
Acta Mechanica 93, 133-143 (1992) ACTA MECHANICA 
�9 Springer-Verlag 1992 

Continuum damage mechanics 
for softening of brittle materials 

W. A. M. Brekeimans, P. J. G. Sehreurs and J. H. P. de Vree, Eindhoven, The Netherlands 

(Received May 23, 1991; revised June 13, 1991) 

Summary. Continuum damage theory is used to model the failure behaviour of brittle materials. In the 
constitutive equations a damage parameter is incorporated. A damage criterion is postulated such that large 
differences between tension and compression strength can be described. A damage growth law is quantified 
based on experimental data for concrete. For the elaboration of the mathematical formulation the finite 
element method is applied. Numerical results obtained for a plane strain example show the merits of the 
procedure. 

1 Introduction 

The behaviour of brittle materials like concrete under mechanical loads is affected by the 
development, growth and coalescence of microcracks leading to the formation and propagation 
of macrocracks and eventually to rupture. Classical fracture mechanics is inappropriate to 
predict crack-initiation while crack-propagation can only be described when the crack-path is 
known beforehand. Continuum damage mechanics offers principally more extended possibilities 
for crack analyses. 

The continuum damage approach, first elaborated by Kachanov [1] to model fracture in 
creep, is characterized by the introduction of separate fields of damage variables which are 
measures for the local deterioration of the material. By the incorporation of the damage varia- 
bles into the constitutive relationships the influence of defects on the material behaviour is taken 
into account. 

Micromechanical considerations can be used for the identification and quantification of the 
damage variables [2]. On the other hand a phenomenological procedure, as will be outlined in 
this paper, can also be successful. The theory is developed mainly analogous to the usual 
formulation of elasto-plastic behaviour. A damage criterion (comparable to a "plastic flow 
criterion") is postulated and a kinetic damage evolution law ("hardening/softening law") will 
be supplied. Numerical values for model parameters are obtained from experimental data in the 
literature. 

For the detailed analysis of non-homogeneous loaded bodies the finite element method is 
pre-eminently suitable. The global structure of the particular computational implementation is 
explained. An application, with promising results, shows the merits of the strategy. 
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2 Cons t i tu t ive  m o d e l l i n g  

Material degradation by increasing microstructural deterioration can be considered as 
irreversible and therefore as history dependent behaviour. To derive the appropriate constitutive 
equations, the framework of solid thermodynamics for irreversible processes [3], [4] gives 
qualitative but useful support. To parameterize history dependence so-called internal hidden 
variables can be introduced [5], [6]. The following theory will be confined to elastic material 
behaviour influenced by isotropic damage, denoted by D. As viscous or plastic strain 
contributions are left out of consideration, the damage D is the only relevant internal variable. 

The damage D is a monotonously increasing scalar quantity, 0 -< D _< 1, expressing the level 
of material degradation [7] -[9];  initially undamaged material is characterized by D = 0, the 
complete loss of stiffness and coherence by D = 1. As an internal variable, D will contribute to the 
expression for the Helmholtz free energy (here defined per unit volume) T(~, D), with a the linear 
strain tensor. The Cauchy stress tensor ~r can be derived from the relationship 

6T 
= or(a, D) - & (1) 

Following the usual continuum damage mechanics approach with adoption of the principle of 

effective stress [10], [11], the expression for T reads 

T = (1 - D) To(a) (2) 

with To(a) the free energy for undamaged material while (1 - D) is the reduction factor caused by 

damage. 
For linear elastic behaviour To can be written as [12] 

1 
To(a) = ~ a : r  (3) 

( 1 - 2 v 4 1 )  (4) 4H = vE II + 
(1 + v ) ( 1 - 2 v )  v 

with Young's modulus E and Poisson's ratio v; I and 41 represent the (symmetric) identity tensors 
of rank two and four, respectively. The product (1 - D) E can be considered as the effective elastic 
modulus while it is assumed that Poisson's ratio is not affected by damage. Alternative 
relationships for T(a,D) have been proposed, e.g. [13], which also adapt Poisson's ratio; no 
further attention is given to these formulations. 

The constitutive description is completed by a damage criterion and a damage evolution 
equation. It can be proved that b > 0 is a necessary condition to satisfy the Clausius- 

Duhem entropy inequality. 
The damage criterion defines the strain states with potential increase of damage. The 

approach is similar to the procedure followed in the theory of elasto-plasticity. A scalar measure 
of strain, the damage equivalent strain ed = ed(a) => 0, is introduced. An appropriate expression 
for ee will be presented in Section 4. Increase of damage is only possible if actually ed increases and 
equals a threshold value • > 0, the damage remains constant if e~ is not increasing or if ed is 

smaller than g; mathematically formulated as 

20>0  if ~d>0  and if ~ d = x ,  (5) 

2 0 = 0  if ~ a < 0  o r i f  e e < z .  
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The actual value of the threshold z can be expressed in the actual value of the damage D as will be 

shown later on. For  consistency it is required that 

2 = @ a }  if e a = z ,  (6) 

~?=0  if ~a<x, 
where the so-called McAuley brackets <.} are defined by 

<~) = ] ~ + I~l  �9 ( 7 )  

The set of strain tensors with ~a(~) - ~ -- 0, represented in strain space, constitutes the actual 
damage surface [13]; for strains mapped "inside" of this surface the material  behaviour is 
reversible, only for strains "on"  the surface damage growth may occur. 

The damage evolution can be specified by the introduction of a mechanical dissipation 
potential [14]; more directly it is supposed here that damage growth is governed by a power-law 

D = 0  if ~ a < ~ ,  
(s) 

b=c~<ie}(ea)  r e ( l - D ) - "  if e a = z  

with c~ > 0, m and n > 0 material  properties. The damage evolution equation expresses that the 
damage rate will become infinite if D approaches the critical value 1. The linearity with respect to 
~a corresponds with the previous restriction to time-independent material behaviour. Because 

b > 0 the entropy inequality is satisfied. 
F rom the above formulation it can easily be observed that the damage D and the threshold 

value x are simultaneously increasing functions of the time t (or are both constant); for 

irreversible as well as for reversible behaviour it can be written 

b = ct2(z)" (1 - D ) - ' .  (9) 

With use of the initial values D~ and z~ for D and z, respectively, the straightforward integration of 

this differential equation yields 

D(x)=I_((I_DO~+~ ~(n+l)(~_l \\1/(~+~) (z)m+X -- (z,)m+X)) , (10) 

assuming m :t: - 1 ;  also for m = - 1  an appropriate  analytical expression can be derived, 

however, in the following this exceptional case will be left out of consideration. 
By introducing of the critical threshold Zc, defined by D(zc) = 1, in the relationship (10) for 

D(z), the quantity ~ can be written as 

m + 1 (1 - D0 "+l 
= (11) 

n + 1 (,~D m+~ - ( z p  +~" 

Backsubstitution of this expression for c~ into Eq. (10) results in 

((~c)m+l _ _  ()4)m+1 ~l/(n+l) 
n(z)  = 1 -- (1 -- D0 \ ~  (~,),.+~/ �9 (12) 

The actual value of z at time t is completely determined by the history of the damage equivalent 
strain {sa(z); �9 _-< t} and consequently by the strain history {e(z); z < t} ; i t  can be written 

x(t) = Max [z~, {ea(z); z < t}]. (13) 
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If ee exceeds zc the relationships derived above lose validity; the material is completely 

damaged then and ~r should be set to 0. 
Resuming: for a given deformation history the damage D and thus the stress tensor o can be 

calculated; besides the elastic properties E and v the damage quantities Dz, zz, z~, m and n should 

be specified; the relationship for ee(e) has to be supplied additionally. For  the following 

elaborations the initial values of D and g are assumed to be negligible. The research will be 

continued with D~ = 0 and z~ = 0. 

3 Uniaxial stress 

For uniaxial loading the stress tensor ~r can be written as cr = c~ae.ea, with or. the axial 

stress (positive for tension, negative for compression) and with e. the unit vector in 

axial direction. As a consequence of the invariance of Poisson's ratio the strain tensor 

reads 

= ~,(e,ea -- v(I - e,ea)), (14) 

where e. denotes the axial strain (positive for tension, negative for compression). 
The equivalent damage strain ed(e) is scaled such that for uniaxial stress states ed satisfies 

ed = ea if 

~d-- 
~a 

if 

~a ~ 0 ,  

~a<0,  

(i5) 

From these equations the ratio of the extreme values of era in tension and compression can be 

derived 

]Ga[max in lension 1 (17) z - - 7  

[O'a[max i . . . .  press ion 

while this ratio also holds for the associated values of le,[. The intuitive assumption by Fonseka 
and Krajcinovic [15], t / =  10 for high strength concrete, will be adopted for the following 
elaborations. It is remarkable that with micromechanical calculations [16] almost the same value 

for ~/has been found. 
For  a particular grade of concrete with E = 27.6.103 [MPa] and a compression strength of 

73.8 [MPa] experimental data for uniaxial compression [17] and theoretical results have been 
compared by Fonseka and Krajcinovic [15]. Using these publications the values ofzc, m and n for 

(16) 

( ( cr~=Ee. 1 -  e! if e a > 0 ,  
kZc/ / 

% = E e .  1 - -  - -  if e . < 0 .  
\ ~zc / / 

where the material constant t / >  1 indicates the difference in damage sensitivity between tension 
and compression. For  t / =  1 this difference is absent while for an increasing value of r/ the 

compression strength becomes larger with respect to the tension strength. 

If the axial strain is prescribed such that le.l is monotonically increasing, the application of the 

theory developed leads to 
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Fig. 1. Uniaxial compression 

the present  m o d e l  are es tabl i shed:  ~c = 0.00055, m = 2 and  n = 0.1. F igu re  1 shows tha t  the 

presen t  a p p r o a c h  is a lmos t  perfect ly sui table  to descr ibe  the exper imen ta l  da t a  and  the results  

der ived  by  F o n s e k a  and  Kra jc inov ic  [15]. 

4 D a m a g e  equivalent strain 

In  the p rev ious  Sect ion  the scal ing of the d a m a g e  equiva len t  s t ra in  ed has  been defined by  Eq. (15), 

t ak ing  in to  accoun t  the difference be tween tens ion  and  compress ion .  An accep tab le  express ion  

for ~d, f o rmu la t ed  in p r inc ipa l  s t ra ins  ~j ( j  = 1, 2, 3), seems to be [18] 

Scl='~(~, ((g,j)2@h2(--~))2)) 1/2 (18) 
j = l  

with ~, > 0 an ad jus tab le  mul t ip l ie r  and  with  0 < h < 1 a p a r a m e t e r  to accompl i sh  tha t  

compres s ion  is less ha rmfu l  than  tens ion  because  of closing cracks.  F o r  h = 1 the d is t inc t ion  

be tween  tens ion  and  compres s ion  vanishes.  The  con t r i bu t ion  h2<--8j) 2 is  most ly  omi t t ed  

e.g. by  M a z a r s  [19] and  F r a n c o i s  [20]. To meet  the scal ing cond i t ions  (15) 7 and  h should  

be re la ted  to  ~ /by  

( g/2 =2V2 _'~1/2 ( 1 -  2VZr12) */2 
7 = \ t / 2 ( 1  _ 4 v 4 ) j  , h = \ ~ _- 2~v2-] . (19) 

It  is evident  tha t  for t / >  1/(v I f2 ) ,  which m a y  be qui te  real is t ic  (see Sect ion 3), the def ini t ion (18) 

for ee fails. Therefore  an  a l te rna t ive  re la t ionsh ip  for ed is p r o p o s e d  here. 
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Replacement of principal strains in Eq. (18) by principal stresses leads to a more suitable 
expression for ca. The result can be written as 

- \ 1 / 2  § ea : 9 __ ((2,)  2 + h 2 ( - 2 , ) 2 ) }  (20) 
j = l  / 

with 2 a ( j  = 1, 2, 3) linear combinations of • ( j  = 1, 2, 3) according to 

22 / = v 1 - v  v g2 - (21) 
/ 

23] v v 1 -- e3 

By scaling with (15), the quantities r /and/~ are expressed in v and/7 

1 ~? : /~ = 1 .  (22) 
(1 + v) (1 - 2v)' /7 

Using the damage equivalent strain defined by Eqs. (20)-(22), there are no difficulties to deal 
with large values of the parameter/7. Therefore this strain measure will be applied in Section 6 to 
analyse a concrete softening problem. 

5 Fini te  e l ement  method  

A continuum is considered, subjected to (increasing) external loads and/or prescribed 
displacements. At any stage of the loading process it is required that 

- the stress field satisfies the local equilibrium equation, 
- the local stress tensor ~ and the damage variable D are related to the local strain tensor ~ and 

the strain history through the constitutive relationships as developed in Section 2, 
- the kinematic and dynamic boundary conditions are satisfied in conformity with the process 

specification. 

Because of history dependence an incremental approach will be followed: the calculation of the 
interesting quantities is executed for a discrete number  of subsequent process stages. A suitable 
numerical procedure will be necessary for the analysis on increment level, to deal with the 
inhomogeneous character of the relevant fields. The finite element method is generally accepted 

as the appropriate  solution technique. 
To manipulate the differential problem formulation, the displacement field u(x), with x the 

position vector of the material points, is approximated by the kinematically admissible 
discretization 

u(x) = N r(x) u.  (23) 

The nodal displacement vectors constitute the column u, the column N(x) contains the 
interpolation functions; superscript T denotes transposition. A Galerkin approach,  applied to 
the weak formulation of the equilibrium equation [21], results in the balance of nodal forces 

~(u) =fe. (24) 

The column f- with internal nodal forces is defined by 

f~(u) = j [VN]- ~ dV (25) 
V 
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with V the volume of the continuum and V the gradient operator in that volume. With the 
constitutive relationships the stress tensor ~ is non-linearly (due to the damage contribution) 
expressed in the strain tensor e and thereupon in the column u with nodal displacements, which 
are related by 

1 
~= 7[[~]+[vN]~]~.  (26) 

The column fe with external nodal forces is defined by 

fe = ~ Np dA (27) 
A 

with p the stress vector acting on the boundary A; infe the dynamic boundary conditions are 
taken into account. 

Formally, the non-linearity in the system equations (24) necessitates an iterative solution 
scheme on increment level. If the standard Newton-Raphson method [21] is applied (but also for 
alternative algorithms), the implementation of a consistent tangential stiffness matrix d f~/du is 
advantageous for numerical convergence. However, as a consequence of the incremental 
approach, combined with the softening material behaviour, bifurcation phenomena may occur, 
causing convergence and ambiguity problems (R Fotiu [22] studied the convergence problem 
and found unconditionally stable algorithms). To avoid these, the behaviour during an increment 
is assumed linear by fixation of the damage field. Then the solution of the nodal displacements 
can directly (without iterations) be determined. At the end of each increment first the damage 
field and next the stress field are updated using Eqs. (12) and (1). The final incremental result will 
show an unbalance (residual load) with respect to Eq. (24). If the error exceeds a certain small 
limit value one or more so-called "zero-increments" (incremental steps with unchanged 
boundary conditions) are executed until equilibrium is restored. Especially for ill-conditioned 
systems, the "uncoupled" procedure outlined above proves to be advantageous. 

6 Example 

The uniaxial compression of a rectangular concrete block under plane strain conditions is 
considered, see Fig. 2. 

The boundaries x = _+ be1 are stress-free, for the boundaries x = _+ he2 the displacement in 
el-direction is suppressed while in e2-direction the displacement is prescribed according to 
u(x = +_ he2) = +_`she2 (constrained compression). With 5̀ < 0 the dimensionless height reduc- 
tion (average strain in e2-direction) is indicated; 1̀51 increases monotonically. 

The material properties are taken from Section 3, additionally v = 0.2. The numerical 
calculation is performed for the geometry ratio b/h = 0.5. A quarter of the configuration is 
analysed, using a regular mesh of 8 x 8 isoparametric four-node elements with a bilinear 
displacement field and four integration points. 

Figure 3 shows the average upsetting pressure p (positive in case of compression) as a function 
of 1,51, As a reference also the graph for unconstrained uniaxial plane strain compression is 
visualized, obeying the relationship 

EI6I ( (ee~]"+~x} ~/("+~, _ 1(1+v2) ~/z 
P -  1 -~2  1 - \ ~ /  / ~d ~ 1 - v  2 161, (28) 
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Fig.  2. P r o b l e m  conf igu ra t ion  a n d  finite e l ement  m e s h  
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Fig. 4. Damage and deformation for constrained uniaxial compression 

to be derived easily from the theoretical framework. For unconstrained compression the 
post-peak pressure decreases gradually, due to the implicit assumption that the configuration 
remains homogeneous. Without this assumption the solution is non-uniquely determined [23]. 
For constrained compression the post-peak pressure almost immediately drops down, following 
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a non-equilibrium path; for low pressure equilibrium is restored. The differences can be 
explained by 

- the heterogeneity in the constrained case combined with the softening material behaviour 

leading to unstable localization of damage, 

- the presence, in the constrained case, of tensile principal stresses which have a dominating 
effect on the damage equivalent strain ed. 

Figure 4 shows for the constrained case the contours of constant damage and the deformed 

element mesh (displacements multiplied by 25) at peak pressure and in the final state. At peak 

pressure the damage is mainly concentrated in the corners x = _+ be1 ++_ he2, as can be expected. 

Then, from the corners the damage propagates to the centre of the material; shear band 
formation can clearly be observed. The damage development is according to the pattern 

well-known from practical experience. 

7 Concluding remarks 

Continuum damage mechanics proves to be a powerful tool to analyse the behaviour of brittle 
materials in the softening regime. The constitutive equation for the undamaged case is extended 

with a damage contribution. Essentially therefore, the damage criterion and the damage 

evolution law have to be specified. To deal with large differences in tension and compression 

strength an appropriate formulation for the damage equivalent strain in the damage criterion has 

been proposed. The damage evolution law has been quantified with a simple expression 
supported by experimental results. 

The numerical elaboration of the theoretical framework for inhomogeneous configurations 
can be performed with the finite element method. The history dependence requires an 

incremental approach. To avoid convergence and bifurcation problems an uncoupled strategy 

has been chosen: per increment only a linear system of equations has to be solved, however, the 
increment size is considerably limited to obtain a prescribed accuracy. So-called zero-increments 

are executed to maintain equilibrium of internal and external nodal forces. It is emphasized that 

the solution technique should be given extra attention in future research. Nevertheless, the 
present method was capable to produce interesting results for constrained uniaxial compression 

of concrete under plane strain conditions. 
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