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Abstract: The development of the world cannot be separated from energy: the energy crisis has
become a major challenge in this era, and nuclear energy has been applied to many fields. This paper
mainly studies the stress change of reaction pressure vessels (RPV). We established several different
physical models to solve the same mechanical problem. Numerical methods range from 1D to 3D;
the 1D model is mainly based on the mechanical equilibrium equations established by the internal
pressure of RPV, the hoop stress, and the axial stress. We found that the hoop stress is twice the
axial stress; this model is a rough estimate. For 2D RPV mechanical simulation, we proposed a new
method, which combined the continuum damage dynamic model with the transient cross-section
finite element method (CDDM-TCFEM). The advantage is that the temperature and shear strain
can be linked by the damage factor effect on the elastic model and Poission ratio. The results show
that with the increase of temperature (damage factor µ̂, d̂), the Young’s modulus decreases point
by point, and the Poisson’s ratio increases with the increase of temperature (damage factor µ̂, Et).
The advantage of the CDDM-TCFEM is that the calculation efficiency is high. However, it is unable
to obtain the overall mechanical cloud map. In order to solve this problem, we established the
axisymmetric finite element model, and the results show that the stress value at both ends of RPV
is significantly greater than that in the middle of the container. Meanwhile, the shape changes of
2D and 3D RPV are calculated and visualized. Finally, a 3D thermal–mechanical coupling model is
established, and the cloud map of strain and displacement are also visualized. We found that the
stress of the vessel wall near the nozzle decreases gradually from the inside surface to the outside,
and the hoop stress is slightly larger than the axial stress. The main contribution of this paper is
to establish a CDDM-TCFEM model considering the influence of temperature on elastic modulus
and Poission ratio. It can dynamically describe the stress change of RPV; we have given the fitting
formula of the internal temperature and pressure of RPV changing with time. We also establish a
3D coupling model and use the adaptive mesh to discretize the pipe. The numerical discrete theory
of FDM-FEM is given, and the numerical results are visualized well. In addition, we have given
error estimation for h-type and p-type adaptive meshes. So, our research can provide mechanical
theoretical support for nuclear energy safety applications and RPV design.

Keywords: RPV; FDM-FEM; damage model; adaptive mesh; axisymmetric method; stress cloud map;
multi-physics model

1. Introduction
1.1. Research Motivation and Significance

Nuclear energy plays an important role in today’s energy system, especially nuclear
power generation. Nuclear energy is a safe, clean, and economical energy source [1].
Meanwhile, it has many advantages, such as the small size of reaction equipment, slowing
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down the greenhouse effect, and releasing huge energy in a short time. The main negative
impact is that nuclear accidents are prone to nuclear radiation and nuclear pollution.
Therefore, the quality of nuclear pressure vessels must be up to standard before they
can be used, including operating specifications, regular security inspections, etc. The
design of pressure vessels and safety performance evaluation is also an important research
topic [2,3]. The force analysis of RPV will also use some knowledge of extreme mechanics,
especially for the welding joints of nuclear reactor nozzles. Due to the limited load, stress
concentration and various cracks are prone to occur here. The ultimate load is mainly
determined by the overall plastic yield of the shell material [4,5]. When the yield strength
is low, it has almost no effect on the crack size. As yields increase, cracks will also increase.
Since the pressure vessel is operated in a high-temperature environment, many physical
parameters will change, such as the density, Young modulus, Poisson ratio, and so on. In
fact, during normal operation, nuclear pressure vessels are in a multi-physics environment,
such as operating under the combined effects of high temperature, thermal shock, coolant,
nuclear radiation, etc. In addition, temperature and thermal shock may cause corrosion and
damage to the RPV cladding. These factors are essential in the design of RPV and in the
later stage of quality inspection. However, there are few theories and models in this field
that need to be improved urgently, which is the purpose and significance of our research.

1.2. Related Work

In addition, pressure vessel is the core component of the design and operation of
next-generation reactors. Fatigue damage analysis, crack propagation simulation, and pipe
opening stress calculation are usually required for RPV. However, many models belong
to static mechanical analysis, and the Young’s modulus and Poisson’s ratio of the model
are calculated according to fixed values. A damage model was established to describe
the dynamic changes of Young’s modulus and Poisson’s ratio. The reliability of RPV also
includes some uncertain factors, including the existence of the coupling of internal pressure
and inertial force, combined with probabilistic fracture mechanics, estimation of stress
intensity factors, and in turn, these works can help to analyze the pressure vessel’s fracture
and reliability analysis [6,7]. The mechanical properties and electromagnetic properties
are the external performance under irradiation [8]. These advantages are beneficial to
establish the nondestructive evaluation technology of embrittlement. Numerical calculation
combined with the local nonlinear dynamics method and this criterion based on the
critical splitting stress have greatly improved the global static method to describe the
crack propagation.

The structural damage dynamic model is usually used in combination with the fatigue
analysis model. In continuum mechanics, the damage is calculated as a post-processing
of elastic or elastoplastic macroscopic analysis. However, this important work has not
been cited in the mechanical research of RPV, which also reflects the uniqueness of our
work. The damage is considered to be isotropic, and there is a micro-defect closure effect
on both macro and micro scales [9]. Secondly, the damage evolution equation can explain
different damage mechanisms when forging alloy materials. The numerical results show
that the damage evolution equation can reflect the anisotropic accelerated creep and creep
fracture time under different stress levels and loading directions [10]. Through the numeri-
cal simulation of the representative volume element (RVE) of quasi-brittle materials, an
anisotropic damage model with the least internal variables can be constructed [11]. The
orientation distribution function of the two elastic modulus is numerically determined, and
the influence of the nucleation and propagation of microcracks is considered by the phase
field method. In reference [12], an energy-based damage model is proposed to simulate
the crack propagation of very low cycle fatigue (VLCF). This model can be used to predict
the failure period, and the comparison of fracture surfaces also shows good consistency.
The above model is only applicable to the damage model of a mechanical single field
independent of temperature change, which also reflects that the research work in this paper
is different from the current model. We consider the influence of physical information
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such as temperature and shear strain on the material. The fatigue damage analysis of RPV
requires a variety of theories to solve, including prediction of the crack growth of steel
RPV based on the maximum main stress propagation standard and combination with the
probability direction standard to predict the unstable crack path [13–15].

The cross-section FEM has the characteristics of fast calculation, stratification, and
local mechanics, and it has been widely used to solve various engineering problems [16–18].
However, they are all numerical theories of the static cross-section FEM, and there are few
transient cross-section FEM methods. Transient energy studies the mechanical changes
in each time period, which is wider than the static practical range. This is also the reason
why this paper uses the transient cross-section FEM to study the nuclear pressure vessel.
Changsik provides a simple method to estimate the cross-section stress distribution of
the nozzle designed according to Section 3 of the ASME code. This method requires the
geometric information of pressure vessels and nozzles. The limitation of this method is
that the stress distribution in the cross-section needs to use accurate stress concentration
factors, and the method discussed is only effective under internal pressure [19]. The error
of the RPV stress theoretical analysis method for 2D cross-section FEM analysis is relatively
large at the edge. Reference [20] derived the accurate theoretical formulas of radial and
axial displacement of cylindrical vessels and pipelines under thermal stress through the
fourth-order differential equation. The edge effect has an important influence on the
geometric deformation of pressure vessels and pipelines under thermal mechanical load.
The maximum relative error of radial displacement at the edge reaches 42.2%, and the
maximum relative error of axial displacement reaches 28.5%. Sectional FEM is also used to
study the influence of buckling and post-buckling behavior of composite laminates [21].
The results are compared with those of two finite element models. Residual stresses
have a significant influence on the buckling and post-buckling behavior of closed-section
thin-walled laminated structures.

Recently, there have been some simulation models of RPV. The study of stress intensity
of the RPV pipe mouth is generally controlled by parameters such as size, shape, inner
radius and thickness of the nozzle, etc. It is concluded that the optimal design of the nozzle
can minimize the stress intensity (Tresca yield criterion) and conflict between the quality of
RPV [22]. However, the working environment of RPV belongs to multi-physics and needs to
consider the interaction of temperature and stress, which is also the difference of the nozzle
model established in our paper. In addition, we also compare the axial stress and hoop
stress. What is more, through simulation, three-dimensional thermal hydraulic parameter
distributions can be obtained; with the increase of the injection rate, the disturbance of the
temperature field and the velocity field becomes more intense, and it is more likely to cause
thermal fatigue [23,24].

Pressurized thermal shock (PTS) also affects the structural integrity of the pressurized
water RPV. The literature [25,26] studies the pressurization–thermal shock phenomenon in
pressure vessels (RPV). The results show that the assessment of crack initiation, stopping,
and tearing instability in thermal shock (PTS) events (of RPV) is studied. According
to the new results, the tearing process of RPV is still stable even for large initial cracks
larger than the maximum assumed crack size in the code [27,28]. The most important
performance factor is mainly the application of fluid and probabilistic fracture mechanics to
comprehensively evaluate the structural integrity of RPV under hypothetical PTS accidents.
When the emergency nuclear cooling (ECC) water is injected, a large temperature gradient
will be generated, which will lead to a large thermal stress in the RPV wall. Predicting the
thermo-mechanical behavior of the pressure vessel can also improve the safe coefficient,
optimizing the ECCS performance [29,30]. Other literature work thermal shock force is
generally in the form of a graph. In this paper, the fitting formula of thermal shock force and
temperature is given, which is convenient for outputting the function value corresponding
to any moment during the simulation process.

In addition, regarding the issue of stress prediction, synchronization accelerator X-ray
diffraction measures the stress generated by the clad pressure vessel steel during thermal
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shock. Experimental measurements show that the peak stress intensity factor occurs during
thermal shock, rather than in a steady state [31]. The internal structure of the pressure
vessel is more complicated and accompanied by robust radiation, so the experimental mea-
surement is relatively difficult. At present, ultrasonic technology can be used to measure
the stress of the pressure vessel, and ultrasonic transducers with different frequency ranges
are used to evaluate the hoop and axial residual stress [32]. The experiment indicates that
it is limited, the calculated stress and ultrasonic measurement results have a high degree
of consistency. In addition, the elements added in RPV steel will affect the toughness and
crack resistance of the material. Figure 1 below shows the evolution of the main chemical
elements of RPV in China in the last 40 years. The key properties of nuclear RPV are high
strength, good toughness, corrosion resistance, good compatibility with coolant, stable
microstructure, good welding, hot and cold processing performance, and developing to an
ultra-high strength direction.

Cr-Ni-Mo-V Mn-Ni-Mo Mn-Ni-Mo Ni-Cr-Mo

645-3 S271 SA508-3 SA508-4

1960 1973 1981 2004 2007

+ Ni

18MnMoNb Nb Microlith V Microlith

Figure 1. Development history of main metal elements of RPV in China.

Furthermore, there are also many numerical methods for pressure vessel stress eval-
uation, such as the extended 3D finite element method (XFEM) to calculate the stress
field of the reactor pressure vessel (RPV). The sub-model contains three types of cracks:
axial, circumferential, and inclined directions [33]. However, there are a few coupling field
simulation models with time term for RPV. In this paper, the transient thermal–mechanical
coupling model is studied, which is different from other research work. We use FDM-FEM
to discrete the 3D pipeline port area. In addition, there are also multi-scale coupled numeri-
cal methods for force analysis of pressure vessels [34], and simulation of thermo-hydraulic
phenomena (such as heat, mass, and dissolution transmission in nuclear pressure vessels
(RPV)). Four subsystems have been solved; the parameter correlation of RPV can more
realistically react the heat transfer simulation of the pressure vessel. Reference [35] FVM
is reliable for solving the neutron diffusion equation, and it can obtain an accurate three-
dimensional distribution of neutron flux and power of the core. For a metal pressure vessel,
generally, corrosion-resistant materials are used to prevent the material from becoming
fragile due to rust and chemical attack, and the tensile strength will be reduced. Eventually,
it will cause bursting under high internal pressure. Actual nuclear pressure vessels are
composite materials. There are many finite element methods for pressure vessel struc-
tures/components and pipelines [36]. They even include linear and nonlinear, static and
dynamic, stress and deflection analysis, thermal problems, fracture mechanics problems,
and solid coupling [37,38]. COMSOL, ANSYS, ABAQUES, etc. are commonly used in the
finite element analysis software of pressure vessels and pipelines.

1.3. Contributions

The main contributions of this article are four points. Firstly, this paper proposed a sim-
plified one-dimensional RPV estimation formulas for axial and hoop stress and introduces
the working principle of RPV. The second contribution is that we proposed the continuous
damage dynamics model combined with the transient cross-section FEM Method (CDDM-
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TCFEM), which can adapt to the variable parameter mechanical calculation model in the
high-temperature environment. The change trend of Young’s modulus and Poisson ratio
is calculated and visualized. The third contribution is that we use axisymmetric FEM to
analyze the nuclear pressure vessel, which not only improves the calculation speed but
also obtains the overall mechanical change cloud map. A variable parameter model is more
accurate than traditional fixed parameter calculation. In addition, we found that the stress
at both ends of the RPV was significantly greater than that in the middle. The fourth contri-
bution is that we build the physical model of the mechanical and thermal coupling, analyze
the mechanical change of the RPV pipe mouth, and calculate the difference between the
pipe mouth axial stress and loop stress, and finally the specific temperature and mechanical
change cloud diagrams are given. In a word, our work is beneficial to the structural design
and the RPV’s security assessment.

1.4. Structure and Framework of This Paper

The structural arrangement and design of this paper consists of five sections. Section 2
mainly consists of two parts. Part one is a one-dimensional simplified mechanical equilib-
rium problem, which describes the internal pressure and axial stress, and the equilibrium
problem of hoop stress. Part two mainly introduces the continuous damage dynamic model
and the numerical theory of cross-section finite element (DDM-TSFEM). We convert it
into a two-dimensional section to solve. Section 3 mainly introduces the axisymmetric
finite element method. We obtained the three-dimensional stress–strain cloud map of the
pressure vessel through thermal shock force, which is more intuitive than the section finite
element method. Another feature of this model is the addition of deformation. Section 4 is
mainly about the thermal field–force field coupling of the RPV pipe mouth physical model.
By establishing three-dimensional transient solid heat transfer and elastic mechanics equa-
tions, the axial and radial stress variation trends are finally obtained at different times. The
biggest feature of this example is that the stress change at the RPV nozzle is considered.
Section 5 is mainly a summary and outlook and provides the relevant research conclusions
of this paper and the problems that need to be studied subsequently.

2. RPV Working Principle and Internal Structure of Nuclear Power
2.1. RPV Working Principle of Nuclear Power

Nuclear power plants can convert nuclear energy into electrical energy for life and
industrial use. The core component of nuclear power plants is nuclear pressure vessels.
Common nuclear power plants can be divided into pressurized water reactor nuclear power
plants, heavy water reactor nuclear power plants, boiling water reactor nuclear power
plants, and fast reactor nuclear power plants according to different reactor principles. At
present, China’s main nuclear power plants are composed of pressurized water reactor
nuclear power plants and heavy water reactor nuclear power plants. More than 60% of the
world ’s nuclear power plants are PWR nuclear power plants, which are mainly composed
of reactors, steam generators, steam turbines, generators, and related system equipment.

At present, in nuclear power plants, the role of reactors is to conduct nuclear fission
and convert nuclear energy into heat energy from water. Water as a coolant absorbs the
heat generated by nuclear fission in the reactor, and water at high temperature and high
pressure becomes saturated steam. The steam pressure promotes the rotation of the steam
turbine, and the heat energy is converted into mechanical energy. Then, the steam turbine
drives the generator to rotate and converts mechanical energy into electrical energy. The
cooled water is pumped back to the reactor by the main pump and heated again. Thus, the
cycle is repeated to form a closed cycle of heat absorption and heat release. The pressure
of the loop is controlled by the regulator. Usually, the primary circuit and its auxiliary
systems and plants are collectively referred to as nuclear islands (NIs). In summary, the
PWR nuclear power plant converts nuclear energy into electrical energy in four steps,
which are implemented by four main devices:

(a) Reactor—converting nuclear energy into water heat.
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(b) Steam generator—transferring the heat from the high-temperature and high-pressure
water in the first loop to the water in the second loop, so that it becomes saturated steam.

(c) Steam turbine—converting the heat energy of saturated steam into the mechanical
energy of high-speed rotation of a steam turbine rotor.

(d) Generator—converting mechanical energy from the steam turbine into electrical
energy. To use power generation, they need to go through multiple complex processes.
The working principle diagram of the pressurized water reactor nuclear power plant
is shown in Figure 2.

Figure 2. Working principle diagram of the pressurized water reactor nuclear power plant.

2.2. RPV Classification and Internal Structure

The nuclear pressure vessel is an important device of nuclear power plants. High-
strength alloy steel (Fe, Mn, C, Zn, and other elements) is generally used in the vessel. The
internal material of the nuclear pressure vessel will encounter thermal impact force, high
temperature, strong radiation, crack propagation, chemical corrosion, and other factors
when working. It is difficult to measure the internal force by a direct experiment method.
Therefore, the finite element method can be used to solve the numerical solution according
to the elastic equation and boundary information. Example 1 mainly introduces the
geometric two-dimensional transient elastic equation of the continuum damage dynamic
model to solve the internal force of the nuclear pressure vessel. Common pressure vessels
can be divided into four grades according to temperature and internal pressure. The
classification results and scope standards are shown in Table 1.

Table 1. Classification of nuclear pressure vessels by temperature and pressure.

Pressure Classification Pressure Range Temperature Classification Temperature Range

Low-pressure vessel (L) 0.1 Mpa ≤ P < 1.6 Mpa Cryogenic container t < −20 ◦C
Medium-pressure vessel (M) 1.6 Mpa ≤ P < 10 Mpa Normal-temperature vessel −20 ◦C ≤ t < 150 ◦C

High-pressure vessel (H) 10 Mpa ≤ P < 100 Mpa Medium-temperature vessel 150 ◦C ≤ t < 450 ◦C
Super-high-pressure vessels (U) P ≥ 100 Mpa High-temperature vessels t ≥ 450 ◦C

The geometric dimensions of common nuclear reactor pressure vessels are generally
ellipsoidal spherical vessels. The inner shell of the pressure vessel is made of harder
steel materials such as austenitic stainless steel. Pressure vessels are commonly used key
equipment in the nuclear power plant, petrochemical, metallurgical, power generation and
aerospace sectors. They generally work in high temperature, high pressure, corrosion and
radiation environments. Especially nuclear pressure vessels, strong neutron radiation will
also cause continuous damage to the material and cause brittle fracture. In severe cases,
there is a risk of explosion. Therefore, pressure vessel design and internal load control
must be strictly implemented in accordance with the regulations. Currently, nuclear power
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plants mainly use nuclear fission to release energy. The internal structure of the nuclear
pressure vessel is shown in Figure 3.

核能在当今能源系统中占有重要作用, 尤其是核能发电. 核能作为一种安全、清洁、经

济能源. 它具有众多优势，如反应设备体积小, 减缓温室效应, 短时间内释放巨大能量. 负面

影响主要是核事故容易造成核辐射和核污染. 因此, 核压力容器在投入使用要求设备质量必

须达标, 操作规范, 定期安检等. 设计压力容器和安全性能评估也是一个重要的研究课题

[1,2]. 核压力容器受力分析也会使用到一些极限力学知识，特别是对核反应堆管嘴焊接头处，

由于极限载荷作用这里很容易出现应力集中和各种裂纹. 极限载荷主要由外壳材料的整体

塑性屈服决定，当屈服强度低时，对裂纹尺寸几乎没有影响, 随着屈服程度的增加，裂纹也

会出现加剧的现象[3]. 此外，压力容器的可靠性还包括一些不确定因素, 存在内压和惯性力

耦合的情况，结合概率断裂力学，估算应力强度因子，依次来对压力容器的断裂和可靠性进

行分析[4].
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Figure 3. Ilustration of the internal structure and important parts of the pressure vessel.

2.3. Four Model Assumptions of RPV

Before establishing the RPV model in this article, we need to give the assumptions of
each model, which will help the model to describe the scope of use more accurately.

Model 1: This model assumes that the material is isotropic, the internal pressure is
uniform, and the thickness of the container wall is greater than dm ≥ 0.05 m.

Model 2: The CDDM-TCFEM method assumes that the obtained cross-sections are all
continuous and uniform, isotropic materials. It satisfies the six assumptions of linear elastic-
ity theory, including continuity, complete elasticity, uniformity, isotropy, slight deformation,
and no initial stress. It is assumed that the continuous damage is a small defect, no obvious
crack is formed, and the temperature will not cause the creep of the RPV vessel wall.

Model 3: The axisymmetric model assumes that the RPV shell is a symmetrical
geometry, and the interior is subjected to a uniform outward pressure P.

Model 4: The thermal–mechanical coupling model of the pipe mouth assumes that the
RPV material is isotropic; the process we study only emits hot steam and does not release
the cooling liquid, because the release of the cooling liquid requires the addition of the
hydrodynamic Navier–Stokes equation. We assume that at each moment, the temperature
and pressure values remain relatively stable, and there is no sudden increase or decrease.

3. RPV Stress by the Simple Mechnical Balance

Model 1: Considering a simplified pressure vessel force analysis model, this vessel
with radius r and wall thickness d is subjected to an internal gage pressure or thermal
shock p along the longitudinal direction and hoop direction of the vessel to analyze the
longitudinal stress σl and hoop stress σθ . This model has axisymmetric coordinates; there
is no shear stress. When the working condition of the nuclear pressure vessel is stable,
we make a cut across the section of the RPV to analyze the longitudinal stress σl of the
spherical pressure vessel.
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Although the derivation process of the problem borrows the area to represent the axial
stress σl and the surface pressure F generated by the internal pressure P, the final formula
shows that the radius R and the thickness dm of the vessel are constant, and the final change
of the axial stress depends only on the internal pressure of the RPV. Therefore, the axial
stress obtained by the model belongs to a simplified one-dimensional approximation.

σl · dm · 2πr = p · πr2, σl =
pr

2dm
. (1)

Similarly, the circumferential stress is also symmetrical. We cut the vessel along
any axis. The tangential direction of the cylinder is the circumferential stress σθ , and the
equilibrium equation is established along the z direction. D is the diameter of the RPV, the
pressure P acts on the projection of the half section, and S = D

2 l sin α is balanced with the
circumferential stress σθ acting on the two sections. We can finally get:∫ π

0
pl

D
2

sin αdα = p · 2r · dm = 2dmlσθ , σθ =
pr
dm

. (2)

The above model is only a one-dimensional static analysis on the cross section, and the
calculated stress results are rough estimates. In fact, the three-dimensional force analysis of
the nuclear RPV cannot be obtained by this method. We also want to get the local stress
defects of the pressure vessel and the overall stress changes. When the nuclear vessel reacts,
the inside is affected by thermal shock. The following sections will introduce the other two
nuclear pressure vessel force analysis methods in detail. They are the cross-section method
and the axisymmetric method. The hoop stress and axial stress in static equilibrium are
illustrated in Figure 4.

核反应推热冲击力评估:
高温反应堆热冲击力的准确建模评估是一个很重要的理论模型，对于压力容器材料的正

常运行以及材料损伤程度都是有直接关联的. 本文将建立热冲击力与温度的关系表达式,
高温反应堆还会产生大量氢，需要对堆芯燃料和冷却剂的温度精准测量和控制. 此外，测量

结果能够帮助探测温度急剧上升现象，以避免反应堆压力容器、燃料模块、安全壳过早出现

故障，消除辐射物泄露的潜在风险. 目前，任何测量技术都会受到温度影响产生漂移, 很难

高精度测量. 本模型结合了最近 S.Derek Rountree等人提出的 LUNA核反应堆高精度温度测

量技术[1]. 该技术结合单模蓝宝石光纤（SMSF）传感器，能够在高辐射的核环境下工作提

供更精确的测量. SMSF传感器将无需在反应堆堆芯内放置任何部件，减轻测量漂移的问题，

提高传感器的使用寿命，并消除电子短路的风险. 该科研团队测试了核压力容器内部不同距

离的温度以及随着时间的变化关系图. 本文通过函数拟合得到了温度随时间变化的分段函

数:
To overcome the shortcoming in deterministic approach, probabilistic approach can be

adopted where the failure probability of RPV is evaluated using Monte-Carlo simulation (Sun et
al., 2018). Evaluation of fracture parameter of an RPV during the PTS event using two different
fracture mechanics approaches is discussed in detail in the following sections.


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.

2. A simplified physical model of pressure vessel:
Consider a simplified pressure vessel force analysis model, this vessel with radius r and wall

thickness d subjected to an internal gage pressure or thermal shock p. Along the longitudinal

direction and hoop direction of the vessel to analyze the longitudinal stress l and hoop stress h .

This model is a axisymmetric coordinates, there is no shear stress.

(a)Circumferential force analysis. (b) longitudinal direction force analysis.
Fig2.Force structure analysis of capsule-packed nuclear pressure vessel.

p

l(a) (b)

Figure 4. Stress estimation of capsule shaped nuclear pressure vessel. (a) Hoop stress of RPV. (b)
Axial stress of RPV.

4. Continuum Damage Dynamics Model with Transient Cross-Section FEM
4.1. Continuum Damage Dynamics Model

This section will introduce our proposed method continuum damage dynamics model
with transient cross-section FEM in detail, which is referred to as the CDDM-TCFEM
method. This model mainly assumes that the nuclear pressure vessel is an isotropic
material. A large amount of heat will be released instantaneously during the nuclear
fission reaction. The surrounding gas will form thermal shock, long-term erosion, high-
temperature effects, and microscopic cracks formed on the inner surface of the pressure
vessel. Residual stress cannot be ignored and will have a certain impact on the container
itself. In order to accurately describe the magnitude of the impact, we established a
continuum dynamic damage model [39,40]. First, the degree of damage of the material
needs to be defined, that is, the volume fraction of the part containing microscopic defects
on the surface of the material, which can be marked as w(t); then, the effective area of the
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material is Ã = A(1− w(t)). Through the stress definition, it is not difficult to obtain the
effective stress expression:

σ̃ =
F

A(1− w(t))
=

σ

1− w(t)
. (3)

This model introduces a symmetric fourth-order damage effect tensor M, that can
connect Cauchy stress σ with real stress σ̃. Their relationship is shown in Equation (4).{

σ̃ = Mσ σ̃ = Mijklσkl .

Mijkl =
1

1−d̂

(
(1− û)δikδjl + uδijδkl

) (4)

Considering the symmetry of the stress tensor, the Cauchy stress vector and real stress
vector are expressed as:

σT =
[

σ11 σ22 σ33 σ12 σ23 σ31
]
. (5)

σ̃T =
[

σ̃11 σ̃22 σ̃33 σ̃12 σ̃23 σ̃31
]
. (6)

In the matrix form of the damage effect tensor M, the variables û and d̂ represent
the two damage parameters. The variable û represents the damage effect of the Poisson-
dependent transverse shear deformation. The variable d̂ is a loss parameter related to the
internal temperature of the RPV [41–43]. Of course, we can refer to some of the work of
Lemaitre and Chaboche for related damage models. The damage effect tensor M is shown
in Equation (7).

M =
1

1− d̂


1 û û
û 1 û
û û 1 1− û

1− û
1− û

 (7)

In Equation (8), û and d̂ are two damage parameters; û represents the Poisson ratio
and transverse shear strain-related damage effect in the initial state. E0 and v0 are the
undamaged elastic modulus and Poisson’s ratio, and the corresponding initial values are
E0 = 206 Gpa and v0 = 0.3. After the material is damaged, the real elastic modulus and
the Poisson ratio are nonlinear functions as follows: E(û, d̂) = E0(1−d̂)2

1−4v0û+2(1−v0)û2

v(û, εt) = − v0−2(1−v0)û−(1−3v0)û2

1−4v0û+2(1−v0)û2 + ∆εt
(8)

The internal temperature T of the nuclear pressure vessel is generally controlled at
20–300 ◦C. This numerical experiment simulates the temperature change of [20, 600]. The
change of temperature will affect some physical parameters in the material, including the
Young’s modulus, yield strength, thermal conductivity, and thermal expansion coefficient.
In this model, the influence factor d of the damage dynamics model is modified to a function
that is positively correlated with temperature. This model only studies the part of the
internal temperature of the pressure vessel that is linearly increased, and it is in a periodic
high-temperature state for a long time in the later period. It belongs to a nonlinear change,
and the deformation will creep. This change can be described by the nonlinear relationship
between strain and time:

û = α ln(γT(t) + 1). (9)
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The damage caused by temperature to the container material is a nonlinear change
process. The functional relationship between the nonlinear part damage factor d̂ and
temperature is:

d̂ = κe1− Ti−Tmin
Tmax−Tmin . (10)

In Equation (8), where εt is a weak white noise, then εt obeys the standard normal
distribution, which can be denoted as εt ∼ N

(
ξ, σ2), and it satisfies the relationship

E(εt) = ξ, E
(
ε2

t
)
= σ2; the probability density function is shown in Equation (11):

f (εt) =
1√
2πσ

exp
(
− εt

2σ2

)
. (11)

In addition, the random disturbance sequence is added, which is equivalent to a
correction of Poisson’ s v value, making it closer to the actual real value. The model
assumes that the range of random disturbance is ∆εt = εt − εt−1 = 10−4. The sources of
uncertainty include the increase of martensite integral as well as the influence of uncertain
factors such as thermal shock force and crack propagation on the material. The value of
this model is to dynamically characterize the changes of Young’s modulus E and Poisson’s
ratio v with temperature T and shear strain γ. The nuclear pressure vessel works in a
high-temperature and high-pressure environment for a long time, and it is easy for the
material inside the vessel to encounter thermal shock and chemical corrosion as well as
the radiation of nuclear fuel and many other effects. Hence, it is essential to establish a
dynamic damage model to describe this physical damage.

The traditional method considers that the elastic modulus E and Poisson’s ratio v
change very little or as a constant value to calculate the stress of RPV. However, in practice,
these parameters change with temperature. Based on the continuous damage model,
some more appropriate parameter values can be obtained from our proposed model. The
influence of temperature on the material structure parameters is primarily considered. The
parameters

(
û, d̂, εt

)
represent a temperature-dependent variable. The temperature and

pressure inside the nuclear pressure vessel indicate a dynamic nonlinear change trend. In
the initial stage, the pressure vessel will instantly release a large amount of heat, but with
the addition of the coolant system, the temperature will gradually decrease.

4.2. Transient Cross-Section FEM Method

In this section, we will introduce a two-dimensional transient cross-section FEM
method. In other words, we use the CTFEM method to solve a two-dimensional linear
elastic equation with finite difference approximation for the time term and finite element
approximation for the space term. The pressure vessel can be divided into different sections
according to the radial and axial direction. So, this problem has been simplified to many
thin rings and rectangular slices: that is, turning a three-dimensional problem into a two-
dimensional problem [44,45]. The advantage of this method is that local details can be
observed and the solution time is relatively fast. If FEM combined with ARIMA method
can also be applied to the variable force prediction of RPV [46]. The time term T > 0 of
linear elasticity equation is discretized by the finite difference method, and the spatial term
Ω ⊂ R2 is discretized by the finite element method. The boundary area is denoted as
∂Ω. Partial parameters of the elasticity equation need to be combined with the model of
continuum damage dynamics. For the displacement of two-dimensional transient elastic
mechanics, there are two degrees of freedom on each mesh node, and the displacement
components along the x and y directions can be written in the form of vectors as follows
Equation (12).

u(x, y, t) = (u1(x, y, t), u2(x, y, t)). (12)
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Here, we use displacement u to represent the two-dimensional strain tensor matrix ε(u).

ε(u) =
(

εxx(u) εxy(u)
εyx(u) εyy(u)

)
=

 ∂u1
∂x

1
2

(
∂u1
∂y + ∂u2

∂x

)
1
2

(
∂u2
∂x + ∂u1

∂y

)
∂u2
∂y

 (13)

In the same way, we can use variable displacement u to represent the stress tensor
matrix σ(u).

σ(u) =
(

σxx(u) σxy(u)
σyx(u) σyy(u)

)
= λ tr(ε(u))I + 2µε(u)

=

(
λ
(
εxx(u) + εyy(u)

)
+ 2µεxx(u) 2µεxy(u)

2µεyx(u) λ
(
εxx(u) + εyy(u)

)
+ 2µεyy(u)

) (14)

The λ and µ are the Lame coefficients, and the elastic modulus Ê and the possion rate
v̂ represent the parameters solved in the structural damage model.

λ =
v̂Ê

(1− 2v̂)(1 + v̂)
, µ =

Ê
2(1 + v̂)

. (15)

The two-dimensional transient elastic equation can be simplified as:

ρutt −∇σ = f . (16)

Then, the solution space of the transient elasticity equation exists in u ∈ [0, T]×Ω;
differential Equation (16) can also be written in the form of a component equation. ρ̂(t) ∂2u

∂t2 −
(

∂σxx(u)
∂x +

∂σyx(u)
∂y

)
= fx

ρ̂(t) ∂2u
∂t2 −

(
∂σxy(u)

∂x +
∂σyy(u)

∂y

)
= fy

(17)

Boundary conditions include displacement boundary and force boundary conditions;
they are shown in Equations (18) and (19). The effect of the two boundary conditions can
indicate the initial state of the pressure vessel, and it clearly describes the boundary force
position and constraint conditions:

ui(x, y, t) = bi(x, y, t), (x, y, t) ∈ ΓD × [0, T], i = 1, 2. (18)(
σxx(u) σxy(u)
σyx(u) σyy(u)

)(
nx
ny

)
=

(
px
py

)
ΓN × [0, T]. (19)

The initial conditions corresponding to the displacement and velocity are as follows:

u1(x, y, 0) = g1(x, y), u2(x, y, 0) = g2(x, y) (x, y) ∈ ΓD = ∂Ω. (20)

∂u1

∂t
(x, y, 0) = vb1(x, y), (x, y) in Γ1. (21)

∂u2

∂t
(x, y, 0) = vb2(x, y), (x, y) in Γ2. (22)

In Equation (17), ρ̂(t) > 0 is the density of the pressure vessel, and the density
decreases slightly with the increase of temperature [47,48]. The right end function can be
denoted as f =

(
fx, fy

)T , Ω × [0, T] → R2, and the displacement function in the initial
boundary condition can be expressed as b = (b1, b2) : ΓD × [0, T]→ R2; the force boundary
condition is p =

(
px, py

)T , ΓN × [0, T]→ R2. Under the initial condition, when t = 0, the
corresponding displacement term function is g = (g1, g2)

T . The corresponding boundary
initial velocity is vb = (vb1, vb2)

T .
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Then, when combined with the variational principle, the transient elastic equation
is discretized. For any u = (u1, u2), v = (v1, v2) , and it satisfies the spatial relationship
ui ∈ V i = 1, 2, V is a Hilbert space; for any vi ∈ V i = 1, 2, (u, v) ∈ V ×V → B(u, v) ∈
R is a bilinear functional. F(v) =< f , v > is a continuous functional, and the following
relationship satisfies Equation (23).

B(u, v) = 〈 f , v〉 ∀v ∈ V. (23)

B(u, v) =
∫

Ω
ρ̂(t)

(
∂2u1

∂t2 v1 +
∂2u2

∂t2 v2

)
dxdy + a(u, v)

=
∫

Ω
f1v1dxdy +

∫
2

f2v2dxdy +
∫

ΓN

h1v1ds + h2v2ds.
(24)

Among them, B(u, v) and a(u, v) are bilinear functions, and the specific expressions
of u = (u1, u2) : Ω̄× [0, T]. ∀v1 : Ω̄ → R2, v1|ΓD

= 0 and ∀v2 : Ω̄ → R2, v2|ΓD
= 0, a(u, v)

are as follows in Equation (25).

a(u, v) =
∫

Ω
σ(symbolu) : ∇vdxdy =

∫
Ω

σ(u) : ε(v)dxdy

=
∫

Ω
λ(∇ · u)(∇ · v)dxdy +

∫
Ω

2µε(u) : ε(v)dxdy

=
∫

Ω
λ

(
∂u1

∂x
+

∂u2

∂y

)(
∂v1

∂x
+

∂v2

∂y

)
dxdy

+ 2µ
∫

Ω

(
∂u1

∂x
∂v1

∂x
+

1
2

(
∂u1

∂y
+

∂u2

∂x

)(
∂v1

∂y
+

∂v2

∂x

)
+

∂u2

∂y
∂v2

∂y

)
dxdy.

(25)

Of course, it can also be calculated directly, and the results obtained in the two forms
of Equations (25) and (26) are equivalent.

σ(u) : ∇v =

(
σ11(u) σ12(u)
σ21(u) σ22(u)

)
:

(
∂v1
∂x

∂v1
∂y

∂v2
∂x

∂v2
∂y

)
(26)

After finishing, we can get Equation (27)∫
Ω

σ(u) : ∇vdxdy

=
∫

Ω

(
λ

∂u1

∂x
∂v1

∂x
+ 2µ

∂u1

∂x
∂v1

∂x
+ λ

∂u2

∂y
∂v1

∂x
+ µ

∂u1

∂y
∂v1

∂y

)
+ µ

∂u2

∂x
∂v1

∂y
+ µ

∂u1

∂y
∂v2

∂x
+ µ

∂u2

∂x
∂v2

∂x
+ λ

∂u1

∂x
∂v2

∂y
+

λ
∂u2

∂y
∂v2

∂y
+ 2µ

∂u2

∂y
∂v2

∂y

)
dxdy

(27)

The right-hand function of variational Equation (23) can be written as Equation (28).

< f , v >=
∫

Ω
f1v1 + f2v2dxdy. (28)

The backward Euler scheme is used to discrete the time term. As for the time step
∆τ = T

N , N ∈ N+, the time used in step n is tn = n∆t, and the corresponding function
value is f n+1, u ∈ C0([0, T], V)

⋂
C2([0, T], H).(

d2u(t)
dt2 , v

)
+ α(u(t), v) = ( f (t), v) ∀v ∈ V, t ∈ [0, T]. (29)
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The initial conditions of the transient linear elastic equation are divided into displace-
ment and velocity.

u(0) = u0, u0 ∈ V. vb1 =
du(0)

dt
= u1, u1 ∈ H. (30)

The time term is discreted by the central difference scheme, and the terms un+1 ∈
V, 1 ≤ n ≤ N − 1 are to be solved such that we can get a semi-discrete variational
equation as follows in Equation (31).(

ρ̂(t)
un+1

h − 2un
h + un−1

h
∆t2 , v

)
+ a(un

h , v) = ( f n, v) ∀v ∈ Vh. (31)

u(0) = u0, u0 ∈ V. vb1 = u0 + ∆tu1, u1 ∈ H. (32)

The basis function of elastic plate displacement constitutes the finite element solution
space un

h =
(
un

1h, un
2h
)T, which satisfies the relationship u1h, u2h ∈ Uh = span

{
ϕj
}NF

j=1. NF
is expressed as the number of displacement components; then, the finite element solution
of the displacement component can be written as shown in Equation (33).

un
1h =

NF

∑
j=1

un
1j ϕj, un

2h =
NF

∑
j=1

un
2j ϕj. (33)

We choose the text function vh = (ϕi, 0)T, (i = 1, 2, . . . , NF); this is equivalent to
v1h = ϕi, v2h = 0. By moving terms and sorting equations, ∀v1h ∈ Vh, i = 1, 2, we can
obtain the form of the discrete function as follows in Equation (34).(

ρ̂(t)
(

un+1
1h − 2un

1h + un−1
1h

)
, v1h

)
+ ∆t2a(un

ih, v1h) = ∆t2( f n, v1h). (34)

Then, we bring Equation (33) into Equation (34), and we can get a displacement
component Equation (35).

∫
Ω

ρ̂(t)

(
NF

∑
j=1

un+1
1h ϕj ϕi − 2

NF

∑
j=1

un
1h ϕj ϕi +

NF

∑
j=1

un−1
1h ϕj ϕi

)
dxdy+

∆t2

[(
λ

(
NF

∑
j=1

un
1j

∂ϕj

∂x

)
∂ϕi
∂x

dxdy+ 2
∫

Ω
µ

(
NF

∑
j=1

un
1j

∂ϕj

∂x

)
∂ϕi
∂x

dxdy+

∫
Ω

λ

(
NF

∑
j=1

un
2j

∂ϕj

∂y

)
∂ϕi
∂x

dxdy +
∫

Ω
µ

(
NF

∑
j=1

un
1j

∂ϕj

∂y

)
∂ϕi
∂y

dxdy+

∫
Ω

µ

(
NF

∑
j=1

un
2j

∂ϕj

∂x

)
∂ϕi
∂y

dxdy

]
= ∆t2

∫
Ω

f n
1 ϕidxdy.

(35)

Similarly, we choose the test function vh = (0, ϕi)
T, (i = 1, 2, . . . , NF); this is equiv-

alent to v1h = 0, v2h = ϕi. ∀v2h ∈ Vh, i = 1, 2. The numerical discretization results of the
FDM-FEM method are as follows in Equation (36).(

ρ̂(t)
(

un+1
2h − 2un

2h + un−1
2h

)
, v2h

)
+ ∆t2a(un

ih, v2h) = ∆t2( f n, v2h). (36)

Bring Equation (33) into Equation (36), and we can get another displacement compo-
nent, as shown in Equation (37).
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∫
Ω

ρ̂(t)

(
NF

∑
j=1

un+1
2h ϕj ϕi − 2

NF

∑
j=1

un
2h ϕj ϕi +

NF

∑
j=1

un−1
2h ϕj ϕi

)
dxdy+

∆t2

[(
µ

(
NF

∑
j=1

un
1j

∂ϕj

∂y

)
∂ϕi
∂x

dxdy +
∫

Ω
µ

(
NF

∑
j=1

un
2j

∂ϕj

∂x

)
∂ϕi
∂x

dxdy+

∫
Ω

λ

(
NF

∑
j=1

un
1j

∂ϕj

∂x

)
∂ϕi
∂y

dxdy +
∫

Ω
λ

(
NF

∑
j=1

un
2j

∂ϕj

∂y

)
∂ϕi
∂y

dxdy+

2
∫

Ω
µ

(
NF

∑
j=1

un
2j

∂ϕj

∂y

)
∂ϕi
∂y

dxdy

]
= ∆t2

∫
Ω

f n
2 ϕidxdy.

(37)

Then, we can integrate Equations (35) and (36), so it is easily to obtain the vector
iteration formulas.

Xn+1 =

([
un+1

1j

]NF

j=1
,
[
un+1

2j

]NF

j=1

)T
, Xn =

([
un

1j

]NF

j=1
,
[
un

2j

]NF

j=1

)T
. (38)

Xn−1 =

([
un−1

1j

]NF

j=1
,
[
un−1

2j

]NF

j=1

)T
, b =

(∫
Ω

f n
1 ϕidxdy,

∫
Ω

f n
2 ϕidxdy

)T
. (39)

Using the same method, we can get the sparse matrices A, B, and C. Finally, we
transform the elastic differential equation into an algebraic iterative equation.

AXn+1 + BXn + CXn−1 = b. (40)

Further sorting out Equation (40), we can get vector Xn−1.

Xn+1 = −A−1BXn − A−1CXn−1 + A−1b. (41)

The initial iteration value can be obtained according to the boundary conditions, such as X0 =(
u0

11, u0
12, . . . , u0

1NF, u0
21, u0

22, . . . , u0
2NF
)T. Similarly, X1 = (u1

11, u1
12, . . . , u1

1NF, u1
21, u1

22, . . . , u1
2NF)

T. Fi-
nally, we can obtain the N-1 group transient displacement solutions by iteration, which can be
denoted as Xk, (k = 1,2, . . . N− 1).

4.3. Numerical Simulation with CDDM-TCFEM Method
4.3.1. RPV Axial Section Solved by CDDM-TCFEM Method

The middle part and both ends of the vessel are the key positions of mechanical
analysis. The nuclear pressure vessel cuts n equal parts along the longitudinal direction,
and each section is actually a rectangular slice. The inner side is subjected to thermal
shock, and the outer side is a free end. The upper and lower sides of the rectangle are
fixed. Then, the transient linear elastic equation is discretized according to the FEM-FDM
theory [49,50]. According to the material parameters, size, and boundary information of
the nuclear pressure vessel, the structural mechanics problem is solved according to the
principle of minimum potential energy or the variational method. In this example, the
ring area and the axial direction are considered. The rectangular regions are all discretized
by triangular elements of the upgraded spectrum. The two-dimensional transient elastic
equations can be written as shown in Equation (42). ρ̂(t) ∂2u

∂t2 −
(

∂σxx(u)
∂x +

∂σyx(u)
∂y

)
= fx

ρ̂(t) ∂2u
∂t2 −

(
∂σxy(u)

∂x +
∂σyy(u)

∂y

)
= fy

(42)

The displacement boundary conditions and the force boundary conditions correspond-
ing to the numerical examples are as follows:

(1) The displacement boundary conditions.
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u(x, y, t)|x=x0,y=y0,t = ut(x, y, t)|x=x0,y=y0,t = ū = 0 (x, y, t) ∈ Γup. (43)

v(x, y, t)|x=x0,y=y0,t = vt(x, y, t)|x=x0,y=y0,t = v̄ = 0, (x, y, t) ∈ Γdown . (44)

v|x=x0,y=y0,t = u|x=x0,y=y0,t = 0, (x, y, t) ∈ Γouter . (45)

Γup =

{
(x, y, t) | xi =

d
n

i, yi =
H
n

i, i = 0, 1, 2, . . . n, t > 0
}

. (46)

Γdown =

{
(x, y, t) | xi = 0, yi =

H
n

i, i = 0, 1, 2, . . . n, t > 0
}

. (47)

Γouter =

{
(x, y, t) | xi = a, yi =

H
n

i, i = 0, 1, 2, ..n, t > 0
}

. (48)

Among them, Γup and Γdown represent the upper and lower boundaries of the rectan-
gle. d is the thickness, and H is the height of the longitudinal section of the pressure vessel.

(2) The force boundary conditions.

The thermal shock force (the exterior force per unit volume) on the inside of the
rectangular section is f =

(
fx, fy

)T ; since the problem is a transient equation, f is a
function of t, and the corresponding force boundary conditions are:

nxσxx(xb, yb, t) + nyτxy(xb, yb, t) = p̄x, (xb, yb, t) ∈ Γinner . (49)

nxτxy(xb, yb, t) + nyσxx(xb, yb, t) = p̄y, (xb, yb, t) ∈ Γinner . (50)

Γinner =

{
(xb, yb, t) | xbi = d, ybi =

H
n

i, i = 1, 2, . . . n, t > 0
}

. (51)

nx = −1, ny = 0, p̄x = fx(t), p̄y = 0N. (52)

4.3.2. Radial Section Solved by CDDM-TCFEM Method

The radial section of the nuclear pressure vessel is a circle, the outer boundary belongs
to the free end, and the inner side is subjected to the thermal shock force f , which also
satisfies the two-dimensional transient elastic equation.

(1) The displacement boundary conditions.

The outer side of the circular section is a fixed end, the two components of the
displacement are zero, and the corresponding displacement boundary conditions are:

u(x, y, t)|x=x0,y=y0,t = ū = 0 (x, y, t) ∈ Γ1. (53)

v(x, y, t)|x=x0,y=y0
= v̄ = 0, (x, y, t) ∈ Γ1. (54)

Γ1 =

{
(x, y) | xi = R cos θi, yi = R sin θi, θi =

2πi
n

, i = 0, 1, 2, . . . n
}

. (55)

(2) The force boundary condition.

We denoted R as the outer radius and r as the inner radius; then, the thickness of the
pressure vessel can be written as d = R− r. The thermal shock force on the inside of the
pressure vessel is uniformly variable force of outward extrusion. For the thermal shock
force f =

(
fx, fy

)T acting on the inner side of the radial cross-section of pressure vessel, the
force boundary condition is as follows:

nxσxx(xb, yb, t) + nyτxy(xb, yb, t) = p̄x, (xb, yb, t) ∈ Γ2. (56)

nxτxy(xb, yb, t) + nyσxx(xb, yb, t) = p̄y, (xb, yb, t) ∈ Γ2. (57)

p̄x = fx
(
tj
)

cos θi, p̄y = fy
(
tj
)

sin θi. (58)
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Γ2 =

{
(x, y) | xi = r cos θi, yi = r sin θi, θi =

2πi
n

, i = 0, 1, 2, . . . n
}

. (59)

For the two-dimensional transient elastic mechanics problem, the numerical solution
can be solved according to the FDM-FEM theory; the time term is approximated by the
second-order central difference, and the space term is discretized by a finite element. Items
are discretized by triangular elements. For rectangular areas, they are finally divided into
380 domain elements, 58 edge elements, and 220 mesh vertices. As for the circular sections,
they are divided into 344 elements and 256 mesh vertices. For rectangular areas and circles,
all ring sections use LST elements, and the displacement field function can be expressed in
the following Equation (60).

u =
6

∑
i=1

ui Ni(ξ, η) , v =
6

∑
i=1

vi Ni(ξ, η). (60)

The six-node isoparametric LST element is composed of three vertices of a triangle
and the midpoints of three sides, and its shape function is as follows:

N1 = (2L1 − 1)L1 N2 = 4(1− L1 − L2)L1. (61)

N3 = [2(1− L1 − L2)− 1](1− L1 − L2) N4 = 4L2(1− L1 − L2). (62)

N5 = (2L1 − 1)L2. (63)

Among them, L1, L2 are area coordinates, which can be solved according to the rela-
tionship between area coordinates and rectangular coordinates. Li

Lj
Lk

 =
1

2A

 ai bi ci
aj bj cj
ak bk ck

. (64)

ai, bi, ci are replaced by the vertex coordinates of the triangular element.

ai = xjyk − xkyj, bi = yj − yk, ci = xk − xj. (65)

Then, according to Section 4.2, the transient linear elasticity theory of this paper can
be solved. This numerical experiment is mainly a dimensionality reduction processing
method, which simplifies the three-dimensional problem into a two-dimensional plane
problem, which makes the original problem easier to solve and improves the calculation
speed. At the same time, the rectangular section and circular section use the LST quadratic
element ratio. The accuracy of the approximation of the CST linear element is higher, and
some preprocessing of the parameters is required before the numerical solution. The outer
radius R = 3 of this numerical experiment, the inner radius r = 2.75 m, and the thickness
of the pressure vessel is d = R− r = 0.25 m. The material selected for the pressure vessel
is A508 metal, and its density will decrease with the increase of temperature. We fit the
density ρ̂(t) of the material with respect to the temperature T and find that it satisfies the
following functional relationship shown in Equation (66).

ρ̂(T) =
3

∑
i=1

αiTi = α0 + α1T + α2T2 + ... + α3T3. (66)

The fitting coefficient is α0 = 7865, α1 = −0.522, α2 = 4.69 × 10−4,
α3 = −2.78 × 10−7. The Root Mean Square Error (RMSE) is Ermse = 13.64, and the
goodness-of-fit R2 = 0.991. The fitting error is very small, which also shows that the vari-
able density function relationship established by us is reliable. In fact, the density ρ̂(t) of
our model is a function of change with time t, the varying density values can be obtained
from Table 2. Equation (67) obtains the functional relationship expression of temperature.
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According to the test data of the change of temperature inside the pressure vessel with
time, we found the fitting function of temperature with time t, which is in the form of a
piecewise function.

T(t) =

{
−29.3t2+45.14t+162.9

t+1.185 0 < t ≤ 6000
31.32t + 83.33 6000 < t ≤ 15000

(67)

The variation trend of the internal parameters of the pressure vessel under the struc-
tural damage model is shown in Figure 5 below. Figure 5a shows the relationship between
the internal temperature and thermal shock force of the pressure vessel with time. The
function relationship of temperature change with time can be used. Equation (67) describes
that the internal pressure of the pressure vessel is mainly generated by thermal shock, and
we use a nonlinear function to approximate the change of the thermal shock f (t) inside the
pressure vessel within 7250–7350s.

f (t) =
15

1 + e−
1
5 (x−7300)

+ 3, 7250 ≤ t ≤ 7350. (68)

Figure 5b contains the graph of the Young’s modulus of the cladding and the parent
material as a function of temperature obtained through experimental tests. According to the
data trend, the Young’s modulus E will decrease with the increase of temperature. Figure 5c
shows (under the continuous damage model) the three-dimensional variation of the elastic
modulus with the influencing variables u and d; while u and d are both temperature-related
functions, the change of u has a significant effect. The numerical results show that the elastic
modulus of the model with damage will decrease with the increase of u. For Figure 5d, it is
the change trend of Poisson rate under the model with damage.

In traditional linear elasticity theory, Young’s modulus and the Poisson rate are con-
stant. However, in the high-temperature and high-pressure environment, these physical
parameters usually change. This paper not only considers the influence of temperature but
also combines the damage factor. Therefore, the improved continuous structural damage
model satisfies this change rule. Figure 5d can observe that with the increase of u, the
Poisson rate increases, and u has a proportional relationship with the temperature function.
In other words, when the temperature range is 20–600, the Poisson rate will increase with
the increase of temperature. It exists in the range of v ∈ [0.305, 0.357]; from the definition of
Poisson rate, it can also show that the change value of transverse strain with the increase of
temperature is greater than that of longitudinal strain.

内部温度和热冲击力随着时间变化的关系趋势图. 温度变化随时间的函数关系可以用式子

(69)描述, 对于压力容器内部压力主要是热冲击力产生的, 我们使用非线性函数近似了

7250-7350s内压力容器内部热冲力 $f(t)$ 的变化的情况.

The variation trend of the internal parameters of the pressure vessel under the structural
damage model is shown in Figure 4 below: Fig4.(a) The relationship between the internal
temperature and thermal shock force of the pressure vessel with time. The function relationship of
temperature change with time can be used Equation (69) describes that the internal pressure of the
pressure vessel is mainly generated by thermal shock, and we use a nonlinear function to
approximate the change of the thermal shock $f(t)$ inside the pressure vessel within 7250-7350s.

\begin{equation}
f(t)=\frac{15}{1+e^{-\frac{1}{5}(x-7300)}}+3, \quad 7250 \leq \mathrm{t} \leq 7350
\end{equation}

7350t72503
1

15)(
7300

5
1 





,

e
tf

)x(
(70)

Fig4.(b)是通过实验测试得到包层以及 parent material 的杨氏模量与温度的变化关系

图, 根据数据趋势说明杨氏模量 E会随着温度的升高而降低. (c)是在连续损伤模型下弹性

模量随着影响变量$u$和$d$的三维变化情况, 而$u,d$ 都是与温度相关的函数, $u$的变化

影响逼近显著, 数值实验结果显示, 带有损伤模型的弹模量会随着$u$的增大而减小. 对

于(d)图是带有损伤模型下的 Poisson rate 变化趋势图, 传统线弹性理论中假定杨氏模量和

poisson rate是不变的, 而我们提出的改进的连续性结构损伤模型 poission rate 和杨氏模量

都是变化的, 图（d）能观察到随着$u$的增大 poisson rate 是增大的, $u$ 与温度函数存在

正比关系, 换句话, 当温度范围为 20-600时, poisson rate 会随着温度的增加而增加. 它存

在的范围在$v \in[0.305,0.357]$, 从 poisson rate 的定义还能说明横向应变随着温度的升高

的变化值大于纵向应变.

(a) RPV 内部温度&压强随时间 t的变化趋势 (b) 杨氏模量与温度的变化关系图

(b)(a)

Figure 5. Cont.
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(c) (d)

Figure 5. Variation of internal parameters of pressure vessel with temperature in structural dam-
age dynamic model. (a) Variation trend of internal temperature and pressure of RPV with time t.
(b) Variation diagram of Young’s modulus and temperature. (c) Young’s modulus for solving damage
dynamic model of continuous structure. (d) Comparing the Possion rate v of the traditional model
with the damage model.

4.4. Numerical Example 1 Result Display

When the temperature is from 20 to 600 ◦C, the specific heat coefficient, heat transfer
coefficient, thermal expansion coefficient, and density inside the nuclear pressure vessel
will change dynamically [49–51]. The experimental data are shown in Table 2. From the
table, we can see that the coefficient of thermal expansion α increases with the increase of
temperature, and the density, thermal conductivity, and specific heat capacity all increase
with temperature. The experimental data are shown in Table 2.

Table 2. Statistical table of changes in relevant material parameters of nuclear pressure vessels with
temperature.

Temperature T
(◦C)

Specific Heat
Capacity C
(J/kg/◦C)

Heat
Conduction K

(J/kg/◦C)

Thermal
Expansion α(

10−6 1/k
) Density(

g/cm3)
20 63.5 454 13.1 7846

100 68.6 485 13.4 7817
200 52.7 528 13.8 7788
300 46.7 592 14.0 7753
400 40.8 680 14.5 7717
500 37.4 703 14.8 7681
600 34.0 880 11.9 7643

For the two-dimensional transient linear elastic equation, through the continuous dam-
age variable parameter model established above combined with the FDM-FEM numerical
theory, we can obtain the stress analysis of the two-dimensional section of the pressure
vessel along the radial and axial direction [52,53]. The second-order central difference is
used in the time term, and the finite element is used in the space term. The mesh generation
and the application of boundary load can be referred to Figure 6a,b. The force F1(t) and
F2(t) loaded by the boundary are uniform transient forces, and the force increases gradually
with the increase of time. The time step τ = T

N , where T = 100s, N = 50 s.
Figure 6c shows that when t3 = 7254 s, the rectangular section is subjected to the

horizontal right transient thermal shock force F1(t3) = 3 × 106 N/m2, and the stress
variation diagram is generated under this force. Figure 6d shows that when t36 = 7320 s,
the rectangular section is subjected to the horizontal right transient thermal shock force
F1(t36) = 1.77× 107 N/m2, and the stress diagram is generated by the right boundary
of the rectangular section. In addition, the loading strain of the ring section is different
from that of the rectangular section, which is subjected to uniform radiation transient force
F2. In the actual solution process, it needs to be decomposed F2 into two horizontal and
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vertical components: that is,
(

f2x, f2y
)
= (F2(t) cos θ2, F2(t) sin θ2). Figure 6e is the strain

of the circular section under the boundary force of F2(t3) = 3× 106 N/m2, respectively.
Similarly, when t36 = 7320 s, the variable force F2(t36) = 1.77× 107 N/m2 is the boundary
force loaded on the inner side of the circular section and Figure 6f shows the strain εxx of
the circumferential section of RPV.
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Figure 6. The axial stress and radial stress of RPV are solved by FEM combined with the damage
dynamic model. (a) The diagram of inner load on a axial section. (b) The diagram of inner load on a
radial section. (c) The axial section stress τxy diagram of RPV. (d) The axial section stress σxx diagram
of RPV. (e) The Von Mises stress of radial section of RPV. (f) The strain εxx of radial section of RPV.

In this example, we mainly use the CMMD-TCFEM method to solve the axial and
radial stress of RPV. The solution idea belongs to the dimensionality reduction method,
and the three-dimensional RPV is divided into a section in the radial and axial directions
for mechanical modeling. Then, through the continuous structural dynamic model with
damage, we can obtain a more accurate Young modulus and Poisson rate. This numerical
solution conclusion is that the elastic modulus E will decrease with the increase of tempera-
ture T, while the Poisson ratio will increase with the increase of temperature. At the same
time, the fitting function of density with temperature is given in this numerical experiment.
The real density corresponding to each time step can be accurately solved. Finally, through
numerical comparison, it is found that the stress and strain of the pressure vessel wall ma-
terial will increase with the increase of the internal thermal shock force, and the position of
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the boundary fixed connection has the phenomenon of stress concentration. The advantage
of this numerical experiment is that it can quickly analyze how the stress of the pressure
vessel changes under the transient force. This example transforms the three-dimensional
problem into a two-dimensional problem. The calculation speed is improved. The defect is
that only the change of local force can obtain the overall stress. In order to make up for the
analysis defect, the axisymmetric finite element method is considered in Example 2, and
the detailed theoretical and simulation results are in Section 5.

5. Axisymmetric FEM Method to Solve RPV Stress
5.1. The Theories Axisymmetric FEM Method of RPV

Pressure vessels are similar to capsule vessels, which have the characteristics of
geometric symmetry. Therefore, in addition to the section method mentioned above, the
axisymmetric finite element method can also be used to solve this problem [54,55]. The
stress of three-dimensional pressure vessels can be quickly obtained, since the calculation
amount of the axisymmetric method is relatively small, which is more intuitive than the
section method to reflect the change of internal mechanical properties of pressure vessels.
The displacement function of the axisymmetric problem can be expressed as:{

u = α1 + α2r + α3z
w = α4 + α5r + α6z

(69)

Similar to the plane problem, for axisymmetric problems, we take one arbitrary
element, and the numbers of three nodes are i, j, m, and the coordinates of nodes are respec-
tively (ri, zi),

(
rj, zj

)
, (rm, zm). Let the corresponding node displacements be (ui, wi),

(
uj, wj

)
,

(um, wm). Bring the node coordinates and displacements into Equation (69), respectively.{
u = Niui + Njuj + Nmum
w = Niwi + Njwj + Nmwm

(70)

The shape function matrix N and the node displacement vector {q}e can be written as
Equations (71) and (72).

N =

(
Ni 0 Nj 0 Nm 0
0 Ni 0 Nj 0 Nm

)
(71)

{q}e =
{

ui wi uj wj um wm
}T (72)

Then, the matrix form of the nodal displacements on the final axisymmetric element
is {u}e = [N]{q}e. In Equation (71), Ni, Nj, Nm is the shape function. As for the ax-
isymmetric problem, there are four stress components {σ} = {σr, σθ , σz, τrz}T . Similarly,
the corresponding strain is still a function of u and w, so the strain vector can be written
as {ε} = {εrr, εzz, εθ , γrz}, and radial deformation causes circumferential strain, which is
εθ = 2π(r+u)−2πr

2πr = u
r . Therefore, the element strain can be expressed by displacement.

{ε} = {εr, εθ , εz, γrz}T =

{
∂u
∂r

u
r

∂w
∂z

∂u
∂r

+
∂u
∂r

}T
= Bqe. (73)

Among them, B =
[

Bi Bj Bm
]
, and each node satisfies the relationships shown

in Equations (74) and (75).

Bl =
1

2A


bl 0
fl 0
0 cl
cl bl

 (l = i, j, m). (74)
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fl(r, z) =
al + blr + clz

r
(l = i, j, m). (75)

We need to emphasize that the constitutive equation is written as σ = D(ε− ε0) + σ0;
This formula takes into account the initial stress σ0 and initial strain ε0, but our model
considers the values of initial stress and initial strain is zero. At the same time, it is assumed
that the RPV material in the axisymmetric model is isotropic. According to the relationship
between stresses and strains, we can bring Equation (73) into {σ} = Dε; then, the element
stress matrix can be written as:

{σ} = Dε = DBqe = Sqe =
[

Si Sj Sm
]
qe. (76)

In Equation (76), S is a stress matrix, and Ê and û are the Young’s modulus and
Poisson’s ratio, which can be calculated from the damage model, respectively.

Sk =
Ê(1− û)

2A(1 + û)(1− 2û)


bl + A1 fl A1cl
A1bl + fl A1cl

A1(cl + f ) cl
A2cl A2bl

 (k = i, j, m). (77)

A1 =
û

1− û
A2 =

1− 2û
2(1− û)

. (78)

The axisymmetric single element stiffness matrix can be obtained by the principle of
virtual work.

{F}e{δqe} =
∫∫∫

Ve
{δε}T{σ}rdrdθdz. (79)

The virtual work expression for 3D elasticity includes the volume integrals terms,
which can be written as dV = rdθ(drdz) = rdθdA.

Then, the virtual strain of the element becomes Equation (80).

{δε}e = [B]{δq}e. (80)

The mechanical equilibrium equation is established based on virtual work principle,
and then, we can obtain Equation (81).∫∫

A

∫ 2π

0
δεTσrdθdA =

∫∫
A

∫ 2π

0
δuTbrdθdA+

∮
l

∫ 2π

0
δuTTdθds+∑

i

∫ 2π

0
δuT piridθ. (81)

In Equation (81), A is the bounary and area of the region of integration.

b =

(
br
bz

)
T =

(
tr
tz

)
P =

(
Pri
Pzi

)
(82)

The sum of the above three vectors represents the external forces {F}, which consists
of body forces, surface tractions, and point loads, respectively [56,57]. The equivalent nodal
force of the triangular element is denoted as {F} and the virtual displacement is {δqe};
then, the virtual strain of the element can be written as {δεe} = B{δq}e. At the same time,
the virtual displacement {δue} = N{δqe} is eliminated on both sides, and we can obtain
Equation (83).∫∫∫

Ve
[B]T{σ}rdrdθdz{qe} = 2π

∫∫
Ae
[B]T [D][B]rdrdz{qe} = [Ke]{qe}. (83)

Among them, the stiffness matrix of the triangular element is:

{Ke} = 2π
∫∫

Ae
[B]T [D][B]rdrdz =

 k11 k12 k13
k21 k22 k23
k31 k32 k33

. (84)
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The elements stiffness matrix satisfies the relationship shown in Equation (85).

krs = 2π
∫

A
BT

r DBsrdA = 2πBT
r DBs r̄A, (r, s = 1, 2, 3), r̄ =

1
3
(r1 + r2 + r3). (85)

Then, the shape function N includes the external force terms of the element. After
finishing, we can get Equation (86).

{Fe} = 2π
∫∫

Ae
BTσrdA− 2π

∫∫
Ae

NTbrdA− 2π
∮

le
NTTrds. (86)

Finally, each element matrix is assembled into a total stiffness matrix. Thus, we can
get the final algebraic equation Kq = F.

5.2. Axisymmetric Numerical Simulation Example

This section will give examples of three-dimensional pressure vessels. The advantages
of the axisymmetric method can make up for the defect of the poor overall evaluation effect
of the section method, and it is more intuitive to show the stress state of three-dimensional
vessels. The advantages of the axisymmetric method can make up for the defects of the poor
overall evaluation effect of the section method, and it is more intuitive to show the stress
state of three-dimensional vessels. The axisymmetric problem has distinct characteristics:
the geometric structure and the boundary constraint condition are symmetrical about
the central axis. The axisymmetric problem has different characteristics: the geometric
structure and the boundary constraint condition are symmetrical about the central axis.

The thickness d = 25 mm of the wall of the nuclear pressure vessel in this numerical
experiment, and Young’s modulus of continuous structural damage model is Ê. Similarly,
Poisson’s ratio of the continuous structural damage model is v̂. The material density of the
pressure vessel changes with the increase in temperature. The specific function expression
is shown in Equations (67) and (68), and the variable density function is denoted as ρ̂(t). As
for the geometric parameter of the nuclear pressure vessel, the simplified nuclear pressure
vessel can be considered a combination of a hollow cylinder and a semi-ellipsoid. The
geometric parameters and dimensions are as follows: the thickness t = 0.25 m of the vessel
wall, the radius of the bottom of the vessel is RA

1 = D1
2 = 5m, the radius of the inner wall

is RA
2 = D2

2 = 4.75m, and the dome height formula with a curved radian that satisfies the
following relation is:

hi = Rc −
√(

Rc − RA
2
)(

Rc + RA
2 − 2Rk

)
= 1.997m (87)

Among them, Rk = 0.1D1 = 1m, Rc = 0.9D2 = 8.55m, the maximum angle between
the tangent of the dome and the vertical direction of the container wall is α.

α = arctan

(
RA

2 − Rk

Rc − hi

)
(88)

After calculation α = 0.519 rad, the height of the container wall is HA = 10 m. For
a pressure vessel, the axisymmetric method is mainly used to solve the problem. The
displacement boundary conditions can also be called boundary constraints.

u(r, θ, z)|r=r0,θ=θ0,z=z0
= ū = 0 (89)

v(r, θ, z)|r=r0,θ=θ0,z=z0
= v̄ = 0 (90)

w(r, θ, z)|r=r0,θ=θ0,z=z0
= w̄ = 0 (91)

Γ1 = {(r, θ, z) | 0 ≤ θ ≤ 2π, r = R1, 0 ≤ z ≤ HA} (92)

Γ2 = {(r, θ, z) | 0 ≤ θ ≤ 2π, r = ra, 0 ≤ z ≤ hi} (93)
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The impact force generated during the reaction of the pressure vessel is assumed to be
uniformly acting on the inner wall of the vessel, and this mode of action is generated along
the normal direction of the vessel wall surface. The forces received by the three-dimensional
nuclear pressure vessel are all face forces, which are different in actual applications. The
impact force on the inner wall of the nuclear pressure vessel is different. At a certain
moment, the impact force on the inner wall of the nuclear pressure vessel by gas is a
constant force P. The surface force is the force on the surface of the object. Motion is an
internal force, and only boundary elements may have surface forces. The two components
of surface force P̄ = {Pr, Pz}; if the surface force on the edge of the element is q, the
equivalent nodal load of the element is:

P̄e = 2π
∫

L
NTqrds (94)

In this example, the face force is linearly distributed perpendicular to the surface of
the object. This face force is very common, such as dams hitting a flood, the air flow of the
aircraft engine hitting the outer wall, and the wheel pressing the ground. The effect placed
on the edge of the unit ij is perpendicular to the linearly distributed surface force on the
surface of the object, the force at node i is qi, the force at node j is qj, and the surface force
at any point on the ij side of the element is decomposed into hoop and axial components.

qe =

{
qr
qz

}
=

{ (
Niqi + Njqj

) bm
lij(

Niqi + Njqj
) cm

lij

}
(95)

Then, we determine the linearly distributed surface force perpendicular to the surface
of the object, and the equivalent nodal load of node i is:

P̄ei =

{
P̄ri
P̄zi

}
=

1
6

π
[(

3ri + rj
)
qi +

(
ri + rj

)
qj
]{ zi − zj

rj − ri

}
(96)

The equivalent nodal load of the linearly distributed surface force node j perpendicular
to the surface of the object is:

P̄ej =

{
P̄rj
P̄zj

}
=

1
6

π
[(

ri + rj
)
qi +

(
ri + 3rj

)
qj
]{ zi − zj

rj − ri

}
(97)

Finally, the axisymmetric stress tensor can be calculated according to the following
equation:

{σ} = Dε = DBqe = Sqe =
[

Si Sj Sm
]
qe (98)

The axisymmetric finite element method is used to solve the pressure vessel. The
solution steps are carried out according to the following points: material parameter defi-
nition, geometric region construction, mesh division, and physical field selection. Then,
load conditions and fixed constraints are added. Finally, it is transformed into algebraic
equations and output stress cloud diagrams. The geometric cross-section is divided into el-
ements on the rz plane, and quadrilateral elements are used for distillation. The discretized
area contains 575 domain elements and 250 boundary elements, the number of degrees
of freedom is 2541, the total time is t = 10 s, and the symmetric axis is r = 0. As for the
fixed constraint condition of the vessel, the outer boundary displacement is 0, and the load
boundary load conditions are that the inner side is subjected to uniform outward pressure;
the range is from P̄ = 3× 106pa to P̄ = 1.68× 107pa.

Figure 7a shows the stress and deformation of the 2D symmetry plane of the pressure
vessel. The output result contains two physical quantities: stress and deformation. The
deformation is mainly the displacement change, and its amplification factor is α = 128.6.
The purpose is to observe the largest displacement change position more clearly. Similarly,
the greater value of stress is also concentrated in the middle part. Figure 7b shows the radial
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strain εrr cloud diagram of the pressure vessel at F = 13 Mpa, which can also reflect that
the 2D section stress results are consistent with the 3D results. The center of the cylinder
is larger, and the surrounding forces are relatively large, stable, and uniform. Figure 7c
shows the von Mises stress figure of the pressure vessel at F = 3 Mpa. Figure 7d shows the
von Mises stress of the pressure vessel at F = 16.8 Mpa. The solution process is also to first
calculate the single stiffness matrix, including the application of boundary conditions, and
then assemble the total stiffness matrix to form a large sparse matrix and finally solve the
linear system.

(a)压力容器 A的对称面应力云图 P=1.52E7 (b)简化的压力容器 A的应变云图

Fig.3 三维核压力容器的数值仿真

5.3 Temperature and stress coupled model of RPV exhaust pipe.

真实的压力容器工作环境相对复杂, 核裂变后会在短时间内释放出大量热, 压力容器壁一般会有 4个

排气管，2个是冷却液的进口和出口，另外 2个是热蒸汽的进出口. 初始状态下压力容器内部的温度很高,

随着冷却系统（ECC）的加入，温度逐步从 350°C下降到 100°C 左右. 前两个算例只考虑了压力容器的

受力情况，建立的几何模型并没有考虑排气管周围的温度变化情况以及应力分布的状态，而管道口的应力

变化对于整个容器的密封情况，承受压力分布更为重要. 因此，很有必要研究压力容器的管道口应力和温

度的变化状态，算例三建立了独立的三维温度场和应力场 [46,47,48]. 通过使用三维的有限元数值方法进行
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5.3.1 3D stress analysis model of RPV’s exhaust pipe. 三维单场应力分析模型
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Figure 7. Numerical results of mechanical change of RPV solved by axisymmetric FEM. (a) Deforma-
tion diagram of the symmetrical half-section of the pressure vessel at F = 15.2 Mpa. (b) The radial
strain εrr cloud diagram of the pressure vessel at F = 13 Mpa. (c) von Mises stress nephogram of the
pressure vessel at F = 3 Mpa. (d) von Mises stress nephogram of the pressure vessel at F = 16.8 Mpa.

6. Three-Dimensional (3D) Multi-Physics Field Model of RPV

The working environment of the real pressure vessel is relatively complex. After
nuclear fission, a large amount of heat is released in a short time. Generally speaking,
there are four exhaust pipes on the wall of the pressure vessel, two pipes are the inlet and
outlet of the coolant, and the other two pipes are the hot steam inlet and outlet. In the
initial state, the temperature inside the pressure vessel is very high. With the addition of a
cooling system (ECC), the temperature gradually drops from 350 to about 100 ◦C. The first
two examples only consider pressure related to the force condition of the container, the
established geometric model does not consider the temperature change around the exhaust
pipe and the state of stress distribution, and the stress change of the pipe port is more
important for the sealing of the entire container and the pressure distribution. Therefore, it
is very important that it is necessary to study the state of stress and temperature changes
at the pipe mouth of RPV. Example 3 established an coupled model of three-dimensional
temperature field and stress field [58–60]. The FDM-FEM numerical method is used to
solve the problem, and the output is the corresponding temperature and stress.

6.1. Three-Dimensional Transient Elastic Equation

In fact, the three-dimensional nuclear pressure vessel internal force analysis is a rather
complicated analysis process. Due to some uncertainty of the impact force inside the vessel,
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the geometric structure is not completely symmetrical, and there are multiple pipes near the
top of the nuclear pressure vessel. These interfaces are mainly responsible for the discharge
of exhaust steam, the input of coolant, etc. The stress change analysis near the interface has
always been the focus of scholars. Due to the relatively high surface temperature of the
interface, the final force analysis is not simply a mechanical problem. It is more scientific
to use the knowledge of multi-physics coupling to solve the problem. This example is
mainly responsible for the coupled modeling of the thermal field and the force field, and it
analyzes the force situation near the pipe mouth of the pressure vessel.

The solution of nuclear pressure vessels in the thermal–mechanical coupling field
contains two important equations: namely, the convective–diffusion equation and the
equilibrium equation of solid mechanics. When the reaction of the pressure vessel is stable,
the overall internal temperature tends to be balanced, but the local temperature changes
are quite different due to the action of the coolant and the position very close to the core.
Since the nuclear reactor reaction is a continuous process and is closely related to time, the
analysis of temperature change should consider the transient 3D heat conduction equation
and the 3D transient mechanical equilibrium equation. The following will give the 3D
transient heat conduction equation.

First, we establish the force field balance equation of the nuclear pressure vessel
under the action of thermal shock. Among them, u = (u, v, w)T is the displacement
field function. Since this model belongs to the multi-physics coupling model, the RPV
material ρ(t) is a nonlinear function of time t, which will decrease with the increase of
temperature, σ is the three-dimensional stress tensor matrix, F =

(
fx(t), fy(t), fz(t)

)T is
the corresponding thermal shock force. The three-dimensional gradient operator can be
expressed as ∇ =

(
∂

∂x , ∂
∂y , ∂

∂z

)
; then, the three-dimensional transient mechanical equation

is expressed as shown in Equaiton (99):

ρ(t)
∂2u
∂t2 = ∇ · σ + F, u ∈ Ω× [0, Tm] (99)

The Cauchy stress tensor introduced by a three-dimensional deformable solid is
expressed as:

σ =

 σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 (100)

For the 3D stress tensor and strain, the relationship satisfies Equation (101).

σij = δijλ∇ · u + 2µεij =
∂uk
∂xk

λδij + µ

(
∂ui
∂xj

+
∂uj

∂xi

)
(101)

where E is the Young’s modulus of the elastomer, u is the Poisson ratio, and the Lamé
constant formula is:

λ =
Ev

(1 + v)(1− 2v)
(102)

The relationship between the three-dimensional stress tensor and strain is σ = Dε,
where D is the elastic matrix, and the final stress can be expressed in the form of displacement:



σxx
σyy
σzz
σxy
σxz
σyz

 =
E

1 + v



1−v
2v−1

−v
2v−1

−v
2v−1 0 0 0

−v
2v−1

1−v
2v−1

−v
2v−1 0 0 0

−v
2v−1

−v
2v−1

1−v
2v−1 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





εxx
εyy
εzz
εxy
εxz
εyx

 =
D
2



2 ∂u
∂x

2 ∂v
∂y

2 ∂w
∂z

∂u
∂x + ∂v

∂y
∂u
∂x + ∂w

∂z
∂v
∂y + ∂w

∂z


(103)
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Then, by substituting Equation (103) into Equation (104), we can convert the three-
dimensional linear elastic stress equation into three displacement classification equations.
Then, using the linear weighted form of the displacement basis function in place of the
displacement in the equation, the weak form of the Galerkin finite element is obtained. The
scalar equations along the x, y, and z directions are:

ρ(t) ∂2u
∂t2 −

(
∂σxx
∂x +

∂σyx
∂y + ∂σzx

∂z

)
− fx(t) = 0

ρ(t) ∂2v
∂t2 −

(
∂σxy
∂x +

∂σyy
∂y +

∂σzy
∂z

)
− fy(t) = 0

ρ(t) ∂2w
∂t2 −

(
∂σxz
∂x +

∂σyz
∂y + ∂σzz

∂z

)
− fz(t) = 0

(104)

For the boundary conditions of the exhaust pipe of the RPV, there are two cases of
displacement boundary conditions and force boundary conditions. The displacement
boundary of the outer side of the pipe and the outer wall of the RPV can be assumed to
have an initial value of 0, which can be expressed as:

u|(x,y,z,t) = 0 (x, y, z, t) ∈ Γout × [0, Tm] (105)

The wall of the RPV container is mainly subjected to radial impact force, and there
is also a small shear force in the z direction. The inner side of the pipe wall will also be
subjected to thermal shock force. If there is cooling liquid inside the pipe, gravity must
also be considered, which belongs to fluid–solid coupled heating conduction model. This
example only considers the force and temperature changes at the nozzle of the RPV exhaust
steam, which satisfies the following mechanical boundary conditions:

σxxnx + σxyny + σxynz = fx(t)
σyxnx + σyyny + σyznz = fy(t) (x, y, z, t) ∈ ΓRPV × [0, Tm]
σzxnx + σzyny + σzznz = fz(t)

(106)

As for Equation (106), the time term is discreted by the central difference scheme, the
terms un+1 ∈ V, 1 ≤ n ≤ N − 1 are to be solved such that we can get a semi-discrete
variational equation as follows in Equation (107).(

ρ̂(t)
un+1

h − 2un
h + un−1

h
∆t2 , v

)
+ a(un

h , v) = ( f n, v) ∀v ∈ Vh. (107)

The basis function of elastic plate displacement constitutes the finite element so-
lution space un

h =
(
un

1h, un
2h, un

3h
)T, which satisfies the relationship u1h, u2h, u3h ∈ Uh =

span
{

ϕj
}NF

j=1. NF is expressed as the number of displacement components.
The discrete form of the space term of the 3D linear elastic equation is similar to the

two-dimensional term, and there are two differences. The first point, The 3D linear elastic
equation has one more equation about the displacement w component than the 2D linear
elastic equation when the equation is discretized. The second point, When the space term of
the 3D linear elastic equation is discretized by FEM, the basis function selected is different
from that of the 2D. The 3D lowest-order basis function is a tetrahedral element, while the
2D discretization is a linear CST element. Then, according to the variational principle, the
variational form is obtained, and then the basis function is brought in to obtain the Galerkin
weak form. This continuous differential equation is transformed into a discrete algebraic
equation. Finally, we can obtain a matrix iterative equation, and each iteration needs to
solve a linear equation.

6.2. Three-Dimensional Stress Analysis Model of RPV

The 3D elastic force analysis model is similar to the 2D model. For spatial dispersion
of the 3D pressure vessel, we can use the tetrahedral element to discretize it. When
the asymmetric 3D structure is discrete, the axisymmetric method is not feasible, and
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a Cartesian coordinate system needs to be established, using the general finite element
discrete model, the displacement linear function of the tetrahedral element can be expressed
as the following form: 

u = α1 + α2x + α3y + α4z
v = α5 + α6x + α7y + α8z
w = α9 + α10x + α11y + α12z

(108)

Then, we combined with the four nodal coordinates of the tetrahedral element, and
we use the shape function to represent the element displacement

u =
4

∑
i=1

Niui, v =
4

∑
i=1

Nivi, w =
4

∑
i=1

Niwi (109)

The matrix form of the element displacement can be expressed as
{de} =

{
u v w

}T
= Nqe, and the element stress matrix is

{σ} = D{ε} = DB{qe} = S{qe} =
[

Si Sj Sm Sp
]
{qe} (110)

The value of the matrix S is mainly related to the tetrahedral node coordinates

Sl = DBl =
6A3

V

 bl A1bl A1bl A2cl 0 A2dl
A1cl cl A2cl A2bl A2dl 0
A1dl A1dl dl 0 A2cl A2bl

T

(l = i, j, m, p) (111)

In Equation (111), the following relational expression is satisfied

A1 =
µ

1− µ
A2 =

1− 2µ

2(1− µ)
A3 =

E(1− µ)

36(1 + µ)(1− 2µ)
(112)

Similarly, the expression form of the stiffness matrix can be obtained according to the
principle of virtual work:

Ke =
∫∫∫

V
BT DBdxdydz = BT DBV (113)

The total equivalent nodal load array of the element due to body force, surface force,
and concentrated force is:

{Fe} = {Fe
v}+ {Fe

s}+ {Fe
c} =

∫∫∫
V

N lPvdv +
∫∫

S
N lPsdA +

4

∑
l

N lPc (l = i, j, m, p) (114)

After obtaining the stiffness matrix of the element, it is necessary to synthesize the total
stiffness matrix, the stiffness matrix of the Ne tetrahedral elements on the three-dimensional
solution area, and the node load according to the element node coding rules from the total
stiffness matrix. Then, finally, we get a large sparse system of linear equations Kq = F.

K =
Ne

∑
i=1

Ke
i , F =

Ne

∑
i=1

Fe
i , i = 1, 2, . . . , Ne (115)

The above is the stress solution of 3D RPV from the perspective of a virtual work
principle. It is convenient to solve the steady-state problem, for the transient problem,
we need to change the force F(t) of the integral term in each calculation. In Section 4.3.2,
we will introduce another method to solve the stress at different times according to the
transient elastic equation.
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6.3. Three-Dimensional Transient Heat Conduction Equation

The temperature variable T(x, y, z, t) is a multivariate function of coordinates and
time. When T(x, y, z, t), it indicates that Q does not change with time, and it indicates that
the temperature of the thermally conductive object does not change with time after heat
exchange. This process is called the steady-state temperature field. When ∂T

∂t 6= 0 is the
transient temperature field, the difference between the transient temperature field and the
steady-state temperature field is time variable t. According to the Fourier heat transfer law
and the energy conservation law, the energy balance differential equation in the rectangular
coordinate system satisfies the following relationship:

The heat transfer equation [61–63] satisfied by the heat transfer inside the RVP material,
its equation, and related parameters are as follows:

ρc
∂T
∂t

+ ρcu · ∇T +∇ · (−k∇T)−Q = 0 (116)

For Equation (116), ρ is the material density, the unit is kg/m3, and c is the specific
heat capacity at constant pressure of the RPV material J /(kg · k). The internal nuclear
reaction of RPV produces enormous heat; Q is the heat generated by the internal heat
source. k =

(
kx, ky, kz

)
is the thermal conductivity vector along different directions x, y, z.

Furthermore, ∂T
∂x , ∂T

∂y , ∂T
∂z respectively represent the heat that flows in the x, y, z direction,

uc =
(
ux, uy, uz

)
is the convection velocity terms. Furthermore, we can get that the

equivalent form of Equation (116) is the differential Equation (117).

ρc
[

∂T
∂t

+

(
ux

∂T
∂x

+ uy
∂T
∂y

+ uz
∂T
∂z

)]
=

(
∂

∂x

(
kx

∂T
∂x

)
+

∂

∂y

(
ky

∂T
∂y

)
+

∂

∂z

(
kz

∂T
∂z

))
+ Q (117)

In addition, the temperature field distribution in the solution domain Ω needs to meet
certain boundary conditions.

(1) Class I boundary conditions: The solid surface temperature is a known function of
the time t.

T1(x, y, z, t) = T̄(x, y, z, t), T1(x, y, z, t) ∈ Γ (118)

(2) Class II boundary conditions: The thermal flow density of the solid surface is equal
to the change value of the temperature T in the direction of each component.

kx
∂T2

∂x
nx + ky

∂T2

∂y
ny + kz

∂T2

∂z
nz = kn · ∇T = q(x) T2 ∈ Γ2 (119)

(3) Class III boundary conditions: The difference between the heat flow density of
the solid surface is proportional to the surface temperature T and the fluid surface
temperature Tc.

kx
∂T3

∂x
nx + ky

∂T3

∂y
ny + kz

∂T3

∂z
nz = h(Ta − T3) T3 ∈ Γ3 (120)

nx, ny, nz is the direction cosine of the normal line outside the boundary, T̄(x, y, z, t)
is a given temperature, ∇T3 is the heat flow density vector on the boundary Γ3, h is
the thermal conductivity coefficient W/

(
m2 · K

)
on the boundary, Ta is the insulating

temperature of the boundary layer under natural convection conditions, and the
combination of all boundaries can be expressed as Γ = Γ1 + Γ2 + Γ3.

Then, it is assumed that the three-dimensional RPV is a homogeneous material;
that is, the thermal conductivity along different directions is the same [64], and there
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is kx = ky = kz. So, the convection–diffusion equation can also be written as (117), which is
equivalent to Equation (121).

∂T
∂t

+ u · ∇T = ∇ · (k∇T) +
Q
ρc

(121)

Perform Galerkin integration, multiply both sides of Equation (120) by the test function
ϕ(x, y, z), obtain the corresponding discrete equation according to the variational principle,
and consider the right-hand term of Equation (120).

D f =
∫∫∫

Ω
ϕi

[
∇ · (k∇T) +

Q
ρc

]
dV =

∫∫∫
Ω

k(ϕi∇ · (k∇T)) + ϕi
Q
ρc

dxdydz (122)

Using the Gauss divergence theorem to further simplify the equation, we can get

D f = k
∮

S
ϕin · (∇T)dS +

∫∫∫
Ω
−k(∇ϕi · ∇T) + ϕi

Q
ρc

dxdydz (123)

After considering the left-hand term of Equation (124), the discrete form of Galerkin
can be finally obtained:

T̂(x, y, z, t) =
N

∑
j=1

Tj(t)ϕj(x, y, z) (124)

The tetrahedral element (4-NQ) is used to discrete the RPV, and the discrete equation
in the whole region is obtained.

N

∑
j=1

Aij
dT j

dt
+

N

∑
j=1

CijT j = −k
N

∑
j=1

BijT j +
1
ρc

∮
S

ϕiqdS +
1
ρc

N

∑
j=1

Mij ϕiQj (125)

Then, we abbreviate the diffusion matrix of Equation (126) as:

Bij =
∫∫∫

Ω
∇ϕi · ∇ϕjdv =

∫∫∫
Ω
∇ϕi · ∇ϕjdxdydz (126)

Meanwhile, Mij of Equation (127) is called the mass matrix

Mij =
∫∫∫

Ω
ϕi · ϕjdv =

∫∫∫
Ω

ϕi · ϕjdxdydz (127)

The matrix Cij is the convection matrix:

Cij =
∫∫∫

Ω
ϕiu · ∇ϕjdv =

∫∫∫
Ω

ϕiu · ∇ϕjdxdydz (128)

Finally, the partial differential Equation (129) is transformed into a system of ordinary
differential equations, and the specific form is as follows:

M · dT
dt

+ CT = k(−B · T + b) (129)

Neumann boundary conditions are imposed on the right-hand term components of
Equation (130); its components are of the form:

bi =
1
k

(∮
S

ϕiqdS +
N

∑
j=1

MijQj

)
(130)

The boundary temperature of the outer surface of the RPV belongs to the Drichlet
boundary condition, and the substitution method can be used. If there is a known function
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T = Ti(xb, yb, zb, tb), the i − th equation of the overall discrete Equation (129) can be
replaced by the Drichlet boundary function Ti and the corresponding mass matrix M. The
i− th row diagonal element of the convection matrix C and matrix B is i.

6.4. h-p Method Error Estimate

(1) p-type adaptive error analysis

The finite element cluster is denoted as {e, pe, Σe}, the continuous function space can
be written as Ω, and the adaptive mesh discretization of the region is denoted as T̃h; for
any element in the region T̃h, it satisfies ∀e ∈ T̃h, he → 0, he > 0, he

pe
≤ const [65,66]. If πe

is a higher-order approximation operator on the element, πh is a higher-order approxi-
mation operator on the overall region, then there is a constant C such that the following
interpolation error estimation holds:

|v− πev|m,q,e ≤ C(T̃h)h
k+1−m+n

(
1
q +

1
p

)
e |v|k+1,p,e v ∈ Hk+1,p(e) (131)

When p = q, Hk+1,p(Ω) and Hm,p(Ω) are two Sobolev spaces, and we have the
following relation established:

|v− πhv|m,p,Ω ≤ C(T̃h)hk+1−m|v|k+1,p,Ω v ∈ Hk+1,p(Ω) (132)

Among them, the constant C is related to m, n and the reference element ê, σn is the
unit sphere volume in the space Rn; then, the C(T̃h) range satisfies the following expression:

σnC1 pn ≤ C(T̃h) ≤ σnC2hn (133)

(2) h-type adaptive error.

h - type finite element, where h represents the maximum size of the element. In the
calculation process, the method does not change the type of element but improves the
calculation results by continuously reducing the geometric size of the element, that is,
refinement mesh. Because the order of elements in this method is generally low, it is also
called low-order finite element method.

If v ∈ Hk+1(Ω)
⋂

V, ∀e ∈ T̃h, he → 0, he > 0, he
pe
≤ const. Then, the following

estimation formula is established.

‖u− uh‖1,Ω ≤ Ch̄k|u|k+1,Ω (134)

Among them, h̄ is the average side length of the cells of the adaptive mesh, and NA
represents the total number of cells in the adaptive mesh region Ω̃.

h̄ =
1

NA

NA

∑
i=1

max(le
1, le

2, le
3) (135)

When the order of the basis function is p-order, the numerical error of adaptive FEM
generally has a relationship with the quality of the adaptive mesh [67]. If the size of the
element side length of the adaptive mesh varies from the edge to the center point O where
the mesh size is the smallest, and decreases exponentially, the mathematical formula is
written as:

hi = e−ξ hi−1, ξ > 0, i = 2, ..NA. (136)

Then, the newly formed adaptive grid error also has the characteristics of exponential
change. The specific error estimation expression is:

‖e‖1,Ω = ‖u− uh‖1,Ω ≤ C0N−β|u|k+1,Ω, β > 0, β ∈ R (137)
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6.5. Numerical Result Display

The RPV parameters are divided into geometric parameters and basic material prop-
erty parameters. For the RPV radius R = 5 m we simulated, the wall thickness d = 15 cm,
the radius of the pipe mouth rpip = 10 cm, the thickness of the pipe wall dpip = 4 cm, and
the height of the RPV calculation area H = 0.6 m. This example uses tetrahedral elements,
and we perform discretization. Figure 8 below shows the mesh quality evaluation diagram.
This example simulates an RPV with four nozzles. The structure contains 58,910 domain
elements, 30,345 boundary elements, and 3985 edge elements. The green mesh in Figure 8a
indicates that the mesh quality is relatively good, and the yellow part belongs to the part
with poor mesh quality. The overall quality of the mesh divided in this example is relatively
good. Due to the symmetry of RPV, we only need to study the stress and temperature
changes of a nozzle. Figure 8b is the result of meshing the tetrahedral element of one
nozzle. The vicinity of the nozzle is the focus of our research, so the adaptive meshing
method is adopted. It has a total of 9735 domain elements, 3297 boundary elements, and
471 edge elements, and the mesh has the characteristics of self-adaptation, which can not
only ensure the advantages of fast calculation speed but also ensure the accurate description
of the details of stress changes at the interface of the pipe wall. It can smoothly transition
the numerical results of positions with large stress gradient changes, which makes the
visualization effect better. The mesh quality evaluation chart shows that the mesh effect
near the exhaust pipe is relatively poor, and the geometric change of the RPV container
wall is gentle, so the mesh quality of the element is better.

Regarding other numerical results, Figure 8c shows the inner temperature variation
diagram of the RPV nozzle at the calculation time t = 420 s, which reflects that the tem-
perature of the nozzle is relatively lower than that of other positions. The reason is that
the coolant added at the nozzle can reduce the temperature near the nozzle. Figure 8d is
the isothermal line diagram of the three-dimensional nozzle. The outer side of the RPV is
shown in the figure, and different colors represent different temperatures. Similarly, it can
be seen from the figure that the temperature near the nozzle is relatively low, and there is a
cooling effect caused by the combined action of air cooling and coolant. Figure 8e is the
displacement cloud map of an RPV nozzle at t = 7200 s, which reflects the initial starting
time; the force generated by the internal pressure is large, and the temporary change of the
cooling system is not very obvious. Figure 8f is the strain εxx of RPV, and the change range
near the nozzle is significantly larger than the change of the internal value of the nozzle.
The change of strain and displacement is mainly affected by the thickness of the material,
the external load, the elastic modulus of the material, the Poisson ratio, and other basic
properties. The results show a comprehensive response; not only the embodiment of the
load change but also the change of the displacement is significantly larger than the strain.
This can also be reflected from the geometric constitutive equation.

The symmetrical geometric appearance is helpful for element calculation, and the
numerical results show that the stress change is relatively large at the intersection of the
pipe of the RPV. In the actual application process, the RPV is accompanied by multiple
exhaust pipes, which can exhaust gas, add coolant, etc. Therefore, the third numerical
model of this paper is mainly to analyze the stress change near the pipe mouth, and we
have established a three-dimensional finite element model of thermal–mechanical coupling.
The adaptive mesh is used to discretize the pipe mouth area. Finally, the numerical solution
cloud map of the stress, strain, and displacement of the RPV pipe mouth is obtained. Then,
we compared the radial and hoop stress changes of RPV at different times. The physical
model established in this paper and the new numerical method proposed in this paper
have important reference values for the stress analysis of RPV, and the method can also be
transferred to other coupled physical models. The safe control of nuclear energy production
is a meaningful research topic.



Fractal Fract. 2022, 6, 215 32 of 37

Fig.8(a) The green grid in the figure indicates that the grid quality is relatively good, and the yellow part

belongs to the part with poor grid quality. The grid quality of this example is relatively good as a whole. Due to the

symmetry of RPV, we only need to study the stress and temperature changes at one nozzle. Fig8.(b) is the mesh

division result of the tetrahedral element at one nozzle, and the vicinity of the nozzle is the focus of our study.

Therefore, the adaptive grid division method is adopted, which has a total of 9735 domain elements, 3297

boundary elements and 471 boundary elements. The grid has the characteristics of self-adaptive. This can not only

ensure the advantages of fast calculation speed, but also ensure the accurate description of the stress change details

at the interface of the pipe wall. It can smooth the numerical results of the position where the transition stress

gradient changes greatly, and make the visualization effect better. The grid quality assessment map shows that the

grid effect near the exhaust pipe is relatively poor, and the geometric change of the RPV container wall is gentle,

so the grid quality of the unit is better.

(a) 所有管道口的网格质量评估 (b)RPV单个管口及附近区域的 Q-N4单元网格划分

(c)RPV管道口的温度 T云图 (d) RPV管道口的等温线图

图 8(c)是计算时间 t=420s时的 RPV管口的内侧温度变化图，该图反映了管口温度相对低于其他位置，

原因是管口加入的冷却剂，存在的热对流可以降低附近温度. 图 8(d)是三维管口的等温线图，图中展示的

是 RPV的外侧，不同的颜色表示了不同的温度，同样的，从图中可以看到管口附近的温度相对低，存在空

气散热以及冷却液共同作用产生降温效果.

(d)(c)

(b)(a)

Fig.8(a) The green grid in the figure indicates that the grid quality is relatively good, and the yellow part

belongs to the part with poor grid quality. The grid quality of this example is relatively good as a whole. Due to the

symmetry of RPV, we only need to study the stress and temperature changes at one nozzle. Fig8.(b) is the mesh

division result of the tetrahedral element at one nozzle, and the vicinity of the nozzle is the focus of our study.

Therefore, the adaptive grid division method is adopted, which has a total of 9735 domain elements, 3297

boundary elements and 471 boundary elements. The grid has the characteristics of self-adaptive. This can not only

ensure the advantages of fast calculation speed, but also ensure the accurate description of the stress change details

at the interface of the pipe wall. It can smooth the numerical results of the position where the transition stress

gradient changes greatly, and make the visualization effect better. The grid quality assessment map shows that the

grid effect near the exhaust pipe is relatively poor, and the geometric change of the RPV container wall is gentle,

so the grid quality of the unit is better.

(a) 所有管道口的网格质量评估 (b)RPV单个管口及附近区域的 Q-N4单元网格划分

(c)RPV管道口的温度 T云图 (d) RPV管道口的等温线图

图 8(c)是计算时间 t=420s时的 RPV管口的内侧温度变化图，该图反映了管口温度相对低于其他位置，

原因是管口加入的冷却剂，存在的热对流可以降低附近温度. 图 8(d)是三维管口的等温线图，图中展示的

是 RPV的外侧，不同的颜色表示了不同的温度，同样的，从图中可以看到管口附近的温度相对低，存在空

气散热以及冷却液共同作用产生降温效果.

(d)(c)

(b)(a)

RPV管道口的位移 U RPV管道口附近的应变 xx 云图

图 8（e）是 RPV管口在 t=7200s的位移变化云图，该图反应的是初始启动时刻，内部压力产生的作用

力较大，冷却系统暂时变化不是很明显. 图 8(f)是 RPV的 xx应变云图，管口附近变化范围明显大于管口内

部值变化. 应变以及位移的变化情况主要受材料厚度，外加载荷，以及材料的弹性模量，Poisson比等基本

属性密切相关，显示的结果是一个综合反应结果，不单纯是载荷变化的体现，同时位移的变化幅度明显大

于应变，这个从几何本构方程上也能体现.

RPV 的 Von Mises应力云图 应力 yy 的应力云图

图 9(e)是 t=3600s 时 RPV壁在距离容器壁的Von Mises应力云图, 该图对应的是 RPV的外侧图像,

图中也能看到靠近管口附近的位置应力变化相对明显. 图 9(f) 是 t=7050s时, RPV内侧的 yy 的应力变化

图， 图中在管口附近有明显的应力集中现象，这提示 RPV在设计时必须考虑管口交界处需要精密焊接，

否则在长期的热冲击作用下，RPV管口附近残余应力会导致裂纹和材料缺陷的扩展, 如果检测和维修不及

时会容易产生核泄漏甚至核爆炸的不安全事故.

(h)

(f )

(g)

(e)

RPV管道口的位移 U RPV管道口附近的应变 xx 云图

图 8（e）是 RPV管口在 t=7200s的位移变化云图，该图反应的是初始启动时刻，内部压力产生的作用

力较大，冷却系统暂时变化不是很明显. 图 8(f)是 RPV的 xx应变云图，管口附近变化范围明显大于管口内

部值变化. 应变以及位移的变化情况主要受材料厚度，外加载荷，以及材料的弹性模量，Poisson比等基本

属性密切相关，显示的结果是一个综合反应结果，不单纯是载荷变化的体现，同时位移的变化幅度明显大

于应变，这个从几何本构方程上也能体现.

RPV 的 Von Mises应力云图 应力 yy 的应力云图

图 9(e)是 t=3600s 时 RPV壁在距离容器壁的Von Mises应力云图, 该图对应的是 RPV的外侧图像,

图中也能看到靠近管口附近的位置应力变化相对明显. 图 9(f) 是 t=7050s时, RPV内侧的 yy 的应力变化

图， 图中在管口附近有明显的应力集中现象，这提示 RPV在设计时必须考虑管口交界处需要精密焊接，

否则在长期的热冲击作用下，RPV管口附近残余应力会导致裂纹和材料缺陷的扩展, 如果检测和维修不及

时会容易产生核泄漏甚至核爆炸的不安全事故.

(h)

(f )

(g)

(e)

Figure 8. Numerical simulation of RPV by 3D thermal-mechanics coupled model. (a) Mesh quality
assessment of all pipe outlets. (b) 4-NQ element grid division of RPV single pipe outlet and adjacent
area. (c) Temperature T nephogram of RPV pipe mouth. (d) Isothermal line diagram of RPV pipe
mouth. (e) Displacement of RPV nozzle U. (f) Strain εxx nephogram near RPV nozzle. (g) Von Mises
stress of RPV pipe. (h) Stress nephogram of σyy.

Figure 9a is the circumferential stress of the RPV vessel wall. We choose four time
points: t = 1200 s, t = 2400 s, t = 3600 s, and t = 7200 s. From the curve trend, it can be seen
in the initial t = 1200 s and subsequent t = 7200 s, the hoop stress is larger, mainly because
the internal pressure is larger. Of course, the thermal stress formed by temperature will
also have a partial influence. It should be noted that the distance from the outer surface of
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the RPV (d = 150 mm) will produce reverse stress on the vessel wall, which is formed by the
interaction between internal stresses. Similarly, Figure 9a,b form a set of stress comparison
diagrams. Figure 9b is the axial stress above the pipe mouth. The trend is basically similar
to that in Figure 9a, and the stress gradually decreases. The difference is that the stress
near the pipe mouth changes obviously, the gradient value is relatively large, and the other
positions decrease slowly, which is mainly due to the stress concentration at the pipe mouth.
This also shows that the numerical results are in good agreement with the actual situation.

(a) (b)

Figure 9. Variation trend of radial stress and circumferential stress of RPV with calculation distance.
(a) Hoop stress on the RPV wall. (b) Axial stress above the nozzle.

7. Conclusions

The purpose of this paper is to study the stress variation of nuclear pressure ves-
sels. The mechanical models of pressure vessels established in this paper are from one-
dimensional to three-dimensional. The theory of each model and three numerical examples
are given. For a one-dimensional model, the equilibrium equation is mainly established
according to the internal pressure, axial stress, and circumferential stress of RPV. The model
belongs to the rough estimation of stress, and the error is too large. The conclusion of
the theoretical model is that the circumferential stress is twice the axial stress. In this
paper, the continuous damage dynamic model with cross-section finite element method
(CMMD-TCFEM) is proposed. The advantage of this model is that it can dynamically
describe the change of physical parameters of RPV under the action of the loss factor. The
model has the characteristics of fast calculation, layered, and localized display. The model
can obtain the stress distribution cloud map of axial and radial 2D sections. The numerical
conclusion is that the Poisson’s ratio increases with the increase of temperature (û,Et), and
the Young’s modulus decreases with the increase of temperature (û, d̂).

In the second numerical example, axisymmetric theory is mainly given. After giving
the geometric parameters and material parameters, the model can output the stress and
strain nephogram of RPV under different internal pressures. The other contribution is
to compare the initial state of RPV and the deformation of RPV after internal pressure.
Compared with the CMMD-TCFEM method, the 3D axisymmetric method can obtain the
overall stress and strain cloud map, which is more complete and intuitive. The numerical
results show that the stress change at both ends of RPV is significantly greater than that
of the middle vessel wall, and the reinforcement method should be adopted at both ends
of the RPV. In practical application, RPV is accompanied by multiple exhaust pipes to
release steam and add coolant, and stress modeling and solution near the exhaust pipe are
also very important. Therefore, in example 3, a three-dimensional finite element model of
thermal–mechanical coupling is established, and the adaptive mesh is used to discrete the
solution area. Finally, the stress, strain, displacement, and other information of the RPV
pipe mouth are obtained. We also compare the changes of radial stress and circumferential
stress near the RPV pipe mouth. The numerical results show that the distance d from the
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inner surface is from inside to outside, and the radial stress and circumferential stress near
the RPV pipe mouth gradually decrease.

In short, the new numerical method proposed in this paper corresponds to a number
of different models, from one-dimensional to three-dimensional, from a single physical
field to a multi-physical field. The continuous damage dynamic model is successfully
combined with the finite element method, which can better characterize the elastic modulus
and Poisson ratio with the change of the damage factor. The axisymmetric model and
the coupling model of the nozzle can provide theoretical and simulation experience for
RPV design and stress simulation. Our method reflects the multidisciplinary intersection
and can solve the same problem from different angles. Our future work will focus on
the intelligent application of nuclear energy. It includes optimizing fuel metering and
periodically automatically detecting the performance of RPV materials. Machine learning is
used to predict the internal temperature of RPV in real time, and multi-scale theory is used
to analyze the defects and crack propagation of RPV materials. The application of these
problems will contribute to the effective improvement of nuclear technology and provide a
good theoretical basis for the application and design of a new generation of nuclear energy,
so that nuclear energy can better benefit mankind and create more energy value for society.
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