

lim
w→β−0

h(w) = πβ

4
− sincβ ≥ π2 (

1 − 1

2σ

) − 1 ≥ 3π2

5
− 1 ,

the Fourier transform ϕ̂cosh(v) is positive and decreasing for v ∈ [
0, N1

(
1 − 1

2σ

))

too. Hence, we obtain

min
n∈IN

ϕ̂cosh(n) = ϕ̂cosh
(N

2

)

≥ 2m

(coshβ − 1)N1

[b

4

(
1 − 1

σ

)−1/2
I1

(
2πm

√

1 − 1

σ

) − sinc
πm

σ
− γ (m, σ)

]

≥ 2m

(coshβ − 1)N1

[b

4

(
1 − 1

σ

)−1/2
I1

(
2πm

√

1 − 1

σ

) − 1 − γ (m, σ)
]
.
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From m ≥ 2 and σ ≥ 5
4 , it follows that

2πm

√

1 − 1

σ
≥ 4π

√

1 − 1

σ
≥ x0 := 4π√

5
.

By the inequality (see [1] or [17, Lemma 3.3])
√
2πx0 e

−x0 I1(x0) ≤ √
2πx e−x I1(x) , x ≥ x0 ,

we sustain that

I1(x) ≥ √
x0 e

−x0 I1(x0) x−1/2 ex >
2

5
x−1/2 ex , x ≥ x0 .

Hence, for x = 2πm
√
1 − 1/σ , we get the estimate

I1
(
2πm

√

1 − 1

σ

)
>

√
2

5
√

πm

(
1 − 1

σ

)−1/4 e2πm
√
1−1/σ .

Thus, we obtain the following:

Lemma 12 Let N ∈ 2N and σ ≥ 5
4 be given, where N1 = σN ∈ 2N. Furthermore,

let m ∈ N with 2m � N1, β = bm, and b = 2π
(
1 − 1

2σ

)
.

Then we have

ϕ̂cosh
(N

2

)≤ 2m

(coshβ−1)N1

[ √
π

5
√
2m

(
1− 1

2σ

)(
1− 1

σ

)−3/4 e2πm
√
1−1/σ−1−γ (m, σ)

]
.

By Eq. 2, the constant eσ,N (ϕ̂cosh) can be estimated as follows:

eσ,N (ϕ̂cosh) ≤ 1

minn∈IN
ϕ̂cosh(n)

max
n∈IN

∥∥
∑

r∈Z\{0}
ϕ̂cosh(n + rN1) e

2π i rN1 ·∥∥
C(T)

= 1

ϕ̂cosh(N/2)
max
n∈IN

∥∥
∑

r∈Z\{0}
ϕ̂cosh(n + rN1) e

2π i rN1 ·∥∥
C(T)

,

where it holds
∥∥

∑

r∈Z\{0}
ϕ̂cosh(n + rN1) e

2π i rN1 ·∥∥
C(T)

≤
∑

r∈Z\{0}
|ψ̂1(n + rN1)| +

∑

r∈Z\{0}
|ρ̂1(n + rN1)| . (50)

Analogously to Lemma 10, we get

Lemma 13 Let N ∈ 2N and σ ≥ 5
4 be given, where N1 = σN ∈ 2N. Furthermore,

let m ∈ N with 2m � N1, β = bm, and b = 2π
(
1 − 1

2π

)
.

Then, it holds for all n ∈ IN ,

∑

r∈Z\{0}
|ψ̂1(n + rN1)| ≤ β

(coshβ − 1)N1

[
2πm + 10√

2πm

(
1 − 1

2σ

)−1/2
]
.
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Finally, for any n ∈ IN , we estimate the sum
∑

r∈Z\{0}
|ρ̂1(n + rN1)| .

Analogously to Lemma 11, we obtain

Lemma 14 Let N ∈ 2N and σ ≥ 5
4 be given, where N1 = σN ∈ 2N. Furthermore,

let m ∈ N with 2m � N1, β = bm, and b = 2π
(
1 − 1

2σ

)
.

Then, for all n ∈ IN ,
∑

r∈Z\{0}
|ρ̂1(n + rN1)|

≤ 1
(
coshβ − 1

)
N1

[(
1 + 1

e

)β

π

4

√
5

2πm

( 4σ

2σ − 1
+ 8

) (
1 − 1

2σ

)−1/4

+ 8σ

(2σ − 1) π
e−√

2πm−πm/σ + 8

π
E1

(√
2πm − πm/σ

)

+ (
e−√

2β + 1

2

) (
4m + 2

π

)
e−2πm+πm/σ

]
.

From Lemmas 13 and 14, it follows that by Eq. 50,
∥∥

∑

r∈Z\{0}
ϕ̂cosh(n + rN1) e

2π i rN1 ·∥∥
C(T)

≤ β b(m, σ)
(
coshβ − 1

)
N1

(51)

with the constant (46).
Using

eσ,N (ϕcosh) ≤ 1

ϕ̂cosh(N/2)
max
n∈IN

∥∥
∑

r∈Z\{0}
ϕ̂cosh(n + rN1) e

2π i rN1 ·∥∥
C(T)

,

it follows from Eq. 51 and Lemma 12:

Theorem 5 Let N ∈ 2N and σ ≥ 5
4 be given, where N1 = σN ∈ 2N. Furthermore,

let m ∈ N with 2m � N1, β = bm, and b = 2π
(
1 − 1

2σ

)
.

Then, the C(T)-error constant of the continuous cosh-type window function (49)
can be estimated by

eσ (ϕcosh) ≤ β b(m, σ)

2m

[ √
π

5
√
2m

(
1− 1

2σ

) (
1− 1

σ

)−3/4 e2πm
√
1−1/σ −1−γ (m, σ)

]−1
,

i.e., the continuous cosh-type window function (28) is convenient for NFFT.

8 Conclusion

In this paper, we prefer the use of continuous, compactly supported window func-
tions for NFFT (with nonequispaced spatial data and equispaced frequencies). Such
window functions simplify the algorithm for NFFT, since the truncation error of
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Fig. 1 The constants eσ (ϕ) of the different window functions with shape parameter β = πm(2 − 1/σ)

for σ ∈ {1.25, 1.5, 2} and m ∈ {2, 3, 4, 5, 6} based on numerical experiments

NFFT vanishes. Furthermore, such window functions can produce very small errors
of NFFT. Examples of such window functions are the continuous Kaiser-Bessel
window function (8), continuous exp-type window function (28), sinh-type window
function (22), and continuous cosh-type window function (49) which possess the
same support and shape parameter. For these window functions, we present novel
explicit error estimates for NFFT and we derive rules for the convenient choice of
the truncation parameter m ≥ 2 and the oversampling parameter σ ≥ 5

4 . The main
tool of this approach is the decay of the Fourier transform ϕ̂(v) of ϕ ∈ Φm,N1 for
|v| → ∞. A rapid decay of ϕ̂ is essential for small error constants. Unfortunately, the
Fourier transform of certain window function ϕ, such as Eqs. 28 and 49, is unknown
analytically. Therefore, we propose a new technique and split ϕ into a sum of two
compactly supported functions ψ and ρ, where the Fourier transform ψ̂ is explicitly
known and where |ρ| is sufficiently small. Furthermore, it is shown that the standard
Kaiser-Bessel window function and original exp-type window function, which have
jump discontinuities with very small jump heights at the endpoints of their support,
possess a similar error behavior as the corresponding continuous window functions.

In summary, the C(T)-error constant of the continuous/standard Kaiser–Bessel
window function is of best order O

(
m e−2πm

√
1−1/σ

)
. For the sinh-type, continu-

ous/original exp-type, and continuous cosh-type window functions, the correspond-
ing C(T)-error constants are of order O

(
m3/2 e−2πm

√
1−1/σ

)
. Nevertheless, our

numerical results show that all window functions proposed here yield a very similar

Fig. 2 The constants eσ (ϕ) of the different window functions with shape parameter β = πm(2 − 1/σ)

for σ ∈ {1.25, 1.5, 2} and m ∈ {2, 3, 4, 5, 6} based on the error estimates of Eqs. 18, 21 and 47.
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error (see Fig. 1). The presented error estimates are very precise (see Fig. 2). Thus,
we can recommend the use of all these window functions.
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