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Abstract 
A general three-dimensional continuum description is presented for a 
material containing regularly spaced and approximately parallel jointing 
planes within a representative elementary volume. Constitutive relation- 
ships are introduced for linear behavior of the base material and nonlin- 
ear normal and shear behavior across jointing planes. Furthermore, a 
fracture permeability tensor is calculated so that deformation induced 
alterations to the in-situ values can be measured. Examples for several 
strain-controlled loading paths are presented. 
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A Continuum Description for 
Jointed Media 

Introduction 
This report presents a general three-dimensional 

material model for regularly jointed media. The model 
is composed of two parts: a continuum approximation 
based on average discontinuous displacements across 
jointing planes within a representative elementary 
volume, and a material constitutive description based 
on linear behavior of the base material and nonlinear 
normal and shear behavior between jointing planes. 
Standard relationships for the balance laws have been 
adopted. All material constants can be obtained by 
laboratory measurements on single-joint specimens. 

The specific application of the material model 
presented in this report is underground disposal of 
nuclear waste in a hard-rock geologic medium. This 
work is part of the Nevada Nuclear Waste Storage 
Investigations (NNWSI) administered by the Nevada 
Operations Office (NVO) of the US. Department of 
Energy (DOE). For these problems, the medium is 
usually highly jointed and the repository horizon is 
either partially saturated above the water table or 
fully saturated below the water table. Since the in- 
stantaneous fracture permeability is governed primar- 
ily by the deformation response, a material descrip- 
tion that contains explicit discontinuous normal and 
shear displacements across the jointing planes is need- 
ed. A section of this report is devoted to the construc- 
tion of a fracture permeability tensor based on the 
same continuum approximation. I t  is hoped, however, 
that this material model wil l  be useful in other appli- 
cations where the medium is anisotropic because of 
regular jointing, such as the response of underground 
structures during blast or earthquake loading. 

Continuum theory may not necessarily be the best 
approach for modeling certain jointed rock masses. 
Studies are currently underway to characterize rock 
masses as to whether a homogeneous continuum the- 
ory is applicable and, if so, to determine the smallest 
representative elementary volume for modeling.' Net- 
work theory and statistical methods are used in these 
studies. If the representative elementary volume is 
unsuitably large, then discrete joint models are neces- 
sary. Clearly, both continuum models and discrete 

joint models are required to satisfactorily analyze 
large scale geotechnical problems where major discon- 
tinuities such as faults and dikes are present. 

Continuum Approximation 
The continuum model in this report is based upon 

the published work of Morland.24 Consider a "repre- 
sentative elementary volume" containing regularly 
spaced and parallel fractures as sketched in Figure 1. 
The orientation of this joint set is characterized by a 
unit normal vector 2 with respect to fixed xl, x2, x3 
coordinate axes. The spacing between fractures is 
denoted by 6. Additional unit vectors 5 and in the 
plane of the fractures are introduced such that 5,  L, 
n form a local orthogonal coordinate system. These 
&tors are constructed such that 5 lies in the xl, x2 
plane, and points in the positive x3 direction. 

y! - JUmq nornu( a-1 -or 
x: * h r n p u g d a p b m n m t  -0, .. 

Figure 1. A Representative Elementary Volume Contain- 
ing Regularly Spaced and Parallel Fractures Separated by a 
Distance b 

'. 
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It is assumed that the relative motion between 
interfaces of the fracture a t  the position 5r can be 
measured by a jump "dilation" displacement vector - u t  (zr) normal to the fracture plane, and a jump 
"slip" displacement vector ~ : ( z ~ )  parallel to the 
fracture plane. The net jump displacements, for R 
fractures in the representative elementary volume, 
wil l  then be 

R 
d R a d  h. (5 )  = 1 xr (Er) 

1-1 

where Ed and E' are average displacem nts, and 5 is 
any position within the element. The characteristic 
dimension of the representative elementary volume is 
FtJ. As Rb tends to zero, or becomes small compared to 
the length scales of interest, the individual discontin- 
uities will be unimportant provided that the correct 
net jump displacements are measured. On this basis, 
continuous displacement fields x d a n d  2' with re- 
spect to the fixed xl, x2, x3 coordinate axes are intro- 
duced, 

where 

(3) 

In Eq (3), the direction of the slip displacement is in 
the direction of the unit vector 1, which lies in the 2, 
t , plane and is normal to 2. The total displacements 
chan be written as the decomposition, 

u ( x )  = E V X )  z + 2dcZ) + E'(&) (4) 
2.- 

where 

the form, 

is a continuous displacement field. 
Equation (4) suggests a strain decomposition of 

However, in the absence of a fracture set, 

g = gb9 (6) 

where gb is the strain associated with the intact 
materiaT between fractures and is called the block 
strain. On this basis, the strain 
to be, 

2 = &b + &d + an (7) 

The dilation and slip strains are defined in terms of 
the continuous displacements, 

h h 5 - 

2&' = h U ' V  + (u")T h (8) 

where V is the gradient operator with respect to the 
fixed xl, xz, x3 axes. Equation (8) can be reduced to a 
more useful form. Decompose 2d and E* into compo- 
nents in the local coordinate system, 

5 

Within the representative elementary volume, both 
u and 2' have nonzero gradients only in the direc- 
con normal to the fracture planes. Thus Eq (8) be- 
comes 

where n is a coordinate in the direction2. 
From Eq (2), 

aud i+ 
an 8 
- = -  

au' - = -  
a n a  

8 



so the final form for the strains is 

n: 
26 

+ + Z@L 

In & (12) the fracture spacing 6 and the average jump 
displacements $ and U' are explicit in the continuous 
strain approximation. 

Constitutive Model 
It will prove useful to introduce the components of 

a stress tensor 21: and the components of a total strain 
tensor E whicfirefer to the local 5, L, E coordinate 
systemnf g and a are stress and strain tensors that 
refer to fixTd xl, z, x3 axes, then the transformation 
equations are 

and 

For a fracture set with normal E, the normal stress is 
T,, and the shear stresses are T, and Tmt. The shear 
stress vector acting on this plane is 

L 7 =  g E - (gL-&& E 9 

and the shear strain vector is 

(15) 

z = - ( & E * E ) L ! p  5 (16) 

Intact Material 
In the present formulation, the intact material is 

assumed to behave as a linear elastic solid; i.e., the 
block strain rate is 

Joint Dilation 
Laboratory data have shown that the stress-dis- 

placement relationship for motion normal to a joint 
plane is highly nonlinear. Initially, when two fracture 
planes are brought together, the actual surface area in 
contact is almost zero. The entire normal force is 
sustained by three or more contact points. As the 
normal load increases, the point contacts enlarge by 
elastic deformation and then plastic crushing. An 
empirical approach is taken here based on discrete 
joint models that are discussed by Goodman5 and 
shown in Figure 2. First, an open joint has no tensile 
strength, so 

--6 
u,. 

Figure 2. Assumed Joint Stiffness Behavior Normal to a 
Single Joint Plane 

Second, there is a limit to the amount of compression 
possible, and at this limit the joint stiffness is infinite. 
A general power-law relationship describing this be- 
havior is assumed here, 
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where k and m are constants and n",, is the maximum 
closure. These constants are determined from labora- 
tory experiments on single-joint specimens. It follows 
that the rate equation is 

a = f f T m  

From Eq (12) and (20) the dilation strain rate is 

(21) 

Although joint compression may be largely irrevers- 
ible, it is assumed to be nonlinear elastic in this report. 

Joint Shear 
The joint shear stress-displacement behavior is 

assumed to be elastic and perfectly plastic. In the 
elastic range 

where G, is a constant to be determined from single- 
joint laboratory data. From Eq (12) the slip strain rate 
is 

The onset of plastic behavior is assumed to be 
governed by a linear Mohr-Coulomb criterion. Based 
on a scalar "slip function" defined by, 

where p is the friction coefficient and Co is the cohe- 
sion, the joint behavior is elastic for F 5 0 and plastic 
for F > 0. With Eq (13) and (15), the slip function in 
Eq (24) can be written in the more general form, 

+ p o  n . E  - Co. (25) z- 

Coupled Dilation Displacements 
It is well established that, in a direct shear test 

with constant normal stress, the dilation displacement 
of a jointed specimen increases as the shear displace- 
ment increases. This phenomenon is called a coupled- 
dilation displacement, and it is caused by fracture 
interfaces rolling over asperities. It is more pro- 
nounced at low normal stresses than at high normal 
stresses. A coupled shear displacement, caused by 
pure uniaxial loading normal to a joint plane, is ruled 
out by the invariance requirements on the constitutive 
equations. In this report we assume the following joint 
flexibility equations: 

0: = T,/G, 

where the function f is defined in Eq (19). This 
behavior is shown in Figure 3. The coupled dilation is 
a linear function of the shear displacement with the 
proportionality constant equal to tan $. The effective 
shear displacement 12'1 is equal to the magnitude of 
the shear displacement in the 5, L plane, and its 
direction is the same as the direction of the maximum 
shear stress IT-I in this plane. Furthermore, from Eq 
(261, 

A t  a shear displacement of up (in Figure 3), the 
coupled dilation effect ceases due to incipient shear 
slippage. From Eq (26) and (27) the rate equation for 
the dilation displacement is 

and from Eq (12) the dilation strain rate is 

The rate equation for slip remains unchanged from Eq 
(22). 

The coupled dilation displacement is viewed as 
being reversible in the elastic preslip range; i.e., for 
1ti-81 i L+, in Figure 3. This appears to be a realistic 



assumption since crushing and shearing of asperities 
does not take place to a significant extent in this 
range. When unloading occurs, the value of I i I in Eq 
(28) and (29) must be replaced by - I i I. Unloading is 
detected by measuring 1g.l in the 5, 2 plane. This 
methad accurately tracks radial loading and unload- 
ing paths; a more general algorithm is required for 
other paths. 

t 

> IE'I I 
I 

U P  

Figure 3.. Assumed Joint Stiffness Behavior in Shear 
Parallel to a Single Joint Plane 

\ 

I 

UP 

Figure 3b. Assumed Coupled Dilation Behavior for Nor- 
mal and Shear Displacements 

In the postslip range the coupled dilation dis- 
placement is thought to be only partially reversible; in 
this report, it is assumed to be totally irreversible. 
Once plastic slippage occurs, the dilation angle $ is set 
to zero for all subsequent loading and unloading 
paths. 

Solution of Constitutive 
* Equations 

Consider the general situation in incremental 
stress analysis where the stresses and strains are 
known at the last load step; the current strain rates are 
known, and it is desired to find the current stresses. 

On the basis of Eq (7), decompose the total strain 
rate, 

g = k b +  - p +  - z &:+ & (30) 

The block strain is linear elastic, the dilation strain is 
nonlinear elastic, and the slip strain has been further 
decomposed into a linear elastic part and a perfectly 
plastic part. First, assume that plastic shearing does 
not occur, and proceed to calculate an elastic trial 
stress. With the constitutive relations in Eq (17), (23), 
and (29), the total strain rate [Eq (30)j becomes 

It is convenient to transform Eq (31) to six scalar 
equations in terms of the six stress components acting 
parallel and perpendicular to the plane of the frac- 
tures. These equations are obtained by taking succes- 
sive scalar products of each side of Eq (31) with 5, 5 ,  
and L: 

n 

T m  3 f '  tan$ . K - L G  
(tr 2 ) + -T,,,, + - Izl 

2G 6KG 5 6 G E, = -- 

E,= (;G - + -  2616.) Tm 

E,, = - i - (2?G 2bG.) Tnt 

(tr T 2G 6KG = 
1ml 5 E = - - -  

2 
,+, K - x G  

(tr T ) 
1 tl 5 

2G 6KG = E,, = - - 

T,, E,, = - 2G 
(32) 
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in which the strain-rate components are defined by Eq 
(14). The shear stress rates can be obtained directly, 

T,t = (2G) Eat (33) 

With the incremental shear stresses, the incremental 
direct stresses are obtained by the following calcula- 
tional sequence: 

2GE,,+ K - - G  tr E - K + - G  - ta"q;I ( i )  = ( 3 ) b c , -  
T"" = 

2 
K - $ 3  

Tm = 2GE, + - tr T 
3K = 

2 
K - - G  

T,, = 2GE,, + - t r T  3K = (34) 

The stress rates in Eq (34) are not obtained directly 
because the secant stiffnesses are nonlinear functions 
of the normal stress T,. Rapid convergence, however, 
is achieved in very few iterations. 

The current elastic trial stress is obtained by 
updating the previous stress with the incremental 
stresses. The next step is to check the slip function 
[Eq (25)]. If F I 0, then indeed the strain rate was 
entirely elastic and the current stress-rate compo- 
nents are given by Eq (33) and (34). However, if F > 0, 
then plastic slip has occurred and further calculations 
are necessary. 

Assume a flow rule for the plastic slip strain rate 
of the form 

(35) 

where X is a constant, and 1 is a unit vector in the 
direction of slip and is determined from the shear 
stress rate acting on the fracture plane; i.e., 

The flow rule in Eq (35) is nonassociative, and implies 
that the plastic slip strain rate is not normal to the 
loading surface [Eq (25)], but rather lies in the direc- 
tion of the shear stress rate acting in the plane of the 
joint. From Eq (25) the consistency condition is 

is a fourth-order tensor of material secant 
and substitute into the consistency condi- 

tion Eq (37). This yields 

e n - ( e  n . E )  I n - Ax1 + p k  2.n = 0. (39) 

With the use of the definitions Eq (14) and (16), Eq 
(39) reduces to 

1 % -  %- e -  

(40) 

Since the shear strain-rate vector l i l  acting in the 
plane of jointing is in the same direction as the shear 
stress-rate vector I i  I ,  i.e., 

it follows from Eq (40) that 

With h known, the plastic strain rate can be 
determined from Eq (35), and new stress-rate compo- 
nents can be calculated by repeating Eq (33) and (34), 
but with the elastic strain rate derated as in Eq (381.. 
The previous stresses are updated by the incremental 
stresses to obtain the current stresses. Again, the slip 
function is evaluated and it may be found that the 
current stresses still do not lie on the loading surface. 
An iterative procedure that converges rapidly to yield 
the correct stresses is a secant method that finds the X 
giving a zero-valued slip function F. 

12 



Fracture Permeability 
Tensor 

Consider now the construction of a permeability 
tensor for the same continuum approximation as pro- 
pcmed in the mechanical model. This derivation is 
taken from Neumaa6 A sketch of the representative 
elementary volume is shown in Figure 4. The true 
steady-state velocity in the 5 direction is approxi- 
mated by Couette flow between parallel plates, 

- n 
d = A w ~ W m m ~ . r m t u r ~  
i - A- joint rp.sing 
hv - Itydrmulicgr.dim 

- unir vutor normal to Wrn pbnms 

Figure 4. Parallel Plate Approximation for Computation 
of a Fracture Permeability Tensor 

where is a surface roughness coefficient. The specific 
flux through the element, however, is 

(44) 

where 4 is the porosity. Combining with Eq (43). 

For consistency with the mechanical formulation, it is 
more convenient to describe the permeability tensor 
in terms of the unit normal vector E. From Figure 4, 

Now, for generalized Darcy flow, 

(47) 

so it follows from Eq (45) and (46) that the permeabil- 
ity tensor is 

In Eq (48) the permeability is proportional to the 
third power of the joint aperature. It follows that an 
accurate laboratory measurement of joint normal 
stiffness is required to adequately address the flow 
problem. Also, the joint spacing and the average jump 
dilation displacement are explicit in the construction 
of the permeability tensor, just as these quantities 
were explicit in the construction of the strain tensors 
[Eq (WI. 

Examples 
The material properties used in the following 

examples were selected somewhat arbitrarily, but they 
are not unrealistically different from the properties of 
many common hard-rock masses. 

Dilation Response 
Consider the reduced problem, 

ell = e= = eI2 = ea = eal = 0 

with the only nonzero strain being e22. If 

then the stress an measures the response to strains 
normal to the jointing planes as shown in Figure 5. 
Assume a stress-displacement relationship for a single 
joint, 

k = lo00 psi 
m = 1.5 
& = -0.003 in. 

. .  

which is plotted in Figure 6. For the intact rock, 

K = 0.667 x 106 psi 
G = 0.4 x 106 psi 

13 
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dilation diap(.cemonts 

7- 

Example 3. Shear response with coupled 
dilation diaplacements 

For the initial conditions, we arbitrarily assume 

7- 
Figure 5. Strain-Controlled Loading Situations for the 
Example Problems 

iid. in. 

-0 

1 1 - 6000 

Figure 6. Joint Normal Stiffness Used for Example 1 
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& = &  L 

ull = u22 = os = -200 psi 

This is a pure nonlinear elastic problem since all shear 
components are identically zero. Results are shown in 
Figure 7 for selected values of joint spacing 6. Clearly, 
as 6 becomes large, the effect of joint dilation becomes 
less significant until only the linear block response of 
the intact material is observed. Changes in the initial 
fracture permeability parallel to jointing is based on 
Eq (48), and is shown in Figure &Order-of-magnitude 
changes may be expected. The permeability changes 
are the greatest for the large joint spacings, but these 
initial fracture permeabilities are quite small so the 
changes may be insignificant. 

Shear Response Without Coupled 
Displacements 

Consider now the reduced problem, 

e22 = 0.0015 

ell = e33 = ez3 = e31 = 0 

and eI2 being variable. As in the previous example, let 

so the stress uI2 measures the response to pure shear 
strains. The material properties and initial conditions 
are the same as before. In addition, the single-joint 
shear modulus is selected to be 

G, = 0.1 x 106 psi 

and the slip function is selected to be 

p = 0.7 
Co = 250 psi. 

The calculated cyclic shear stress-shear strain re- 
sponse is shown in Figure 9 for various joint spacings. 
Because the normal strain e22 is held constant, the 
normal stress u22 and hence the flow stress will vary 
with the joint spacing (6). As the joint spacing (6) 
increases, the initial modulus approaches the intact 
material modulus and the flow stress increases to 
infinity. 



.u 
- o m  -0.004 -0.003 -0.002 -0.001 0 

- 1000 

- 2000 

-so00 
t? 

i 
--4ooo 

-woQ 

1 1-7000 

Figure 7. Stress-Strain Response Normal to Jointing for 
Example 1 
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Figure 8. Effect of Joint Normal Strain on Fracture Per- 
meability Parallel to Jointing for Example 1 

-0 

- ZOO0 I 
Figure 9. Stress-Strain Response in Shear Parallel to 
Jointing for Example 2 

Shear Response With Coupled 
Displacements 

This problem is the same as the previous example, 
except that coupled dilation displacements are includ- 
ed. During shear strain loading, the dilation displace- 
ment increases as does the normal stress Tnn. This is 
shown in Figure 10 for three dilation angles. For 4 = 
loo, the normal stress increases to such an extent that 
shear slippage is prevented. The shear stress-strain 

0.003 - 
b - 2.0 in 

0 0.006 0.010 0.015 0.020 0.025 

i!i'i. in. 

Figure loa. Effect of Coupled Dilation Angle on Joint 
Normal Displacement for Example 3 
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Figure lob. Effect of Coupled Dilation Angle on Joint 
Normal Stress for Example 3 

curves shown in Figure 11 show how the flow stress 
increases with the dilation angle. Finally, the results 
in Figure 12 show that the flow permeability parallel 
to jointing can be increased several orders of magni- 
tude by coupled dilation displacements. 

1500 I 

'H 
a' 

lo00 

wo 

0 I I I I 1 
0 0.002 0.004 0.006 0.008 0.010 0.012 

.,I 

Figure 11. Effect of Coupled Dilation Angle on Flow 
Stress for Example 3 

10'1 I 1 

'" 0 0.002 o.Oo0 0.006 0.008 0.010 

.?I 

Figure 12. Effect of Coupled Dilation Angle on Fracture 
Permeability Parallel to Jointing for Example 3 

Future Work 
It is recognized that the continuum approxima- 

tion presented in this report represents only a first 
step toward modelling the behavior of a jointed rock 
mass. Much additional work, both analytical and ex- 
perimental, is necessary before a realistic model is 
achieved. The following is a partial list of remaining 
development work: 

Experimental data on single-joint specimens 
are required not only to quantify material 
constants, but to define the functional form of 
the joint stiffness equations given by Eq (26). 

2. The strain decomposition [Eq (30)] should 
permit additional jointing planes, since the 
joint systems observed in the field are usually 
present in three orthogonal sets. 

3. For some applications, a large strain formula- 
tion will be necessary. 

4. This model will have limited usefulness unless 
large-scale verification tests are performed. 
Several have been performed and reported in 
the literature. These should be investigated 
with respect to potential verification of this 
continuum model. 

1. 
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