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Topological defects in solid-state materials are crystallographic imperfections that local

perturbations cannot remove. Owing to their nontrivial real-space topology, topological

defects such as dislocations and disclinations could trap anomalous states associated with

nontrivial momentum-space topology. The real-space topology of dislocations and discli-

nations can be characterized by the Burgers vector B, which is usually a fixed fraction and

integer of lattice constant in solid-state materials. Here we show that in a dielectric pho-

tonic crystal – an artificial crystalline structure, it is possible to tune B continuously as a

function of the dielectric constant of dislocations. Through this unprecedented tunability of

B, we achieve proper controls of topological interfacial states, i.e., reversal of their helici-

ties. Based on this fact, we propose a topological optical switch controlled by the dielectric

constant of the tunable dislocation. Our results shed light on the interplay of real and re-

ciprocal space topologies and offer a new scheme to implement scalable and tunable robust

topological waveguides in dielectric photonic crystals.
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Introduction.– Topological photonic crystals are an emerging field that explores nontrivial

topology in momentum space using artificial periodic arrangements of dielectrics and metals in

the notation of electromagnetic (EM) waves [1–5]. Based on nontrivial edge states of topolog-

ical photonic crystals, tremendous fabulous applications have been proposed and realized, such

as the unidirectional waveguides [6–13], the EM cavities with ultra-high quality factors [14–16],

and highly efficient single-mode lasers [17–19]. Distinct from their conventional counterparts, the

nontrivial topology of momentum-space renders these applications robust against defects in real

space. The robustness of these EM states originates from the bulk-edge correspondence principle,

which links the real-space profiles of EM waves to the nontrivial topology of photonic bulk band

structure, lying at the heart of topological band theory [20–22].

Very recently, topological defects such as dislocation and disclination have drawn arising at-

tention because of their interplay with the momentum-space topology [23–28]. Due to their non-

trivial real-space topology, topological defects could trap anomalous states around them, revealing

the nontrivial momentum-space topology [29–34]. This remarkable fact extends the bulk-edge

correspondence principle to the bulk-edge-defect one [35–38], which enables large-scale imple-

mentation of topological edge states [39]. Real-space topology of dislocations and disclinations

is characterized by the Burgers vector B, which measures the magnitude and direction of lattice

distortion induced by these topological defects [40]. In solid-state materials, B is fixed at values

of several lattice constants a0 because of the indivisibility of atoms. However, this is not the case

in artificial crystalline structures like photonic crystals, where macroscopic dielectric units mimic

atoms and can bring unrealized tunability of B together with novel topological physics.

In this work, we focus on a representative topological photonic crystal with Kekulé-like hop-

ping textures [41]. By introducing an artificial dislocation line made of dielectric rods in the

designed photonic crystal, topological edge states can be trapped around the line defect [42, 43].

Through modifying the dielectric constant ε of rods in the dislocation, the dispersion of topolog-

ical edge states can be continuously tuned according to the relation v ∼ P · B with P being the

vectored Zak phase and v being the topological index. Interestingly, unlike the cases of solid-state

materials, where v is either zero or other integers, v becomes v(ε) in the designed photonic crystal,

a function of ε that can be continuously tailored in a precise manner. In a specific ε range, we find

the helicity of topological edge states can be reversed, i.e., an opposite group velocity combined

with the same spin-polarization. Our results offer an unrealized tunability of topological defects

in crystalline systems that yields new possibilities for engineering topological edge states together
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with potential applications, such as a topological optical switch controlled by the dielectric con-

stant of the dislocation. The numerical simulations in this work are done using the finite element

method by COMSOL.

Topological photonic crystal.– The designed photonic crystal is depicted in Fig. 1(a), where six

rods of dielectric constant εc = 11 and radius r form a unit-cell arranged on a hexagonal lattice

of primitive vectors a1 and a2 of length a0. The corresponding 1st Brillioun zone is displayed in

Fig. 1(b), where b1 and b2 are the two primitive vectors of the momentum space. By fixing the

distance of neighboring dielectric rods, i.e., R in the same unit-cell, the integral hopping among

unit-cells can be tuned by the distance d between two neighboring unit-cells. In the case of d =

R, when all the dielectric rods are equally separated, the designed photonic crystal becomes a

photonic version of graphene and has a similar photonic band structure [44–48]. Because of the

enlarged unit-cell (six “atoms” in a unit-cell) in the designed photonic crystal, Dirac cones that are

located initially at K and K ′ points in graphene are folded back to Γ point here, as displayed in

Figs. 1(c) and (d).

Similar to the two-dimensional Su-Schrieffer-Heeger model [49, 50], the designed photonic

crystal experiences a topological phase transition when d is tuned, which effectively alters the ratio

of integral hoppings of those dielectric rods within the same unit-cell and between neighboring

unit-cells. For the nontrivial topological phase, where the neighboring unit-cells have stronger

couplings, i.e., d < R, topological edge and corner states appear in the designed photonic crystal.

The appearance of these topological states is due to a band inversion happening at Γ point between

a pair of px, py modes and a pair of dx2−y2 , dxy modes as displayed in Figs. 1(c) and (d), which

leads to a shift of Wannier center of EM waves in those inverted photonic bands [51, 52]. As

displayed in Figs. 1(e) and (f), the Wannier center of the EM wave of an inverted band shifts from

the middle of the unit-cell for the trivial phase to the boundary of the unit-cell for the nontrivial

phase, which is directly related to a geometric phase – the vectored Zak phase determined by the

symmetric properties of EM waves at high symmetric k points as [53–55]

P n
i = −i ln

ηn(Mi)

ηn(Γ)
, (1)

where the sub-index i indicates the component of P along bi and ηn(k) denotes the parity of

EM wave of the nth photonic band at point k. Because of crystalline and inversion symmetries,

P n
i takes either 0 for the trivial phase or π for the nontrivial phase. Essentially, the topological

phase of the designed photonic crystal is not a strong topological phase but an obstructed atomic
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phase, and it can host robust unidirectional edge states and corner states due to the band inversion

protected by a sizeable band gap [56–58]. The obstructed atomic phase can be characterized by

the Wannier center, which is either P 2
i bi/2π or P 3

i bi/2π of the degenerate second and third bands

in the designed photonic crystal. It is noted that the summation of P n
i over the three bands below

the band gap always vanishes due to the C6v point group symmetry, which reflects the fragile

topology of the designed photonic crystal [59–61]. By a perturbation that separates the first and

second photonic bands, it is seen that the second and third bands have nontrivial Wilson loops

while all first three bands together have a trivial one [61]. Furthermore, as discussed later, a

pair of pseudo-spins can be constructed by the degenerate second and third bands, which enables

us count P 2
i and P 3

i separately. In later discussions, we denote P as the Wannier center of the

designed photonic crystal, which is (
P 2
1

2π
,
P 2
2

2π
) in terms of b1 and b2 effectively. For the nontrivial

phase where topological edge states appear, we have P = 1
2
(b1 + b2), similar to the weak index

of three-dimensional topological insulators [62]. Alternatively, the nest-Wilson loop can also be

used for characterizing the obstructed atomic phase of the designed photonic crystal [63, 64].

B(ε) and helicity reversal.– Dislocations are topological line defects in crystalline systems

which introduce discontinuity to the crystalline order characterized by B. To measure B, one may

construct a circuit around the dislocation interface, and B is given by the extra path that cannot

be canceled out in the circuit. In solid-state materials, by preserving the crystalline symmetry,

the amplitude of B is always one or several units of the lattice for a complete dislocation and a

fraction of the lattice for a partial one (i.e., inserting a line defect made by incomplete unit-cells).

Owing to the lattice distortion associated with the dislocation, a U(1) gauge field Ai = −εi ·Kinv

minimally couples to the excitations such as topological edge states, and a linear dispersion ∼ k ·t
develops [30, 36, 65]. Here Kinv is either the band inversion k point or its equivalence, like Γ and

M in Eq. (1), and t is the directional vector of the dislocation line. This is the so-called K−B− t

rule [36]. It is noted that we can apply the K − B − t rule to photonic crystals, as Maxwell’s

equations could be reformulated in a tight-binding scheme with a Hamiltonian H = − ∂2

ε(r)
[50, 65].

Figure 2(a) displays a dislocation interface in the designed photonic crystal created by inserting

a semi-infinite line of unit-cells with a tunable dielectric constant ε, where a circuit around the

dislocation interface is plotted, and a path along the defected site is marked by green. It is noted

that we only consider a dislocation interface here rather than a complete dislocation because the

nontrivial flux originates from the dislocation core only. Because of the tunable ε, B becomes

B(ε), i.e., B = 0 if ε = εc and B = −a1 if ε = 1 [65]. For the nontrivial topological phase of the
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designed photonic crystal that P = 1
2
(b1 + b2), the introduced line defect traps the topological

edge states based on the following relation

ν = P ·B, (2)

where P plays a role similar to the weak index of 3D topological insulators [62]. Finite ν intro-

duces an effective equivalent flux around the defect core according to the K−B− t rule [36, 65].

In the designed photonic crystal, because the effective length of B is determined by the optical

path difference rather than the actual real space distance, the effective flux becomes B(ε)π/a0,

which is different from the values of either π or 0 in solid-state materials. As suggested by the

green vector in Fig. 2(a), the effective optical path difference B(ε) can be approximately written

as

B(ε) = 4Rα(
√
ε−√

εc), (3)

where α is a coefficient determined by eigenfrequency and we set α =
√
ε here [66]. We plot B(ε)

in Fig. 2(b), and for validity we focus on the flux range where B(ε) ∈ [−a0, a0]. As displayed in

Fig. 2(b), B varies continuously with ε and changes its sign at ε = εc and B ≈ −a0 for ε = 1.

Because of B(ε) and corresponding ν(ε), it is possible to tune the edge states trapped around

the dislocation through ε, and the time-reversal pairs couple the distortion-induced gauge field

oppositely. Thanks to the C6v point group symmetry, two pairs of pseudo-spins can be constructed

by linear combinations of degenerate EM modes, such as px + ipy, dx2−y2 + idxy for spin-up and

px − ipy, dx2−y2 − idxy for spin-down as displayed in Fig. 2(c), where a general time-reversal

operator T = KU can be constructed [41].

To demonstrate the tunability of dislocation-bound states by ε, we calculate ribbon spectra for

several typical values of ε where the tunable dislocation is located at the middle of the ribbon with

the Floquet periodic boundary condition along x−direction and periodic boundary condition along

y−direction as indicated by the dashed rectangle in Fig. 2(a). This setup is similar to tiling the pe-

riodic layers of an edge dislocation along z−direction (t = ẑ) on the xy−plane over x−direction,

which enables us to check the spectrum of dislocation-bound states. As displayed in Fig. 2(c),

the ribbon spectra are calculated and plotted for ε = 6.125, 8.77, 13 and 15 [marked by stars in

Fig. 2(b)], which correspond to flux −π,−π/2, π/2 and π, respectively. From Fig. 2(c), we see

three edge states in the photonic band gap, and linear dispersions arise around Γ point for ν = ±π,

consistent with the prediction of the K−B−t rule. Their spin polarization is marked as triangles,

and different colors represent their group velocities around the Γ point. As there are two types of
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representations for the pseudo-spin up and down, which suggests that actual pseudo-spin polariza-

tion of topological edge states could be any linear combination of these two representations. Also,

we observe three edge states rather than two or four because of the specific ε range we focus on.

From Fig. 2(c), we observe two effects of changing effective flux ν. The first effect is a continuous

modification of the dispersion of topological edge states. As seen in Fig. 2(c), when ν changes

from −π to π, the dispersion of topological edge states changes accordingly. From ν = −π to

0, topological edge states are gradually pushed back to the bottom bulk states, and they reappear

from the top bulk states with a contrasting dispersion for ν > 0. Furthermore, when ν = ±π,

the pseudo-spin-up and pseudo-spin-down edge states degenerate at Γ point, while they are sepa-

rated for ν = ±π/2, and for ν = ±π, the pseudo-spin-up and pseudo-spin-down edge states have

different group velocities around Γ point, while alike group velocity for ν = ±π/2. The second

effect of changing ν is the reversal of the helicity of topological edge states. This is because of

opposite effective magnetic fields for ±ν. As displayed in Figs. 2(c) and (e), for the edge states

of the same pseudo-spin polarization, they have opposite group velocities, i.e., dx2−y2 + ipy has a

positive group velocity at kx = 0.04 for ν = −π and has a negative group velocity for ν = π. It is

noted that the similar tunability of dislocation-bound states can be arrived at by changing the rod

radius of the defect sites [65]. Furthermore, impedance plays an essential role in the formation of

interface states, and we check these effects by a ribbon structure with an interface between the de-

signed photonic crystal and the periodic defected sites for d > R and d < R, respectively [65, 67].

A topological optical switch.– This unprecedented tunability of topological edge states brought

by B(ε) can be used for composing a topological optical switch controlled by ε. As displayed

in Fig. 3(a), the topological optical switch is composed of a sandwich-like structure. The tunable

dislocation is located at the middle layer of the designed photonic crystal. Two rotating sources

for exciting spin-polarized edge states are located at the two sides of the dislocation. Figure 3(b)

displays the combined ribbon spectra for ε = 12.7, 13.7 and 14.5. As displayed in Fig. 3(b) around

a range 73–75THz, there is an operating window where the pseudo-spin-up edge state is going left

for ε = 12.7 and while it is going right for ε = 14.5. Furthermore, for ε = 13.7, two edge states

intersect at 74.2 THz, leading to EM waves’ localization. Making use of this operating window

and the intersection of edge states, we can achieve an optical switch controlled by ε using a unified

source at 74.2 THz, i.e., EM wave going left, localizing, and going right for ε = 12.7, ε = 13.7

and ε = 14.5, respectively. As displayed in Fig. 3(c), the propagation of the topological edge
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states is wholly reversed when tuning ε from 12.7 to 14.5 and stops at ε = 13.7. The adjustment of

ε can be realized by employing functional materials triggered by various external conditions such

as applied voltage [68], light irradiation [69, 70], temperature [71], and even applied magnetic

field [72]. Compared with a conventional optical switch, the EM wave propagation in the designed

photonic crystal is topologically protected and thus immune to real-space defects. As displayed

in Fig. 4, the excited topological EM wave can pass through the ”Z” turn without obvious back-

scattering, demonstrating their nontrivial topological nature. Furthermore, as the introduced line

defects are scalable, unlike the interfacial topological edges that require at least two topologically

distinct bulk samples, the proposed topological optical switch can be implemented at a large scale,

forming a topological optical switch network. Besides the topological optical switch, the structure

in Fig. 3(a) also offers a detector for external parameter Q with a sensitivity determined by Q(ε).

For the experimental demonstration, the designed photonic crystal can be constructed with GaAs

while the tunable dislocation material can use the phase-change materials [73, 74].

Conclusion.– We have introduced a continuously tunable topological defect in a photonic crys-

tal consisting of dislocations with dynamically controlled dielectric constants, where the disper-

sion of topological edge states and their helicities can be tuned and reversed. The tunability of

topological edge states in the designed photonic crystal is attributed to the interplay between real-

space and momentum-space topologies, where an effective flux P · B/a0 arises. Based on the

tunable topological defect in the designed photonic crystal, we have proposed a topologically ro-

bust and scalable optical switch, which various external conditions can control.
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FIG. 1. (a) Schematic of the designed hexagonal photonic crystal. In a unit-cell, six rods of dielectric

constant εc and radius r sit on the vertices of the hexagon separated by a distance R within a unit-cell and a

distance d between unit-cells. The primitive vectors of the designed photonic crystal are a1 = a0(
1
2 ,−

√
3
2 )

and a2 = a0(1, 0) with a0 the lattice constant. In the numerical simulations, we take r = 235 nm, R =

705 nm and εc = 11. (b) Corresponding 1st Brillouin zone of the designed photonic crystal, where b1 =

2π
a0
(0,− 2√

3
) and b2 = 2π

a0
(1, 1√

3
). (c) and (d) Photonic band structures of the designed photonic crystal

for d = 1.05R and d = 0.95R, respectively. A band inversion happens at Γ between a pair of px, py EM

modes and a pair of dx2−y2 , dxy EM modes when d = R. “±” indicates the parity of EM modes. (e) and

(f) Wannier centers of the designed photonic crystal for d = 1.05R and d = 0.95R, respectively. The inner

hexagon indicates the positions of six dielectric rods, the dashed outside hexagon indicates the Wigner-Seitz

unit-cell, and the red dot is the center of the Wannier function.
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FIG. 2. (a) Schematic of the continuously tunable dislocation interface in the designed photonic crystal.

The tunable dislocation comprises a semi-infinite line of defected units made of rods of radius r′ = r and

dielectric constant ε. The green vector indicates the Burgers vector B of the tunable dislocation for ε = 1.

The dashed rectangle is a schematic of the ribbon with periodic boundary conditions in both directions,

which is used for the calculations of the photonic band structure with the tunable dislocation located at

the middle, i.e., ribbon spectra in (c). (b) The magnitude of effective Burgers vector experienced by EM

modes as a function of ε. Four stars are the positions for B(ε)/a0 = −1,−0.5, 0.5, and 1, accordingly.

(c) Possible combinations of pseudo-spins composed by doubly degenerate EM modes such as px± ipy and

dx2−y2 ± idxy. (e) EM modes of edge states located at the tunable dislocations for ν = −π and ν = π.

(d) Ribbon spectra with the tunable dislocation located at the middle for different ν = B(ε)π/a0. The

triangles are those edge states located at the tunable dislocation, whose directions represent the pseudo-spin

polarization and their colors indicate the group velocities at kx = 0.04 around Γ, i.e., red is positive, blue is

negative, and green is almost zero.
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FIG. 3. (a) Schematic of the proposed topological optical switch made by the tunable dislocation in the

designed photonic crystal. The red/blue are the defective/standard units. The left and right rotating arrows

indicate two sets of four-point sources with different phases at each point such as (0, π/2, π, 3π/2) and

(0,−π/2,−π,−3π/2) in anti-clockwise order. (b) Combined ribbon spectra for the tunable dislocation

of ε = 12.7, 13.7 and 14.5. In a range around 74.2 THz, as marked by a yellow square, the left-going,

and right-going edge states have the same pseudo-spin polarization, where we can control the propagation

of edge states by tuning the dislocation’s dielectric constant. Furthermore, for ε = 13.7, the edge state

becomes localized because of the crossover of two edge states at 74.2 THz. (c) Propagation and localization

of edge states excited by the rotating sources in the tunable dislocation for ε = 13.7, 12.7 and 14.5 at 74.2

THz, accordingly. Dashed lines indicate positions of the tunable dislocation.
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(b)

FIG. 4. Demonstration of topological protection of the excited edge states at the tunable dislocation for

(a) ε = 12.7 and (b) ε = 14.5.


