
Continuously Measuring Critical Section
Pressure with the Free-Lunch Profiler

Florian David∗† Gaël Thomas∗† Julia Lawall†∗ Gilles Muller†∗
∗Sorbonne Universités, UPMC, LIP6 †Inria, Whisper team

firsname.lastname@lip6.fr

Abstract
Today, Java is regularly used to implement large multi-
threaded server-class applications that use locks to protect
access to shared data. However, understanding the impact of
locks on the performance of a system is complex, and thus
the use of locks can impede the progress of threads on con-
figurations that were not anticipated by the developer, during
specific phases of the execution. In this paper, we propose
Free Lunch, a new lock profiler for Java application servers,
specifically designed to identify, in-vivo, phases where the
progress of the threads is impeded by a lock. Free Lunch
is designed around a new metric, critical section pressure
(CSP), which directly correlates the progress of the threads
to each of the locks. Using Free Lunch, we have identified
phases of high CSP, which were hidden with other lock pro-
filers, in the distributed Cassandra NoSQL database and in
several applications from the DaCapo 9.12, the SPECjvm-
2008 and the SPECjbb2005 benchmark suites. Our evalua-
tion of Free Lunch shows that its overhead is never greater
than 6%, making it suitable for in-vivo use.

Categories and Subject Descriptors D.2.8 [Software engi-
neering]: Metrics – Performance measures

Keywords Performance Analysis, Locks, Multicore, Java

1. Introduction
Today, Java is regularly used to implement complex multi-
threaded server-class applications such as databases [15, 26]
and web servers [3, 21], where responsiveness and through-
put are critical for a good user experience. Such server ap-
plications are designed around the use of shared data, that
are accessed within critical sections, protected by locks, to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
OOPSLA ’14, October 20–24, 2014, Portland, Oregon, US.
Copyright c© 2014 ACM 978-1-4503-2585-1/14/10. . . $15.00.
http://dx.doi.org/10.1145/2660193.2660210

ensure consistency. However, because of the complexity of
these servers, some critical sections may not be efficient in
all execution configurations. Such critical sections can im-
pede the progress of many threads in specific settings, which
can drastically degrade the time for the server to process
requests. Therefore, throughput and responsiveness may be
hampered in situations that are difficult to simulate exhaus-
tively or that only arise on specific architectures that are not
available to the developer. As there is no technique to stat-
ically identify such critical sections, there is a need for an
in-vivo profiler that continuously monitors the application
while it is running. Current lock profilers for the widely used
state-of-the-art Hotspot Java virtual machine, however, incur
a substantial overhead, making their use only acceptable in
an in-vitro development setting.

Additionally, effective profiling of Java server-class ap-
plications requires the use of a metric that reports the slow-
down of the server caused by a lock and that takes into ac-
count the fact that server-class applications have long run-
ning times with various execution phases. Existing Java lock
profilers report on the average contention for each lock over
the entire application execution in terms of a variety of met-
rics. These metrics, however, focus on identifying the most
used or contended locks, but do not correlate the results to
the progress of the threads, which makes them unable to in-
dicate whether an identified lock is a bottleneck. For exam-
ple, on a classical synchronization pattern such as a fork-
join, we have observed that a frequently used or contended
lock does not necessarily impede thread progress. Further-
more, by reporting only an average over the entire applica-
tion execution, these lock profilers are not able to identify lo-
cal variations due to the properties of the different phases of
the application. Localized contention within a single phase
may harm responsiveness, but be masked in the profiling re-
sults by a long overall execution time.

These issues are illustrated by a problem that was re-
ported two years ago in version 1.0.0 of the distributed
NoSQL database Cassandra [26].1 Under a specific setting,
with three Cassandra nodes and a replication factor of three,
when a node crashes, the latency of Cassandra is multi-

1 https://issues.apache.org/jira/browse/CASSANDRA-3386.

plied by twenty. This slowdown is caused by a lock used in
the implementation of hinted handoff,2 by which live nodes
record their transactions for the purpose of later replay by
the crashed node. The original developers seem not to have
tested this specific scenario, or they tested it but were not
able to cause the problem. Moreover, even if the scenario
was by chance executed, current profilers would be unable
to identify the cause of the bottleneck if the scenario was
activated during a long run that hides the contention phase.

To address these issues, there is a need for a profiler
with the following properties: i) the profiler must incur little
overhead in order to be used in-vivo, ii) the profiler must
use a metric that indicates whether a lock impedes thread
progress, and iii) the profiler should recompute this metric
periodically, to be sensitive to the different phases of the
application.

In this paper, we propose a new lock profiler, called Free
Lunch, designed around a new contention metric, critical
section pressure (CSP). Free Lunch is especially targeted
towards identifying phases of high CSP in-vivo. We define
the CSP as the percentage of time spent by the application
threads in acquiring the lock during a time interval, which
directly indicates the percentage of time where threads are
unable to make progress, and thus the loss in performance.
When the CSP of a lock reaches a threshold, Free Lunch
reports the identity of the lock back to developers, along
with a call stack reaching a critical section protected by the
incriminated lock, just as applications and operating systems
now commonly report back to developers about crashes and
other unexpected situations [13].

In order to make in-vivo profiling acceptable, Free Lunch
must incur little overhead. To reduce the overhead, Free
Lunch leverages the internal lock structures of the Java Vir-
tual Machine (JVM). These structures are already thread-
safe and thus Free Lunch does not require any additional
synchronization to store the profiling data. Free Lunch also
injects the process of periodically computing the CSP into
the JVM’s existing periodic lock management operations in
order to avoid extra inspections of threads or monitors. As a
result, Free Lunch only adds eleven instructions to the lock
acquiring function on an amd64 architecture.

We have implemented Free Lunch in the Hotspot 7 JVM.
This implementation only modifies 420 lines of code, mainly
in the locking subsystem, suggesting that it should be easy
to implement in another JVM. We compare Free Lunch with
other profilers on a 48-core AMD Magny-Cours machine in
terms of both the performance penalty and the usefulness of
the profiling results. Our results are as follows:

• Theoretically and experimentally, we have found that
the lock contention metrics used by the existing Java
lock profilers MSDK [32], Java Lock Monitor [30], Java
Lock Analyser [20], IBM Health Center [16], HPROF

2 http://wiki.apache.org/cassandra/HintedHandoff

[17], MSDK [32], JProfiler [23] and Yourkit [41] are
inappropriate to identify whether a lock impedes thread
progress.

• Free Lunch makes it possible to detect a previously unre-
ported phase with a high CSP in the log replay subsystem
of Cassandra. This issue is triggered under a specific sce-
nario and only during a phase of the run, which makes it
difficult to detect with current profilers.

• Free Lunch makes it possible to identify six locks with
high CSP in six standard benchmark applications. Based
on these results, we have improved the performance of
one of these applications (Xalan) by 15% by changing
only a single line of code. As the lock is only contended
during half of the run, all other profilers largely underes-
timate its impact on performance. For the other applica-
tions, the information returned by Free Lunch helped us
verify that the locking behavior could not easily be im-
proved.

• On the DaCapo 9.12 benchmark suite [5], the SPECjvm-
2008 benchmark suite [37] and the SPECjbb2005 bench-
mark [36], we find that there is no application for which
the average performance overhead of Free Lunch is
greater than 6%. This result shows that a CSP profiler
can have an acceptable performance impact for in-vivo
profiling.

• The lock profilers compatible with Hotspot, HPROF [17],
JProfiler [23], Yourkit [41] and MSDK [32], on the same
set of benchmarks incur a performance overhead of up to
4 times, 7 times, 1980 times and 42 times, respectively,
making them unacceptable for in-vivo profiling.

The rest of this paper is organized as follows. Section 2
presents how synchronization is implemented in JVMs and
a study of the metrics used in the state-of-the-art in Java
lock profiler. Section 3 presents the design of Free Lunch
and Section 4 presents its implementation. We compare the
overhead of Free Lunch to that of existing profilers in Sec-
tion 5 and assess the value of the information produced by
Free Lunch in Section 6. Section 7 presents related work and
Section 8 concludes.

2. Background
In this section, we first describe the implementation of syn-
chronization in Hotspot 7. The same implementation strat-
egy is used in other modern JVMs, such as Jikes RVM [1]
and VMKit [12]. Free Lunch leverages this implementation
to perform profiling efficiently. We then present the seven
state-of-the-art Java lock profilers of which we are aware and
discuss the limitations of their metrics in the context of Java
server profiling.

2.1 Locking in the Hotspot 7 JVM
In Java, each object has an associated monitor [14], which
is comprised of a lock and a condition variable. As typically

only a few Java objects are actually used for synchronization,
Hotspot 7 includes an optimization that minimizes the mon-
itors’ memory consumption [4]. This optimization is based
on the following observations: i) when no thread is blocked
while waiting for the lock of the monitor, there is no need for
a queue of blocked threads, and ii) when no thread is waiting
on the condition variable of the monitor, there is no need for
a queue of waiting threads.

When both conditions hold, the monitor is considered
to be not contended and the Hotspot 7 JVM can repre-
sent the monitor in flat mode (see Figure 1). In this case,
the Hotspot 7 JVM stores a compact representation of the
monitor directly in the Java object header. The monitor be-
comes contended when a thread tries to acquire the monitor
lock while it is already held by another thread or when a
thread starts waiting on the monitor condition variable. In
both cases, the Hotspot 7 JVM inflates the monitor, so that
it contains thread queues. The Java header then references
the inflated monitor structure, which contains the data of the
original header.

Inflated
mode

Flat
mode

Lock acquisition
 while not locked

Lock acquisition
while locked or

Wait

Deflation, when not locked
during a deflation phase

(application is suspended)

Figure 1. Transitions between flat and inflated mode.

If an inflated monitor becomes not contended because it
has no waiting threads for both the lock or the condition
variable, the Hotspot 7 JVM eventually deflates the moni-
tor into flat mode. To prevent concurrent accesses from the
application to the inflated monitor structure, the Hotspot 7
JVM deflates a monitor only when the application is sus-
pended. Hotspot 7 exploits the fact that it already regularly
suspends all the threads in order to collect memory, deopti-
mize the code of a method or redefine a class [35]. Hotspot 7
leverages this synchronization to perform a deflation cycle
each time all threads are suspended. During a deflation cy-
cle, Hotspot 7 inspects all the inflated monitors. If a monitor
is not contended, Hotspot 7 deflates it into flat mode.

2.2 Lock contention metrics
In this section, we study the metrics used by the seven
state-of-the-art profilers of which we are aware. Four of
them are designed for the Hotspot 7 JVM (HPROF [17],
Yourkit [41], JProfiler [23] and MSDK [32]) and three for
the IBM J9 JVM, (JLM from the Performance Inspector
suite [30], JLA [20], and Health Center [16]). These profilers
focus on ordering the locks, from the most contended to the
least contended, using a variety of metrics. However, none

of these metrics are correlated to the progress of threads,
and thus they do not indicate which locks actually hamper
responsiveness in the context of a server.

In the rest of this section, we illustrate this limitation us-
ing two classical scenarios for synchronizing threads, (gen-
eralized) ping-pong and fork-join, which idealize typical ex-
ecution patterns performed by servers. We demonstrate that
each of the metrics is unable to report whether a lock im-
pedes thread progress for at least one of the scenarios.

2.2.1 Synchronization scenarios
The generalized ping-pong scenario, presented in Figure 2,
models a server with different kinds of threads, that execute
different parts of the server. Two threads, called the ping-
pong threads, execute an infinite loop in mutual exclusion.
On each loop iteration, a ping-pong thread acquires a lock,
performs some processing, and releases the lock. The re-
maining threads do not take the lock. For example, the two
ping-pong threads could take charge of the writes of dirty ob-
jects to persistent storage, while the other threads take charge
of the logic of the server. In this generalized ping-pong sce-
nario, the progress of the two threads running in mutual ex-
clusion is severely impacted by the lock, such that at any
given time only one of them can run. On the other hand, the
lock does not impede the progress of the other threads, and
overall, the lock does not impede the progress of the applica-
tion if it uses many other threads. In order to assess if thread
progress of the server is impeded by the lock, we would thus
like the value of a lock profiling metric to decrease as the
number of threads increases.

lock held
blocked

Thread 1
Thread 2

0 5
time

…

processing

10 15

Thread n

Thread 3

…

Figure 2. A generalized ping-pong scenario.

In the fork-join scenario shown in Figure 3, a master
thread distributes work to worker threads and waits for the
result. The scenario involves the monitor methods wait(),
which waits on a condition variable, notifyAll(), which
wakes all threads waiting on a condition variable, and
notify(), which wakes a single thread waiting on a con-
dition variable. The three methods must be called with the
monitor lock held. The wait() method additionally releases
the lock before suspending the thread, and reacquires the
lock when the thread is reawakened.

The workers alternate between performing processing in
parallel (narrow solid lines) and waiting to be awakened
by the master (red and green thick lines and dashed lines).
While the Java specification does not define an order in

which threads waiting on a condition variable are awak-
ened, to simplify our analysis, we assume that threads are
awakened in FIFO order, meaning that notify() wakes the
thread that has waited the longest on the condition variable.
We also suppose that the processing phase takes the same
time for each worker.

Initially, the master holds the lock and the workers are
waiting, having previously invoked the wait() method. At
time 0, the master wakes the workers using notifyAll().
Each worker receives the notification at time 1. According to
the semantics of wait(), each worker then has to reacquire
the lock before continuing. Thus, all workers block at time 1
while waiting for the master to release the lock. At time 2,
the master releases the lock by invoking wait(). This leads
to a cascade of lock acquisitions among the workers, at times
2-5, with each worker holding the lock for only one time
unit. The workers then perform their processing in parallel.
When each worker completes its processing, it again enters
the critical section, at times 8, 9, 10, and 11, respectively,
to be able to invoke wait() (times 9-14), to wait for the
master. This entails acquiring the lock, and then releasing
it via the wait() method. Finally, when the fourth worker
completes its processing (time 11), it acquires the lock and
uses notify() to wake the master (time 12). At time 13,
the master must reacquire the lock, which is currently held
by the fourth worker. The fourth worker releases the lock
when it invokes wait() (time 14), unblocking the master
and starting the entire scenario again.

lock held

blocked

processing

wait

notifyAll/
notify

Worker 1

Worker 2

Worker 3

Worker 4

Master

Cycle
0 5 10 15 20 25 time

Figure 3. A fork-join scenario.

In this scenario, all of the workers are repeatedly blocked
on the same lock, while trying to reacquire the lock in the
wait() method. If the processing time of the workers is
small, the workers are unable to progress during long periods
of time as compared to the time of a cycle, while it is the
opposite if the processing time is large. A metric should
reflect this trade-off.

2.2.2 Analysis of the metrics
We now analyse the metrics proposed by the seven profilers
on the two synchronization scenarios. Our analysis focuses
on the ability of the metric to indicate whether the threads
are unable to progress, as our primary concern is to iden-

tify whether a lock hampers the responsiveness of a server.
Table 1 presents the metrics and summarizes our analysis.
Overall, we see that although some tools provide metrics that
report values that scale with the impact on thread progress in
some scenarios, in each case there is at least one scenario on
which the result does not indicate thread progress, and the
user has no way to know which metric value to take into
account. In Section 5, we confirm this analysis using exper-
iments.

Metrics based on the number of failed acquisitions. Sev-
eral profilers propose metrics based on the number of failed
lock acquisitions, i.e., the number of times when the lock
acquisition method detects that the lock is already held. The
idea behind these metrics is that the probability of a lock
acquisition failing increases with contention.

JLM, JLA and Health Center report the number of failed
acquisitions divided by the total number of acquisitions.
With the fork-join scenario (see Figure 3), the result is 5/9,
with 4 failed acquisitions by the workers at time 2, 4 success-
ful acquisitions by the workers at times 8, 9, 10 and 11, re-
spectively, and 1 failed acquisition by the master at time 13.
This result is a constant and does not reflect that the synchro-
nization only impedes thread progress when the processing
time is small.

The same profilers also report the absolute number of
failed acquisitions. From this information, we can deduce
the rate of failed acquisitions over time by dividing it by the
time elapsed during the application run. For the generalized
ping-pong scenario, after each round of processing, which
takes place with the lock held, the two ping-pong threads are
trying to acquire the lock and one of them will fail. The num-
ber of fails per time unit is thus equal to one divided by the
time of the processing function (the narrow green rectangle
in Figure 2). The number of fails per time unit is thus not
related to the number of threads, but to the processing time.
It is thus inadequate to indicate whether threads are unable
to progress.

Thus, the number of failed acquisitions does not seem to
indicate whether many threads are blocked by the lock. It is
useful to understand which lock is the most contended, but
a highly contended lock does not inevitably impede thread
progress.

Metrics based on the critical section time. Other widely
used metrics are based on the time spent by the application in
the critical sections associated with a lock. The idea behind
these metrics is that if a lock is a bottleneck, an application
will spend most of its time in critical sections.

JLM, JLA and Health Center use this metric as well. They
report the amount of time spent by the application in the
critical sections associated to a given lock divided by the
number of acquisitions of that lock, i.e., the average critical
section time. On the generalized ping-pong scenario (see
Figure 2), regardless of the number of threads, the average
time spent in critical sections (the duration of the green thick

Table 1. Ability of the metrics to assess the thread progress.
Contention metric Scenario Profilersping-pong fork-join

failed acquisitions / + - JLM, JLA,
of acquisitions Health Center

failed acquisitions / - - JLM, JLA, MSDK,
Elapsed time Health Center

Total CS time of a lock / - + JLM, JLA, MSDK,
of acquisitions Health Center

Acquiring time of a lock / - - HPROFAcquiring time of all locks
Acquiring time of a lock / - - HPROF, JProfiler,

Elapsed time Yourkit

line) remains the same. The metric is thus unable to indicate
whether the lock impedes thread progress.

We conclude that the time spent in critical sections does
not necessarily indicate whether many threads are blocked.
It is only useful to understand which critical sections take
the longest time, but long critical sections do not necessarily
impede thread progress.

Metrics based on the acquiring time. HPROF, JProfiler
and Yourkit report the time spent by the application in ac-
quiring each lock. During the acquiring time, threads are un-
able to execute, which makes acquiring time an interesting
indicator of thread progress.

To provide a meaningful measure of thread progress, the
acquiring time has to be related to the overall execution time
of the threads. However, JProfiler and Yourkit only report
the elapsed time of the application (difference between the
start time and the end time), which does not take into ac-
count the execution times of the individual threads. Without
knowing the number of threads, which can evolve during the
execution, it is not possible to determine whether the lock
is a bottleneck. For example, on the generalized ping-pong
scenario, the metric indicates that 100% of the elapsed time
is spent in acquiring the lock (large red lines), regardless of
the number of threads.

HPROF also reports the acquiring time of each lock di-
vided by the total time spent by the application in acquiring
any lock. This metric is useful to identify the most problem-
atic locks, but is unable to indicate whether a lock actually
impedes thread progress. In the ping-pong scenario, for ex-
ample, the metric again indicates that 100% of the acquiring
time is spent in the only lock. The metric is thus not related
to the number of threads and is unable to identify whether
the lock impede the threads’ progress.

3. Free Lunch Design
The goal of Free Lunch is to identify the locks that most
impede thread progress, and to regularly measure the impact
of locks on thread progress over time. We now describe
our design decisions with respect to the definition of our
contention metric, the duration of the measurement interval,
the information that Free Lunch reports to the developer, and
the limitations of our design.

3.1 Free Lunch metric
In designing a metric that can reflect thread progress, we
first observe that a thread is unable to progress while it
blocks during a lock acquisition. However, taking into ac-
count only this acquiring time is not sufficient: we have seen
that HPROF, YourKit and JProfiler also use the acquiring
time, but the resulting metrics are unable to indicate if the
lock actually impedes thread progress (see Table 1). Our pro-
posal is to relate the acquiring time to the accumulated run-
ning time of the threads by defining the CSP of a lock as the
ratio of i) the time spent by the threads in acquiring the lock
and ii) the cumulated running time of these threads.

To make this definition precise, we need to define the
running time and the acquiring time of a thread, consider-
ing, in particular, how to account for cases where the thread
is blocked or scheduled out for various reasons. Specifi-
cally, we exclude from the running time the time where a
thread waits on a condition variable, as typically, in Java
programs, a thread waits on a condition variable when it
does not have anything to do. This observation is especially
true for a server that defines a large pool of threads to han-
dle requests, but where normally only a small portion of the
threads are active at any given time. The waiting time is thus
not essential to the computation of the application and in-
cluding it would drastically reduce the CSP, making difficult
the identification of phases in which threads do not progress.
In contrast, we include in the running times the time where
a thread is blocked for other reasons. For example, let us
consider an application that spends most of its time in I/O
outside any critical section, and that only rarely blocks to
acquire a lock. If we do not consider the I/O time, we will
report a high CSP, even though the lock is not the bottleneck.
Likewise, if we consider the opposite scenario with an appli-
cation that spends much time blocked in I/O while a lock is
held, not counting the I/O time would lead to an underes-
timated CSP. Finally, we include the scheduled-out time in
both the acquiring time and the running time. The probabil-
ity of being scheduled out while acquiring a lock is the same
as the probability of being scheduled out at any other time in
the execution, and thus has no impact on the ratio between
the acquiring time and the accumulated running time.

As a consequence of our definition, if the CSP becomes
large, it means that the threads of the application are not
able to execute for long periods of time because they are
blocked on the lock. For the generalized ping-pong scenario
(Figure 2), in the case where there are only the two ping-
pong threads, Free Lunch reports a CSP of 50% because
each thread is blocked 50% of the time (large red rectan-
gles). This CSP measurement is satisfactory because it in-
dicates that only half of threads execute at any given time.
If we consider more threads, the accumulated running time
of the threads will increase, and thus the CSP will decrease.
For example, with 48 other threads, Free Lunch will report
that the application spends only 2% of its time in lock ac-

quisition, reflecting the fact that the lock does not prevent
application progress. For the fork-join scenario (Figure 3),
Free Lunch will report a CSP equal to the sum of the times
spent while blocked (large red rectangles) divided by the
sum of the running times of the threads. As expected, the
Free Lunch metric increases when the processing time of
the workers decreases, thus indicating that the threads spend
more time blocked because of the lock.

3.2 Measurement interval
In order to identify the phases of high CSP of an application,
Free Lunch computes the CSP of each lock over a measure-
ment interval. Calibrating the duration of the measurement
interval has to take two contradictory constraints into ac-
count. On the one hand, the measurement interval has to be
small enough to identify the phases of an application. If the
measurement interval is large as compared to the duration
of a phase in which there is a high CSP, the measured CSP
will be negligible and Free Lunch will be unable to identify
the high CSP phase. On the other hand, if the measurement
interval is too small, the presence of a few blocked threads
during the interval can result in a high CSP value, even if
there is little pressure on critical sections. In this case, Free
Lunch will identify a lot of phases of very high CSP, hid-
ing the actual high CSP phases with a lot of false positive
reports.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

C
S

P
 (

%
)

Time (sec.)

10ms
1s

13s

Figure 4. CSP depending on the minimal measurement in-
terval for the Xalan application.

We have tested a range of intervals on the Xalan applica-
tion from the DaCapo 9.12 benchmark suite. This applica-
tion is an XSLT parser transforming XML documents into
HTML. Xalan exhibits a high CSP phase in the second half
of its execution caused by a lot of synchronized accesses to
a hash table. Figure 4 reports the evolution of the CSP over
time. With a very small measurement interval of 10ms, the
CSP varies a lot between successive measurement points. In
this case, the lock bounces back and forth from being con-
tended (high points) to being less contended (low points).
At the other extreme, when the measurement interval is ap-
proximately equal to the execution time (13s), the CSP is

averaged over the whole run, hiding the phases. With a mea-
surement interval of 1s, we can observe that (i) the applica-
tion has a high CSP during the second half of the run with a
value that reaches 64%, (ii) the CSP remains relatively stable
between two measurement intervals.

Based on the above experiments, we conclude that 1s is
a good compromise, as this measurement interval is large
enough to stabilize the CSP value. Moreover, if a high CSP
phase is shorter than 1s, it is likely that the user will not
notice any degradation in responsiveness.

3.3 Free Lunch reports
To further help developers identify the source of high CSP,
Free Lunch reports not only the identity of the affected
locks, but also, for each lock, an execution path that led
to its acquisition. Free Lunch obtains this information by
traversing the runtime stack. As traversing the runtime stack
is expensive, we have decided to record only a single stack
trace, the one that leads to the execution of the acquire
operation that causes the monitor to be inflated for the first
time. Previous work [2] and our experience in analyzing the
Java programs described in Section 6.2 shows that only a
single call stack is generally sufficient to understand why a
lock impedes thread progress.

3.4 Limitations of our design
A limitation of our design is that Free Lunch only takes into
account lock acquisition time as being detrimental to thread
progress. Thus, it may report a low CSP in a case where
locks are rarely used but many threads are prevented from
progressing due to ad hoc synchronization [40] or lock-free
algorithms [27]. We leave this issue to future work.

4. Free Lunch implementation
This section presents the implementation details of Free
Lunch in the Hotspot 7 JVM for an amd64 architecture. We
first describe how Free Lunch measures the different times
required to compute the CSP. Then, we present how Free
Lunch efficiently collects the relevant information. Finally,
we present some limitations of our implementation.

4.1 Time measurement
Free Lunch has to compute the cumulated time spent by
all the threads on acquiring each lock and the cumulated
running time of all the threads (see Figure 5). Below, we
describe how Free Lunch computes these times.

Acquiring time. The acquiring time is the time spent by
a thread in acquiring the lock. It is computed on a per lock
basis. For this, we have modified the JVM lock acquisition
method to record the time before and the time after an acqui-
sition in local variables. A challenge is then where to store
this information for further computation. Indeed, we have
found that one of the causes of the high runtime overhead of
HPROF (see Section 5.1.2) is the use of a map that associates

RunT1

Wait
Lock acquisition

Measurement interval

T2

T3

T4

Thread end

Thread start

Figure 5. Time periods relevant to the CSP computation.

each Java object to its profiling data. As was for example
proposed in RaceTrack [42], Free Lunch avoids this cost by
storing the profiling data directly in the structure that repre-
sents the profiled entity. Technically, Free Lunch records the
acquiring time in a field added to the monitor structure of the
JVM. A thread updates this value with its locally calculated
acquiring time only when it has already acquired the lock,
making it unnecessary to introduce another lock to protect
this information.

To accurately obtain a representation of the current time,
Free Lunch uses the x86 instruction rdtsc, which retrieves
the number of elapsed cycles since the last processor restart.
The rdtsc instruction is not completely reliable: it is syn-
chronized among all cores of a single CPU, but not between
CPUs. However, we have empirically observed that the drift
between CPUs is negligible as compared to the time scales
we consider. A second issue with rdtsc is that, as most x86
architectures support instruction reordering, there is, in prin-
ciple, a danger that the order of rdtsc and the lock acquisi-
tion operation could be interchanged. To address this issue,
general-purpose profilers that use rdtsc, such as PAPI [10],
introduce an additional costly instruction to prevent reorder-
ing. Fortunately, a Java lock acquisition triggers a full mem-
ory barrier [29], across which the x86 architecture never re-
orders instructions, and thus no such additional instruction
is needed.

In summary, obtaining the current time when requesting a
lock requires the execution of four x86 assembly instructions
including rdtsc and registering the time in a local variable.
Obtaining the current time after acquiring the lock, comput-
ing the elapsed lock acquisition time, and storing it in the
lock structure require the execution of seven x86 assembly
instructions.

A potential limitation of our strategy of storing the ac-
quiring time in the monitor structure is that this structure is
only present for inflated monitors. Free Lunch thus collects
no information when the monitor is deflated. Acquiring a
flat lock, however, does not block the thread, and thus not
counting the acquiring time in this case does not change the
result.

Computation of running time. As presented in Section 3.1,
our notion of running time does not include wait time on
condition variables, but does include time when threads are

scheduled out and blocked. As such, it does not correspond
to the time provided by standard system tools. For this rea-
son, we have chosen to measure the running time directly
in the Java virtual machine. In practice, there are two ways
for a thread to wait on a condition variable: either by calling
the wait() method on a monitor, or by calling the park()

method from the sun.misc.Unsafe class. To exclude the
waiting times, Free Lunch records the current time just be-
fore and after a call to one of these functions, and stores their
difference in a thread-local variable. At the end of the mea-
surement interval, Free Lunch computes the running time
of the thread by subtracting this waiting time from the time
where the thread exists in the measurement interval.

4.2 CSP computation
Free Lunch computes the CSP at the end of each measure-
ment interval. For this, Free Lunch has to visit all of the
threads to sum up their running times. Additionally, Free
Lunch has to visit all of the monitor structures to retrieve
the lock acquiring time. For each lock, the CSP is then com-
puted by dividing the sum of the acquiring times by the sum
of the running times.

To avoid introducing a new visit to each of the threads and
monitors, Free Lunch leverages the visits already performed
by the JVM during the optimized lock algorithm presented
in Section 2.1. The JVM regularly inspects each of the locks
to possibly deflate them, and this inspection requires that all
Java application threads be suspended. Since suspending the
threads already requires a full traversal of the threads, Free
Lunch leverages this traversal to compute the accumulated
running times. Free Lunch also leverages the traversal of
all the monitors performed during the deflation phase to
compute their CSP.

Our design makes the measurement interval approximate
because Free Lunch only computes the CSP during the next
deflation phase after the end of the measurement interval.
Deflation is performed when Hotspot suspends the applica-
tion to collect memory, deoptimize the code of a method or
redefine a class. After the initial bootstrap phase, however,
collecting memory is often the only one of these operations
that is regularly performed. This may incur a significant de-
lay in the case of an application that rarely allocates memory.
To address this issue, we have added an option to Free Lunch
that forces Hotspot to regularly suspend the application, ac-
cording to the measurement interval.3 For most of our evalu-
ated applications, however, we have observed that a deflation
phase is performed roughly every few tens of milliseconds,
which is negligible as compared to our measurement interval
of one second.

4.3 Limitations of our implementation
Storing profiling data inside the monitor data structure in
Hotspot 7 is not completely reliable, because deflation can

3 We have used this option for the experiment presented in Figure 4.

break the association between a Java object and its moni-
tor structure at any time, causing the data to be lost. Thus,
Free Lunch manages a map that associates every Java ob-
ject memory address to its associated monitor. During defla-
tion, Free Lunch adds the current monitor to that map. When
the lock becomes contended again, the inflation mechanism
checks this map to see if a monitor was previously associ-
ated with the Java object being inflated. This map is only ac-
cessed during inflation and deflation, which are rare events,
typically far less frequent than lock acquisition.

Our solution to keep the association between a Java object
memory address and its associated monitor is, however, not
sufficient in the case of a copying collector [22]. Such a
collector can move the object to a different address while the
monitor is deflated. In this case, Free Lunch will be unable
to find the old monitor. A solution could be to update the
map when an object is copied during the collection. We have
not implemented this solution because we think that it would
lead to a huge slowdown of the garbage collector, as every
object would have to be checked.

We have, however, observed that having a deflation of the
monitor followed by a copy of the object and then a new in-
flation of the monitor within a single phase is extremely rare
in practice. Indeed, a monitor is deflated when it is no longer
contended and thus a deflation will mostly happen between
high CSP phases. As a consequence, the identification of a
high CSP phase is not altered by this phenomenon. In the
case of multiple CSP phases for a single lock, the developer
can, however, receive multiple high CSP phase reports indi-
cating different locks. We do not think that this is an issue,
because the developer will easily see from the code that all
of the reports relate to a single lock.

5. Performance evaluation
We now evaluate the performance of Free Lunch as com-
pared to the existing profilers for OpenJDK: the version of
HPROF shipped with OpenJDK version 7, Yourkit 12.0.5,
JProfiler 8.0 and MSDK 2.5. As Free Lunch is implemented
in Hotspot, we do not compare it with the three profilers for
the IBM J9 VM because Hotspot and the IBM J9 VM have
incomparable performance.

We first compare the overhead of Free Lunch to that of
the other profilers, and then study the cost of the individ-
ual design choices of Free Lunch. All of our experiments
were performed on a 48-core 2.2GHz AMD Magny-Cours
machine having 256GB of RAM. The system runs a Linux
3.2.0 64-bit kernel from Ubuntu 12.04.

5.1 Profiler overhead
We compare the overhead of Free Lunch to that of HPROF,
Yourkit, JProfiler and MSDK running in lock profiling
mode, on the 11 applications from the DaCapo 9.12 bench-
mark suite [5], the 19 applications from the SPECjvm2008
benchmark suite [37], and the SPECjbb2005 benchmark

[36]. For DaCapo, we run each application 20 times with
10 iterations, and take the average execution time of the last
iteration on each run. For SPECjvm2008, we set up each
application to run a warmup of 120s followed by 20 itera-
tions of 240s each. For SPECjbb2005, we run 20 times an
experiment that uses 48 warehouses and runs for 240s with a
warmup of 120s. For SPECjvm2008 and SPECjbb2005, we
report the average rate of operations completed per minute.
Note that some of the benchmarks cannot be run with some
of the profilers: H2 does not run with Yourkit and MSDK,
Tradebeans does not run with Yourkit, Compiler.compiler
does not run with MSDK, and Avrora and Derby do not run
with HPROF.

5.1.1 Overall performance results
Figure 6 presents the overhead incurred by each of the pro-
filers, as compared to the baseline Hotspot JVM with no pro-
filing, and the standard deviation around this overhead. The
results are presented in two ways due to their wide varia-
tions. Figure 6.a presents the complete results, on a logarith-
mic scale, while Figure 6.b focuses on the case between 20%
speedup and 60% slowdown.

Figure 6.a shows that the overhead of HPROF can be up
to 4 times, that of Yourkit up to 1980 times, that of JProfiler
up to 7 times and that of MSDK up to 42 times. Figure 6.b
shows that for all applications, the average overhead of Free
Lunch is always below 6%. For some of the applications,
using a profiler seems to increase the performance. These
results are not conclusive because of the large standard devi-
ation.

In a multicore setting, as we have here, a common source
of large overhead is scalability issues. In order to evaluate
the impact of scalability on profiling, we perform additional
experiments, using HPROF, which has the least maximum
overhead of the existing profilers. We compare HPROF to
Hotspot without profiling on the Xalan benchmark in two
configurations: 2 threads on 2 cores, and 48 threads on 2
cores. In both cases, the overhead caused by the profiler
is around 1%, showing that when the number of cores is
small the number of threads has only a marginal impact on
profiler performance. Then, we perform the same tests on
Xalan with 48 threads on 48 cores. In this case, Xalan runs 4
times slower. These results suggest that, at least in the case
of HPROF, the overhead mainly depends on the number of
cores.

5.1.2 Detailed analysis of HPROF
We now examine the design of HPROF in more detail, to
identify the design decisions that lead to poor scalability.
Xalan is the application for which HPROF introduces the
most overhead. On this application, we have found that the
main issue, amounting to roughly 90% of the overhead, is in
the use of locks, in supporting general-purpose profiling and
in implementing a map from objects to profiling data.

 1

 10

 100

 1000

av
ror

a fop h2
jyth

on

luin
de

x

lus
ea

rch pm
d

tom
ca

t

su
nfl

ow
xa

lan

tra
de

be
an

s

co
mpile

r.c
om

pile
r

co
mpre

ss

cry
pto

.ae
s

cry
pto

.rs
a

cry
pto

.sig
nv

eri
fyO

ve
rh

ea
d

re
la

tiv
e

to
 B

as
el

in
e

Baseline Free Lunch HPROF Yourkit JProfiler MSDK

 1

 10

 100

 1000

av
ro

ra fo
p h2

jy
th

on

lu
in
de

x

lu
se

ar
ch

pm
d

to
m

ca
t

su
nf

lo
w

xa
la
n

tra
de

be
an

s

co
m

pi
le
r.c

om
pi
le
r

co
m

pr
es

s

cr
yp

to
.a

es

cr
yp

to
.rs

a

cr
yp

to
.s
ig
nv

er
ify

O
v
e

rh
e

a
d

 r
e

la
tiv

e
 t
o

 B
a

s
e

lin
e

 1

 10

 100

 1000

de
rb

y

m
pe

ga
ud

io

sc
im

ar
k.
fft

.la
rg

e

sc
im

ar
k.
fft

.s
m

al
l

sc
im

ar
k.
lu
.la

rg
e

sc
im

ar
k.
lu
.s
m

al
l

sc
im

ar
k.
so

r.l
ar

ge

sc
im

ar
k.
so

r.s
m

al
l

sc
im

ar
k.
sp

ar
se

.la
rg

e

sc
im

ar
k.
sp

ar
se

.s
m

al
l

sc
im

ar
k.
m

on
te

_c
ar

lo

se
ria

l

xm
l.t
ra

ns
fo

rm

xm
l.v

al
id
at

io
n

sp
ec

jb
b

O
v
e

rh
e

a
d

 r
e

la
tiv

e
 t

o
 B

a
s
e

lin
e

(a) Overhead on execution time with a logarithmic scale.

-20
-10

 0
 10
 20
 30
 40
 50
 60

av
ro

ra fo
p h2

jy
th

on

lu
in
de

x

lu
se

ar
ch

pm
d

to
m

ca
t

su
nf

lo
w

xa
la
n

tra
de

be
an

s

co
m

pi
le
r.c

om
pi
le
r

co
m

pr
es

s

cr
yp

to
.a

es

cr
yp

to
.rs

a

cr
yp

to
.s
ig
nv

er
ify

A
p

p
lic

a
tio

n
 s

lo
w

d
o

w
n

 r
e

la
tiv

e
 t

o
 B

a
s
e

lin
e

 (
%

)

-20
-10

 0
 10
 20
 30
 40
 50
 60

de
rb

y

m
pe

ga
ud

io

sc
im

ar
k.
fft

.la
rg

e

sc
im

ar
k.
fft

.s
m

al
l

sc
im

ar
k.
lu
.la

rg
e

sc
im

ar
k.
lu
.s
m

al
l

sc
im

ar
k.
so

r.l
ar

ge

sc
im

ar
k.
so

r.s
m

al
l

sc
im

ar
k.
sp

ar
se

.la
rg

e

sc
im

ar
k.
sp

ar
se

.s
m

al
l

sc
im

ar
k.
m

on
te

_c
ar

lo

se
ria

l

xm
l.t
ra

ns
fo

rm

xm
l.v

al
id
at

io
n

sp
ec

jb
b

A
p

p
lic

a
tio

n
 s

lo
w

d
o

w
n

 r
e

la
tiv

e
 t

o
 B

a
s
e

lin
e

 (
%

)

(b) Overhead on execution time, limited to between 80% and 160% (zoom of (a)).

Figure 6. Overhead on execution time compared to baseline.

Supporting general-purpose profiling. HPROF, like the
other existing profilers, is implemented outside the JVM, re-
lying on JVMTI [24], a standard Java interface that provides
data about the state of the JVM. To use JVMTI, a profiler
registers two event handlers through the JVMTI API: one
that is called before a thread is suspended because it tries to
acquire a lock that is already held, and another that is called
after the thread has acquired the lock.

When the JVM terminates, HPROF has to dump a co-
herent view of the collected data. As HPROF is a general-
purpose profiler, some event handlers may collect multiple
types of information. To ensure that the dumped information
is consistent, HPROF requires that no handler be executing
while the dump is being prepared. HPROF addresses this
issue by continuously keeping track of how many threads
are currently executing any JVMTI event handler, and by
only dumping the profiling data when this counter is zero.
HPROF protects this counter with a single lock that is ac-
quired twice on each fired event, once to increment the
counter and once to decrement it.

To measure the cost of the management of this counter,
we have performed an experiment using a version of HPROF
in which we have removed all of the code in the JVMTI han-
dlers except that relating to the counter and its lock. This ex-
periment shows that the lock acquisition and release opera-
tions account for roughly 60% of the overhead of HPROF on
Xalan, making this lock a bottleneck at high core count. Note
that Free Lunch does not incur this cost because it only sup-
ports lock profiling, and a lock operation cannot take place
concurrently with the termination of the JVM.

Mapping objects to profiling data. HPROF collects lock
profiling information in terms of the top four stack frames
leading to a lock acquisition or release event and the class
of the locked object. For this, on each lock acquisition or
release event, HPROF:

1. Obtains the top four stack frames by invoking a function
of the JVM;

2. Obtains the class of the object involved in the lock oper-
ation by invoking a function of the JVM;

3. Computes an identifier based on these stack frames and
the class;

4. Accesses a global map to retrieve and possibly add the
profiling entry associated to the identifier;

5. Accumulates the acquiring time in the profiling entry.

We have evaluated the costs of these different steps, and
found that roughly 30% of the overhead of HPROF on Xalan
is caused by the access to the map (step 4), and 10% is
caused by the other steps. This large overhead during map
access is caused by the use of a lock to protect the access to
the map, which becomes the second bottleneck at high core
count. In contrast, Free Lunch does not incur this overhead
because it directly stores the profiling data in the monitor

structure of Hotspot, and thus does not require a map and
the associated lock to retrieve the profiling entries.

5.2 Free Lunch overhead
We have seen that Free Lunch does not incur the major over-
heads of HPROF due to their different locking strategies.
However, there are other differences in the features of Free
Lunch and HPROF that may impact performance. In order
to understand the performance impact of these feature dif-
ferences, we require a baseline that does not include the high
locking overhead identified in HPROF in the previous sec-
tion. Thus, we first create OptHPROF, a lock profiler that
collects the same information as HPROF, but that eliminates
almost all of HPROF’s locking overhead, and then we com-
pare the performance impact of adding the specific features
of Free Lunch to OptHPROF, one by one.

5.2.1 OptHPROF
To make our baseline, OptHPROF, for comparison with Free
Lunch, we remove the two main bottlenecks presented in
Section 5.1.2. First, we simply eliminate the lock that pro-
tects the shared counter. As previously noted, this counter is
not needed in a lock profiler. Second, for the map that asso-
ciates an object to its profiling data, we have implemented an
optimized version that uses a fine-grain locking scheme, in-
spired by the lock-free implementation of hash maps found
in java.util.concurrent [27].

The key observation behind our map implementation is
that the profiling data accumulates across the entire execu-
tion of the application, and thus no information is ever re-
moved. We represent the map as a hash table, implemented
as a non-resizable array of linked lists, where each list holds
the set of entries with the same hash code. A read involves
retrieving the list associated with the desired profiling en-
try and searching for the entry in this list. Because the array
is not resizable and because no profiling entry is ever re-
moved, a list, whenever obtained, always contains valid en-
tries. Thus, there is no need to acquire a lock when a thread
reads the map. A write may involve adding a new entry to the
map. The new entry is placed at the beginning of the associ-
ated list. Doing so requires taking a lock on the relevant list,
to ensure that two colliding profiling entries are not added at
the same time. As in Free Lunch, profiling data are recorded
in a profiling entry after the lock associated with the profiling
entry is acquired, and thus no additional locking is required.

The map itself is mostly accessed for reads: a write is
only required the first time a profiling entry is added to the
map, which is much less frequent than adding new profiling
information to an existing entry. Likewise, it is rare that two
threads need to access the same profiling entry at the same
time. Thus, the locks found in OptHPROF are not likely to
be contended, allowing OptHPROF to scale with the profiled
application.

Figure 7 reports the overhead of OptHPROF on Avrora,
H2, PMD, Sunflow, Tomcat, Tradebeans, Xalan and Xml.Va-

-10

 0

 10

 20

 30

 40

 50

av
ro

ra h2
pm

d

su
nf

lo
w

to
m

ca
t

tra
de

be
an

s

xa
la
n

xm
l.v

al
id
at

io
n

A
p

p
lic

a
tio

n
 s

lo
w

d
o

w
n

 r
e

la
tiv

e
 t
o

 B
a

s
e

lin
e

 (
%

)

OptHPROF OptHPROF-CSP OptHPROF-CSP-Obj FreeLunch

Figure 7. Overhead on execution time compared to baseline.

lidation, which are the applications that are most slowed
down by HPROF. By eliminating the counter lock and by
using a more scalable map data structure, the worst-case
overhead of OptHPROF is 18.3% with Tomcat, which ap-
proaches the worst-case overhead of Free Lunch, of 6%.

5.2.2 Free Lunch features
The main features of Free Lunch that are not found in OptH-
PROF, and thus that are not found in HPROF, are as follows:

• Metric: Free Lunch supports profiling of phases, and
thus computes its metric at regular intervals, while OptH-
PROF computes its metric only at the end of the run. Fur-
thermore, OptHPROF only reports the acquisition time of
a lock divided by the total acquisition time of any lock,
while Free Lunch reports the CSP, i.e., the acquisition
time of a lock divided by the accumulated running time
of the threads of the application.

• Profiling granularity: Free Lunch indexes profiling in-
formation at the object level, while OptHPROF indexes
profiling information by the object’s class and the top
four stack frames at the time of the lock operation. Opt-
HPROF’s strategy makes it possible to identify the criti-
cal section in which a problem is observed, and the con-
text in which that critical section was reached, but it risks
conflating information from multiple objects of the same
class, and hiding locking issues that are dispersed across
multiple critical sections. In contrast, Free Lunch only
collects a stack trace at the first contended acquisition of
a given object’s lock, which may not be the critical sec-
tion in which contention occurs, but unifies all of the pro-
filing information about a given object within the current
time interval.

• Integration with the JVM: Free Lunch directly reuses
the internal representation of a monitor inside the JVM to
store the profiling data, while OptHPROF is independent

Experiment Metric Stack trace Out-VM Data structure
HPROF HPROF Each acquisition Yes Not optimized

OptHPROF HPROF Each acquisition Yes Optimized
OptHPROF-CSP CSP Each acquisition Yes Optimized

OptHPROF-CSP-Obj CSP First acquisition Yes Optimized
Free Lunch CSP First acquisition No Optimized

Table 2. Experiments conducted to understand Free Lunch.

of the JVM and has to access an external map for each
lock operation.

We evaluate each of these differences in terms of the
set of experiments described in Table 2. Each experiment
involves creating a variant of OptHPROF that mimics Free
Lunch in one or more of the above aspects, Figure 7 reports
the overhead introduced by each of the variants, along with
the standard deviation on 5 runs, with the same applications
Avrora, H2, PMD, Sunflow, Tomcat, Tradebeans, Xalan and
Xml.Validation. We now analyze the implementations of the
above variants and their results in detail.

OptHPROF-CSP: using phases and the CSP instead of
the HPROF’s metric. To implement OptHPROF-CSP, we
modify the implementation of OptHPROF to periodically
compute the CSP rather than computing HPROF’s metric
once at the end of the run. Several issues must be addressed.
First, the CSP is computed in terms of the lock acquisition
time and the running time. Of these, only the lock acquisition
time is already computed by OptHPROF. To compute the
running time, we extend OptHPROF to intercept the calls to
the wait functions and to the thread creation and destruction
functions through JVMTI events. Finally, OptHPROF-CSP
cannot piggy-back on the garbage collector, as done by Free
Lunch, to compute the CSP periodically, because GC events
are not made available via JVMTI. Instead, OptHPROF-CSP
defines a thread, woken up every second, to perform the
computation.

As presented in Figure 7, regularly computing the CSP
instead of computing the HPROF metric at the end of the
run does not introduce a significant overhead. In the worst
case, regularly computing the CSP increases the overhead
by 1.5% and, in the best case, it reduces the overhead by
2.7%. Thus, neither the choice of which of these metrics to
compute nor the frequency of the computation has an impact
on performance.

OptHPROF-CSP-Obj: profiling granularity. To imple-
ment OptHPROF-CSP-Obj, we modify the implementation
of OptHPROF-CSP to index the profiling entries by object
rather than by class and stack frames. For this, we use the
internal hashcode embedded in any Java object as the pro-
filing entry identifier. To further simulate the behavior of
Free Lunch, we also extend OptHPROF-CSP to record a full
stack trace at the first acquisition of each lock.

As presented in Figure 7, we can see that, except for
Xalan, recording a full stack trace at the first lock acquisition
or systematically recording the first four frames at each lock
acquisition does not have a significant impact on the per-
formance. In the best case, OptHPROF-CSP-Obj increases
the performance by 2.8% and in the worst case, except for
Xalan, it reduces the performance by 1.6%.

For Xalan, however, not recording the stack frames at
each lock acquisition adds a significant overhead of 17%.
This result is unexpected because computing a hashcode
only consists of reading the object header, which should take
less time than recording four stack frames. Indeed, we have
measured that, on average, OptHPROF-CSP adds an over-
head of roughly 50,000 cycles before each lock acquisition
on Xalan, while OptHPROF-CSP-Obj only adds an over-
head of roughly 2,500 cycles.

To better understand this result, we have conducted an-
other experiment, in which we explore the impact of chang-
ing the delay before the lock acquisition on the performance
of Xalan. Starting from the implementation of OptHPROF-
CSP, we replace the JVMTI handler code before the lock
acquisition by a delay of varying length, leaving the JVMTI
handler code of OptHPROF-CSP after the lock acquisition
unchanged. Figure 8 reports the overhead caused by the
varying delay as compared to an execution of Xalan without
any instrumentation (baseline). We first observe that the in-
strumentation of OptHPROF-CSP after the lock acquisition
slows down the application by roughly 30%. Subsequently,
the impact of the delay varies greatly in the zones marked A,
B, and C in the graph. In zone A, from a delay of 1 cycle to
a delay of 50,000 cycles, the overhead slightly decreases as
the delay increases. This counterintuitive result is due to the
fact that spinlocks and POSIX locks, which are used by Java
to implement synchronization, saturate the memory buses
when many threads try to acquire a lock simultaneously [28].
Increasing the delay gradually reduces the contention on the
memory buses and the resulting performance improvement
outweighs our introduced delay. In zone B, from a delay

-20

-10

 0

 10

 20

 30

 40

 50

 1 10 100 1000 10000 1e+05 1e+06 1e+07 1e+08

A
p

p
lic

a
ti
o

n
 s

lo
w

d
o

w
n

 r
e

la
ti
v
e

 t
o

 B
a

s
e

lin
e

 (
%

)

Cycles added before lock acquisition

A B C

Xalan

Figure 8. Overhead of Xalan with a varying delay before
lock acquisition.

of 50,000 cycles to a delay of 106 cycles, the problem of
memory bus saturation is reduced significantly, leading to a
huge reduction in the overall overhead induced by the delay
and indeed an improvement over the performance of Xalan
without profiling, which itself suffers from saturation of the
memory buses. Finally, in zone C, the buses are no longer
saturated and the overhead increases linearly with the delay,
as expected.

In our context, by not recording the first four stack
frames, we reduce the delay between two lock acquisi-
tions, which further saturates the buses, and thus leads to
worse performance. It should be noted that in the case of
OptHPROF-CSP, the code executed before each lock acqui-
sition may involve cache misses, while the wait introduced
in the above experiment does not. The cycle count thresholds
separating zones A, B, and C are thus not exactly compara-
ble.

Free Lunch: integration with the JVM. OptHPROF-CSP-
Obj is a profiler that has essentially the same functionality
as Free Lunch, but is implemented outside of the JVM. By
comparing it with Free Lunch, we can thus identify the
benefit of leveraging the internal monitor structure of the
JVM to store the profiling data.

As presented in Figure 7, leveraging the internal data
structures of the JVM significantly decreases the overhead
caused by the use of a profiler, especially on Tomcat, Trade-
beans and Xalan, the three applications that are the most
slowed down by OptHPROF-CSP-Obj. For Tomcat, the
overhead decreases from 15.7% with OptHPROF-CSP-Obj
to 1.3% with Free Lunch, for Tradebeans from 3.5% to less
than 0.1%, and for Xalan from 30.5% to less than 0.1%.

6. Using Free Lunch to analyze applications
We now experimentally validate our analysis of the metrics
presented in Section 2.2 and report our results when using
Free Lunch to analyze the lock behavior of the applications
considered in Section 5 as well as Cassandra 1.0.0 [26].

Contention metric 2 threads 48 threads Profiler
CSP 49.9% 2.1% Free Lunch

Acquiring time of a lock / 99% 99% HPROFAcquiring time of all locks
Acquiring time of a lock / 96.7% 96.7% JProfilerElapsed time
Total CS time of a lock / 2.4ms 2.4ms MSDK# of acquisitions

Table 3. Evaluation of contention metrics on the ping-pong
micro-benchmark.

All evaluations are performed on the machine described in
Section 5.

6.1 Micro-benchmarks
We instantiate the scenarios described in Section 2.2 into
micro-benchmarks and use them to compare the ability of
the CSP metric and the other metrics to indicate the impact
of locks on thread progress.

We first consider the ping-pong micro-benchmark, in-
stantiating the micro-benchmark such that each ping-pong
thread spends 1ms in the critical section on each iteration.
We execute the micro-benchmark for 30s, with 2 and 48
threads. The results are presented in Table 3.

For this micro-benchmark, we first study the profilers
that rely on the acquiring time. On the ping-pong scenario,
for both 2 and 48 threads, HPROF reports that 99% of the
acquiring time of any lock is spent to acquire the ping-
pong lock and 1% is spent to acquire internal locks of the
Java library during the bootstrap of the application. Thus,
as anticipated by our theoretical study, the result reported
by HPROF does not change with the number of threads.
JProfiler reports the time spent in acquiring each lock and
the elapsed time of the application: the acquiring time equals
96.7% of the elapsed time with 2 or 48 threads. This result
also confirms our theoretical analysis. Thus, neither of these
metrics decreases when the number of threads increases. On
the other hand, Free Lunch reports a CSP of 49.9% with 2
threads and a CSP of 2.1% with 48 threads. Thus, it correctly
indicates when the lock impedes the progress of threads.

We next study the profilers that rely on the critical section
time. MSDK’s metric divides this time by the total number
of acquisitions. On the ping-pong micro-benchmark, it re-
ports a value of 2.4ms with both 2 and 48 threads (see Ta-
ble 3). Thus, again, as predicted by our theoretical analysis,
the result does not decrease when the number of threads in-
creases.

We then turn to the fork-join micro-benchmark. We also
execute this micro-benchmark for 30s, with 1 master thread
and 47 worker threads. We vary the processing time of the
workers from 50ms to 700ms. The results are presented in
Figure 9.

For this micro-benchmark, we compare Free Lunch with
Health Center, which relies on the number of failed acquisi-
tions. As shown in Figure 9, the CSP reported by Free Lunch

 0
 5

 10
 15
 20
 25
 30

 0 100 200 300 400 500 600 700

Pe
rc

en
ta

ge

Worker processing time (ms.)

% CSP
Failed acquisitions / # Total acquisitions

Figure 9. Comparison of the Free Lunch CSP metric and
the Health Center metric on the fork-join micro-benchmark.

decreases with the processing time of the workers. On the
other hand, the number of failures divided by the number of
acquisitions reported by Health Center oscillates between 7
and 23%, depending on the processing time, and does not de-
crease when the processing time increases. This result corre-
sponds to the theoretical study presented in Section 2.2: the
number of failures divided by the number of acquisitions is
not related to the processing time of the workers, and thus the
progress of the threads. Notice that according to our theoret-
ical study, Health Center should report a constant value of
5/9 (56%). That value does not account for the fact that the
Linux scheduler has to elect the workers when they are wo-
ken up by the master. This election time avoids lock acquisi-
tion failures when a thread is elected after the already awak-
ened threads have released their lock. On the other hand, as
a condition variable may not wake up the waiting threads in
FIFO order, some failed acquisitions can occur during the
join phase.

6.2 Analysis of lock CSP
This section presents a detailed analysis of the CSP of the
locks used by the applications from the DaCapo 9.12 bench-
mark suite [5], the SPECjvm2008 [37] benchmark suite, and
the SPECjbb2005 [36] benchmark. We first consider the case
where the measurement interval is equal to the running time
of the application, giving the average CSP over the whole
run. Table 4 lists the locks with an average CSP greater than
5% in this case. Figure 10 then presents the evolution of the
CSP of the same locks with a measurement interval of 1s.
Note that the average CSP over the whole run (Table 4) is not
equal to the average of the CSPs of each individual measure-
ment interval (Figure 10), because of changes in the number
of threads in each measurement interval. For example, a high
CSP with only two running threads during a measurement
interval becomes negligible when averaged over two mea-
surement intervals if many threads are running in the sec-
ond interval. The remainder of this section analyzes in detail
these CSP values.

H2 is an in-memory database. The lock associated with
an org.h2.Database object has an average CSP of 62.3%.
H2 uses this lock to ensure that client requests are pro-

Benchmark Java class of the object with highest CSP CSP
H2 org.h2.engine.Database 62.3%
Avrora java.lang.Class 48.4%
PMD org.dacapo.harness.DacapoClassLoader 25.4%
Xalan java.util.Hashtable 20.4%
Sunflow org.sunflow.core.Geometry 6.2%
Tradebeans org.h2.engine.Database 6.0%

Table 4. CSP averaged during the whole run.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

C
S

P
 (

%
)

Time (sec.)

H2

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

C
S

P
 (

%
)

Time (sec.)

Avrora

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9 10

C
S

P
 (

%
)

Time (sec.)

PMD

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

C
S

P
 (

%
)

Time (sec.)

Xalan

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
S

P
 (

%
)

Time (sec.)

Sunflow

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

C
S

P
 (

%
)

Time (sec.)

Tradebeans

Figure 10. CSP with a measurement interval of 1s.

cessed sequentially; thus, the more clients send requests to
the database, the more clients try to acquire the lock. As
shown in Figure 10, H2 exhibits 3 distinct phases. The first
phase (from 0s to 16s) presents no CSP at all: in this phase
the main thread of the application populates the database,
thus no CSP occurs for accessing the database. The second
phase (from 16s to 79s) shows a CSP between 92% and 96%:
clients are sending requests to the database, thus inducing
contention on the database lock. The CSP decreases at the
end of the phase, going from 92% to 0%, when clients have
finished their requests to the database. The purpose of the
last phase (from 79s to the end) is to revert the database
back to its original state, which is again done only by the
main thread and thus induces no CSP. This application is
inherently not scalable because requests are processed se-
quentially. Deep modifications would be required to improve
performance.

Avrora is a simulation and analysis framework. The lock
associated with a java.lang.Class object has an average
CSP of 48.4%. Avrora uses this lock to serialize its output to
the terminal. As shown in Figure 10, Avrora exhibits a high
CSP phase, from 2.3s to the end of the application, where

application threads write results to a file. There seems to be
no simple solution to remove this lock because interleaving
outputs from different threads would lead to an inconsistent
result.

PMD is a source code analyzer. The lock associated
with an org.dacapo.harness.DacapoClassLoader ob-
ject has an average CSP of 25.4%. This object is used to
load new classes during execution. As shown in Figure 10, a
high CSP phase begins at 2s and terminates at 5.7s, while the
application terminates at 9.2s. During the high CSP phase,
PMD stresses the class loader because all the threads are
trying to load the same classes. Removing this bottleneck
is likely to be hard because the classes have to be loaded
serially.

Xalan is a XSLT parser transforming XML documents
into HTML. The lock associated with a java.util.-

Hashtable object has an average CSP of 20.4%. java.util.-
Hashtable uses this lock to ensure mutual exclusion on
each access to the hashtable, leading to a bottleneck. As
shown in Figure 10, during a first phase (from 0s to 6.8s)
only one thread fills the hashtable, and therefore the CSP is
negligible. However, during the second phase (from 6.8s to
the end of application), all the threads of the application are
accessing the hashtable, increasing the CSP up to 64.3%.
This high CSP phase is underestimated when the CSP is
averaged over the whole run, making it difficult to identify
without separating phases. We reimplemented the hash ta-
ble using java.util.concurrent.ConcurrentHashMap,
which does not rely on locks. This change required modify-
ing a single line of code, and improved the baseline appli-
cation execution time by 15%. This analysis shows that the
information generated by Free Lunch can help developers in
practice.

Sunflow is an image rendering application. The lock as-
sociated with an org.sunflow.core.Geometry object has
an average CSP of 5.8%. As shown in Figure 10, Sunflow ex-
hibits a moderate CSP peak at the beginning of its execution.
This occurs during the tesselation of 3D objects, which must
be done in mutual exclusion. Since the number of 3D objects
is small as compared to the number of threads, many threads
block, waiting for the tesselation to complete. Improving the
performance would require parallelizing tessalation compu-
tation.

Tradebeans simulates an online stock trading system, and
includes H2 to store persistent data. The lock associated with
an org.h2.Database object has an average CSP of 6.0%.
This lock is also the bottleneck reported in the H2 applica-
tion. As shown in Figure 10, a phase with a small CSP starts
at 13.4s and persists until the application terminates. As al-
ready explained, deep modifications would be required in H2
to improve performance.

6.3 Cassandra
Cassandra [26] is a distributed on-disk NoSQL database,
with an architecture based on Google’s BigTable [7] and

Amazon’s Dynamo [8] databases. It provides no single point
of failure, and is meant to be scalable and highly available.
Data are partitioned and replicated over the nodes. Durabil-
ity in Cassandra is ensured by the use of a commit log where
it records all modifications. As exploring the whole com-
mit log to answer a request is expensive, Cassandra also has
a cache of the state of the database. This cache is partially
stored to disk and partially stored in memory. After a crash,
a node has to rebuild this cache before answering client re-
quests. For this purpose, it rebuilds the cache that was stored
in memory by replaying the modifications from the commit
log.

A Cassandra developer reported a lock performance is-
sue in Cassandra 1.0.0.4 During this phase, the latency was
multiplied by twenty. The issue was observed on a config-
uration where the database is deployed on three nodes with
a replication factor of three, and consistency is ensured by
a quorum agreement of two replicas. No further information
about the configuration is provided. As a result, we were un-
able to reproduce this problem.

Although we were not able to reproduce the previously
reported problem, we were able to use Free Lunch to de-
tect a phase with a high CSP in Cassandra 1.0.0. Using the
configuration described above, we created a 10Gb database
and then used the YCSB [34] benchmark to stress Cassan-
dra with an update-heavy workload including 50% reads and
50% updates. After 5.5 minutes, we simulated a crash by
halting a node and immediately restarting it. During the re-
covery, Free Lunch reports a high CSP phase of around 50%,
with a peak at 52%. The high CSP phase takes place during
the commit log replay, which takes 11.4s. Coincidentally, the
critical section involved is the same one that caused the pre-
viously reported problem in Cassandra 1.0.0. Outside this
phase, the CSP for the lock is near 0%. The duration of the
high CSP phase is proportional to the size of the log replay,
which itself is proportional to the number of modifications
before the crash. This result shows that Free Lunch is able to
accurately identify variations in CSP during phases in large
Java servers. This phase is hidden by other profilers because
a Cassandra server has a long running time of many days.

This experiment also illustrates the difficulty of produc-
ing and reproducing CSP issues. Indeed, the particular tested
scenario is complex to deploy and involves a server crash,
which is relatively unusual. For this reason, we think that the
probability of encountering the issue during in-vitro testing
is small, and thus in-vivo profiling is essential.

7. Related work
Lock profilers. We have already presented the profilers
Health Center [16], HPROF [17], Yourkit [41], MSDK [32],
JLM [30], JLA [20], and JProfiler [23] in Sections 2 and
5. Our analysis shows that all of these profilers use metrics

4 See https://issues.apache.org/jira/browse/CASSANDRA-3385

and https://issues.apache.org/jira/browse/CASSANDRA-3386.

that do not provide useful progress information for some
synchronization patterns and only report their results at the
end of the application, thus hiding phases. For example,
none of these profiler metrics highlights the bottlenecks we
have observed in Xalan and Cassandra, and, as the high
CSPs are hidden in the phases, they cannot identify them.
All but Health Center furthermore incur a high performance
overhead, and are thus not suitable for in-vivo profiling.
Health Center is based on sampling, and thus has very low
overhead. Nevertheless, Health Center is only available for
the IBM J9 JVM. We have observed that J9 without profiling
is at least 2 times slower than Hotspot 7 on 9 of our 31
benchmarks. On the Xalan benchmark, which exhibits a
high CSP phase, J9 is 7.3 times slower than Hotspot. These
differences makes it difficult to compare a profiler that runs
on J9 with a profiler that runs on Hotspot.

Inoue et al. [19] have proposed a profiler for flat locks
that has been implemented in Health Center. This profiler
uses the same metric as Health Center and thus suffers from
the same limitations. For C applications, Mutrace [33] and
the profiler used in RCL [28] also have the same limitations
of the above Java profilers.

WAIT [2] is a tool that uses sampling to diagnose vari-
ous performance issues in running server-class applications
in order to understand the cause of idleness of threads. To
measure lock usage, WAIT counts the number of threads
blocked while acquiring a lock. The performance impact is
proportional to the rate of sampling, which ranges from un-
noticeable (1 sample every 1000 seconds) to 59% (1 sample
per second). WAIT incurs more overhead than Free Lunch
once the sampling rate reaches 1 sample every 20 seconds
(8%). As several samples are needed to make sure that the
lock contention is sustained, it is likely to miss short lock
usage phases like the ones with high CSP in Cassandra or
Xalan.

Xian et al. [39] propose to dynamically detect lock con-
tention induced by the OS on Java applications at runtime.
Their approach segregates threads that contend for the same
lock on the same core and ensures that a lock owner is al-
lowed to run as long as it owns the lock. Therefore, it avoids
lock contention induced by OS activities such as thread pre-
emption. This approach is complementary to ours because it
focuses on lock contention induced by the OS, whereas Free
Lunch focuses on lock contention induced by applications.

Lockmeter [6] is a tool that targets spinlock profiling for
the Linux kernel. Like, e.g., Java Lock Monitor [30], Lock-
meter reports the time spent in the critical section protected
by a spinlock divided by the elapsed time. As shown in Sec-
tion 2, this metric does not report a useful value on some
synchronization patterns.

HPCToolkit [38] is a profiler designed for high perfor-
mance computing. The authors define a new metric to at-
tribute lock contention to the threads that are responsible
for it. This approach is complementary to Free Lunch in the

sense that HPCToolkit attributes lock contention to threads
whereas Free Lunch measures lock-related CSP.

Finally, HaLock [18] is a hardware-assisted lock profiler.
It relies on a specific hardware component that tracks mem-
ory accesses in order to detect heavily used locks. This tech-
nique achieves low overhead but requires dedicated hard-
ware.

Other profilers for parallel applications. Capacity plan-
ning [31] is a technique used to identify where applications
have to be optimized. For that purpose, it breaks down an
application into tasks and is able to tell if and how optimiz-
ing them can lead to a performance improvement. The de-
velopers of capacity planning observe that a critical section
can act as bottleneck for many reasons, not all of which are
related to the synchronization pattern. For example, if too
many threads are running, the owner of a lock can often be
scheduled out by the operating system, making the lock ap-
pear as a bottleneck. Capacity planning needs inference rules
provided by application experts to be able to cut the appli-
cation into tasks and to correlate the observations to the ap-
plication source code. On the contrary, Free Lunch focuses
on legacy code and does not require any help from the pro-
grammer to identify the locks that impede thread progress.
Free Lunch thus has a larger applicability, but it only pro-
vides raw data, which could be used as a building block for
capacity planning.

Bottle Graphs [11] is a profiling tool that is able to graph-
ically illustrate the parallelism of an application. The degree
of parallelism is mainly defined as the time where threads
are not suspended divided by their execution time. Bottle
Graphs reports a macroscopic view of the parallelism of an
application, which makes it useful in understanding whether
the parallelism of the application could be enhanced and in
identifying how each thread contributes to the processing.
Free Lunch is complementary to Bottle Graphs, as it is able
to indicate whether a lack of parallelism comes from lock
usage.

Kalibera et al. [25] define new concurrency metrics, an-
alyze communication patterns of shared Java objects, and
apply the new concurrency metrics to the DaCapo bench-
marks [5]. They evaluate locking behavior by counting the
number of monitor acquisitions and the global locking rate
of the application, along with the pattern by which these ob-
jects are accessed by threads. This work is complementary
to ours, in that it gives a global view of shared-object behav-
ior whereas Free Lunch provides detailed information about
CSP for each lock.

Limit [9] provides a lightweight interface to on-chip per-
formance counters. Indeed, the elapsed time obtained using
rdtsc can be inaccurate when a thread is scheduled out or
migrated on a multicore machine. Limit solves this issue by
using a dedicated kernel module. In Free Lunch, we do not
want to exclude the scheduled out time, and thus we do not
need the former feature of Limit. In case of migration, as

stated in Section 4.1, we have observed that the drift between
the CPUs is not significant.

Java.util.concurrent is a Java API that provides
lock-free data structures. JUCProfiler (which is part of
MSDK [32]) and JProfiler [23] are able to profile such li-
braries. Free Lunch does not currently provide this type of
profiling. We plan to support lock-free data structures in
future work.

8. Conclusion
This paper has presented Free Lunch, a new lock profiler es-
pecially designed to identify phases of high Critical Section
Pressure (CSP) in-vivo. Using Free Lunch, we have iden-
tified phases of high CSP in six applications from the Da-
Capo benchmark suite, the SpecJVM 2008 benchmark suite
and the SpecJBB 2005 benchmark, and a phase of high CSP
in Cassandra. Some of these phases are hidden when using
existing profilers, which shows that Free Lunch can iden-
tify new bottlenecks and reports them back to the developer.
Thanks to these reports, we were able to improve the per-
formance of the Xalan application by 15% by modifying a
single line of code.

We have evaluated Free Lunch on more than thirty ap-
plications and shown that it never degrades the performance
by more than 6%. This result shows that Free Lunch could
be used in-vivo to detect phases where a lock impede the
threads’ progress with scenarios that would otherwise not
necessarily be tested by a developer in-vitro.

Acknowledgements
This work was supported in part by the ANR project Infra-
JVM.

References
[1] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Coc-

chi, P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K. S.
McKinley, M. Mergen, J. E. B. Moss, T. Ngo, V. Sarkar, and
M. Trapp. The Jikes Research Virtual Machine project: Build-
ing an open source research community. IBM System Journal,
2005.

[2] E. Altman, M. Arnold, S. Fink, and N. Mitchell. Performance
analysis of idle programs. In OOPSLA, pages 739–753, 2010.

[3] Apache Tomcat web page. http://tomcat.apache.org/,
2014.

[4] D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin
locks: featherweight synchronization for Java. In PLDI, pages
258–268, 1998.

[5] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo benchmarks:
Java benchmarking development and analysis. In OOPSLA,
pages 169–190, 2006.

[6] R. Bryant and J. Hawkes. Lockmeter: Highly-informative
instrumentation for spin locks in the Linux kernel. In 4th
Annual Linux Showcase & Conference, pages 271–282, 2000.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable:
A distributed storage system for structured data. In OSDI,
pages 205–218, 2006.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available key-
value store. In SOSP, pages 205–220, 2007.

[9] J. Demme and S. Sethumadhavan. Rapid identification of
architectural bottlenecks via precise event counting. In ISCA,
2011.

[10] J. Dongarra, K. London, S. Moore, P. Mucci, D. Terpstra,
H. You, and M. Zhou. Experiences and lessons learned with
a portable interface to hardware performance counters. In
IPDPS. IEEE, 2003.

[11] K. Du Bois, J. B. Sartor, S. Eyerman, and L. Eeckhout. Bottle
graphs: visualizing scalability bottlenecks in multi-threaded
applications. In OOPSLA, pages 355–372, 2013.

[12] N. Geoffray, G. Thomas, J. Lawall, G. Muller, and B. Folliot.
VMKit: A substrate for managed runtime environments. In
VEE, pages 51–62, 2010.

[13] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgo-
van, G. Nichols, D. Grant, G. Loihle, and G. Hunt. Debugging
in the (very) large: ten years of implementation and experi-
ence. In SOSP, pages 103–116, 2009.

[14] J. Gosling, B. Joy, G. Steele, and G. Bracha. The JavaTM

language specification. Addison-Wesley, 3rd edition, 2005.

[15] H2 web page. http://www.h2database.com/, 2014.

[16] Healthcenter. IBM Health Center. http://www.ibm.com/

developerworks/java/jdk/tools/healthcenter/,
2014.

[17] HPROF: A heap/CPU profiling tool. http://docs.oracle.
com/javase/7/docs/technotes/samples/hprof.html,
2014.

[18] Y. Huang, Z. Cui, L. Chen, W. Zhang, Y. Bao, and M. Chen.
HaLock: hardware-assisted lock contention detection in mul-
tithreaded applications. In PACT, pages 253–262, 2012.

[19] H. Inoue and T. Nakatani. How a Java VM can get more from
a hardware performance monitor. In OOPSLA, pages 137–
154, 2009.

[20] Java Lock Analyzer. JLA homepage. http://publib.

boulder.ibm.com/infocenter/javasdk/tools/

index.jsp?topic=%2Fcom.ibm.java.doc.igaa%2F_

1vg0001143f2181-11a9b04924e-7ff9_1001.html,
2014.

[21] JBoss web page. https://www.jboss.org/overview/,
2014.

[22] R. Jones, A. Hosking, and E. Moss. The garbage collection
handbook: the art of automatic memory management. Chap-
man & Hall/CRC, 1st edition, 2011.

[23] JProfiler home page. http://www.ej-technologies.

com/products/jprofiler/overview.html, 2014.

[24] JVMTI. JavaTM Virtual Machine Tool Interface.
http://docs.oracle.com/javase/6/docs/

technotes/guides/jvmti/, 2014.

[25] T. Kalibera, M. Mole, R. Jones, and J. Vitek. A black-box ap-
proach to understanding concurrency in DaCapo. In OOPSLA,
pages 335–354, 2012.

[26] A. Lakshman and P. Malik. Cassandra: Structured storage
system on a P2P network. In PODC, 2009.

[27] D. Lea. The java.util.concurrent synchronizer framework. Sci.
Comput. Program., pages 293–309, 2005.

[28] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller.
Remote Core Locking: migrating critical-section execution to
improve the performance of multithreaded applications. In
ATC, pages 65–76. USENIX, 2012.

[29] J. Manson, W. Pugh, and S. V. Adve. The Java memory model.
In POPL, pages 378–391, 2005.

[30] M. Milenkovic, S. Jones, F. Levine, and E. Pineda. Perfor-
mance inspector tools with instruction tracing and per-thread
/ function profiling. In Linux Symposium, 2008.

[31] N. Mitchell and P. F. Sweeney. On-the-fly capacity plan-
ning. In Proceedings of the 2013 ACM SIGPLAN Interna-
tional Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA, pages 849–866, 2013.

[32] Multicore SDK.
https://www.ibm.com/developerworks/

mydeveloperworks/groups/service/

html/communityview?communityUuid=

9a29d9f0-11b1-4d29-9359-a6fd9678a2e8, 2014.

[33] Mutrace. Measuring Lock Contention. http://0pointer.

de/blog/projects/mutrace.html, 2014.

[34] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. López,
G. Gibson, A. Fuchs, and B. Rinaldi. YCSB++: Benchmark-
ing and performance debugging advanced features in scalable
table stores. In SoCC. ACM, 2011.

[35] Safepoints in Hotspot. http://blog.ragozin.info/

2012/10/safepoints-in-hotspot, 2014.

[36] SPECjbb2005. http://www.spec.org/jbb2005/, 2014.

[37] SPECjvm2008. http://www.spec.org/jvm2008/, 2014.

[38] N. R. Tallent, J. M. Mellor-Crummey, and A. Porterfield.
Analyzing lock contention in multithreaded applications. In
PPoPP, pages 269–280, 2010.

[39] F. Xian, W. Srisa-an, and H. Jiang. Contention-aware sched-
uler: unlocking execution parallelism in multithreaded Java
programs. In OOPSLA, pages 163–180, 2008.

[40] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. Ad hoc
synchronization considered harmful. In OSDI, pages 1–8.
USENIX, 2010.

[41] Yourkit. Yourkit home page. http://www.yourkit.com/,
2014.

[42] Y. Yu, T. Rodeheffer, and W. Chen. Racetrack: Efficient
detection of data race conditions via adaptive tracking. In
SOSP, pages 221–234, 2005.

