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Continuous Workload Control Order Release Revisited: 
An Assessment by Simulation  

 

Abstract 
Order release is a key component of the Workload Control concept. Jobs do not enter the shop 

floor directly - they are retained in a pre-shop pool and released in time to meet due dates while 

keeping work-in-process within limits or norms. There are two important groups of release 

methods: continuous methods, for which the workload falling to a specified level can trigger a 

release at any moment in time; and, periodic release methods, for which releases take place at 

fixed intervals. Continuous release methods in general have been shown to outperform periodic 

release methods. Yet there is incongruence in the results presented in the literature on the relative 

performance of the various continuous release methods. We use a job shop simulation model to 

examine the performance of continuous release methods from the literature and find that the 

contradictory results are explained by the different rules applied to sequence jobs in the pool - a 

factor neglected in previous work. Finally, a new breed of continuous release methods has 

recently emerged, but these have not been compared with prior approaches. Therefore, we also 

examine these methods and show that they significantly improve overall performance, although 

this is to the detriment of jobs with large processing times. 
 

Keywords:  Continuous Order Release; Workload Control; Job Shop; Simulation. 
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1. Introduction 
Workload Control is a production planning and control concept developed for high-variety 

contexts, such as small and medium-sized make-to-order companies which often have a job shop 

configuration (Zäpfel & Missbauer, 1993; Stevenson et al., 2005; Thürer et al., 2013). One of the 

key control points within the Workload Control concept is order release, which decouples the 

shop floor from higher level planning. Jobs are not released onto the shop floor immediately but 

flow into a pre-shop pool, which buffers the shop floor against variance in the incoming order 

stream (Melnyk & Ragatz, 1989; Land & Gaalman, 1996; Thürer et al., 2012). Release methods 

can be categorized according to when the release decision takes place: either at fixed periodic 

time intervals or continuously at any moment in time. It has long-since been shown that 

continuous release methods have the potential to outperform periodic release methods (e.g. 

Sabuncuoglu & Karapinar, 1999; Thürer et al., 2012). Yet studies which have compared the 

various continuous order release methods presented in the literature disagree on their relative 

performance (e.g. Melnyk & Ragatz, 1989; Hendry & Wong, 1994; Sabuncuoglu & Karapinar, 

1999).  

‘Classical’ continuous release methods presented in the literature are based on the re-order 

point methodology (Bergamaschi et al. 1997), whereby a new order is released whenever a 

workload measure falls below a predetermined level (see, e.g. Melnyk & Ragatz, 1989). The 

main difference between classical continuous release methods lies in the workload measure that 

is considered for triggering a release – either a bottleneck, work center or shop load workload 

measure – but simulation results from previous studies provide no clear conclusion on which 

measure performs the best and should therefore be applied. For example, results in Melnyk & 

Ragatz (1989) and Hendry & Wong (1994) indicated that an aggregate shop load measure – 

which triggers the release procedure when the load of the whole shop falls below a pre-

determined level – outperforms a work center measure, which triggers release when the 

workload of any work center falls below a pre-determined level. This, however, contradicts the 

findings of Sabuncuoglu & Karapinar (1999), where better results were obtained when more 

detailed workload information was considered. Sabuncuglu & Karapinar’s (1999) results are in 

line with the literature on periodic release methods, which has shown that performance improves 

as the information fed-back from the shop floor becomes more detailed (e.g. Henrich et al. 2004).  
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While, on the surface, the three studies by Melnyk & Ragatz (1989), Hendry & Wong (1994) 

and Sabuncuoglu & Karapinar (1999) appear to have used similar simulation models and 

dispatching rules – and hence may have been expected to produce similar results – closer 

inspection reveals differences in terms of the sequence in which jobs were considered for release 

from the pool. It would therefore appear that the pre-shop pool sequencing decision may explain 

the differing results, but none of these previous studies discussed the potential impact on 

performance that this decision may have. It is argued here that the choice of pre-shop pool 

sequencing rule may provide the key to explaining the contradictory results observed in the 

literature and, therefore, to improving the design and performance of order release methods in 

the future. 

Adding to this debate, a new breed of continuous release methods have recently emerged that 

replace the workload trigger used in the classical methods with an upper workload bound (see 

Land et al., 2010; Fernandes & Carmo-Silva, 2011). Rather than releasing the next job in the 

sequence regardless of its load contribution, jobs are only released if they fit within a workload 

norm. This is akin to the method typically applied in periodic release methods (see, e.g. Land & 

Gaalman, 1996; Henrich et al., 2004); but, here, the release decision can be taken at any moment 

in time. These new methods have been introduced without comparison with the classical 

continuous release methods, thus making it difficult to evaluate the performance impact that this 

change has had. Interestingly, the new rules presented in Land et al. (2010) and Fernandes & 

Carmo-Silva (2011) use planned release dates to sequence jobs in the pool, which, again, is a 

difference with the sequencing rules used in previous research (e.g. Melnyk & Ragatz, 1989; 

Hendry & Wong, 1994). This makes even an informal, rough comparison of the results presented 

across papers unhelpful. From the above, it follows that there is a need to consolidate research on 

continuous release methods by:  

1. Conducting simulations that explicitly consider classical and new continuous release methods, 

comparing their performance; and  

2. Assessing the performance impact of the sequence in which jobs are considered for release 

from the pool.  
 

The remainder of this paper is structured as follows. First, the continuous order release 

methods to be considered in the study are identified from the literature in Section 2. This section 

also includes a review of the rules used to sequence jobs in the pool that need to be included in 
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this study. The simulation model applied to evaluate the performance of the continuous release 

methods is then described in Section 3 before the results are presented, discussed and analyzed in 

Section 4. Finally, conclusions are drawn in Section 5. 

 

2. Literature Review: Order Release and Rules for Sequencing Jobs in the Pool 
 

2.1 Continuous Workload Control Order Release 

There are many order release methods in the literature – for a review, see for example: Wisner 

(1995), Land & Gaalman (1996), Bergamaschi et al. (1997) or Fredendall et al. (2010). In this 

study, the focus is on continuous order release methods, i.e. release methods that may release a 

job onto the shop floor at any moment in time, usually initiated by an event on the shop floor. In 

contrast to periodic methods – i.e. release methods that take the release decision only at fixed 

time intervals – most continuous order release methods do not apply a workload norm (or limit); 

instead, a workload trigger is used. For classical continuous release methods, a critical workload 

is determined, which, if violated, triggers the release procedure, thereby pulling orders from the 

pool onto the shop floor until the critical workload is no longer violated. This may allow the next 

job to be selected even if its load contribution will exceed the critical load, i.e. there is no 

maximum workload constraint. Order release methods of this type can best be classified 

according to the workload used to trigger the release (bottleneck, work center or shop load), as 

explained below: 
 

• Bottleneck: Bottleneck workload trigger methods activate the release procedure if the direct 

(or imminent) load of the bottleneck work center falls below a pre-determined load limit. 

Only the bottleneck work center is considered and only jobs which have to pass through the 

bottleneck are controlled by the order release method. As soon as the bottleneck load falls 

below the specified limit, a job is released according to the job sequencing rule applied in 

the pool (e.g. earliest due date first). Examples of rules based on the bottleneck load are the 

Starvation Avoidance (SA) method by Glassey & Resende (1988) and the Bottleneck Load 

Oriented Release (BLOR) method applied by Enns & Prongue-Costa (2002).  

• Work center: Work center workload trigger methods activate the release procedure if the 

direct (or imminent) load of any work center falls below a predetermined load limit. Jobs in 

the pool for which the triggering work center is the first work center in their routing are 
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considered for release according to the job sequencing rule applied in the pool (e.g. earliest 

due date first). An example is the Work Center workload trigger Earliest Due Date 

(WCEDD) selection method presented by Melnyk & Ragatz (1989). A work center 

workload trigger was also used, for example, in Hendry & Wong (1994) and Sabuncuoglu & 

Karapinar (1999). 

• Shop load: Shop load workload trigger methods activate the release procedure if the load of 

the whole shop floor (typically measured as the total remaining work) falls below a 

predetermined load limit. Jobs are released onto the shop floor in accordance with the 

sequencing rule applied in the pool, such as the earliest due date rule or the Work-In-Next-

Queue (WINQ) rule. For WINQ, only those jobs that have the work center with the smallest 

queue as the first work center in their routing are considered. Examples of this type of order 

release method are the Aggregate workload trigger Work-in-Next-Queue (AGGWNQ) 

method presented by Melnyk & Ragatz (1989) and the WIPLoad control method applied by 

Qi et al. (2009). An aggregated workload trigger based on Melnyk & Ragatz’s (1989) 

AGGWNQ rule was also used in Hendry & Wong (1994) and Sabuncuoglu & Karapinar 

(1999). 
 

Many classical continuous release methods exist in the literature – as described above – but 

they all use a workload trigger based on the re-order point methodology and they largely differ in 

terms of the detail of the workload measure used to trigger release. More recently, however, 

Land et al. (2010) and Fernandes & Carmo-Silva (2011) extended the set of available continuous 

release methods by introducing three new rules. The first uses a classical work center workload 

trigger but measures the workload used to trigger release differently, based on theory from the 

wider Workload Control literature. The second replaces the classical workload trigger altogether 

with an explicit upper workload bound. Finally, the third also replaces the classical workload 

trigger with an explicit upper workload bound, but relaxes this to better balance workloads 

across resources. These three methods are summarized in sections 2.1.1 to 2.1.3, respectively. 
 

2.1.1 Work Center Workload Trigger Method based on a New Measure of the Workload 

Fernandes & Carmo-Silva (2011) refined the classical work center workload trigger by 

combining it with the corrected aggregate load method defined in Oosterman et al. (2000). For 

the corrected aggregate load approach, the processing time of each operation in the routing of a 
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job contributes to the workload measure of the corresponding work center(s) from release until 

the operation is complete. To find the corrected aggregate load, the load contribution is 

converted (or corrected) by dividing the processing time by the position of a work center in the 

routing of the job. A job becomes part of the imminent load of the first work center in its routing 

as soon as it is released, and the full contribution lasts until completion at this work center. For 

the second work center, for example, the job again contributes to the workload but the 

conversion compensates for the fact that it will only be part of the imminent load of the second 

work center for, roughly speaking, 50% of the time that it contributes by dividing the workload 

by the position of the work center in the routing of the job (two). For the third work center in the 

routing of a job, only one third of its load contributes to the work center at release, and so on. 
 

2.1.2 Alternative Use of an Upper Workload Bound 

As discussed above, classical continuous release methods do not apply an explicit upper 

workload bound. For this second new rule, both Land et al. (2010) and Fernandes & Carmo-

Silva (2011) introduced an upper workload bound based on the release mechanism that is 

typically applied under periodic release (see, e.g. Oosterman et al., 2000; Henrich et al., 2004). 

The release procedure is triggered whenever an operation is completed or a new order arrives at 

the pre-shop pool. At this point, all jobs in the pool are considered for release once according to 

the job sequencing rule applied in the pool (e.g. earliest due date first). The workload of each 

operation in the routing of a job currently being considered for release contributes to the load of 

the corresponding work centers. The load contribution is in accordance with the corrected 

aggregate load approach – i.e. as above, the processing time of the operation is divided by the 

position of a work center in the routing of the job (see Section 2.1.1). The new workload of each 

work center is compared against the predetermined workload limits or norms used to control 

queue lengths on the shop floor and, if one or more of these norms are violated, the job is 

retained in the pre-shop pool. If, however, the norms are not violated, the job is selected for 

release onto the shop floor and its workload is formally assigned to the workloads of the work 

centers in its routing. These steps are repeated until all jobs in the pool have been considered for 

release once. Note that this release method is similar to the standard periodic release procedure 

applied in the Workload Control literature but it uses a very small period between periodic 

releases, which means it technically approaches a continuous release procedure. The impact of 

the time interval between periodic releases on performance has been assessed, e.g. by Perona & 

 7 



Portioli (1998) and Land (2006). Both showed that a shorter period between releases yields a 

lower percentage of tardy jobs, but that this is offset by an increase in the standard deviation of 

lateness and tardiness. 
 

2.1.3 Relaxed Upper Bound to Balance Workloads across Resources 

Authors such as Land & Gaalman (1998) have previously noted that a rigid upper workload 

bound can be criticized for hindering the release of an order which significantly contributes to an 

under-loaded work center, thereby avoiding starvation, if it leads to even a very small overload at 

another work center in its routing. Indeed, authors such as Cigolini & Portioli-Staudacher (2002) 

and Fernandes & Carmo-Silva (2011) have since argued against the application of rigid norms 

and introduced a release method called “workload balancing”. This method is similar to the use 

of an upper workload bound, but the release of an order is allowed even if it violates a norm at 

one or more work centers as long as the overload is smaller than the under-load that is reduced at 

other work centers. Fernandes & Carmo-Silva (2011) found that this release method can achieve 

significant improvements in percentage tardy and lead time performance compared to the 

application of a rigid upper workload bound, as described in Section 2.1.2 above.  
 

While these three new release methods have significantly changed the continuous release 

procedure, their performance impact compared to classical continuous release methods has not 

been evaluated. In response, this study uses a job shop simulation model to compare classical 

and new continuous release methods. All types of continuous release methods identified from the 

literature are considered except bottleneck workload trigger methods. As in Hendry & Wong 

(1994) and Sabuncuoglu & Karapinar (1999), we do not consider bottleneck workload trigger 

methods because the constraints in the pure job shop environment are constantly shifting; hence, 

no specific, fixed bottlenecks can be identified. Next, we will review the rules used to sequence 

jobs in the pool which determine the order in which they are considered for release – a 

potentially important explanatory factor overlooked in the literature. 
 

2.2 Rules for Sequencing Jobs in the Pool from the Literature  

The following five sequencing rules can be identified from the literature: 
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• First-Comes-First-Served (FCFS), which sequences jobs according to their time of arrival in 

the pool. This rule was applied, e.g. by Park & Salegna (1995), Sabuncuoglu & Karapinar 

(1999) and Enns & Prongue-Costa (2002). 

• Earliest Due Date (EDD), which sequences jobs according to their due date. This rule was 

applied, e.g. by Ragatz & Mabert (1988), Melnyk & Ragatz (1989) and Hendry & Wong 

(1994). 

• Planned Release Date (PRD), which sequences jobs according to planned release dates given 

by Equation (1) below. This rule was applied, e.g. by Land & Gaalman (1998), Fernandes & 

Carmo-Silva (2011) and Thürer et al. (2012). Two variants have been used in the literature, 

where it is either assumed that waiting times or operation throughput times are controlled. 
 

( )∑
∈

+−=
jRi

ijijj paδτ  or  ∑
∈

−=
jRi

ijj bδτ       (1) 

= planned release date of job j 

jδ = due date of job j 

jR = the ordered set of operations in the routing of job j 

ijp = the processing time at the ith operation in the routing of a job 

ia = constant for estimated waiting time at the ith operation in the routing of a job 

ib = constant for estimated throughput time at the ith operation in the routing of a job 
 

• Shortest Processing Time (SPT), which sequences jobs according to their processing time at 

the first work center in their routing. This rule has been applied e.g. by Hendry & Wong 

(1994).  

• Lowest Workload Imbalance (LWIB), which sequences jobs according to the lowest workload 

imbalance index ( jB ), as given by Equation (2) below. This rule was applied by van Ooijen 

(1998). 
 

∑
∈

−=
jRi

kkj WNB           (2) 

kN = target workload level at work center k performing the ith operation in the routing of a job 

kW = workload measure at work center k performing the ith operation in the routing of a job 
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While a broad set of pre-shop pool sequencing rules has been applied in the literature, the 

impact of the choice of sequencing rule has not been examined. This complicates the 

interpretation of results across studies and may provide an explanation for the contradictory 

results observed in previous studies that have compared continuous release methods, such as the 

contributions by Melnyk & Ragatz (1989), Hendry & Wong (1994) and Sabuncuoglu & 

Karapinar (1999). In response, all five of the sequencing rules identified from the literature are 

considered in this study and their impact on the performance of five continuous release methods 

is examined. 

 

3. Simulation Model  
This research started by asking: What is the performance impact of continuous Workload Control 

order release methods? In response, simulation was used to examine the performance impact of 

five continuous release methods identified from the literature. For the first time, classical 

continuous release methods and three new methods are compared. In addition, the effect of five 

different rules for sequencing jobs in the pool – a factor neglected in previous research, but 

which may explain differences in performance results across studies – is considered.  

The shop and job characteristics modeled in the simulation are outlined in Section 3.1 before 

the operationalization of the order release methods and sequencing rules applied are summarized 

in Section 3.2. The shop floor dispatching rules used for controlling the progress of orders on the 

shop floor is then described in Section 3.3. Finally, the experimental design is outlined and the 

measures used to evaluate performance are presented in Section 3.4. 
 

3.1 Overview of Modeled Shop and Job Characteristics 

To allow for comparison, the simulation model used in this study is based on the model typically 

used in previous research on Workload Control and order release, e.g. Melnyk & Ragatz (1989), 

Hendry & Wong (1994), and Land et al. (2010). Hence, a simulation model of a randomly routed 

job shop (Conway et al., 1967) – later referred to as a pure job shop (Melnyk & Ragatz, 1989) – 

has been implemented in Python© using the SimPy© module. The shop contains six work centers, 

where each work center is a single constant capacity resource. The routing length of jobs varies 

uniformly from one to six operations. All work centers have an equal probability of being visited 

and a particular work center is required at most once in the routing of a job. 
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Operation processing times follow a truncated 2-Erlang distribution with a truncated mean of 

1 time unit and a maximum of 4 time units. The inter-arrival time of orders follows an 

exponential distribution with a mean of 0.648, which – based on the average number of work 

centers in the routing of a job – deliberately results in a utilization level of 90%. Due dates are 

set exogenously by adding a random allowance factor, uniformly distributed between 30 and 50 

time units, to the job entry time. The minimum value will be sufficient to cover a minimum shop 

floor throughput time corresponding to the maximum processing time (4 time units) for the 

maximum number of possible operations (6) plus an arbitrarily set allowance for the waiting or 

queuing times of 6 time units. Finally, Table 1 summarizes the simulated shop and job 

characteristics. 
 

[Take in Table 1] 
 

3.2 Order Release and its Alternative Pre-Shop Pool Sequencing Rules  

As in previous simulation studies on Workload Control (e.g. Land & Gaalman, 1998; Fredendall 

et al., 2010; Thürer et al., 2012), it is assumed that all jobs are accepted, materials are available 

and all necessary information regarding shop floor routing, processing times, etc is known. Jobs 

flow into a pre-shop pool to await release according to five release methods: (i) the Classical 

Aggregate (shop) Workload Trigger work-in-next-queue selection (AGGWLT); (ii) the Classical 

Work Center Workload Trigger (WCWLT); (iii) the Corrected Workload Trigger (CorrWLT); 

(iv) the Upper Bound Release (UBR); and (v) the Upper Bound Release with Load Balancing 

(UBRLB). Remember that the bottleneck workload trigger method has not been considered as 

we focus on a pure job shop environment in which bottlenecks are constantly shifting. As a 

baseline for comparison, experiments without controlled release have also been executed, i.e. 

where jobs are released onto the shop floor IMMediately (IMM) upon arrival. 

More specifically for the three workload trigger methods – AGGWLT, WCWLT and 

CorrWLT – the release procedure will be summarized in Section 3.2.1, before the release 

procedure for the upper workload bound methods – UBR and UBRLB – is detailed in Section 

3.2.2. Performance results for the release methods are obtained by tightening the workload 

trigger (or norm) stepwise; six levels are considered, as specified in Table 2. Table 2 summarizes 

the five release methods and the five pool sequencing rules – First-Comes-First-Served (FCFS), 

Earliest Due Date (EDD), Planned Release Date (PRD), Lowest Workload Imbalance (LWIB) 
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and Shortest Processing Time (SPT) – considered in this study. The parameters for the 

sequencing rules are also specified in Table 2 and were identified via preliminarily simulation 

experiments as resulting in the best overall performance. 
 

[Take in Table 2] 
 

3.2.1. Continuous Release Methods using a Workload Trigger  

The following release procedure takes place whenever the workload measure falls below the 

trigger level: 
 

(1) For WCWLT, the direct (or imminent) workload at the triggering work center s ( I
sW ) is 

calculated.  

(2) According to the particular sequencing rule being applied, a priority value is determined for 

each job in the set of jobs J in the pool that, in the case of AGGWLT, is based on having the 

work center with the lowest direct load in their routing; and, for WCWLT and CorrWLT, on 

having the triggering work center as the first in their routing.  

(3) The job Jj∈ with the highest priority is considered for release first. 

(4) Job j is released and,  

for AGGWLT, its total processing time contributes to the current workload of the whole 

shop (W), 

that is ∑
∈

+=
jRi

ijpWW :  

for WCWLT, its processing time p1j at the 1st operation in its routing is added to the 

imminent workload at the triggering work center, 

that is  j
I

s
I

s pWW 1: += . 

for CorrWLT, its processing time pij at the ith operation in its routing Rj – corrected for the 

operation number i – contributes to the current workload at the work center k corresponding 

to operation i,  

that is  
i

p
WW ij

kk +=:   jRi∈∀  

(5) If the set of jobs in the pool J contains any jobs that have not yet been considered for release 

and the workload measure is smaller than or equal to the trigger level (N),  

 12 



that is NW ≤  for AGGWLT, and s
I

s NW ≤  for WCWLT and ss NW ≤ for CorrWLT 

then return to Step 3 and consider the job with the next highest priority. Otherwise, the 

release procedure is complete and the selected jobs are released. 
 

3.2.2 Continuous Release Methods using an Upper Workload Bound 

The following release procedure is triggered whenever a new job arrives at the pre-shop pool or 

an operation is completed: 
 

(1) According to the sequencing rule applied, a priority value is determined for each job in the 

set of jobs J in the pool.  

(2) The job Jj∈ with the highest priority is considered for release first. 

(3) If, for all the operations in job j’s routing Rj, processing time pij at the ith operation – 

corrected for the operation number i – together with the current workload at the work center 

k corresponding to operation i (Wk) fits within the workload norm at this work center (Nk), 

that is kk
ij NW
i

p
≤+   jRi∈∀   

then the job is selected for release, i.e. removed from J, and its load contribution is included, 

that is  
i

p
WW ij

kk +=:   jRi∈∀  

Otherwise: (i) for UBR, the job remains in the pool and its load contribution is reset to zero; 

and, (ii) for UBRLB, the job is released even if a norm is violated, as long as the sum of the  

contribution to under-loaded work centers U
kL , is greater than or equal to the sum of the 

overload O
kL caused, 

that is 0≥−∑
∈ jRi

O
k

U
k LL  with 

i
p

L ijU
k = ; 0=O

kL  for 0)( ≤−+ kk
ij NW
i

p
 

0=U
kL ; kk

ijO
k NW

i
p

L −+= )(  for 0)( >−+ kk
ij NW
i

p
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(4) If the set of jobs in the pool J contains any jobs that have not yet been considered for release, 

then return to Step 2 and consider the job with the next highest priority. Otherwise, the 

release procedure is complete and the selected jobs are released. 
 

3.3 Shop Floor Dispatching 

Hendry & Wong (1994) and Sabuncuoglu & Karapinar (1999) compared the performance of the 

AGGWLT and WCWLT release methods and found differences in their performance to be 

independent of which dispatching rule was applied on the shop floor. However, in Melnyk & 

Ragatz (1989), performance was heavily dependent on which rule was applied on the shop floor. 

When dispatching was based on some measure of the urgency of jobs, WCWLT performed the 

best, but when dispatching was based on the job with the shortest processing time, AGGWLT 

performed the best. This result means that two shop floor dispatching rules must be considered in 

this study. Dispatching, therefore, either follows operation due dates – i.e. the job with the 

earliest operation due date from the set of jobs queuing in front of a work center is processed first 

– or follows shortest processing times. For dispatching based on operation due dates, operation 

due dates are determined when a job is released by distributing the available slack – i.e. the due 

date of job j ( jδ ) minus its release date ( r
jt ) – over the operations in its routing in accordance 

with Equation (3) below. This procedure is based on Land et al. (2013) and is especially suitable 

when order release control is applied as it takes deviations from the schedule caused by order 

release into account. 
 

if ( ) 0≥− r
jj tδ ; 

( )
j

r
jjr

jji n
t

it
−

⋅+=
δ

δ   jRi∈∀      (3) 

else if ( ) 0<− r
jj tδ ; r

jji t=δ    jRi∈∀  

jiδ = operation due date of job j at the ith operation in its routing 
 

3.4 Experimental Design and Performance Measures 

The experimental factors are: (i) 6 levels of the workload trigger (or norm) for the Classical 

Aggregate Workload Trigger (AGGWLT), the Classical Work Center Workload Trigger 

(WCWLT), the Corrected Workload Trigger (CorrWLT), the Upper Bound Release (UBR) and 

Upper Bound Release with Load Balancing (UBRLB); (ii) the five different pool sequencing 

rules, i.e. First-Comes-First-Served (FCFS), Earliest Due Date (EDD), Planned Release Date 
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(PRD), Lowest Workload Imbalance (LWIB) and Shortest Processing Time (SPT); and (iii) the 

two different dispatching rules, i.e. dispatching based on operation due dates and on shortest 

processing times. A full factorial design was used with 300 cells, where each cell was replicated 

100 times. Results were collected over 10,000 time units following a warm-up period of 3,000 

time units. These parameters allowed us to obtain stable results while keeping the simulation run 

time to a reasonable level.  

The principal performance measures considered in this study are as follows: 
 

• Mean throughput time: The mean of the completion date minus the release date across jobs; 

this indicates the mean time that a job spends on the shop floor. 

• Mean lead time: The mean of the completion date minus the pool entry date across jobs; this 

indicates the mean time that a job spends in the system (i.e. the time a job spends in the pre-

shop pool plus its throughput time). 

• Percentage tardy: The percentage of jobs completed after the due date; this indicates the 

proportion of jobs that would be delivered tardy to the customer.  

• Mean tardiness: The conditional mean of the tardiness ( jT ); this is the extent to which jobs 

are tardy (see Equation (4) below). 
 

),0max( jj LT =           (4) 

jL  = lateness (i.e. the actual delivery date minus the due date) of job j 

 

4. Results 
To give a first indication of the relative impact of the experimental factors, statistical analysis has 

been conducted by applying ANOVA. ANOVA is here based on a block design, where the 

release method is the blocking factor. Thus, statistical analysis is restricted to the main effects of 

the release method, as each release method may be considered a different system. The block 

design allows the main effect of the release method and the interaction effects of the rules used 

to sequence jobs in the pool and dispatch jobs on the shop floor to be captured. A linear model 

has been implemented with the independent variables modeled as dummies. All three factors – 

the release method, sequencing rule and dispatching rule – are shown to be significant, as are the 
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two-way interactions between the pre-shop pool sequencing and dispatching rules for all 

performance measures, except the mean tardiness (see Table 3). 
 

[Take in Table 3] 
 

Although prior literature has neglected the sequence in which jobs are considered for release, 

our statistical analysis suggests that this factor has a significant impact on performance. The 

Scheffé multiple-comparison test has been used to further prove the significance of the 

differences between the outcomes of the individual rules used to sequence jobs in the pool 

identified from the literature. These tests found significant differences for all the rules for at least 

one performance measure, except for FCFS and EDD which were statistically equivalent (see 

Table 4). Detailed performance results are presented next in Section 4.1 for dispatching based on 

operation due dates and on shortest processing times before the underlying causes of the 

performance differences observed are examined in more detail in Section 4.2.  
 

[Take in Table 4] 
 

4.1 Performance Assessment 

4.1.1 Performance Assessment for Dispatching based on Operation Due Dates 

Table 5 summarizes the performance results for the five release methods and the five sequencing 

rules for dispatching based on operation due dates. In addition, the results obtained when orders 

are released immediately (IMM) are also included as a benchmark and represent the outcome 

with no order release control, i.e. when control is only exercised through the shop floor 

dispatching rule. 
 

[Take in Table 5] 
 

First, it can be observed that the AGGWLT release method performs worse than WCWLT 

under all tested conditions; this contradicts Hendry & Wong (1994) who found the opposite. 

Examining the results across the different rules used to sequence jobs in the pool reveals only 

minor performance differences for rules that use some measure of urgency (i.e. FCFS, EDD and 

PRD). Yet, all three are outperformed in terms of percentage tardy and mean tardiness by SPT. 

This may explain why our results differ from Hendry & Wong’s (1994), as they applied SPT 

sequencing for AGGWLT and applied EDD sequencing for the WCWLT release method. Hence, 
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they either chose to ignore the impact that this factor would have on performance or assumed 

that it would not have an effect at all. In contrast, Sabuncuoglu & Karapinar (1999) applied the 

FCFS rule to both AGGWLT and WCWLT and yielded similar results to those in Table 5. 

Second, while the WCWLT release method achieves the highest reduction in throughput 

times, it is outperformed by both of the new upper workload bound release methods, i.e. UBR 

and UBRLB, in terms of the percentage tardy and mean tardiness results. In fact, UBR and 

UBRLB allow performance in terms of all four performance measures shown in Table 5 to be 

significantly enhanced compared to IMM providing that the workload norms are set 

appropriately. Unlike classical release methods based on a workload trigger only, UBR and 

UBRLB contribute to improved workload balancing, which results in a shorter pool waiting time 

(the lead time minus the throughput time) and shorter lead times. But while the results for UBR 

and UBRLB are compelling, refining classical release to consider the corrected aggregate load 

(WCWLT compared to CorrWLT) rather than the direct (or imminent) workload yields only 

marginal improvements in tardiness performance. Moreover, it introduces significant sensitivity 

to tight workload norms – this draws into questions its utility for implementation in practice. 

Under CorrWLT, a job on the shop floor contributes to all of the work centers in its routing, thus 

a work center may run idle with no direct load because of the distorting effect of the load 

contribution of jobs that are still upstream and yet to arrive at the work center. Finally, allowing 

the release of jobs that violate the upper workload bound providing they contribute to workload 

balancing (UBRLB) does not yield a significant reduction in the percentage tardy and actually 

increases the mean tardiness compared to UBR. Therefore, and in contrast to Fernandes & 

Carmo-Silva (2011), we cannot confirm from our results for UBR vs. UBRLB that significant 

performance improvements result from relaxing the rigid upper bound to allow for workload 

balancing across resources. Rather, we confirm the results in Cigolini & Portioli-Staudacher 

(2002) on the negative impact of workload balancing on tardiness measures, and this will be 

explored further in Section 4.2 below. 

In terms of the rules used to sequence jobs in the pool, it can be observed that FCFS, EDD 

and PRD are outperformed by SPT in terms of the percentage tardy and mean tardiness measures 

if a workload trigger is applied (i.e. if either the AGGWLT, WCWLT or CorrWLT release 

method is used). Under the UBR and UBRLB release methods, SPT yields a lower percentage 

tardy, but this is offset by an increase in mean tardiness compared to rules that use some measure 
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of urgency (i.e. FCFS, EDD and PRD). The performance of the LWIB pre-shop pool sequencing 

rule is particularly interesting: this rule performs the worst across all of the rules used to 

sequence jobs in the pool if a workload trigger is applied (i.e. the AGGWLT, WCWLT and 

CorrWLT release methods). This is because LWIB treats overload and under-load equally; for 

example, a job that causes two time units of overload is prioritized over a job that reduces the 

under-load by one time unit from four to three. This problem does not occur if an upper 

workload bound is used; hence, for UBR and UBRLB, the LWIB sequencing rule performs 

similar to the other rules or, in some cases, even improves performance. In general, the 

performance differences across sequencing rules are negligible for the UBR and UBRLB release 

methods. While under a workload trigger method, the next job in the sequence is always selected 

for release, under UBR and UBRLB, another constraint is introduced through the upper 

workload bound, which may hinder the release of a job with high priority if it does not fit within 

the workload norm. Thus, the restriction that jobs must fit within the workload norm ultimately 

determines which jobs are chosen for release more so than the sequence in which the jobs are 

considered for release. 
 

4.1.2 Performance Assessment for Dispatching based on Shortest Processing Times 

The performance results for shortest processing time dispatching, as summarized in Table 6, 

confirm our conclusions on the performance of release methods and rules used to sequence jobs 

in the pool. Focusing on the results without order release control (i.e. IMM), we can observe the 

expected significant improvement in both throughput time and percentage tardy performance; 

but we can also observe that this is achieved at the expense of mean tardiness performance. IMM 

performs the best in our experiments in terms of percentage tardy performance, and this 

fundamentally questions the use of order release control if dispatching is based on shortest 

processing times.  

As might have been expected, dispatching based on shortest processing times significantly 

reduces throughput times compared to dispatching based on operation due dates. This effect on 

throughput times is the strongest for LWIB. For LWIB, also a significant reduction in percentage 

tardy performance can be observed for the three release methods that apply a workload trigger 

(AGGWLT, WCWLT and CorrWLT) - meanwhile, tardiness performance remains similar for 

FCFS, EDD, PRD and the SPT pool sequencing rule. This largely explains the significant two-

way interactions observed in Table 3. For the two workload bound release methods, both 
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percentage tardy and mean tardiness performance deteriorate compared to dispatching based on 

operation due dates. This is likely to be because it can be difficult to release large jobs under 

both UBR and UBRLB, which increases the likelihood of large jobs becoming tardy; this will be 

examined in detail in Section 4.2. The risk of becoming tardy is further increased if the shop 

floor dispatching rule also prioritizes jobs with short processing times. In general, the best 

performance in terms of percentage tardy and mean tardiness was obtained for dispatching based 

on operation due dates combined with the UBR release method (see Table 5). Therefore, our 

results argue for the use of dispatching based on operation due dates rather than based on shortest 

processing times.  
 

[Take in Table 6] 
 

Summarizing from the above, five important conclusions can be drawn:  
 

• Continuous Workload Control order release methods should be combined with shop floor 

dispatching based on operation due dates rather than based on shortest processing times; this 

is because dispatching based on operation due dates leads to the best tardiness performance. 

• The WCWLT release method outperforms AGGWLT in all of our experiments.  

• Contradictory performance results observed in previous research may partly be explained by 

the different rules used to sequence jobs in the pre-shop pool and hence to determine the order 

in which they are considered for release.  

• The LWIB pre-shop pool sequencing rule, as introduced by van Ooijen (1998), should not be 

applied if a workload trigger is used (as, e.g. in van Ooijen, 1998) as this may significantly 

deteriorate performance. However, it is a viable alternative if workload bound methods are 

used. 

• The new release methods introduced by Land et al. (2010) and Fernandes & Carmo-Silva 

(2011) significantly enhance performance compared to classical release methods. However, 

looking at the average results aggregated for all jobs may hide significant performance 

differences across job sizes, as observed by Perona & Portioli (1998) and Land (2006) for 

periodic release methods if the time between releases is shortened. This will be examined 

more closely in the next section.  
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4.2 Performance Analysis 

Following Land (2006), improvements in tardiness performance may be the result of a reduced 

lead time (i.e. the time from job entry to job completion) and/or a reduced standard deviation of 

lateness. Figure 1 illustrates the lateness distribution for the five different release methods and, as 

a benchmark, for IMM. In Figure 1a and 1b, shop floor dispatching is based on operation due 

dates; in Figure 1a, jobs in the pool are sequenced according to PRD and, in Figure 1b, according 

to SPT. In Figure 1c and 1d, shop floor dispatching is based on shortest processing times; in 

Figure 1c, jobs in the pool are sequenced according to PRD and, in Figure 1d, according to SPT. 

PRD was chosen as the best-performing time-based rule for sequencing jobs in the pool, while 

SPT as the rule that bases the sequence entirely on the workload of jobs. Results are given for the 

trigger or norm level that resulted in the best overall performance; the trigger or norm level 

applied is given in the legend of Figure 1.  
 

[Take in Figure 1] 
 

From Figure 1a and 1c – where jobs in the pool are sequenced according to PRD – it can be 

seen that UBR and UBRLB gain their advantage over alternative (workload trigger) release 

methods through lead time and standard deviation reduction. While the latter is more apparent 

under operation due date oriented dispatching (Figure 1a), the former is more apparent under 

dispatching according to shortest processing times (Figure 1c). Under PRD sequencing, the pool 

waiting time is much lower for UBR and UBRLB than it is for alternative release methods, as 

will be seen below. This shortens the overall lead time while, at the same time, giving more 

control to the dispatching rule on the shop floor. A further effect has to be considered if 

dispatching follows operation due dates. Here, UBR and UBRLB gain their advantage through 

SPT effects in periods of high load (Land et al., 2010), i.e. when the capacity gap available to be 

filled by new orders is typically small. Thus, only jobs with small processing times tend to be 

selected for release in high load periods. This effect is the strongest at the first work center in the 

routing of a job as, here, the complete workload is considered. At downstream operations, the 

workload is depreciated through the corrected aggregate load approach. Thus, UBR and UBRLB 

can be compared to a workload trigger based release method that sequences jobs in the pool 

according to the shortest processing time. Consequently, by comparing Figure 1a and 1c with 
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Figure 1b and 1d, it can be seen that the advantage of UBR and UBRLB partially disappears if 

jobs in the pool are considered for release in SPT sequence. 

The above also implies that a job with large processing times is retained in the pre-shop pool 

even if it is urgent. To further examine the individual performance effects of each release method, 

we subdivided jobs according to two dimensions of job size: routing length and average 

processing time across operations (see Table 7). For the Routing Length (RL), we considered six 

classes (RL1, RL2 to RL6). For the average processing time, we spit jobs arbitrarily into: small 

jobs, with an average processing time of less than 0.6 time units; large jobs, with an average 

processing time of more than 1.4 time units; and, medium jobs, referring to the remaining jobs 

with a processing time of at least 0.6 time units but no more than 1.4 time units.  
 

[Take in Table 7] 
 

Table 8 summarizes the results for the time to release – i.e. the time that a job has to spend in 

the pool prior to release – for each class of routing length and average processing time (see Table 

7). Results are only shown for dispatching based on operation due dates and for the PRD 

sequencing rule. The PRD sequencing rule was chosen as it is the best-performing rule for 

sequencing jobs in the pool according to a time-based (or urgency-based) measure and because 

performance differences between the release methods are stronger compared to SPT, which aids 

analysis. 
 

[Take in Table 8] 
 

First, from the results in Table 8 it can be observed that, under PRD sequencing, jobs with 

longer routings receive higher priority and consequently have to wait less time in the pool 

compared to under FCFS or EDD sequencing where there is no difference in the time to release 

across classes (results are not shown). This explains the performance difference observed for 

PRD vs. FCFS or EDD; the performance results for FCFS and EDD are statistically equivalent. 

Further, performance differences between small, medium and large jobs for the AGGWLT, 

WCWLT and CorrWLT release methods can be explained by the inclusion of processing times 

in the PRD calculation.  

Second, results further confirm that the performance improvements for UBR over classical 

methods like WCWLT can be attributed to the performance of small and medium sized jobs. 
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These jobs are released to the shop floor faster, while the time that large jobs spend in the pool 

waiting to be released increases. This is especially evident if norms are tight. As large jobs are 

also the ones that require the longest time on the shop floor (especially when the routing length is 

long), there is a greater risk of them becoming tardy. Yet this negative performance effect is 

mitigated compared to the results in Perona & Portioli (1998) and Land (2006) for short intervals 

between periodic releases as the corrected aggregate load approach is applied for workload 

accounting over time. This depreciates the load contribution at downstream work centers and 

favors the release of large jobs.  

Finally, under UBRLB, jobs with long routings may gain an advantage over jobs with short 

routings compared to UBR as overloads caused at downstream operations do not hinder their 

release providing that the overload caused does not exceed the under-load that is relieved. 

Nonetheless, this improvement is at the expense of jobs with short routings and does not result in 

any significant overall performance improvements. 

 

5. Conclusion 
Order release control is one of the key decision levels in Workload Control. One important group 

of release methods are continuous release methods – i.e. release methods that take the release 

decision at any moment in time. This class of release methods has been shown to consistently 

outperform periodic release methods in the literature (e.g. Sabuncuoglu & Karapinar, 1999; 

Thürer et al., 2012). The main difference between the ‘classical’ continuous release methods lies 

in the workload measure applied for triggering releases, but the results of previous simulations 

provided no clear conclusions on which measure to apply (see, e.g. Hendry & Wong, 1994; 

Sabuncuoglu & Karapinar, 1999). This study has shown that triggering the release decision 

based on the workload of each work center outperforms an aggregate measure where the load of 

the shop as a whole is used to trigger release. The results of some previous studies had suggested 

an aggregated measure was a better solution (e.g. Hendry & Wong, 1994), but we can now 

conclude that this was because of the way in which jobs were sequenced or prioritized for release 

from the pool. In general, it has been shown that the sequence in which jobs are considered for 

release has a significant impact on performance and should not be overlooked when comparing 

results – it is an important explanatory factor.  
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This study has also compared the performance of classical methods with new continuous 

release methods only recently presented in the literature (from Land et al., 2010; Fernandes & 

Carmo-Silva, 2011). Two of these new continuous release methods introduce an upper workload 

bound: rather than releasing the next job in sequence, regardless of its load contribution, jobs are 

only released if they fit within a workload norm. In one of the rules, this was a strict limit, while 

the other rule relaxed the bounding procedure if release improved the workload balance across 

resources. Our results have shown that these new methods lead to significant performance 

improvements over classical continuous release methods and over immediate release if workload 

norms are set appropriately. However, the ultimate decision on which rule to apply in practice 

depends on a trade-off between performance and sophistication. Using a classical work center 

workload trigger with an appropriate rule for sequencing jobs in the pool may be a viable 

alternative for practice because its release procedure is arguably less complex: jobs can simply 

be pulled from the pool in accordance with the sequence when a signal is received that capacity 

is available at one of the work centers on the shop floor without the need for any further 

considerations.  

While introducing an upper workload bound significantly enhanced the performance of 

continuous release methods, future research should find better ways of balancing performance 

improvements across jobs. One way of achieving this may be to develop new rules for 

sequencing jobs in the pool. Indeed, we have shown that considering the sequence in which jobs 

are released has the potential to further enhance the performance of order release. Finally, the 

main limitation of this study is that we neglected important environmental factors – like routing 

characteristics – which were shown to have a significant impact on the performance of 

continuous release methods in previous research (e.g. Thürer et al., 2012). We restricted the 

experimental setting to the pure job shop (undirected routing) so as to keep the focus on the 

different release methods and rules for sequencing jobs in the pool. Therefore, future research 

should examine the performance of continuous workload control release methods in a broader 

environmental setting that includes, for example, different routing characteristics which may 

introduce fixed bottlenecks and allow bottleneck workload trigger release methods to be 

compared with the other workload trigger methods and with the new upper workload bounding 

approaches. 
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Table 1: Summary of Simulated Shop and Job Characteristics 
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Routing Variability 

No. of Work Centers 
Interchange-ability of Work Centers 

Work Center Capacities 
Work Center Utilization Rate 

 

 
Random routing; no re-entrant flows 
6 
No interchange-ability 
All equal 
90% 
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No. of Operations per Job 
Operation Processing Times 

Due Date Determination Procedure 
Inter-Arrival Times 

 

 
Discrete Uniform[1, 6] 
Truncated 2–Erlang; (mean = 1; max = 4) 
Due Date = Entry Time  + d; d U ~ [30, 50] 
Exp. Distribution; mean = 0.648 
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Table 2: Summary of the Release Methods and Sequencing Rules Applied in this Study 
 

 Abbr. Full Name  Brief Description Parameter 
 

Classical 
Release  
Methods 

AGGWLT Aggregate 
Workload Trigger 

If the total shop load (of all uncompleted operations) falls below the norm level, all jobs in 
the pool with the work center which has the lowest direct load as the first in their routing 
are considered for release. 

Trigger  
60-210 

(6 levels) 

WCWLT Work Center 
Workload Trigger 

If the direct load of any work center falls below the workload norm level, all jobs in the 
pool with this work center as the first in their routing are considered for release. 

Trigger 0-5 
(6 levels) 

New  
Release  
Methods 

CorrWLT Corrected 
Workload Trigger 

As for the classical work center workload trigger (WCWLT), but release is triggered when 
the corrected aggregate load of any work center falls below the norm level. 

Trigger 2-7 
(6 levels) 

UBR Upper Bound 
Release 

Release takes place whenever a new job arrives at the pool or an operation is completed. 
All jobs in the pool are considered for release once. The workload of each operation in the 
routing of a job contributes to the load of the corresponding work centers in accordance 
with the corrected aggregate load approach. The new workload of each work center is 
compared against the predetermined workload limits or norms. If one or more norms are 
violated, the job is retained in the pre-shop pool. If norms are not violated, the job is 
selected for release onto the shop floor and its workload is formally assigned to the 
workloads of the work centers in its routing.  

Norm 5-10 
(6 levels) 

UBRLB 
Upper Bound 
Release with 
Load Balancing 

As for UBR, but the release is allowed even if the norm is violated providing that the 
overload caused is smaller than the under-load that is reduced or relieved 

Norm 4-9 
(6 levels) 

 

Sequencing  
Rules for Jobs 
in the Pool 

FCFS First-Come-First-
Served The job which arrived in the pool first is considered for release first. None 

EDD Earliest Due Date The job with the earliest due date is considered for release first. None 

PRD Planned Release 
Date The job with the earliest planned release date is considered for release first. a=4 

LWIB Lowest Workload 
ImBalance The job with the lowest imbalance index (see Equation (2)) is considered for release first. None 

SPT Shortest 
Processing Time  

The job with the shortest processing time at the first work center in its routing is considered 
for release first None 
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Table 3: ANOVA Results 
 

 Source of Variance Sum of Squares df1 Mean Squares F-Ratio p-Value 

tt2 

Release Methods (RM) 51821.923 4 12955.481 2198.389 0.000 
Sequencing Rule (SR) 60692.601 4 15173.150 2574.701 0.000 
Dispatching (Disp) 267188.155 1 267188.155 45338.617 0.000 
SR x Disp 9688.851 4 2422.213 411.020 0.000 
Error 176712.580 29986 5.893    

tl3 

Release Methods (RM) 255891.905 4 63972.976 5881.853 0.000 
Sequencing Rule (SR) 80504.708 4 20126.177 1850.457 0.000 
Dispatching (Disp) 258973.961 1 258973.961 23810.786 0.000 
SR x Disp 12742.675 4 3185.669 292.899 0.000 
Error 326137.620 29986 10.876   

Pt4 

Release Methods (RM) 73.432 4 18.358 7934.892 0.000 
Sequencing Rule (SR) 19.302 4 4.826 2085.757 0.000 
Dispatching (Disp) 0.216 1 0.216 93.494 0.000 
SR x Disp 6.709 4 1.677 724.972 0.000 
Error 69.375 29986 0.002    

Mt5 

Release Methods (RM) 34227.435 4 8556.859 2922.791 0.000 
Sequencing Rule (SR) 9000.328 4 2250.082 768.567 0.000 
Dispatching (Disp) 8358.306 1 8358.306 2854.971 0.000 
SR x Disp 19.078 4 4.770 1.629 0.164 
Error 87787.993 29986 2.928    

1) degrees of freedom; 2) Throughput time; 3) Lead time;4) Percentage tardy; 5) Mean tardiness 

 

 

 

 

Table 4: Results for Scheffé Multiple Comparison Procedure 
 

Sequencing   
Rule (x) 

Sequencing  
Rule (y) 

Throughput Time Lead Time Percentage Tardy Mean Tardiness 
lower1) upper lower upper lower upper lower upper 

EDD FCFS -0.135 0.138* -0.205 0.166* -0.005 0.001* -0.148 0.044* 
EDD LWIB -3.699 -3.426 -2.702 -2.332 -0.040 -0.034 -1.213 -1.021 
EDD PRD -0.134 0.139* -0.041 0.330* 0.000 0.006 -0.014 0.178* 
EDD SPT -0.166 0.107* 2.475 2.845 0.040 0.046 0.453 0.645 
FCFS LWIB -3.700 -3.427 -2.683 -2.312 -0.038 -0.032 -1.161 -0.969 
FCFS PRD -0.136 0.137* -0.022 0.349* 0.002 0.007 0.038 0.230 
FCFS SPT -0.168 0.105* 2.494 2.865 0.042 0.048 0.505 0.697 
LWIB PRD 3.428 3.701 2.476 2.847 0.037 0.042 1.102 1.295 
LWIB SPT 3.396 3.669 4.991 5.362 0.077 0.083 1.570 1.762 
PRD SPT -0.168 0.105* 2.330 2.701 0.038 0.043 0.371 0.563 
1) 95% confidence interval; * not significant at α=0.05 
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Table 5: Comparison of Performance Results under Operation Due Date Dispatching 
 

  FCFS EDD PRD LWIB SPT 
tt1) tl2) Ptard

3) Mtard
4) tt tl Ptard Mtard tt tl Ptard Mtard tt tl Ptard Mtard tt tl Ptard Mtard 

IMM  23.5 23.5 10.5% 0.8 23.5 23.5 10.5% 0.8 23.5 23.5 10.5% 0.8 23.5 23.5 10.5% 0.8 23.5 23.5 10.5% 0.8 

AGGWLT 

WLT60 11.2 26.7 16.7% 4.3 11.3 26.7 16.4% 4.2 11.2 26.6 15.9% 4.2 24.9 43.7 46.2% 12.5 11.6 21.6 7.7% 2.9 
WLT90 12.2 26.0 15.4% 3.6 12.3 25.9 15.1% 3.6 12.3 25.7 14.4% 3.4 24.2 37.9 37.7% 7.8 12.6 21.5 7.6% 2.4 
WLT120 12.8 25.9 15.5% 3.5 12.8 25.9 15.2% 3.4 12.8 25.6 14.6% 3.3 24.6 35.1 34.6% 5.4 13.0 21.6 8.0% 2.3 
WLT150 13.1 25.9 15.7% 3.4 13.1 25.9 15.5% 3.3 13.0 25.6 14.8% 3.2 25.1 34.1 33.9% 4.6 13.2 21.6 8.3% 2.2 
WLT180 13.3 25.9 16.0% 3.4 13.3 25.9 15.8% 3.3 13.2 25.5 14.9% 3.1 25.6 34.0 34.0% 4.4 13.4 21.7 8.5% 2.2 
WLT210 13.4 25.9 16.2% 3.3 13.4 25.8 15.9% 3.2 13.3 25.5 15.1% 3.1 25.7 33.8 33.7% 4.3 13.4 21.7 8.6% 2.2 

WCWLT 

WLT 0 8.1 25.9 18.1% 4.4 8.1 25.8 17.6% 4.3 8.1 25.4 16.9% 4.1 20.8 41.6 38.9% 12.2 8.0 19.0 8.0% 3.0 
WLT 1 9.5 25.9 17.1% 4.1 9.5 25.9 16.9% 4.0 9.4 25.4 16.0% 3.8 19.5 33.4 26.5% 6.2 9.5 19.6 7.5% 2.8 
WLT 2 11.7 25.8 15.1% 3.5 11.7 25.8 14.7% 3.4 11.6 25.4 14.0% 3.3 19.6 29.8 19.6% 3.6 11.8 20.6 6.5% 2.4 
WLT 3 13.4 25.4 13.0% 2.9 13.4 25.4 12.7% 2.9 13.3 25.1 12.2% 2.8 20.3 28.6 16.9% 2.6 13.5 21.1 5.5% 2.0 
WLT 4 14.8 25.0 11.4% 2.5 14.8 25.0 11.2% 2.4 14.7 24.7 10.7% 2.3 21.2 28.2 15.8% 2.1 14.9 21.5 4.7% 1.7 
WLT 5 16.0 24.7 10.3% 2.1 16.0 24.7 10.1% 2.0 15.9 24.4 9.7% 1.9 21.8 28.0 15.6% 1.8 16.1 21.8 4.2% 1.5 

CorrWLT 

WLT 2 11.8 29.7 19.7% 5.7 11.8 29.5 19.3% 5.5 11.9 29.0 18.1% 5.3 19.6 33.9 27.1% 6.5 11.9 21.7 7.4% 3.1 
WLT 3 14.4 25.2 11.4% 2.6 14.4 25.1 10.9% 2.4 14.5 24.9 10.3% 2.4 19.8 30.4 20.6% 3.9 14.6 21.1 4.6% 1.9 
WLT 4 16.4 24.2 8.9% 1.7 16.4 24.2 8.6% 1.6 16.5 24.0 8.1% 1.6 20.5 28.8 17.0% 2.6 16.6 21.5 3.4% 1.3 
WLT 5 17.8 23.8 8.1% 1.2 17.8 23.8 7.9% 1.2 17.9 23.7 7.7% 1.2 21.3 28.2 15.6% 2.0 18.0 21.9 2.9% 1.0 
WLT 6 18.9 23.7 8.1% 1.0 18.9 23.6 8.0% 1.0 18.9 23.6 8.0% 1.0 22.1 27.9 15.3% 1.7 19.1 22.3 3.2% 0.8 
WLT 7 19.7 23.6 8.5% 0.9 19.7 23.6 8.4% 0.9 19.7 23.5 8.6% 0.9 22.6 27.8 15.3% 1.5 19.9 22.5 4.0% 0.7 

UBR 

N5 15.3 20.0 3.2% 1.5 15.3 20.0 3.1% 1.5 15.3 20.0 3.1% 1.5 15.1 19.8 3.4% 1.7 15.1 19.6 3.2% 1.8 
N6 17.3 20.8 2.5% 1.0 17.3 20.8 2.4% 1.0 17.3 20.8 2.4% 1.0 17.1 20.6 2.5% 1.2 17.2 20.5 2.4% 1.2 
N7 18.8 21.5 2.4% 0.8 18.8 21.5 2.4% 0.8 18.8 21.5 2.4% 0.8 18.7 21.4 2.2% 0.9 18.7 21.2 2.0% 0.9 
N8 19.9 22.0 3.0% 0.6 19.9 22.0 2.9% 0.6 19.9 22.0 3.0% 0.6 19.7 21.9 2.5% 0.7 19.8 21.8 2.3% 0.7 
N9 20.6 22.3 4.1% 0.5 20.6 22.3 4.0% 0.5 20.7 22.3 4.1% 0.5 20.6 22.2 3.4% 0.6 20.6 22.2 3.1% 0.6 
N10 21.3 22.6 5.4% 0.5 21.3 22.6 5.4% 0.5 21.3 22.6 5.5% 0.5 21.2 22.5 4.6% 0.5 21.2 22.5 4.5% 0.5 

UBRLB 

N4 14.4 19.9 3.5% 2.2 14.4 19.9 3.4% 2.2 14.4 20.0 3.5% 2.2 14.3 19.7 3.5% 2.3 14.2 19.7 3.6% 2.5 
N5 16.7 20.5 2.5% 1.3 16.7 20.5 2.5% 1.3 16.8 20.6 2.5% 1.3 16.6 20.3 2.5% 1.4 16.6 20.3 2.5% 1.5 
N6 18.4 21.3 2.2% 1.0 18.4 21.3 2.2% 0.9 18.4 21.3 2.3% 1.0 18.3 21.1 2.1% 1.0 18.3 21.1 2.1% 1.1 
N7 19.6 21.8 2.6% 0.7 19.6 21.8 2.6% 0.7 19.6 21.9 2.6% 0.7 19.6 21.7 2.2% 0.8 19.6 21.7 2.2% 0.8 
N8 20.5 22.3 3.6% 0.6 20.5 22.3 3.6% 0.6 20.5 22.3 3.7% 0.6 20.4 22.2 3.1% 0.7 20.4 22.2 2.9% 0.7 
N9 21.1 22.5 5.0% 0.6 21.1 22.5 5.0% 0.5 21.1 22.6 5.2% 0.6 21.1 22.5 4.4% 0.6 21.1 22.5 4.3% 0.6 

1) tt  - Throughput time; 2) tl - Lead time; 3) Ptard – Percentage tardy; 4) Mtard – Mean tardiness 
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Table 6: Comparison of Performance Results under Shortest Processing Time Dispatching 
 

  FCFS EDD PRD LWIB SPT 
tt1) tl2) Ptard

3) Mtard
4) tt tl Ptard Mtard tt tl Ptard Mtard tt tl Ptard Mtard tt tl Ptard Mtard 

IMM  13.5 13.5 5.4% 2.4 13.5 13.5 5.4% 2.4 13.5 13.5 5.4% 2.4 13.5 13.5 5.4% 2.4 13.5 13.5 5.4% 2.4 

AGGWLT 

WLT60 8.7 23.9 17.6% 4.7 8.8 23.8 17.2% 4.7 8.8 23.6 16.7% 4.5 13.9 31.6 24.4% 11.1 8.8 18.4 9.2% 3.3 
WLT90 9.2 23.0 16.5% 4.4 9.2 23.0 16.2% 4.4 9.2 22.7 15.6% 4.2 13.9 25.9 18.9% 7.2 9.3 18.0 8.9% 3.0 
WLT120 9.4 22.7 16.1% 4.3 9.4 22.6 15.8% 4.3 9.5 22.4 15.4% 4.1 14.3 23.8 16.6% 6.0 9.5 17.8 8.8% 2.9 
WLT150 9.6 22.5 16.0% 4.3 9.6 22.5 15.7% 4.2 9.6 22.2 15.2% 4.1 14.7 23.1 15.8% 5.7 9.6 17.8 8.7% 2.9 
WLT180 9.6 22.3 15.9% 4.2 9.6 22.4 15.7% 4.2 9.6 22.0 15.1% 4.0 14.9 23.0 15.6% 5.6 9.6 17.7 8.6% 2.9 
WLT210 9.7 22.3 15.9% 4.3 9.7 22.3 15.6% 4.2 9.7 22.0 15.2% 4.0 15.1 23.0 15.5% 5.7 9.6 17.7 8.6% 3.0 

WCWLT 

WLT 0 6.6 24.8 19.2% 4.8 6.6 24.8 18.7% 4.7 6.6 24.4 18.0% 4.5 12.5 33.6 24.1% 13.2 6.6 17.7 9.0% 3.2 
WLT 1 7.5 24.5 18.7% 4.7 7.5 24.5 18.3% 4.6 7.5 24.2 17.7% 4.4 11.9 26.0 17.8% 7.3 7.5 17.9 8.7% 3.1 
WLT 2 8.6 23.5 17.5% 4.4 8.6 23.6 17.2% 4.3 8.6 23.2 16.4% 4.0 12.0 22.5 14.1% 4.9 8.6 17.8 8.4% 2.9 
WLT 3 9.6 22.4 16.1% 4.0 9.6 22.4 15.8% 3.9 9.5 22.1 15.3% 3.7 12.4 20.9 12.2% 4.0 9.6 17.5 8.1% 2.7 
WLT 4 10.2 21.2 14.9% 3.7 10.2 21.2 14.6% 3.6 10.1 20.9 14.1% 3.4 12.7 20.0 11.1% 3.5 10.2 17.0 8.0% 2.5 
WLT 5 10.5 20.0 13.4% 3.5 10.5 19.9 13.2% 3.4 10.5 19.8 12.9% 3.2 13.0 19.3 10.3% 3.3 10.5 16.4 7.6% 2.5 

CorrWLT 

WLT 2 8.6 26.1 20.8% 5.7 8.6 26.1 20.3% 5.6 8.6 25.6 19.5% 5.3 12.0 25.7 17.8% 7.2 8.6 18.6 9.1% 3.7 
WLT 3 9.8 21.3 14.9% 3.7 9.8 21.3 14.5% 3.6 9.8 21.1 14.1% 3.4 12.1 22.0 13.9% 4.7 9.9 16.6 7.4% 2.6 
WLT 4 10.7 19.1 12.1% 3.1 10.7 19.1 11.9% 3.0 10.7 19.0 11.6% 2.9 12.5 20.2 11.7% 3.7 10.8 15.9 6.9% 2.3 
WLT 5 11.3 17.8 10.4% 2.8 11.3 17.8 10.2% 2.7 11.3 17.7 10.1% 2.7 12.9 19.3 10.3% 3.2 11.4 15.4 6.6% 2.3 
WLT 6 11.7 16.8 9.2% 2.6 11.7 16.8 9.1% 2.6 11.7 16.8 9.1% 2.5 13.2 18.7 9.5% 3.0 11.8 15.0 6.3% 2.2 
WLT 7 12.0 16.2 8.4% 2.6 12.0 16.2 8.3% 2.5 12.0 16.2 8.3% 2.5 13.5 18.3 8.8% 2.9 12.1 14.8 6.1% 2.2 

UBR 

N5 10.1 14.8 6.2% 2.2 10.1 14.8 6.2% 2.2 10.1 14.7 6.1% 2.1 10.1 14.7 6.2% 2.4 10.0 14.6 5.9% 2.4 
N6 10.9 14.3 6.0% 2.1 10.9 14.3 6.0% 2.0 10.9 14.3 6.0% 2.0 10.9 14.2 6.0% 2.2 10.9 14.1 5.8% 2.2 
N7 11.5 14.1 5.9% 2.1 11.5 14.1 5.9% 2.1 11.5 14.1 5.9% 2.1 11.5 14.0 5.9% 2.2 11.5 13.9 5.7% 2.2 
N8 11.9 13.9 5.8% 2.1 11.9 13.9 5.7% 2.1 11.9 13.9 5.7% 2.1 11.9 13.9 5.8% 2.2 11.9 13.8 5.7% 2.2 
N9 12.3 13.8 5.7% 2.2 12.3 13.8 5.6% 2.2 12.3 13.8 5.7% 2.2 12.2 13.8 5.7% 2.3 12.2 13.7 5.6% 2.3 
N10 12.5 13.7 5.6% 2.2 12.5 13.7 5.6% 2.2 12.5 13.7 5.6% 2.2 12.5 13.7 5.6% 2.3 12.5 13.7 5.5% 2.3 

UBRLB 

N4 9.6 15.5 6.0% 2.8 9.6 15.5 6.0% 2.7 9.6 15.6 6.0% 2.8 9.6 15.4 5.9% 2.9 9.5 15.5 5.8% 3.2 
N5 10.6 14.5 5.8% 2.1 10.6 14.5 5.8% 2.1 10.6 14.5 5.8% 2.1 10.6 14.3 5.7% 2.2 10.6 14.4 5.7% 2.3 
N6 11.3 14.2 5.8% 2.1 11.3 14.2 5.8% 2.1 11.3 14.3 5.8% 2.1 11.3 14.1 5.7% 2.1 11.3 14.1 5.7% 2.2 
N7 11.8 14.1 5.8% 2.1 11.8 14.1 5.7% 2.1 11.8 14.1 5.8% 2.1 11.8 14.0 5.7% 2.2 11.8 14.0 5.6% 2.2 
N8 12.2 13.9 5.7% 2.2 12.2 13.9 5.7% 2.2 12.2 14.0 5.7% 2.2 12.2 13.9 5.6% 2.3 12.2 13.9 5.6% 2.3 
N9 12.5 13.9 5.6% 2.3 12.5 13.9 5.6% 2.3 12.5 13.9 5.6% 2.3 12.5 13.8 5.5% 2.3 12.5 13.8 5.5% 2.3 

1) tt  - Throughput time; 2) tl - Lead time; 3) Ptard – Percentage tardy; 4) Mtard – Mean tardiness 
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Table 7: Job Classes: Frequency Distribution for Routing Lengths 1 to 6 
 

 RL1)1 RL2 RL3 RL4 RL5 RL6 
Small 5.6% 3.6% 2.5% 1.8% 1.3% 1.0% 

Medium 6.9% 9.7% 11.3% 12.8% 14.0% 14.4% 
Large 3.9% 3.2% 2.6% 2.2% 1.8% 1.4% 

1) RL – Routing Length 
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Table 8: Performance Analysis of Job Size Classes for PRD Sequencing (under Operation Due Date Dispatching): Time to Release (in Time 
Units) 

 

  Small Jobs Medium Jobs Large Jobs 
RL1)1 RL2 RL3 RL4 RL5 RL6 RL1 RL2 RL3 RL4 RL5 RL6 RL1 RL2 RL3 RL4 RL5 RL6 

AGGWLT 

WLT60 19.4 17.9 16.5 15.2 13.8 12.5 19.2 17.5 16.1 14.5 13.1 11.9 18.6 17.0 15.3 13.8 12.4 11.2 
WLT90 17.0 15.5 14.3 13.3 11.9 11.1 16.7 15.2 13.9 12.6 11.5 10.6 16.1 14.8 13.2 12.1 11.0 10.0 
WLT120 16.3 14.9 13.8 12.7 11.5 10.6 16.0 14.7 13.3 12.1 11.0 10.2 15.5 14.2 12.7 11.6 10.5 9.7 
WLT150 16.0 14.6 13.5 12.5 11.2 10.3 15.7 14.3 13.0 11.8 10.6 9.9 15.2 13.9 12.4 11.3 10.2 9.6 
WLT180 15.8 14.4 13.2 12.1 11.1 10.0 15.5 14.1 12.8 11.6 10.4 9.7 15.0 13.8 12.3 11.1 9.9 9.4 
WLT210 15.7 14.4 13.1 12.0 11.0 9.9 15.4 14.1 12.7 11.5 10.3 9.6 15.0 13.6 12.2 11.0 9.8 9.3 

WCWLT 

WLT 0 22.6 20.8 18.9 17.1 15.4 13.7 22.4 20.2 18.3 16.4 14.4 12.8 21.8 19.6 17.4 15.4 13.4 11.7 
WLT 1 20.9 19.2 17.4 15.8 14.1 12.7 20.7 18.7 16.9 15.1 13.3 11.8 20.1 18.1 16.1 14.2 12.3 10.8 
WLT 2 18.0 16.6 15.1 13.7 12.3 10.9 17.9 16.1 14.5 13.0 11.4 10.1 17.3 15.6 13.8 12.2 10.6 9.2 
WLT 3 15.4 14.1 12.8 11.6 10.3 9.2 15.3 13.8 12.4 11.1 9.8 8.6 14.8 13.3 11.8 10.4 9.1 7.9 
WLT 4 13.2 12.0 11.0 10.0 8.8 7.8 13.0 11.7 10.6 9.4 8.3 7.3 12.6 11.3 10.1 8.9 7.7 6.6 
WLT 5 11.2 10.2 9.4 8.4 7.6 6.7 11.1 10.0 9.0 8.0 7.1 6.2 10.7 9.6 8.6 7.6 6.6 5.7 

CorrWLT 

WLT 2 22.3 20.4 18.7 17.0 15.2 13.6 22.0 19.9 18.0 16.2 14.3 12.8 21.4 19.3 17.2 15.2 13.3 11.7 
WLT 3 13.9 12.5 11.3 10.1 9.0 7.9 13.7 12.2 10.9 9.6 8.3 7.3 13.3 11.7 10.3 8.9 7.7 6.6 
WLT 4 10.4 9.3 8.4 7.5 6.5 5.7 10.2 9.0 8.0 7.0 6.0 5.3 9.8 8.6 7.5 6.5 5.6 4.7 
WLT 5 8.0 7.2 6.5 5.8 5.0 4.4 7.9 7.0 6.2 5.4 4.7 4.1 7.6 6.7 5.8 5.0 4.3 3.7 
WLT 6 6.4 5.7 5.2 4.6 4.0 3.6 6.3 5.6 4.9 4.3 3.7 3.2 6.1 5.3 4.6 4.0 3.4 2.9 
WLT 7 5.2 4.6 4.2 3.8 3.3 2.9 5.1 4.5 4.0 3.5 3.1 2.7 5.0 4.3 3.8 3.3 2.8 2.4 

UBR 

N5 0.2 0.4 0.6 0.7 0.7 0.7 1.4 2.6 3.5 4.0 4.3 4.6 11.2 13.2 14.0 14.9 14.7 15.0 
N6 0.2 0.4 0.5 0.6 0.6 0.6 1.2 2.1 2.7 3.0 3.2 3.3 8.4 9.7 10.1 10.6 10.4 10.5 
N7 0.1 0.3 0.4 0.4 0.5 0.4 1.0 1.7 2.1 2.4 2.5 2.5 6.6 7.4 7.7 8.0 7.7 7.7 
N8 0.1 0.2 0.3 0.4 0.4 0.3 0.8 1.4 1.7 1.9 1.9 1.9 5.2 6.0 6.0 6.2 6.0 5.8 
N9 0.1 0.2 0.3 0.3 0.3 0.3 0.6 0.9 1.1 1.2 1.2 1.2 4.3 4.7 4.7 4.9 4.6 4.4 
N10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3 3.7 3.7 3.8 3.6 3.5 

UBRLB 

N4 1.1 1.5 1.5 1.5 1.5 1.4 4.5 4.5 4.2 3.8 3.5 3.3 33.1 18.3 12.6 9.7 7.6 7.0 
N5 1.0 1.2 1.2 1.3 1.1 1.1 3.6 3.4 3.1 2.7 2.5 2.2 20.1 11.7 8.1 6.4 5.0 4.5 
N6 0.9 1.1 1.0 1.0 0.9 0.8 3.0 2.7 2.4 2.1 1.8 1.6 14.9 8.7 5.9 4.6 3.6 3.1 
N7 0.8 0.9 0.9 0.8 0.8 0.7 2.5 2.2 1.9 1.6 1.4 1.2 11.5 6.6 4.5 3.5 2.7 2.3 
N8 0.6 0.8 0.7 0.7 0.6 0.5 2.1 1.8 1.5 1.3 1.1 1.0 9.1 5.2 3.4 2.7 2.1 1.6 
N9 0.6 0.7 0.7 0.6 0.5 0.4 1.7 1.5 1.2 1.0 0.9 0.7 7.1 4.1 2.7 2.1 1.6 1.3 

1) RL – Routing Length 
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          (a)         (b) 

 

 
          (c)         (d) 

 
Figure 1: Distribution of Lateness: (a) PRD Sequencing and (b) SPT Sequencing under Operation Due Date Dispatching; and (c) 

PRD Sequencing and (d) SPT Sequencing under Shortest Processing Time Dispatching 
 

 


