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Campus Nord UPC, Mòdul C1, Gran Capitán s/n
08034 Barcelona, Spain

2CIMEC/Intec, Conicet, UTN, Guemes 3450,
3000 Santa Fe, Argentina

SUMMARY

Some new aspects of the continuum strong discontinuity approach (CSDA) to model material failure
in geomaterials are addressed. A new global algorithm, for tracking multiple crack lines/surfaces in
2D/3D cases is proposed. It is based on solving a simple heat conduction-like problem accompanying
the standard mechanical algorithm. A viscous perturbation method on the crack surface is also
proposed to remedy the instabilities caused by mutual interactions of multiple developing cracks.
A simple procedure to compute the critical time step that ensures algorithmic uniqueness is then
provided. Numerical simulations of two and three dimensional problems displaying a multi-crack
pattern are finally presented. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. MOTIVATION

Material failure in solid mechanics, particularly in geomaterials such as soils, concrete, rocks,
etc. is characterized, at the macroscopic level, by the appearance of locus of damage, that
exhibit jumps (discontinuities) in the displacement field across them. These discontinuity loci
which, depending on the context, are termed, cracks, shear bands, fractures will be from now
on referred to as material failure surfaces and the corresponding displacement jumps as strong
discontinuities. Continuum modelling of strong discontinuities is classically carried out by
inducing concentration of strains in narrow bands (strain localization) in such a way that the
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2 OLIVER J. ET AL.

relative displacement at both sides of the localization band stands for the displacement jump.
Strain localization has been for a long time a challenging subject in computational mechanics
due to the difficulties emerging from the strain softening in the material model that is required
in order to induce that localization. The resulting models in continuum approaches, endow the
solid response with material and structural instabilities that many times make simulations very
cumbersome if not impossible. In addition, the corresponding boundary value problem becomes
ill-posed which translates into the well known lack of mesh size and mesh bias objectivity of
the corresponding numerical simulations ([3]).

Enriched continuum based approaches, like non local ([15]) or gradient enhanced models
([30]) provide improved solutions. However, for practical purposes in numerical simulation
settings, they require the size of the localization band to be captured by several finite elements
([11]). Then, due to its small bandwidth, in comparison with the structural size, very fine
discretizations are required, this leading to many times unbearable computational costs for
practical problems.

The inclusion of real discontinuities in the displacement field seems then an appropriate
alternative for modeling material failure from a phenomenological standpoint. Classically, this
approach has been tightly related to the so-called discrete or cohesive models approaches ([12]).
They are based on inserting a discontinuity interface governed by a discrete (cohesive) law
relating the traction vector to the crack opening after some local failure criterion is fulfilled.
Therefore, two different material laws govern the solid behaviour: a) a continuum (stress-
strain) constitutive model for the material bulk and b) a discrete (traction-displacement jump)
constitutive model for the discontinuity interface. In consequence, continuum and discontinuum
are characterized through different material types and constitutive formats which, in principle,
are completely independent from each other.

In this paper an alternative approach, which will be termed the Continuum Strong
Discontinuity Approach (CSDA) is tackled. It can be characterized by this two facts:

a) The same (continuum) format for the kinematics, the infinitesimal strain kinematics,
is considered both at the continuous bulk and at the failure interface even if the
displacements are discontinuous. In some, mathematical, sense the classical functional
spaces used to place strain measures are extended to distributions to accommodate the
resulting unbounded strains at that failure surface.

b) The same (continuum, i.e. stress-strain) format is adopted for the constitutive model at
both the bulk and the failure surface. Even more, the same constitutive model, equipped
with strain softening, is adopted for all the particles of the body. Then a local material
bifurcation process is responsible for the onset of failure and different loading processes
at continuum and discontinuum material points which, eventually, result into different
local stress-strain response from the same constitutive model.

The paper addresses the different aspects involved in the modeling of material failure in
geomaterials, specifically in concrete, by means of the CSDA. Some of these aspects, such as
the theoretical foundations of the CSDA, the material bifurcation analysis, and the formulation
of finite elements with embedded discontinuities, are only sketched. Further information about
them can be found elsewhere in the literature (see, for instance, [34], [22], [26], [24], [27]). More
attention is paid to other aspects that have not been studied in depth previously and that,
in the opinion of the authors, are specially relevant in the study of cracking in concrete. The
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Figure 1. Strong discontinuity in a body

remaining of the paper is organized as follows. In Section 2 the basic ingredients of the CSDA
are laid out. Section 3 deals with the criteria to determine the onset and the direction of
propagation of a crack path in a consistent way. The finite element technology needed to
embed a displacement discontinuity within an element domain is presented in Section 4. The
issue of determining the placement of the crack path within the solid is addressed in Section
5. Section 6 proposes a methodology to circumvent the possibility of loss of uniqueness due
to crack arrest-activation related with handling multiple cracks. Finally, the CSDA is applied
to the numerical simulation of some problems involving multiple cracks.

2. THE CONTINUUM STRONG DISCONTINUITY APPROACH (CSDA)

In the pioneering work from Simo, Oliver and Armero [34] some relevant consequences and
requirements from the introduction of strong discontinuities into a continuum medium were
identified. Later, the strong discontinuity approach has been further studied and developed in
different ways ([22], [1], [25], [17], [27], [28]). In this section we present the basics of that
approach faithful to the original spirit based on the combination of the so-called strong
discontinuity kinematics (jumps in the displacement field, which give rise to unbounded strains)
with the use of continuum constitutive models. In order to achieve this consistently, a crucial
ingredient is incorporated: the reinterpretation of the softening modulus in a distributional
sense leading to the so-called softening regularization condition.
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4 OLIVER J. ET AL.

2.1. The strong discontinuity kinematics

Let us consider the following structure for the displacement field of a body Ω undergoing a
strong discontinuity on the failure surface (crack) S (see figure: 1):

u(x, t) = ū(x, t) + HS(x) [[u]](x, t) (1)

where HS is the Heaviside’s step function, [[u]] stands for the jump in the displacement field
across S, and ū is a continuous displacement field.

Now, the corresponding strain field can be computed as the symmetric gradient of equation
(1), yielding

ε = ∇
su = ∇

sū + HS ∇
s[[u]]

︸ ︷︷ ︸

ε̄ (regular)

+ δS ([[u]] ⊗ n)s

︸ ︷︷ ︸

[[ε]] (singular)

(2)

where δS is the Dirac’s delta function acting on Ω and n is the unit normal to S.

For computational purposes (numerical evaluation), a more convenient regularized format
for equation (2) is

ε = ε̄
︸︷︷︸

bounded

+ µS

1

h
([[u̇]] ⊗ n)s

︸ ︷︷ ︸

unbounded as h→0

(3)

µS being a collocation function on Sh (µSh
= 1 ∀x ∈S and µS = 0 otherwise) and h a

regularization parameter. The second term on the right hand side of equation (3) is the
regularized version of the singular term in equation (2).

Remark 1. : Expression (3) corresponds to the so-called regularized strong discontinuity
kinematics ([34], [16]). At this stage it is emphasized that h is a (mathematical) regularization
parameter and not a material property, which should be taken as a number as small as allowed
by the machine precision.

2.2. Continuum constitutive modeling

Modeling the behavior of geomaterials from a Continuum Mechanics standpoint, requires the
consideration of a constitutive model relating stresses and strains, typically:

σ = Σ(ε,H) (4)

with H being the hardening/softening modulus.

Within this context from now on we are being concerned with constitutive models equipped
with strain softening. These models are characterized by the negative character of the
continuum softening modulus, i.e., H < 0.

For the case of rate independent materials, the rate version of equation (4) reads

σ̇ = Ctg : ε̇ (5)

where Ctg is the so-called constitutive tangent operator.
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2.3. The distributional character of the softening modulus

In order to assure compatibility of the strong discontinuity kinematics presented in Section
2.1 with the continuum constitutive models, the continuum softening modulus has to be
reinterpreted in a distributional sense ([34], [26]):

H−1 = δSH̄
−1 (6)

where H̄ is the intrinsic or discrete softening modulus which is assumed to be a regular
distribution (i.e., it is assumed to be bounded) and given in terms of the fracturing properties
of the material. If linear softening is modeled, then:

H̄ =
1

2

σ2
y

Gf

(7)

where σy stands for the uniaxial peak strength and Gf for the fracture energy.
The regularized version of equation (6) reads

1

H
=

1

hH̄
=⇒ H =hH̄ (8)

2.4. Some relevant consequences of the CSDA

The basic ingredients of the CSDA just presented lead to the following crucial results (see [24]
for their rigorous derivation):

• As a consequence of expression (6), the boundedness of the stresses σ is assured, despite
the unbounded character of the strains ε at S.

• A discrete (cohesive) constitutive law, relating the traction vector, T = σ · n, with the
displacement jump [[u]], is automatically fulfilled at material points of S. This discrete
law can be regarded as a projection of the standard continuum constitutive law into the
discontinuity interface. A general expression of these projected constitutive laws reads:

T = ̥([[u]], H̄) (9)

The discrete constitutive law (9) establishes a clear link between the CSDA and the
discrete, fracture mechanics based, approaches ( [27]).

3. ONSET AND PROPAGATION OF A CRACK

As mentioned above, material failure in a classical continuum setting is related with
constitutive models equipped with strain softening. It is well known that the presence of strain
softening in rate independent constitutive models can lead to strain localization through a
local material bifurcation procedure ( [38]). A necessary condition for strain localization is
the singularity of the so-called localization tensor Qloc i.e.:

det[Qloc] = 0 (10)

where Qloc is defined as
Qloc= n · Ctg·n (11)
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where n is the normal to the localization band.
Thus, a material point x is said to undergo material bifurcation when condition (10) holds

for that point. That particular time at which material bifurcation occurs for a given particle
is called bifurcation time.

4. FINITE ELEMENT TECHNOLOGY

Discretization of boundary value problems including strong discontinuities by means of the
finite element method requires the use of non standard formulations. In order to get a resolution
of the displacement jumps in an efficient way, the necessity of embedding discontinuities within
an element domain becomes apparent. The jumps in the displacement field can be added to
the standard finite element approximation functions as some kind of enriching modes. Here,
we classify these enriching techniques into two general types depending on the support of the
enriching modes: nodal enrichment and elemental enrichment.

4.1. Nodal enrichment

Nodal enrichment is many times based on the partition of unity concept. Applications to
linear fracture mechanics can be found in ([18], [5]) and applications to discrete constitutive
models can be found in ([37]).

For this kind of enrichment the discontinuities in the approximation function are included
in a nodal basis, i.e., the enrichment is associated to a given node. As a consequence, the
enrichment affects all the elements belonging to the support of that node and additional
degrees of freedom have to be defined for each enriched node (see figure: 2).

The principal advantages of this type of enrichment is that it leads to symmetric matrices
and that continuity of the displacement jump function, [[u]], along the discontinuity interface is
achieved ([14]). On the other hand, it also implies a high implementation effort and substantial
increments in the computational cost due to the additional degrees of freedom.

4.2. Elemental enrichment

The enriching modes have an elemental support and act only on those elements crossed by the
crack path (figure: 2). The added modes are, therefore, statically condensable at the element
level, which is a crucial advantage from the computational cost standpoint. In 2D analyzes,
for instance, there are two additional modes per element (scaled by the two components of the
elemental displacement jump, which are two additional elemental degrees of freedom), and the
displacement jump is element-wise constant. In [13] and [28] systematic studies of different
classes of elemental enrichment were presented and the so-called non-symmetric formulation
([23]) is shown to have a good performance.

5. ALGORITHMS FOR TRACKING THE CRACK PATH

Construction of the enriching modes, for the finite elements with embedded discontinuities
described in section 4, requires determination of the position of the failure surface inside
every element crossed by the crack path. In addition, the crack path should be continuous

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2000; 00:1–6
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Figure 2. Finite elements with embedded discontinuities

when passing from one element to another. This is done by means of the so called tracking
algorithms.

A typical tracking algorithm requires the following information:

1. A failure criterion: it indicates when an element (or some point in it) has undergone
material bifurcation and that it has to be added to the set of elements crossed by the
discontinuity. A rigorous criterion, in a classical continuum mechanics setting, is the one
stated by equation (10). However, other simplified failure criteria, like the ones based
on exceeding the peak stress in the principal stress directions, provide enough accurate
results for some geomaterials as concrete .

2. A direction of propagation: the orientation of the crack within an element is determined
by the propagation direction provided by the normal to the failure surface n. Again,
it can be obtained from the discontinuous bifurcation analysis in equation (10), or by
the condition n = arg{minn detQ(n)} in the elastic range. For concrete it is frequently
taken, from simplified assumptions, as the maximum principal stress direction.

Tracking algorithms can be classified into two groups† as done in [29]: local (or propagation)
algorithms and global algorithms.

†A third type of tracking algorithms is constituted by the ones based on the level set concept ([36]) which
share some of the characteristics of local and global algorithms.
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5.1. Propagation algorithms

These algorithms are based on the geometrical propagation of the crack from some root element,
which is identified as the first that fulfills the failure criterion, by using point by point local
information about the propagation direction. As a matter of example let us consider the
following 2-D propagation algorithm:

At every step of the procedure we assume that the following input data is available at the
element level:

• A point in one of the sides of the element (which is termed the input side) denoted by
IS .

• The direction of propagation of the crack in that element, defined by a vector T
(orthogonal to n).

The algorithm typically consists of applying the following steps (see figure: 3) :

1. Trace a straight line in the direction of T passing through IS .
2. Determine what side of the element, other than the input side, is intersected by the

traced line. It will be referred to as output side.
3. Determine the point at which the traced line intersects the output side. It will be denoted

by OS .
4. Set the output side and the output point OS of the current element as the input side

and the input point IS of the neighbor element.

This algorithm has to be recursively applied to all the elements crossed by a crack line.
Geometrically this is nothing else that a Runge-Kutta like algorithm to plot a function y(x)

in the x − y space once a point of the curve (the root element) is known and the derivative
y′(x) (the propagation direction T) is point-wise known. Observe that the algorithm requires
an element-sides connectivity array in the step 4 above, whose construction involves the access
to upper levels of a finite element code.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2000; 00:1–6
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Although they are simple and easy to implement for just-one-crack cases, the extension of
propagation algorithms to the case of multiple cracks simultaneously developing and interacting
with each other is rather cumbersome and can increase significantly the implementation effort.
Also the extension to 3D cases, through plane surfaces inside every element, can not be done
for general cases ([9]).

5.2. Global tracking

In this type of tracking algorithms, all the possible crack paths are traced at once, on the
basis of the information provided by the global propagation field T(x,t)∀x ∈ Ω. One can
define the crack path candidates at time t as that family of lines which are the envelopes of the
propagation vector field T(x,t) (tangent to T at every point x) or, equivalently, orthogonal to
the normal field n(x,t) (see figure: 4-a). This concept is then immediately extendable to 3D
cases, in terms of those surfaces orthogonal to the normal field n(x,t) obtained, for instance,
from the propagation criterion (10). Availability of the envelopes of the propagation vector
field as crack path candidates allows to manage both the elemental constitutive behaviour and
the elemental enriching models on the basis of the following premises:

• From the crack path candidates, a set of active cracks and the corresponding elemental
counterparts are selected.

• Among the active elemental crack-paths some are declared consolidated (the element to
which they belong has failed) and the remaining are declared potential (where the failure
criteria has not yet been reached).

• Only for those elements crossed by consolidated crack paths the enriching discontinuity
modes are activated.

• Only those elements crossed by an active crack path (either consolidated or potential)
are allowed to soften. The remaining ones are forced to either unload or to harden in
all their sampling points.

The previous information is generated through the following algorithm:

1. At the current time tn every element is checked from being crossed by any of the currently
active crack paths. If a crossed element had failed for the first time at time tn−1 the
corresponding elemental crack path is declared consolidated for the rest of the analysis.
Otherwise it is declared potential.

2. If an element that had failed at time tn−1 is not crossed by any of the currently active
crack paths, the element is declared a root element and a new crack is activated. The new
crack path is the corresponding envelope of the propagation vector field passing through
the centroid of the new root element.

5.2.1. Tracing the envelopes of the propagation vector field The global tracking methodology
presented in section 5.2 requires the determination of 1) the envelopes (lines in 2D cases and
surfaces in 3D problems) of the propagation vector field and 2) the elements which are crossed
by any of those lines or surfaces.

A procedure to trace the envelopes of the propagation vector field is presented here. It is
based on finding a scalar vector field θ(x) whose iso-level curves in 2-D, or iso-level surfaces
in 3-D, are those envelopes, i.e.,

Si := {x ∈ Ω ; θ(x) = θSi
} (12)
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where θSi
is a constant that acts as the label of the i-th envelope Si. The mathematical

condition that has to be fulfilled by such a scalar field θ(x) are:

∂θ
∂T

= 0 ( for 2D cases)
∂θ
∂T

= ∂θ
∂S

= 0 (for 3D cases)
(13)

where S and T are any two unit vectors that span the failure plane (orthogonal to n) , in the
three-dimensional case A numerical procedure to solve the PDE’s (13), was proposed in [29].
The key idea is to solve the following simplified heat-conduction-like problem with adiabatic
heat flux conditions at the boundary ∂Ω and no internal heat source:

FIND : θ(x)
SUCH THAT
∇ · q =0 in Ω (a)
q = −K·∇θ= −T ∂θ

∂T
− S ∂θ

∂S
in Ω (b)

qν ≡ q · ν = −(ν · T) ∂θ
∂T

− (ν · S) ∂θ
∂S

=0 on ∂Ω (c)

(14)

where q stands for the heat flux and K is an anisotropic conductivity-like tensor defined as:

K =T ⊗ T + S ⊗ S (15)

In principle, the singular character of K can be source of ill-posedness. In order to overcome
this singularity, eq. (15) could be modified as:

K
ǫ = T ⊗ T + S ⊗ S + ǫ1 (16)

where ǫ is a small perturbation parameter and 1 is the unit tensor. However, for practical
purposes, the spatial discretization produce enough numerical diffusivity so that the singularity
of K has only been detected in very specific finite element meshes, when the elements are aligned
with the θ iso-curves. Only for that cases it is necessary to introduce the ǫ-perturbation.

For 2-D problems S is removed from equations (14) and (15). It can be proven ([29]) that
the solution of problem (14) is q = 0 and, therefore, from equation (14)-(b), equations (13) are

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2000; 00:1–6
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fulfilled by the temperature field solution of problem (14). Therefore, the isothermal surfaces
(12) of that thermal problem supply the intended envelopes of the propagation vector fields S
and T.

The finite element discretization‡ of the BVP (14) yields, after standard procedures ([39])
the following system of linear algebraic equations:

[Kǫ
θ]{θ} = {0} (17)

where [Kǫ
θ] is the “stiffness matrix” of the heat-conduction-like finite element problem and

{θ} is the vector of temperature-like nodal unknowns. The rank of the global matrix Kǫ
θ

is (nnode − 1) where nnode is the number of nodes of the finite element mesh. Thus, the
temperature-like variable, should be prescribed, at least, in two nodes, in order to provide
a unique non uniform θ(x) solution, analogously to stationary heat transfer problems where
Newman type boundary conditions are imposed. The values of the prescribed temperatures
are not relevant whenever they are not prescribed on the same thermal contour.

The thermal problem (17), that can be solved once every time step or every several
time steps, is linear and involves only one degree of freedom per element. The resulting
computational cost is, therefore, very small. As for the implementation, it is trivial for codes
dealing with coupled multifield problems. Otherwise, and since the thermal problem is fairly
simplified (adiabatic boundary, no heat source etc.) the implementation is straight-forward.

After solving the system of equations (17) for {θ}, the values of the temperature-like variable
θ are known at the nodes and the position of a crack can be determined on an element by
element basis by comparison with the reference temperature θSi

associated to the i-th active
crack Si (see figure: 4-b). Furthermore, the topological problems that a propagation algorithm
entails for 3-D problems are readily circumvented.

5.3. Representative examples from elastic analyzes

For monotonic loading cases, and from the authors’ experience, the vector field n(x,t) and,
therefore, the propagation vectors fields S and T in equations (13)-(14) do not change very
much along time. This suggests that, whenever a root element is guessed, the failure (crack)
surface can be approximately determined at early stages of the simulation process. Even more,
an initial linear elastic analysis and the corresponding stress field σ(x,0) might be enough
to provide an approximated vector field n(x,0) and to determine the failure surface via the
thermal-like analysis presented in the previous section. The following two examples correspond
to the determination of the failure surface in typical 3D problems from a simple elastic analysis
taking the first principal direction as the failure direction n [9].

• Case a: Anchorage structure. This example was solved in [31] using 2D axisymmetric
simulation. Here the solution corresponds to an actual 3D elastic simulation. It consists
of an anchorage structure made of concrete in which a bolt is embedded and anchored
as shown in figure: 5-a. Assuming that the root lies at the outer part of the anchor
disk, the resulting failure surface captured by the heat conduction tracking algorithm is

‡This discretization can be performed on the same mesh and the same basic finite element than for the
mechanical problem. Thus, it does not involve any new meshing procedure.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2000; 00:1–6
Prepared using nagauth.cls



12 OLIVER J. ET AL.

anchor bolt

steel disk

concrete

axis of revolution

Finite elements intersected by the failure surface

Anchorage structure

Figure 5. Discontinuity failure surfaces en 3D problems: anchorage structure

presented in figure: 5. As it can be checked there, it exhibits the typical conical shape
experimentally observed in pull out tests on concrete specimens.

• Case b: Double notched shear beam. This test was performed by Bocca et al. [6] who
experimentally observed the two cracking surfaces emerging from the notch tips in figure:
6. Some geometrical features and boundary data are shown there. In the figure, two
failure surfaces provided by the heat conduction tracking algorithm are presented. It
can be observed the close correspondence in trace and shape with the experimentally
obtained crack. It is noticeable the high geometrical complexity of the resulting surface,
made of hundreds of plane facets obtained by the algorithm.

6. MULTI-CRACKING TREATMENT

Consideration of multiple cracks introduces additional complexity in the mathematical and
numerical modeling of material failure. The problems and possible remedies are considered in
this section.

Physically, cracks can be classified, at least roughly, into two groups:

• Primary cracks: they grow during a relevant part of the deformation process and,
therefore, contribute substantially to the global dissipation in the structure.
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Figure 6. Discontinuity failure surfaces for 3D problems: double notched shear beam. a) and b)
experimental crack pattern (from [6]), c) Finite element mesh, d) First principal stress field, e) Failure
surfaces in the finite element mesh (the elements crossed by the failure surfaces have been removed

for representation purposes) f) Close view of the obtained failure surfaces

• Secondary cracks: they are active just sporadically and are negligible regarding the global
dissipation of the structure.

Even in the case of neglecting the effect of secondary cracking (which is not trivial since,
in general, whether a crack is primary or secondary is not known in advance) the interaction
between primary cracks can lead to difficulties when tracing the overall response of a structure.
This is caused by the existence of singular points (bifurcations) on the equilibrium path in the
solution space, which result from the interaction between different cracks and their possible
combination of activation or arresting states. In this case, not even the use of sophisticated
continuation techniques is enough for a successful tracing of the overall response.
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Despite the fact that the mathematical description leads to bifurcation, it is experimentally
observed that only some of the possible branches of the equilibrium path are actually preferred
at late stages in the deformation process. From the physical point of view, one expects this
preferred branch to be the most stable one. In the case of adiabatic deformation processes this
corresponds to the solution yielding the maximum second order work for load control and the
minimum second order work for displacement control (see Bazant et al. [4]).

Two complementary ingredients in this approach are designed to prevent this type of
similarities and to increase computational robustness. Both of them are described in the
following.

6.1. Shielding

A neighborhood of a consolidated crack path is defined (the shielding zone) in such a way that
the onset of a new crack or the propagation of a different previous consolidated crack path are
forbidden.

In a more formal description: let the distance between elements j and k be djk = ‖ξ0
j − ξ0

k‖

where ξ0 are the elemental centroid positions. Consider, also, the ith failure surface Si (see
figure 7). One part of it, denoted by Sc

i , is consolidated as defined in section 5.2. Let Ji and J c
i

the sets of elements crossed by Si and Sc
i , respectively. The shielding zone radius dS determines

the set of elements ZSi
belonging to the shielding zone of Sc

i as:

ZSi
= {e ∈ {1, ..nelem}; min

k∈J c

i

dek ≤ dS } (18)

At a given time step, an element e will only be allowed to fail if at least one of the following
conditions are fulfilled at that time: 1) the element does not belong to the shielding zone of
any active crack (e /∈ ZSi

∀i) or 2) the element belongs to a still not consolidated part of a
crack (e ∈ J \J c

i ).

Typically, dS takes a value corresponding to the element size. In such a way that the
propagation of two cracks through the same element is precluded.
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6.2. Bifurcation unfolding: Viscous perturbation

As suggested above, the selection of the correct branch in the presence of a bifurcation point in
the equilibrium space entails, in principle, a bifurcation analysis which is not an easy task since
it requires resorting to costly branch-switching methods ([21]). A less expensive alternative is
to perturb the original problem in order to unfold the bifurcation (see figure: 8 ) such that, in
this way, the equilibrium path becomes unique ([21]). Certainly, the problem of determining
the perturbation that yields the correct (the most stable) solution is not trivial and would
require resorting to some kind of perturbation sensitivity analysis. In this sense, it is also
possible to propose a perturbation having a physical meaning that helps to understand the
effects that it will entail. Then, its performance with respect to experimental information and
to what is physically expectable has to be tested by means of numerical simulations.

Here a viscous perturbation acting at the discontinuity interface in order to achieve a correct
unfolding of the equilibrium path is proposed. As a consequence some important uniqueness
results are obtained as it is shown in next sections.

6.2.1. Variational Formulation Let us state the following variational boundary value problem
(VBVP) corresponding to a solid Ω (whose boundary is denoted by ∂Ω consisting of the disjoint
subsets Γσ and Γu, where tractions and displacements are, respectively, prescribed) with an
internal discontinuity interface S (see figure: 9 ):

∫

Ω

∇Sη : σdΩ =

∫

Ω

b · η dΩ +

∫

Γσ

t∗ · η dΓ ∀η ∈ V (19)

where V is the space of admissible variations of the displacements (virtual displacements),
whose characteristic element has the following form:

η = η̄+HS η̃ (20)
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Figure 9. Boundary value problem.

, b is the body force density vector and t∗ is the traction vector prescribed on Γσ.
After some mathematical treatment, it can be shown that the Euler-Lagrange equations

that correspond to problem (19) if one considers (20) (see [33] for the proof) are

∇ · σ + b = 0 in Ω\S (momentum balance) (21)

σ · ν = t∗ on Γσ (prescribed tractions) (22)

σΩ+ · n − σΩ− · n = 0 on S (outer traction continuity) (23)

σΩ+ · n − σS · n = 0 in S (inner traction continuity) (24)

where ν is the outward normal to ∂Ω.
Now, let us consider the following viscous surface forces acting at S:

t̃ = γ̄[[u̇]] in S (25)

where γ̄ > 0 is a small viscosity-like parameter.
Now, let us propose the following viscosity-perturbed VBVP:

∫

Ω

∇Sη : σdΩ =

∫

Ω

b · η dΩ +

∫

Γσ

t∗ · η dΓ +

∫

S

γ̄[[u̇]]
︸︷︷︸

t̃

· η dΓ ∀η ∈ V (26)

Thus, the Euler-Lagrange equations corresponding to problem (26) are

∇ · σ + b = 0 in Ω\S (momentum balance) (27)

σ · ν = t∗ on Γσ (prescribed tractions) (28)

σΩ− · n − σΩ+ · n =γ̄[[u̇]] in S (perturbed outer traction continuity) (29)

σS · n − σΩ+ · n =γ̄[[u̇]] in S (perturbed inner traction continuity) (30)

From equations (26), and (30), it can be checked that the original equations (19), (23),and
(24) are recovered as the damping-like parameter γ̄ tends to zero.
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Uniqueness The main advantage of the perturbed problem (26) over its unperturbed version
(19) comes from the uniqueness result for the displacement jump [[u]] that we obtain here.

Let us consider that, for some time tB (the bifurcation time), two solutions of problem (26)
in terms of the displacement jump emerge as bifurcated branches from the same fundamental
branch. Let us denote the corresponding stress and rate of displacement jump fields as σ1, [[u̇]]1,
for the first branch, and σ2, [[u̇]]2, for the second one. Let us also define ∆(•) := (•)2 − (•)1.
Then, since equation (26) has to hold for both solutions, substraction for both cases yields:

∫

Ω

∇Sη : ∆σdΩ =

∫

S

γ̄∆[[u̇]] · η dΓ ∀η ∈ V for t = tB (31)

Since the bifurcation time tB is characterized by two solutions emerging from the same
instantaneous values at the fundamental branch but with different evolutions: i.e.:

∆[[u]] = ∆σ = ∆ε = 0 for t = tB (32)

∆[[u̇]] = [[u̇]]2 − [[u̇]]1 6= 0 (a)
∆ σ̇ = σ̇2 − σ̇1 6= 0 (b)

for t = tB (33)

substitution into equation (31) reads
∫

S

γ̄∆[[u̇]] · η dΓ = 0 ∀η ∈ V (34)

Consequently, since ∆[[u̇]] ∈ V, taking η =∆[[u̇]] equation (31) reads:
∫

S

γ̄∆[[u̇]] · ∆[[u̇]] dΓ =

∫

S

γ̄ ‖∆[[u̇]]‖
2

dΓ = 0 ⇒ ∆[[u̇]] = 0 for t = tB and ∀x ∈S (35)

which contradicts equation (33)-(a). Therefore no bifurcation, in terms of the displacement
jump produced by the crack arresting and activation, can occur for γ̄ > 0 . This states the
beneficial effects of the viscous perturbation (25), on the uniqueness of the solution regardless
of the size of the perturbing viscosity γ̄ > 0 .

6.2.2. Estimation of a critical time step The above uniqueness results guarantee that
displacement jump bifurcation is avoided at the continuum level. However, in the context
of a time advancing algorithm, it is expectable that the uniqueness of the discretized problem
will depend on some critical value limiting the time step size (this can visualized in figure:
8). Then, all values of the time step size smaller than the critical time step will guarantee
uniqueness of the time discretized problem. Here an estimate for this critical value is proposed.

When the so-called non-symmetric formulation of finite elements with elemental enrichment
is used to discretize the rate form of a BVP corresponding to a solid undergoing strong
discontinuities, the following expression in matrix form of the residual forces rate at time
t + ∆t is obtained (see [28]):

[
Kdd Kdα

Kαd Kαα

]

︸ ︷︷ ︸

Kt+∆t

{

ḋt+∆t

α̇t+∆t

}

︸ ︷︷ ︸

ȧt+∆t

=

{

ḟt+∆t

0

}

︸ ︷︷ ︸

Ḟt+∆t

(36)
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where dt+∆t is the vector containing the regular displacement degrees of freedom, αt+∆t is
the vector having the degrees of freedom associated with the displacement jumps, and ft+∆t

is the external forces vector. In equation (36) Kαα has a diagonal-banded structure:

Kαα =





· 0 0

0 K
(e)
αa 0

0 0 ·



 (37)

where K
(e)
αa stands for a (ndim ×ndim, ndim= problem dimension) matrix corresponding to the

enriching discontinuous modes in element e.
The addition of the viscous perturbation (25) leads to the following perturbed discrete

problem:
[

Kdd Kdα

Kαd K̃αα

]

︸ ︷︷ ︸

K̃t+∆t

{

ḋt+∆t

α̇t+∆t

}

︸ ︷︷ ︸

ȧt+∆t

=

{

ḟt+∆t
γ̄
∆t

α̇t

}

︸ ︷︷ ︸
.

F̃t+∆t

(38)

K̃αα =





· 0 0

0 K̃
(e)
αa 0

0 0 ·



 K̃(e)
αa = K(e)

αa +
γ̄

∆t
1 (39)

where 1 stands for the unit matrix. Uniqueness of the incremental discrete BVP is ensured
if matrix K̃t+∆t in (38) is positive definite. However, checking the positive definiteness of
K̃t+∆t represents a high computational burden. On the other hand, considering that Kdd is
always positive definite, a way to assure positive definiteness of K̃t+∆t consists of ensuring

the positive definiteness of K̃
(e)
αα in equation (39) for every element e. Then, the problem of

finding the critical time estimate ∆tcrit of (38) can be posed as follows:

FIND ∆t such that (40)

K̂(e)
αα := K(e)

αα +
γ̄

∆t
1 is positive definite ∀e

Considering that (Bromwich bounds) λmin

(

K̂
(e)
αα

)S

≤ λ(K̂
(e)
αα) ≤ λmax

(

K̂
(e)
αα

)S

where

λmax(•), λmin(•), and λ(•) are the maximum, the minimum, and an arbitrary eigenvalue of a
square matrix (•), respectively, and that

λmin

[(

K̂(e)
αα

)S
]

= λmin

[(

K(e)
αα

)S
]

+
γ̄

∆t
≥ 0 ∀e (41)

Then, from equation (41), we can find a (conservative) solution for (40) as

∆tcrit = min
e

(
γ̄

〈

−λmin

[(

K
(e)
αα

)S
]〉 ) (42)

where 〈•〉 stands for the ramp function of (•). Equation (42) entails the computation of

eigenvalues of the small (ndim × ndim) matrix
(

K
(e)
αα

)S

. Therefore, computation of ∆tcrit

is little time consuming.
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Figure 10. Plate with two geometrical imperfections: a: geometrical data; b: finite element mesh; c:

stress at point A versus displacement δ indicating the loading levels at which pictures of the crack
pattern (figure11) have been taken.

7. NUMERICAL APPLICATIONS

In this section representative examples of application of the CSDA are presented. Two of
them correspond to multi-crack propagation problems in 2D. The third one is a 3D analysis
of a well known test widely reported in the literature that has generally been solved two-
dimensionally by assuming plane stress conditions. With these examples, it is intended to show
the potentiality of the strategies described in this paper. Although the first example could be
run without the viscous perturbation strategy, it has proved essential in other examples, mainly
in 3D problems. Similar observations can be made with respect to the shielding zone that was
used with success in the first two examples where alternative strategies had failed.

An isotropic damage constitutive model, taken from reference [24], has been adopted in all
cases as non-linear continuum material to model the continuum and discontinuum behaviour
of concrete.

7.1. Rectangular plate with two geometrical imperfections

This test is inspired in a similar one presented in Diez et al. [10]. The dimensions of the
specimen, boundary conditions and material data are shown in figure 10. In order to induce a
strongly unstable behaviour a very brittle material was considered, by adopting a small value
of the fracture energy Gf . Plane strain conditions have been considered.

Figure: 10-c plots the stress (σxx) at point A (see figure: 10-b) versus the prescribed
displacement δ, with and without the artificial viscosity parameter γ̄. It is clearly observed
that small values of that parameter (whenever they are small) do not change the characteristic
response.

The localization zones are triggered by the two openings representing structural
imperfections. It is expected, from physical considerations, that the final failure mode

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2000; 00:1–6
Prepared using nagauth.cls



20 OLIVER J. ET AL.
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Figure 11. Plate with two geometrical imperfections: elements in inelastic loading (cracked elements)
for increasing deformation stages.

corresponds to a unique active crack as shown in figure: 11-c:h. However, the fundamental
equilibrium path shows two active symmetrical cracks, where the symmetry is a reflection
with respect to the central plate point (see figure: 11-a:b). This symmetry is broken after
crossing over a bifurcation point at the limit load (point (c) in figure 10-c) where one of the
two cracks arrests.

7.2. Mixed mode fracture of a double notched specimen

The double-notched concrete specimen of figure 12 was tested by Nooru-Mohamed [20].
Numerical simulations have also been presented in [19] and [35]. Figure 12-a shows the geometry
and applied loads. In order to induce a mixed mode of fracture the specimen was first loaded
horizontally and then stretched vertically. The horizontal load was kept constant during the
experimental test with a value Ph = 5.[kN ]. Whereas, monotonically increasing displacements
δv were imposed on the nodes at the top of the mesh.

For numerical modelling the considered material properties were: Young’s modulus: E =
3.2 × 1010[Pa], Poisson’s ratio ν = 0.2, peak strength σu = 2.6 × 106[Pa] and fracture energy
Gf = 110.N/m. Plane stress conditions were adopted (thickness t = 0.05m), exclusion zone
size dS = 0.015m was adopted and a perturbation viscosity (γ̄ = 0.001Ns/m) was added to
help robustness of the iterative procedure.

The first (tensile) principal stress direction was used for determining the (orthogonal to it)
crack propagation direction. The corresponding pattern of crack path candidates (the envelopes
of the second principal stress field) are shown in figure: 12-b. The shielding zones are displayed
in figure: 12-c.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2000; 00:1–6
Prepared using nagauth.cls



A CONTINUUM APPROACH TO THE NUMERICAL SIMULATION 21

0.0 0.02 0.04 0.06

16.

10.

6.

4.

0.

0.08 0.10 0.12 0.14 0.16

(a)

(b)

(c)

(d)

(e)

(f)

0.2m

0
.1

m
0

.1
m

P

P

v v

h

d

(a) (b)

(d)

Normal force P (kN)
v

-3
Normal displacemen (x10  m)dv

(c)

shielding
zones

Figure 12. Double notched specimen: a: geometry and loading system; b: crack path candidates
(envelopes of the second principal stress field); c:shielding zones; d vertical load vs. displacement

curve indicating the load levels corresponding to the cracking states of figure 13.

In figure: 13 a sequence of deformation and the evolution of several cracks are shown by
means of pictures corresponding to the points in the curve of figure: 12-d. We notice again that
the solution at early stages, including geometry and loading system, is symmetric with respect
to the central point. However, the final solution displays a unique active (propagating) crack.
Therefore, the same mechanism of breaking symmetry by means of a bifurcation procedure,
already shown in the previous example takes place here.

7.3. Four-point bending test

From the original proposal by Arrea et al. [2] this test has been widely used to check numerical
models in 2D cases (see for instance [31], [7] and [32]). Here a complete three-dimensional
simulation in the context of the proposed CSDA is presented.

The geometry and loading conditions are shown in figure: 14-a:b. The material properties
were: Young’s modulus: E = 2.7 × 1010[Pa], Poisson’s ratio ν = 0.2, peak strength σu =
2. × 106[Pa], fracture energy Gf = 100.N/m., exclusion zone size dS = 0.15m and the
perturbation viscosity (γ̄ = 0.01Ns/m). The deformed mesh is displayed in figure: 14-c and
the load P1 versus displacement point δ1 are plotted in 14-d. As commented above, the use of
finite elements with elemental enrichment allows the elemental condensation of the additional
discontinuity modes. This results into a moderate computational cost of the corresponding
finite element analysis. As a matter of example, the three dimensional simulation allowing to
trace the force-displacement curve in figure: 14-d, which was carried out in a personal computer
equipped with an Intel/Pentium4 processor at 2,25 MHz. and 2Mb.of RAM, took, for a finite
element mesh of 1681 tetrahedra and 1596 regular degrees of freedom, a CPU time of about
20 minutes.
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Figure 13. Mixed mode test: elements in inelastic loading for increasing deformation stages

8. FINAL REMARKS

Contributions to the numerical simulation of material failure in geomaterials in the context
of the CSDA have been addressed in this work. Some final remarks on this novel aspects are
given next:

• A heat conduction-like algorithm, to trace the crack paths, has been presented as an
alternative to propagation techniques to track multiple strong discontinuities. It also
allows and immediate extension from 2D to 3D cases. Indeed, since this algorithm
accompanies the standard mechanical counterpart in the simulation process one could
think of a cumbersome implementation and a significative increase of the computational
costs. This is not the author’s experience. Since the thermal-like problem is driven on the
same finite element mesh than the mechanical one, no input heat flux is considered, and
no boundary conditions other than the (trivial) adiabatic ones in the geometric boundary
and two prescribed temperatures at the interior are imposed, many heavy implementation
aspects are skipped. In essence, only the construction of the classical stiffness matrix for
a heat conduction problem in equation (17) is the additionally required implementation.
The resulting linear system can be either solved specifically or by a call to the solver of
the used finite element package. Of course if that finite element package already allows
for a thermal-mechanical problem, as the one used for this work [8], the implementation
is almost trivial and only requires consideration of the specific conductivity tensor in
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Figure 14. Four point bendig test: a) geometrical dimensions and loading system b) finite element
mesh c) Deformed mesh d) load vs. displacement curve.

equation (15). As for the resulting computational costs, and since the involved problem
is linear with only one degree of freedom per node and performed, at most, once every
time step, they are almost negligible in front of the remaining costs of the traditional
non-linear iterative procedure.

• From the author’s experience, numerical simulations of multiple strong discontinuities
exhibit, some times, spurious secondary cracking which do not necessarily come from
a physical mechanism. The flatness of the stress distribution in the propagating crack
tip neighborhood, in some cases, plus the numerical interpolation error induces, at some
stages of the analysis, spurious cracking which causes troubling numerical responses. The
shielding zone technique tries to increase robustness in front of this problem. In most
of cases a shielding zone radius ds in equation (18) equivalent to the size of one or two
elements is enough to prevent spurious secondary cracking.

• Multi-cracking problems introduce additional difficulties in the analysis. Combinations
in terms of arrest and activation of the different cracks translate into bifurcation points
in the equilibrium curve which should be resolved by some numerical procedure. In this
paper, a technique to unfold the equilibrium path by introducing a viscous perturbation
force acting on the discontinuity interfaces has been proposed. A critical time step is
consequently derived to ensure algorithmic uniqueness in terms of the displacement
jump. Though some times the proper load-response curve can be traced skipping that
procedure, in most of the numerical simulations performed in this work on multi-cracking
problems, the use of this technology has proved crucial, either to obtain physically sound
numerical results or to increase robustness and, thus, decrease in a substantial manner
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the required computational time. The value of the perturbing viscosity γ̄ in equation (30)
has to be determined to keep in balance two aspects: 1) not to significantly change the
structural response, mainly the dissipated energy, with respect to the same unperturbed
problem and 2) not to decrease the critical time step ∆tcrit in equation (42) as to
substantially increase the number of time steps necessary to solve the non-linear problem
. Although more general studies should be performed for a wider range of problems, this
seems to be a promising ingredient to include in numerical simulations of material failure.
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