Continuum and Molecular-Level Modeling of Fatigue Crack Retardation in Self-Healing Polymers

Spandan Maiti

Department of Mechanical Engineering— Engineering Mechanics, Michigan Technological University, Houghton, MI 49931 Chandrashekar Shankar

Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109

Philippe H. Geubelle1

Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 e-mail: geubelle@uiuc.edu

John Kieffer

Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109

A numerical model to study the fatigue crack retardation in a self-healing material (White et al., 2001, Nature, **409**, pp. 794–797) is presented. The approach relies on a combination of cohesive modeling for fatigue crack propagation and a contact algorithm to enforce crack closure due to an artificial wedge in the wake of the crack. The healing kinetics of the self-healing material is captured by introducing along the fracture plane a state variable representing the evolving degree of cure of the healing agent. The atomic scale processes during the cure of the healing agent are modeled using a coarse-grain molecular dynamics model specifically developed for this purpose. This approach yields the cure kinetics and the mechanical properties as a function of the degree of cure, information that is transmitted to the continuum-scale models. The incorporation of healing kinetics in the model enables us to study the competition between fatigue crack growth and crack retardation mechanisms in this new class of materials. A systematic study of the effect of different loading and healing parameters shows a good qualitative agreement between experimental observations and simulation results.