
Continuously Relaxing Over-constrained Conditional Temporal Problems
through Generalized Conflict Learning and Resolution

Peng Yu and Brian Williams

Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory

32 Vassar Street, Cambridge, MA 02139

{yupeng,williams}@mit.edu

Abstract

Over-constrained temporal problems are com-
monly encountered while operating autonomous
and decision support systems. An intelligent sys-
tem must learn a human’s preference over a prob-
lem in order to generate preferred resolutions that
minimize perturbation. We present the Best-first
Conflict-Directed Relaxation (BCDR) algorithm
for enumerating the best continuous relaxation for
an over-constrained conditional temporal problem
with controllable choices. BCDR reformulates
such a problem by making its temporal constraints
relaxable and solves the problem using a conflict-
directed approach. It extends the Conflict-Directed
A* (CD-A*) algorithm to conditional temporal
problems, by first generalizing the conflict learning
process to include all discrete variable assignments
and continuous temporal constraints, and then by
guiding the forward search away from known in-
feasible regions using conflict resolution. When
evaluated empirically on a range of coordinated car
sharing network problems, BCDR demonstrates a
substantial improvement in performance and solu-
tion quality compared to previous conflict-directed
approaches.

1 Introduction

Temporal constraint networks [Dechter et al., 1991] have
been widely used to model planning and scheduling prob-
lems in daily life. They have been used to describe and reason
over conditional and uncertain situations with multiple alter-
native plans. However, a solution to a temporal problem does
not always exist. For example, in a car sharing network sce-
nario, a user needs four hours to complete his shopping trip
but only has three hours of reservation time. It is not enough
for a scheduling program to just signal a failure. Instead, it
should explain the situation and propose alternative plans for
the user so that he can make a more informed decision, either
to extend the reservation or to drop goals. Such a scenario
is usually framed as an over-constrained temporal problem,
and the goal is to find one or a set of preferred relaxations to
the temporal constraints in the problem so that a consistent
schedule can be found.

Prior work on over-constrained temporal problems starts
with [Beaumont et al., 2001], in which Partial Constraint Sat-
isfaction techniques [Freuder and Wallace, 1992] are imple-
mented to find the subset of temporal constraints that can be
satisfied. Later, disjunctive constraints and optimality were
added in the context of over-constrained Disjunctive Tem-
poral Problems with Preferences (DTPPs) [Peintner et al.,
2005]. In a DTPP, the disjuncts of every constraint are as-
signed a preference function that maps the temporal con-
straint to a cost value. The optimal partial solution is ob-
tained by enumerating consistent subproblems using Branch
& Bound, as well as other optimization techniques introduced
in [Khatib et al., 2001]. Most of the prior work has fo-
cused on restoring consistency through complete suspension
of constraints, however, in real-world scenarios, the user of-
ten wants to preserve as much of the schedule as possible to
minimize the perturbation.

In this paper, we present our continuous relaxation ap-
proach, the Best-first Conflict-Directed Relaxation algorithm
(BCDR), to address this issue. BCDR efficiently resolves
over-constrained conditional temporal problems with control-
lable variables. It reformulates an over-constrained temporal
problem by identifying its continuously relaxable temporal
constraints, whose bounds can be partially relaxed to restore
consistency. BCDR uses a conflict-directed strategy simi-
lar to Conflict-Directed A* [Williams and Ragno, 2002] to
enumerate continuous relaxations in best-first order: it learns
conflicts between constraints and variable assignments, and
uses the resolutions to these conflicts to guide the search away
from infeasible regions.

Note that this paper is not concerned about the dynamic or
weak consistency of Conditional Temporal Problems with un-
controllable discrete variables (CTPs and CTPPs,[Tsamardi-
nos et al., 2003; Falda et al., 2010]). We are only concerned
about controllable variables that are not dependent on obser-
vation events. Solving such a problem is simpler than deter-
mining the dynamic/weak consistency of a CTP in that those
tasks may require the enumeration of all possible scenarios.

2 Example

To motivate the need for continuously relaxing over-
constrained temporal problems, we describe an example in
the domain of a coordinated car sharing network, such as Zip-
car [Zipcar, 2013]. Such a network provides an hourly rental



service to its members: a rental car may be used by multiple
members in a day. Each member must time their usage well
so that the car can be returned on time. Otherwise, the next
reservation will be affected and a penalty fee will be applied.

Consider the following example on John’s trip for grocery
shopping and lunch. He has reserved a car from 11am to 2pm,
and is planning to go to one of the two grocery stores nearby:
A or B. John has a preference for each store and their shop-
ping times vary from 35 minutes to 50 minutes. After grocery
shopping, John would like to have lunch at a restaurant, either
X, Y or Z, before going home. Lunch takes a different amount
of time for each restaurant. Finally, driving times to these lo-
cations are different, and John has to return his car back home
in three hours (11am to 2pm) so that the next person can start
his/her trip on time.

We develop the Controllable Conditional Temporal Prob-
lem (CCTP) formalism and use it to model John’s trip and
determine the best strategy for him that includes: which gro-
cery store to visit, which restaurant to dine at, how much time
to spend at each location and whether to extend his reserva-
tion. We start by defining two variables for the decisions he
needs to make: GS (Grocery store) and RT (Restaurant). GS
has two options in its domain: A (40) and B (100). Each op-
tion is associated with a positive reward value that represents
John’s preferences towards it, the larger the better. The other
variable RT has three options: X (70), Y (80) and Z (30).

Next, we define twelve events as time points for the prob-
lem (Table 1): a reference point in time (ST ) that represents
the beginning of the trip at 11am; a time point that indicates
the end of the trip (RT ); and time points representing the ar-
rival and departure of each locations (store A and B, restau-
rant X, Y and Z).

Events with Time Points

Trip starts ST Store A Arrive/Leave AA,AL

Trip ends RT Store B Arrive/Leave BA,BL

Restaurant X Arrive/Leave XA,XL

Restaurant Y Arrive/Leave YA,YL

Restaurant Z Arrive/Leave ZA,ZL

Table 1: Events in John’s trip

Constraints (in minutes)

C1:AL-AA ≥ 40 C6:AA-ST ∈ [35, 50] GS ← A

C2:BL-BA ≥ 35 C7:BA-ST ∈ [35, 40] GS ← B

C3:XL-XA ≥ 50 C8:RT -XL ∈ [45, 50] RT ← X

C4:YL-YA ≥ 75 C9:RT -YL ∈ [40, 50] RT ← Y

C5:ZL-ZA ≥ 100 C10:RT -ZL ∈ [50, 60] RT ← Z

C11 XA-AL[30, 40] GS ← A and RT ← X
C12 YA-AL[25, 30] GS ← A and RT ← Y
C13 ZA-AL[20, 25] GS ← A and RT ← Z
C14 XA-BL[35, 40] GS ← B and RT ← X
C15 YA-BL[25, 40] GS ← B and RT ← Y
C16 ZA-BL[30, 35] GS ← B and RT ← Z
C17 RT-ST ∈ [0,180]

Table 2: Conditional Temporal Constraints in the CCTP

Table 2 shows all the conditional temporal constraints
in the CCTP that encode the temporal relaxations between
events. Constraints C1 through C5 are linear constraints that
represent John’s desired length of stay at five locations. For
example, BL–BA ≥ 35 indicates that John would like to
spend at least 35 minutes at store B. These constraints are
labeled by the assignments made to the decision variables: a
constraint is activated only if its label assignment is made.
For example, C2 will be considered only if John chooses to
shop at B, as shown in the right side of Table 2. Constraints
C6 through C16 are simple temporal constraints that encode
the driving time required between locations. They are condi-
tioned on assignments made to either GS or RT, or both (C11

through C16). Finally, C17 constrains the duration of John’s
trip to three hours.

Some of the constraints highlighted in bold (C1 through
C5 and C17) are relaxable temporal constraints. They can be
relaxed in order to restore the consistency of the problem, if
necessary. Each relaxable constraint comes with one or two
cost functions that describe John’s preferences towards the
relaxations for the upper and lower bounds. These functions
map the relaxation from LB to LB′, or from UB to UB′, to
a positive cost value, as seen in Figure 1. If the upper bound
of C17 is relaxed from 180 minutes to 200 minutes, meaning
that John delays his return by 20 minutes, the cost will be 40.
On the other hand, if he shortens his lunch time by relaxing
the lower bound of C3 to 30, the cost would be 100. In this
example, we assume that all other relaxable constraints have
linear cost functions with gradient 1 for simplicity.

100 40

20 25 30 35 40 45 50 55
0

50

100

150

200

250

Relaxed6Lower6Bound6of6C3

C
o

s
t6
o

f6
R

e
la

x
a

ti
o

n

170 180 190 200 210 220
0

20

40

60

80

100

Relaxed6Upper6Bound6of6C17

C
o

s
t6
o

f6
R

e
la

x
a

ti
o

n

(a) (b)

Figure 1: Preference functions for C3 and C17

Relaxation 1 Relaxation 2 Relaxation 3

GS ← B GS ← B GS ← B
RT ← Y RT ← X RT ← Y
C4 to ≥ 50 C3 to ≥ 48 C4 to ≥ 55
C17 to ∈ [0, 185] C2 to ≥ 17 C2 to ≥ 25
Utility: 152.5 Utility: 151 Utility: 150

ցDo not relax C17 ր ց C2 is at least 25ր

Table 3: Three preferred relaxations to the CCTP

Before relaxing any constraints, there is no consistent so-
lution to the problem. The cause of failure is that three hours
is not enough for John to complete both shopping and din-
ing tasks: driving to the nearest grocery store and restaurant
will consume at least 100 minutes, which brings the mini-
mum trip duration to 200 minutes. Therefore, one or more
temporal constraints need to be relaxed. Table 3 shows three
consistent relaxations for the CCTP ranked in best-first order.



Relaxation 1, which is first presented to John, suggests shop-
ping at B and having lunch in Y . The lunch time should be
reduced to 50 minutes and the reservation should be extended
by 5 minutes. The utility of the relaxation is 152.5, which
is computed by summing up the reward of two assignments,
GS ← B and RT ← Y , and subtracting the cost of relax-
ing C4 and C17. If John changes his mind and decides not to
relax C17, Relaxation 2 will be generated which incorporates
this new requirement. It takes John to X for lunch, short-
ens the lunch time to 48 minutes and reduces the shopping
time to 17 minutes. If John is still unsatisfied, he may add an
additional requirement that shopping time should be no less
than 25 minutes. BCDR will continue the search and present
Relaxation 3, which respects both newly added requirements.

This example demonstrates the advantage of continuous re-
laxation: it minimizes perturbation to the original problem.
Compared to discrete relaxations, which may ask John not to
shop or have lunch, continuous relaxations preserve more of
the original problem while restoring consistency. In addition,
the conflict-directed search technique used by BCDR enables
it to adapt to newly added constraints and enumerate relax-
ations accordingly.

3 Problem Statement

Temporal problems with choices are usually modeled using
Conditional Temporal Problems (CTPs,[Tsamardinos et al.,
2003]). It is a generalization of the restricted problem class of
Simple Temporal Problems (STPs,[Dechter et al., 1991]) by
adding uncontrollable discrete choices and by conditioning
the occurrence of events and simple temporal constraints on
the outcomes of these choices. CTPs are capable of modeling
conditional plans and uncertainty during executions.

Definition 1. A CTP is a 6-tuple 〈V,E, L,OV,O, P 〉 where:

• P is a set of Boolean atomic propositions;

• V is a set of events representing designated time points;

• E is a set of simple temporal constraints that restricts
the time points in V, and are of the form lij ≤ vj − vi ≤
uij , lij , uij ∈ R;

• Q is a set of literals of P ;

• L : V → Q is a function that attaches conjunctions of
literals, qi ∈ Q, to each event vi ∈ V ;

• OV ⊆ V is a set of observation events that provides the
truth value for pi ∈ P through function O : P → OV .

In a CTP, each event is associated with a conjunctive set
of literals, called a label. If the label of an event is evaluated
to be true, the event is said to be activated and needs to be
scheduled. Otherwise, the event and its associated temporal
constraints can be ignored.

The solution to a CTP is a schedule that assigns a time
point to each event in the CTP and is consistent with the
temporal constraints. There are three notions of CTP con-
sistency: Strong, Dynamic and Weak consistency, depending
on the assumptions made over the outcomes of observation
variables [Tsamardinos et al., 2003]. Conditional Temporal
Problems with Preferences (CTPPs,[Falda et al., 2010]) ex-
tend CTPs by allowing fuzzy temporal constraints and fuzzy

atomic propositions. This allows the user to specify prefer-
ences over the execution time of each event vi ∈ V , and
compare two schedules T1 and T2 using a preference func-
tion that maps a schedule to a utility value f : T → R+

[Khatib et al., 2001].
The problems that BCDR addresses, Controllable Condi-

tional Temporal Problems (CCTPs), are closely related to
CTPs; however, there are two important differences. First,
CCTPs assume that all variables are controllable. Conse-
quently, to determine the consistency of a CCTP, it is suf-
ficient to find one consistent set of discrete variable assign-
ments. Second, a CCTP extends the domains of discrete
variables from binary to any finite domains, and allows the
discrete variables to be conditioned on assignments to other
variables. Compared to the Temporal Constraint Satisfaction
Problems (TCSPs) formulation [Dechter et al., 1991], whose
constraints are disjunctions of possible simple temporal con-
straints, CCTP is more expressive in that it allows a sequence
of temporal constraints to be conditioned on choices.

Definition 2. A CCTP is an 8-tuple 〈V,E,RE,Lv, Lp, P,
fv, fe〉 where:

• P is a set of controllable finite domain discrete vari-
ables;

• V is a set of events representing designated time points;

• E is a set of temporal constraints between pairs of events
vi ∈ V ;

• RE ∈ E is a set of relaxable temporal constraints
whose bounds can be relaxed;

• Lv : V → Q is a function that attaches conjunctions of
assignments to P , qi ∈ Q, to some events vi ∈ V ;

• Lp : P → Q is a function that attaches conjunctions of
assignments to P , qi ∈ Q, to some variables pi ∈ P ;

• fp : Q → R+ is a function that maps each assign-
ment to every controllable discrete variable, qij : pi ←
valuej , to a positive reward;

• fe : (ei, e
′

i) → r ∈ R+ is a function that maps the re-
laxation to one relaxable temporal constraint ei ∈ RE,
from ei to e′i, to a positive cost.

To allow the relaxation for an over-constrained temporal
problem, we include relaxable temporal constraints in the
definition of CCTP, similar to the soft constraints in a Sim-
ple Temporal Problem with Preferences (STPP,[Rossi et al.,
2002]). We do not use a disjunctive set of temporal bounds
for soft constraints. Instead, the constraint is soft in that its
lower or upper bounds can be relaxed at the price of increas-
ing cost. The cost is defined over the degree of relaxation
made to the lower and upper bounds.

There are two preference functions, fp and fe. fp is a re-
ward function over the assignments to controllable discrete
variables pi ∈ P . Each assignment is mapped to a positive
reward value, such as RT ← X : 50. The larger the number
is, the more preferred the choice will be. fe is a positive cost
function defined over relaxable constraints. The cost of relax-
ing an upper bound constraint Eij : vj−vi ≤ uij from uij to
u′

ij is feij(u
′

ij − uij). Figure 1b shows an example function

defined over u′

ij − uij .



The cost function for temporal constraints that restrict the
lower bounds between two events is feij(lij − l′ij). This
is illustrated in Figure 1a. We assume that the user always
prefers smaller relaxations. Therefore, all fe functions must
be monotonically increasing, and equal to 0 when there is no
relaxation. fe can be viewed as a semi-convex [Khatib et al.,
2001] function with a segment of zero cost when there is no
relaxation. This assumption simplifies our relaxation process,
as the tightest relaxation will always result in the lowest cost.
For relaxable simple temporal constraints, two separate cost
functions are required for the lower and upper bounds.

We define the solution to a CCTP as a pair 〈A,R〉, where:

• A is a complete set of assignments to some discrete vari-
ables in P that leaves no variable unassigned.

• R is a set of relaxed bounds of some relaxable con-
straints in RE.

such that the CCTP is temporally consistent. The utility
of a relaxation is computed by subtracting the relaxation
cost from the assignment reward:

∑
pi
fpi

(pi ← valuei) −∑
ei
fei(ei → e′i). The most preferred relaxation to a CCTP

is the one with the highest utility value according to fp and
fe.

Note that CCTP is similar, though different in notations,
to the Optimal Conditional Simple Temporal Problem (OC-
STP) formulation introduced by [Effinger, 2006]. OCSTP
and CCTP are equally expressive for consistency problems.
OCSTP encodes temporal constraints as the domain values
of discrete variables, and its relaxations are represented by
additional domain values. This makes it difficult to encode
the relaxable temporal constraints using an OCSTP formula-
tion. We chose CCTP for relaxation problems because of its
compact representation of constraint relaxations: consistency
can be restored by relaxing the lower or upper bounds of re-
laxable temporal constraints.

The OCSTP solver introduced in [Effinger, 2006] was de-
signed to solve consistency problems only. It uses a depth-
first strategy to find a set of variable assignments that acti-
vates a consistent set of temporal constraints. Unlike BCDR,
the OCSTP solver cannot relax temporal constraints to restore
consistency; the solver can only signal failure given an over-
constrained problem.

4 Approach

In this section, we present the Best-first Conflict-Directed Re-
laxation algorithm that enumerates the relaxations to a CCTP
in best-first order. This can be viewed as an extension to the
Conflict-Directed A* algorithm [Williams and Ragno, 2002]

by generalizing the conflicts learning and resolution capabil-
ity. CD-A* enumerates likely solutions to discrete domain
CSPs with conflicts learned from inconsistent sets of assign-
ments. Once detected, a conflict is used to prune the search
space by extending each partial candidate with its resolutions.
To resolve a CCTP using the conflict-directed strategy, we
have to first generalize the conflicts to include conditional and
temporal constraints, and then generate both discrete and con-
tinuous constituent relaxations to the conflict. We will first
give an overview of the BCDR algorithm, and then discuss
the conflict learning and resolution in detail.

4.1 The BCDR algorithm

BCDR takes an A* search strategy by evaluating each par-
tial candidate using an admissible heuristic function and ex-
panding the search tree in best-first order. The first relax-
ation found is guaranteed to be the best one. It uses two
types of expansions to explore the search space, Expand on
an unassigned variable and Expand on an unresolved con-
flict, which differentiates BCDR from previous relaxation al-
gorithms. The pseudo code of BCDR is given in Algorithm
1.

Input: A CCTP T = 〈V,E,RE,Lv, Lp, P, fv, fe〉.
Output: A relaxation 〈A,R〉 that maximizes fv − fe.
Initialization:

1 Cand← 〈A,R,Cr, Ccont〉; the first candidate;
2 Q← {Cand}; a priority queue that records candidates;
3 C ← {}; the set of all known conflicts;
4 U ← V ; the list of unassigned controllable variables;

Algorithm:
5 while Q 6= ∅ do
6 Cand←Dequeue(Q);
7 currCFT ←RESOLVEKNOWNCONFLICTS?(Cand,C);

8 if currCFT == null then
9 if isComplete?(Cand, U) then

10 newCFT ←CONSISTENCYCHECK(cand);
11 if newCFT == null then
12 return Cand;
13 else
14 C ← C ∪ {newCFT};
15 Q← Q ∪ {Cand};
16 endif

17 else
18 Q← Q∪EXPANDONVARIABLE{Cand, U}
19 endif

20 else
21 Q←

Q∪EXPANDONCONFLICT{Cand, currCFT};
22 endif

23 end
24 return null;

Algorithm 1: The BCDR algorithm

BCDR starts with an empty candidate in the queue (Line
1). A candidate is a 4-tuple 〈A,R,Cr, Ccont〉 with assign-
ments A, relaxations R, resolved conflicts Cr and continu-
ously resolved conflicts Ccont, all being empty lists in the
first candidate. BCDR continues looping until the first relax-
ation is found that makes the CCTP consistent (Line 11). If
BCDR does not find a consistent relaxation until the queue is
exhausted, it returns null indicating that no relaxation exists
for the input CCTP (Line 24).

Within each loop, BCDR first dequeues the best partial
candidate (Line 6). It checks if Cand resolves all known
conflicts (Line 7). If not, an unresolved conflict currCFT
will be returned by function RESOLVEKNOWNCONFLICTS?,
which compares the resolved conflicts Cr in Cand with all
known conflicts C. currCFT is then used for expanding



Cand by function EXPANDONCONFLICT (Line 21). The
child candidates of Cand will then be enqueued.

If Cand resolves all known conflicts, BCDR then checks
if it is complete by comparing its assignments and all unas-
signed variables in the CCTP (Line 9). If Cand is in-
complete, BCDR will expand it using the assignments to
one unassigned variable through function EXPANDONVA-
RIABLE (Line 18). For example, assume that we need to
expand a partial candidate {GS=A,RT=X} with variable
FD:{Steak,Salmon}, we simply create two child candi-
dates that extends the partial candidate using two possible
assignments of FD (Figure 2a). The expanded candidates
will be added back to Q.

GS=B; GS=B;RT=Z;

GS=B;RT=Y;BL-BAm=m50

Reservationm=m185

GS=B;GS=A;

GS=B;RT=X;
GS=A;

RT=X;

GS=A;RT=X;

FD=Steak;

GS=A;RT=X;

FD=Salmon;

(a) (b)

Figure 2: Example of expanding on candidate and conflict

If Cand is complete, BCDR proceeds to check its consis-
tency using function CONSISTENCYCHECK (Line 10). If no
conflict is returned, Cand will be returned as the best relax-
ation (Line 12). If a new conflict, newCFT , is detected by
CONSISTENCYCHECK, BCDR will record it and put Cand
back to the queue for future expansions (Line 14,15).

4.2 Learning Conflicts through Negative Cycles

Given a complete candidate that assigns all active discrete
variables, function CONSISTENCYCHECK checks the con-
sistency of all activated temporal constraints. BCDR im-
plements the Incremental Temporal Consistency algorithm
[hsiang Shu et al., 2005] for checking temporal consistency.
If the set of temporal constraints is inconsistent, ITC will re-
turn a simple negative cycle as the cause of failure. We can
extract the minimal inconsistent set of temporal constraints,
also called minimal conflict [Liffiton et al., 2005], using this
simple negative cycle. For example, Figure 3 shows a simple
negative cycle detected in John’s trip: the reservation time is
too tight for activities at B and Y .

Leave4Home

Arrive4Home

Leave4B Leave4Y

Arrive4B Arrive4Y

Reservation4Time44<4180

Drive4Home4to4B

>43544 Shop4at4B

>435

Drive4B4to4Y

>425 Dine4at4Y

>475

Drive4Y4to4Home

>440

Negative4Value4=4180-40-75-25-35-354=4-30

Figure 3: A negative cycle in John’s trip

Previous approaches [Effinger and Williams, 2005; Li and
Williams, 2005] only extract the discrete variable assign-
ments as conflict, which is {GS = B;RT = Y } in this case.
Since we are looking for relaxations to temporal constraints,
we should include them in the conflict as well, and use their
relaxations to resolve the conflict. In addition, because a tem-
poral constraint may depend on one or more assignments, its
label must be included in the conflict as well. In short, BCDR

learns a conflict from a simple negative cycle. A conflict is
composed of the temporal constraints involved in the cycle
and the assignments required to activate them. For example,
the generalized conflict we can learn from Figure 3 is:

Assignments: GS=B; RT=Y ;
Constraints: RT -ST ∈ [0, 180];
GS=B → BA-ST ∈ [35, 40]; GS=B → BL-BA ≥ 35;
GS=B ∧RT=Y → YA-BL ∈ [25, 40];
RT=Y → YL-YA ≥ 75; RT=Y → RT -YL ∈ [40, 50];

4.3 Generalized Conflict Resolutions

Given a minimal conflict, we can compute their resolutions
and use them to expand existing candidates so that future ex-
pansions of the candidates will not enter the infeasible region
represented by this conflict again. This is the core principle
behind conflict-directed search. Previous approaches gener-
ate the resolutions, which are called constituent relaxations,
by either flipping the assignments to the discrete variables
[Williams and Ragno, 2002; Effinger and Williams, 2005] or
suspending temporal constraints [Moffitt and Pollack, 2005].
BCDR generalizes the conflict resolution to include both dis-
crete assignments and temporal constraint relaxations: the
more we can learn from a conflict, the larger infeasible re-
gion we may avoid in the forward search. In addition, we
would like to relax the temporal constraints continuously to
the minimal extent, instead of completely suspending them,
in order to minimize the perturbations.

Input: A candidate to expand Cand〈A,R,Cr, Ccont〉 and a
minimal conflict currCFT .

Output: A set of expanded candidates newCands.
Initialization:

1 newCands← {};
2 CFTs← Ccont ∪ {currCFT}; conflicts to be resolved

continuously;
Algorithm:

3 for a ∈ A do
4 Aalter = Aalter∪GETALTERNATIVES(a);
5 Aalter = Aalter∪GETALTERNATIVES(label(a));
6 end
7 for aextend ∈ Aalter do
8 if NOTCOMPETING(A, aextend) then
9 Candnew ← 〈A ∪ {aextend}, R, Cr, Ccont〉;

10 newCands← newCands ∪ Candnew;

11 end

12 end
13 〈Erelax, Nvalue〉 ←EXTRACTCONSTRAINTS(CFTs);
14 fobj ←

∑
e∈Erelax

fe(∆e);

15 Rnew ←OPTIMIZE(fobj , 〈Erelax, Nvalue〉);
16 if Rnew 6= null then
17 Candnew ← 〈A,Rnew,Cr, Ccont〉;
18 newCands← newCands ∪ Candnew;

19 end
20 return newCands;

Algorithm 2: Function EXPANDONCONFLICT

Function EXPANDONCONFLICT is presented in Algorithm



2. The resolution is separated into two stages: First, we gen-
erate constituent relaxations by negating variable assignments
(Line 3-12). If a variable vi is conditioned on other assign-
ments, in addition to flipping the assignment to vi, we can
also negate its label. This deactivates the variable and re-
solves the conflict. For example, for a conflict that involves
assignment FDY = Steak, if we know that variable FDY

has label RT = Y , we can resolve the conflict by flipping the
assignment to either FDY or RT : FDY =Salmon, RT=X
or RT=Z.

In the second stage, we compute the optimal continuous
relaxation to the relaxable temporal constraints that can re-
solve the conflict (Line 13-19). We formulate the relaxation
as an optimization problem with linear constraints (Line 13)
and semi-convex objective function (Line 14). The objective
function is the minimization over the sum of the relaxation
costs of all relaxable constraints. The variables in this opti-
mization problem are ∆LBis and ∆UBis, which are the re-
laxations applied to each relaxable temporal constraint. They
are non-negative and their sum must compensate for the neg-
ative value of the conflict (Line 15). The optimal relaxation
will not over-relax any constraints, due to the semi-convex
assumption over cost functions. It is sufficient to relax the re-
laxable constraints to the extent that just eliminates the nega-
tive cycle, that is:

min
∑

i∈conflict(feij(u
′

ij − uij) + feij(lij − l′ij))

s.t.
∑

i∈conflict(e
′

ij − eij) = −1×Nvalue

For example, the conflict in (Figure 3) involves six con-
straints. The negative value for this conflict is -30. Among
the six constraints, three of them are relaxable constraints
whose bounds can be relaxed: Reservation ∈ [0, 180], BL-
BA ≥ 35 and YL-YA ≥ 75. We can define the following op-
timization problem for computing the continuous relaxation:

min(f(∆(BL-BA)) + f(∆(YL-YA)) + f(∆(RT -ST )));
s.t. ∆(BL-BA) + ∆(YL-YA) + ∆(RT -ST ) = 30;

The solution to the above optimization problem is a set of
relaxed bounds of the relaxable temporal constraints that re-
solves the conflict and minimizes the cost. In this case, the
best relaxation is: Relax YL-YA to 50 and Reservation to
185. The cost is 27.5. In fact, this problem can also be viewed
as a Simple Temporal Problem with Preferences. [Khatib et
al., 2001] demonstrates that finding the optimal solution to a
STPP with semi-convex preferences is tractable. In real world
applications, we may substitute different optimization algo-
rithms, depending on the preference functions, to improve ef-
ficiency.

In total, BCDR generates four constituent relaxations:
three new assignments derived from negating assignments
and one continuous relaxation. They are used to extend the
partial candidates so that future extensions will not run into
the same conflict again, as demonstrated in Figure 2b. Note
that one extension is removed due to its conflicting assign-
ments.

4.4 Reactive BCDR

Finally, we demonstrate the reactive implementation of
BCDR that can continuously enumerate best relaxations to

a given CCTP based on users’ responses (Algorithm 3). This
is achieved through a slight modification to BCDR: the al-
gorithm keeps tracking the search queue and known conflicts
even after a solution is returned (Line 4). If the user rejects
the current solution, BCDR will record his/her inputs as a
conflict and add it to the known conflicts list C (Line 11).
This procedure guarantees that all candidates expanded in the
future will satisfy this newly added requirement. BCDR then
starts searching again for the next solution that resolves all
conflicts while maximizing the utility value.

Input: A CCTP T = 〈V,E,RE,Lv, Lp, P, fv, fe〉.
Output: A relaxation 〈A,R〉 that maximizes fv − fe.
Initialization:

1 Sol← 〈A,R,Cr, Ccont〉; a solution to T ;
2 C ← {}; the set of all known conflicts;

Algorithm:
3 while true do
4 (Sol, C)←BCDR(T,C);
5 if Sol == null then
6 return null;
7 else
8 if Accepted?(Sol) then
9 return Sol;

10 else
11 C ←

C∪GETREQUIREMENT{UserInputs}
12 endif

13 endif

14 end
Algorithm 3: Reactive BCDR

5 Experimental Results

To demonstrate the effectiveness of our approach, we present
empirical results to compare two BCDR implementations:
BCDR-GC (generalized conflict learning and resolution) and
BCDR-DC (discrete conflict resolution only). BCDR-DC im-
plements the discrete conflict resolution technique [Li and
Williams, 2005]. It learns conflicts that can only be resolved
discretely and computes continuous relaxations once a com-
plete candidate is generated. In our experiments, both imple-
mentations are set to find the best continuous relaxation.

In addition, we compare BCDR-GC to DFS-GC, a depth-
first implementation with the generalized conflict resolution
technique. The only difference is that DFS-GC uses a Last-
In-First-Out queue to store candidates (Line 6, Algorithm 1).
This implementation is faster in finding feasible solutions, but
would not guarantee to find the highest-utility solution. As
a time-critical alternative to BCDR-GC, we demonstrate the
improvements of DFS-GC in run-time performance and the
loss in solution quality.

5.1 Setup

We generated random CCTPs using a simulated car sharing
network similar to Section 2. To make it more complex, we
extended the problem to allow multiple users and cars: there
is always another user waiting for the shared car following



each reservation; and there are multiple cars that can be re-
served in parallel. In addition, two users using different cars
may want to meet during their reservations. We use the fol-
lowing control parameters in the problem generator to control
the complexity of a test case:

• Nu: number of users per car. 1 ≤ Nu ≤ 10.

• Nc: number of cars available. 1 ≤ Nc ≤ 12.

• Nact: number of activities per reservation. 1 ≤ Nact ≤ 8.

• Nopt: number of alternatives per activity. 2 ≤ Nopt ≤ 10.

The total number of discrete variables in a test case is
Nu × Nc × Nact, and the domain size of each variable is
determined by its Nopt. We use a map of Boston and ran-
domly sample locations on the map. The driving time is com-
puted using an average speed randomly selected between 30
and 50 mph. The duration at each location and the reserva-
tion time, Tact and Tres, are randomly sampled in [0, 90] and
[0, 360] (minutes), respectively. These durations are encoded
as relaxable temporal constraints. We define linear preference
functions over these relaxable constraints with costs sampled
between 0 and 10. The reward for each variable assignment,
denoting a location selection for each activity, ranges from
0 to 1000. Finally, arbitrary temporal constraints are added
between cars to simulate a meeting between two users. We
use LPSolve as the linear optimizer for all three algorithms
[Berkelaar et al., 2008]. Note that the generalized conflict
resolution works with both linear and non-linear preference
functions. We use linear functions and LPSolve only for the
purpose of benchmark.

In total, 2400 test cases were generated with the number of
constraints ranging from 50 to 10000. The time out for each
test is 20 seconds, which is usually the maximum time a user
is willing to wait in a reservation system.

5.2 Results

The results are presented in Figure 4. Each dot in the graph
represents the averaged results computed across all test cases
in that category. The x-axis in each graph represents the num-
ber of constraints in each test problem. As can be seen in Fig-
ure 4a, the number of search nodes expanded by BCDR-GC
before returning the best relaxation is significantly smaller
than that expanded by BCDR-DC. This difference is because
the DC procedure is more conservative at pruning search
space: a conflict will be learned and used for splitting only if
it can be resolved by discretely flipping assignments but not
by continuously relaxing constraints. Therefore, the number
of search nodes checked by BCDR-GC is no more than the
number checked by BCDR-DC before returning the best so-
lution.

The generalization of conflict learning and resolution to
continuous relaxation efficiently prunes the inconsistent re-
gions in the search domain and avoids nearly 30% of unnec-
essary node expansions, compared to discrete conflict reso-
lution. The reduced number of candidate expansions helps
BCDR-GC achieve higher run-time performance compared to
BCDR-DC: the average savings is approximately 10%-15%
(Figure 4b). We believe that the run-time performance of
BCDR-GC can be further improved if we implement the con-
tinuous conflict resolution in an incremental manner, since

(a) Number of nodes expanded

(b) Run time

(c) The utility value of the first solution

Figure 4: Benchmark results of each algorithm

the EXPANDONCONFLICT function keeps solving optimiza-
tion problems with a growing set of constraints.

Next, if the user wants a quick solution, DFS-GC is a good
alternative to BCDR-GC. Figure 4a shows that DFS-GC ex-
pands 50% fewer nodes than BCDR-GC when the first re-
laxation is returned, and cuts the run-time by half (Figure
4b). However, the faster result comes at the cost of decreased
solution quality: the utility of the first solution returned by
DFS-GC is 70% lower when compared to that returned by
BCDR-GC (Figure 4c). If time permits, the users may con-
tinue running DFS-GC after obtaining the first relaxation with
a Branch & Bound approach, or they may use BCDR-GC,
which is guaranteed to return the best relaxation.

Figure 5: Performance of BCDR-GC and BCDR-DC on
problems of low relaxation costs



Despite the promising results, we recognize a limitation
of the BCDR-GC algorithm: when the cost of relaxing con-
straints is orders of magnitude lower than reward, the GC pro-
cedure may not provide a significant improvement in perfor-
mance compared to DC. For example, we generated an ad-
ditional set of tests with reduced cost functions: the range
of gradients is changed from [0, 10] in Section 5.1 to [0, 0.1].
As can be seen in Figure 5, BCDR-GC and BCDR-DC ex-
pand nearly the same number of search nodes before return-
ing the best solution. These similar outcomes are due to the
nature of the best-first search strategy: when the costs are
much lower than the rewards, GC will apply the continuous
relaxation only close to the leaves of the search tree, which
reduces its effectiveness at pruning the search space and its
advantage over BCDR-DC. However, in all cases, BCDR-GC
will perform at least as fast as BCDR-DC.

6 Contributions

In this paper, we presented the Best-first Conflict-Directed
Relaxation algorithm, the first approach that continuously re-
laxes over-constrained conditional temporal problems. Com-
pared to previous relaxation algorithms, which restore consis-
tency by suspending constraints, BCDR minimizes the pertur-
bation by continuously relaxing temporal constraints to the
minimal extent. It reformulates these problems as Control-
lable Conditional Temporal Problems, which allow relaxable
temporal constraints. With the implementation of general-
ized conflict learning and resolution, BCDR is more efficient
at enumerating the best relaxations when compared to previ-
ous conflict-directed approaches. Experimental results have
demonstrated its effectiveness in resolving large and highly
constrained real-world problems.

7 Acknowledgments

Thanks to David Wang, Masahiro Ono, Eric Timmons, Julie
Shah, Scott Smith and Ronald Provine for their support. This
project is funded by the Boeing Company under grant MIT-
BA-GTA-1. Additional support was provided by the DARPA
meta program, under contract number 6923548.



References

[Beaumont et al., 2001] Matthew Beaumont, Abdul Sattar,
Michael Maher, and John Thornton. Solving overcon-
strained temporal reasoning problems. In Proceedings of
the 14th Australian Joint Conference on Artificial Intelli-
gence (AI-2001), pages 37–49, 2001.

[Berkelaar et al., 2008] Michel Berkelaar, Kjell Eikland, and
Peter Notebaert. lpsolve : Open source (Mixed-Integer)
Linear Programming system, 2008.

[Dechter et al., 1991] Rina Dechter, Itay Meiri, and Judea
Pearl. Temporal constraint networks. Artificial Intelli-
gence, 49(1-3):61–95, 1991.

[Effinger and Williams, 2005] Robert Effinger and Brian
Williams. Conflict-directed search through disjunctive
temporal plan networks. CSAIL Research Abstracts -
2005, 2005.

[Effinger, 2006] Robert T. Effinger. Optimal temporal plan-
ning at reactive time scales via dynamic backtracking
branch and bound. Master’s thesis, Massachusetts Insti-
tute of Technology, 2006.

[Falda et al., 2010] Marco Falda, Francesca Rossi, and
K. Brent Venable. Dynamic consistency of fuzzy condi-
tional temporal problems. Journal of Intelligent Manufac-
turing, 21:75–88, 2010.

[Freuder and Wallace, 1992] Eugene C. Freuder and
Richard J. Wallace. Partial constraint satisfaction.
Artificial Intelligence, 58(1-3):21–70, 1992.

[hsiang Shu et al., 2005] I hsiang Shu, Robert Effinger, and
Brian C. Williams. Enabling fast flexible planning through
incremental temporal reasoning with conflict extraction. In
Proceedings of the 15th International Conference on Au-
tomated Planning and Scheduling (ICAPS 05), pages 252–
261, 2005.

[Khatib et al., 2001] Lina Khatib, Robert Morris, Robert
Morris, and Francesca Rossi. Temporal constraint reason-
ing with preferences. In Proceedings of the 17th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
01), pages 322–327, 2001.

[Li and Williams, 2005] Hui Li and Brian Williams. Gener-
alized conflict learning for hybrid discrete/linear optimiza-
tion. In Proceedings of the 11th International Conference
on Principles and Practice of Constraint Programming,
pages 415–429, 2005.

[Liffiton et al., 2005] M.H. Liffiton, M.D. Moffitt, M.E. Pol-
lack, and K.A. Sakallah. Identifying conflicts in overcon-
strained temporal problems. In Proceedings of the 19th
International Joint Conference on Artificial Intelligence
(IJCAI-05), pages 205–211, 2005.

[Moffitt and Pollack, 2005] Michael D. Moffitt and
Martha E. Pollack. Partial constraint satisfaction of
disjunctive temporal problems. In Proceedings of the
18th International Florida Artificial Intelligence Research
Society Conference (FLAIRS-2005), 2005.

[Peintner et al., 2005] Bart Peintner, Michael D. Moffitt, and
Martha E. Pollack. Solving over-constrained disjunctive
temporal problems with preferences. In Proceedings of
the 15th International Conference on Automated Planning
and Scheduling (ICAPS 2005), 2005.

[Rossi et al., 2002] Francesca Rossi, Alessandro Sperduti,
Kristen Brent Venable, Lina Khatib, Paul H. Morris, and
Robert A. Morris. Learning and solving soft temporal con-
straints: An experimental study. In Proceedings of the
8th International Conference on Principles and Practice
of Constraint Programming, pages 249–263, 2002.

[Tsamardinos et al., 2003] Ioannis Tsamardinos, Thierry Vi-
dal, and Martha Pollack. CTP: A new constraint-based for-
malism for conditional, temporal planning. Constraints,
8:365–388, 2003.

[Williams and Ragno, 2002] Brian C. Williams and Robert J.
Ragno. Conflict-directed A* and its role in model-based
embedded systems. Journal of Discrete Applied Mathe-
matics, 155(12):1562–1595, 2002.

[Zipcar, 2013] Zipcar. An overview of zipcar. http://

www.zipcar.com/about, 2013. Accessed: 2013-04-
07.


