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Abstract

This paper presents a generalization of traditional continuum approaches to liquid crystals and
liquid crystal elastomers to allow for dynamically evolving line defect distributions. In analogy with
recent mesoscale models of dislocations, we introduce fields that represent defects in orientational
and positional order through the incompatibility of the director and deformation ‘gradient’ fields.

These fields have several practical implications: first, they enable a clear separation between
energetics and kinetics; second, they bypass the need to explicitly track defect motion; third, they
allow easy prescription of complex defect kinetics in contrast to usual regularization approaches;
and finally, the conservation form of the dynamics of the defect fields has advantages for numerical
schemes.

We present a dynamics of the defect fields, motivating the choice physically and geometrically.
This dynamics is shown to satisfy the constraints, in this case quite restrictive, imposed by material-
frame indifference. The phenomenon of permeation appears as a natural consequence of our kinematic
approach. We outline the specialization of the theory to specific material classes such as nematics,
cholesterics, smectics and liquid crystal elastomers.

1 Introduction

Liquid crystals are composed of rod-like molecules. Depending on temperature, chemical composition
and other factors, assemblies of the molecules display varying degrees of orientational and positional
order. Applied loads such as stress fields cause deformation but also changes in orientation and both these
changes cost energy. Hence, the orientation of the molecule is important to elasticity and deformation.
Therefore, coarse-grained continuum theories retain orientation information through the director field that
provides a unit-vector aligned along the long axis of the molecule. The deformations of liquid crystals
can then be described through internal energies that include the director field and its gradient as argument
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[e.g., Ste04]. When the liquid crystal molecules are linked to polymer molecule backbones, director
elasticity is strongly coupled to conventional positional elasticity and the internal energy density involves
both contributions [e.g., WT07]. In addition, defects in both orientational and positional order (e.g.
disclinations and dislocations) are observed in certain types of liquid crystals, e.g. smectics [dGP95].

Defect-free liquid crystals have been studied for many decades through continuum approaches, most
notably the Ericksen-Leslie (EL) [Eri61, Les68] model. The EL model is widely accepted and experi-
mentally well-characterized through the measurement of the various parameters in the model. However,
certain types of observed defects such as disclinations, where the orientation of the director is ambiguous
along curves in the body, cannot be predicted by the EL model, in particular disclinations of strength
1
2
. Such defects, and others such as dislocations and focal conics, have been observed in both static and

dynamic situations [e.g., dGP95, Fra58, KF08, SZA06].

This paper generalizes the EL dynamical theory of liquid crystals to allow for solid like behavior as
in the liquid crystal elastomer [WT07] phase and deal with defects in the director (n) and position
(x) configurations, including disclinations and dislocations. The defects are viewed as non-singular
localizations in physically appropriate fields representing densities of lines carrying vectorial attributes.
Being spatial densities, they naturally satisfy balance laws, thus providing a direct geometric route to
specify defect dynamics.

The main idea is to allow for smooth incompatibilities in the director and deformation ‘gradient’ fields,
henceforth referred to as the corresponding distortion tensors since they are not globally irrotational (curl-
free). We do this by introducing defect fields that represent these incompatibilities. This is an expedient
device to deal with topological defects without having to deal with discontinuities in the basic fields
(n,x) whose generalized gradients could be strongly singular. We emphasize that allowing for smooth,
incompatible distortion fields is not the same as smoothing the director/position fields in any sense since
no continuous global vector field can be defined whose generalized gradient may be equated to the smooth
incompatible distortion field. In fact, roughly speaking, if E is a sufficiently smooth director distortion
field on the body, it can be written in the form

E = grad n + curl Q̂

through a Stokes-Helmholtz decomposition, where n is a vector field and Q̂ is a solenoidal (divergence-
free) second-order tensor field. Q̂ is directly related to the away-from-gradient defect content of E
defined by

β := curl E = − div grad Q̂.

Thus, our approach naturally produces a tensor orientational order parameter Q̂ that arises only in the
presence of director field defects. It is not necessarily symmetric as the standard Q-tensor of Landau-
DeGennes theory and neither does it have physical association to head-to-tail symmetry.

As our model works with a director field and an incompatible director distortion field, it does not share
the elegance of the head-to-tail symmetry in the Q-tensor formalism. However, the very generality of
the Q-tensor construct in representing defects through its spectral decomposition makes it difficult to
physically motivate an evolution law for it beyond a gradient flow [SKH95] or utilizing a Rayleigh dis-
sipation principle [SMV04]. There is, however, a formalism for producing an evolution equation for the
Q-tensor based on kinetic theory-like ideas [e.g., KLGCC08, YFMW09], originally developed for the
flow of dumb-bell shaped polymer molecules [Pra57]. Since this formalism also leaves significant unan-
swered questions of constitutive closure – precisely, the closure law for the fourth moment of the angular
orientation distribution function – we see pursuing physically faithful continuum mechanics models of
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the same mesoscale phenomena that allow precisely defined constitutive input from either experiment or
theory as a useful research path.

Our point of view hence relies on the definition of geometrically precise order parameters for posing
conservation laws with physically unambiguous ingredients amenable to constitutive input from finer
length scales. Thus, the β defect tensor has the natural interpretation of a ‘vector-valued’ two-form1

that naturally lends itself to integration over surface patches allowing recourse to the standard kinematic
tautology “rate of change = flux in + source,” to specify dynamics through balance laws. These are made
material-specific by the addition of constitutive equations. Admittedly, a great deal rests on accurate
modeling of the flux and source terms, but the basic format of such equations of evolution, for a rigor-
ously defined and physically natural spatial density, is a useful kinematic fact. In addition, merely from
the kinematical fact that these two-forms can be physically interpreted as a field density of lines, a natu-
ral consequence is that their flux admits a velocity that moves the lines, thus allowing defect kinetics to
be specified independently from model energetics. By recourse to Coleman-Noll-Gurtin [CN63, CG67]
thermodynamic reasoning in spirit, we set up a multiscale, dynamical, PDE model with favorable dissi-
pative properties while allowing for energetic and kinetic input from molecular scales. Also, tying the
identity of defects to values of a field has the practical advantage that individual defects do not need to
be tracked as discontinuities or singularities in numerical computations.

The model also allows for accommodating the standard Oseen-Zocher-Frank (OZF) [Ose33, Zoc33,
Fra58] energy by replacing grad n =: G by E in the that energy density. Since defects can be rep-
resented here as non-singular localizations of the director incompatibility field, the OZF energy of the
body containing defects can be bounded in the model. As in the crystal elasticity case [e.g., Pei40], it
is possible that nonconvexity in the OZF energy is required to obtain localized defect cores. This may
be justified for large director distortions (as no elasticity can persist indefinitely), and a physical regu-
larization for avoiding singularities, attributed to extra core energy, is also accommodated. We find it
particularly satisfying that our model incorporates defects within OZF orientational elasticity without
any additional elasticity related to the ‘degree of orientation’ variable, a feature in contrast with Ericksen
[Eri91] and discussed at some length therein.

The nematic, cholesteric, and smectic (A and C) liquid crystal phases, the nematic and smectic liquid
crystal elastomer phases can all be modeled in our formulation by appropriately restricting the kinemat-
ics and using standard generalizations of the OZF energy. In the smectic phase, a permeation velocity
field appears on purely kinematic grounds. We note that its spatial gradient is conceptually similar to
compatible plastic strain rate (e.g. lattice- invariant shears) in crystal plasticity [DP91, Ach04].

A special case of our model is a dissipative, dynamic, nonlinear theory of elasticity with dislocations
refining the work in [Ach04, Ach10]. Interestingly, within our setting a unifying mathematical structure
emerges for treatment of director incompatibility and dislocation defect evolution. It is characterized in
the most simple of circumstances by a scalar equation of the form

φt =
|φx|
B

[εφxx + τ (φ)]

where 0 < ε� 1, 0 < B are material parameters and τ is a nonconvex function [Ach10, AMZ10].

We do not provide a comprehensive review of the vast literature relevant to a dynamic model of liquid
crystalline materials. Our understanding of liquid crystal materials has greatly benefited from the books
of DeGennes and Prost [dGP95], Stewart [Ste04], and Warner and Terentjev [WT07]; the papers of

1That is, a rigorously defined areal density on a manifold in Euclidean space.
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Friedel and Kleman [KF08], Leslie [Les92], Ericksen [Eri91], and Stephen and Straley [SS74]. Beyond
practical computation, it is clear that the nonlinear PDE structure that emerges here will benefit from
rigorous mathematical analysis to understand the finer points of defect dynamics and microstructure [e.g.,
Tar10]. The mathematics of static defect configurations within a director- based theory has been studied,
e.g. [Kin91, LP94, CLV01, GHL+10], and continues to be studied within the Q-tensor formalism, e.g.
[DGJ98, BZ08, BM09, MZ09]. Dynamics [LL00] and numerical analysis of the EL theory has been
studied by [LW00, LW02] and possibly such analyses can be extended to a theory that deals with moving
line defects. There is an emerging body of work due to Fried and co-workers [e.g., SSF09] that uses a
configurational-force approach to defect dynamics in liquid crystalline materials, and understanding the
connections with our approach would be useful.

The paper is organized as follows:

• Section 2 provides notation and some definitions

• Section 3 outlines the balance laws

• Section 4 deals with the geometry and evolution of director line defects

• Section 5 deals with the geometry and evolution of dislocations

• Section 6 summarizes the field equations including those of the defects

• Sections 7 and 8 examine the restrictions imposed by frame-indifference and thermodynamics

• Section 9 outlines the constitutive choices to model various classes of liquid crystal materials

• Section 10 concludes with a discussion

• Appendix A provides practical strategies to connect with observed fields

• Appendix B discusses disclinations and some classical static defect solutions from the perspective
of our model

2 Definitions and Notation

A superposed dot on a symbol represents a material time derivative. The statement a := b indicates that a
is defined to be equal to b. The summation convention is implied unless otherwise mentioned. We denote
by Ab the action of the second-order (third-order, fourth-order) tensor A on the vector (second-order
tensor, second-order tensor) b, producing a vector (vector, second-order tensor). A · represents the inner
product of two vectors, a : represents the trace inner product of two second-order tensors (in rectangular
Cartesian components, A : B = AijBij ) and matrices and the contraction of the last two indices of a
third-order tensor with a second order tensor. The symbol AB represents tensor multiplication of the
second-order tensors A and B. The notation (·)sym and (·)skw represent the symmetric and skew symmetric
parts, respectively, of the second order tensor (·). The symbol div represents the divergence, grad the
gradient, and div grad the Laplacian. The curl operation and the cross product of a second-order tensor
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and a vector are defined in analogy with the vectorial case and the divergence of a second-order tensor:
for a second-order tensor A , a vector v, and a spatially constant vector field c,

(A× v)T c =
(
ATc

)
× v ∀c

(div A) · c = div
(
ATc

)
∀c

(curl A)T · c = curl
(
ATc

)
∀c.

In rectangular Cartesian components,

(A× v)im = emjkAijvk

(div A)i = Aij,j

(curl A)im = emjkAik,j.

where emjk is a component of the third-order alternating tensor X . Also, the vector XAB is defined as

(XAB)i = eijkAjrBrk.

The spatial derivative for the component representation is with respect to rectangular Cartesian coordi-
nates on the current configuration of the body. For manipulations with components, we shall always use
such rectangular Cartesian coordinates. Positions of particles are measured from the origin of this arbi-
trarily fixed Cartesian coordinate system. We use the identity curl curl(·) = grad div(·) − div grad(·),
often for an argument for which div(·) = 0.

The following list describes some of the mathematical symbols we use in this paper.

n: director
x: current position
E: director distortion tensor
F e: elastic distortion tensor
W = (F e)−1: inverse of elastic distortion tensor
β: director incompatibility tensor
α: dislocation density tensor
v: material velocity
ω: director angular velocity; ṅ = ω × n
L: velocity gradient
D = Lsym: rate of deformation tensor
Ω = Lskw: spin tensor
G = grad n: director gradient tensor
M = grad ω: director angular velocity gradient
T : Cauchy stress tensor
Λ: couple stress tensor
Γ : skew-symmetric tensor corresponding to ω; Γ := Xω
R: rotation tensor defined from Γ ; ṘRT = −Γ
p: permeation velocity
K: external body moment per unit mass
b: external body force per unit mass
ρ: mass density
ψ: free energy per unit mass
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βV : director incompatibility velocity
αV : dislocation velocity

In contrast to standard EL theory, we relax the requirement that the director distortion be the gradient of
a vector field. Due to incompatibility, the constraints on G arising from the fixed length of the director
[ACF99, CF06] cannot be translated to a constraint on E. Thus, we follow in spirit Leslie [Les68] and,
more generally, liquid crystal theories with variable degree of orientation to adopt a compatible director
field that is not necessarily of fixed length, but allow only small deviations from the fixed length by
appropriate constitutive energetic penalty.

The symbol
˚
(·) = div v (·) +

˙
(·)− (·) LT (2.1)

for a second-order tensor argument (·) is defined as the “back-leg, contravariant, convected derivative
with respect to the time-dependent tensor function JF ” of that tensor, where F is the deformation gra-
dient with respect to an arbitrarily chosen fixed reference configuration and J = det F . This convected
derivative arises most naturally in connection with two-point tensor fields whose domain is a tangent
bundle on a time-dependent manifold. For a succint introduction to convected derivatives, see [Hil78].

Finally, we use the notion of a 2-form in a 3-d Euclidean space interchangeably with the vector represen-
tation of its adjoint 1-form [Fle77].

3 Balance laws and mechanical dissipation

For any fixed set of material particles occupying the volume V (t) at time t with boundary ∂V (t) having
outward unit normal field ν

˙∫
V (t)

ρ dv = 0,

˙∫
V (t)

ρv dv =

∫
∂V (t)

Tν da+

∫
V (t)

ρb dv,

˙∫
V (t)

ρ
(
x× v + n× ·

n
)
dv =

∫
∂V (t)

(x× T + Λ) ν da+

∫
V (t)

ρ (x× b + K) dv,

represent the statements of balance of mass, linear and angular momentum, respectively. In geometric
language appropriate to Euclidean space, one can think of mass as a scalar-valued 3-form (i.e., a ‘true’
differential form that has meaning apart from the Euclidean structure), and linear momentum and angular
momentum as vector-valued 3-forms. Here, we have followed [ACF99] in defining the director contri-
bution to the angular momentum density2. Using Reynold’s transport theorem, the corresponding local
forms for these equations are:

ρ̇+ ρ div v = 0

ρv̇ = div T + ρb

ρn× n̈ = div Λ−X : T + ρK.

(3.1)

2While allowing for the relaxation of the unit vector constraint on the director.
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The external power supplied to the body at any given time is expressed as:

P (t) =

∫
V (t)

ρb · v dv +

∫
∂V (t)

(Tν) · v da+

∫
∂V (t)

(Λν) · ω da+

∫
V (t)

ρK · ω dv

=

∫
V (t)

(ρv · v̇ + ρṅ · n̈) dv +

∫
V (t)

(T ·L + Λ : M + T : Γ ) dv.

On defining the generalized kinetic energy and the free energy of the body as

K =

∫
V (t)

1

2
(ρv · v + ρṅ · ṅ) dv,

F =

∫
V (t)

ρψ dv,

respectively, and using Reynold’s transport theorem, we obtain the mechanical dissipation

D := P − ˙K + F =

∫
V (t)

(
T : L + Λ : M + T : Γ − ρψ̇

)
dv. (3.2)

The first equality above shows the distribution of applied mechanical power into kinetic, stored and
dissipated parts. The second equality, as we show subsequently, is used to identify driving forces for
dissipative mechanisms.

4 Balance law for director incompatibility and consequent evolu-
tion equation for director distortion

We define the director incompatibility tensor as the departure of the director distortion from being the
director gradient. So,

curl E = curl(E −G) =: β. (4.1)

Both E and β are tensor fields on the current configuration, i.e., their values at any given point on the
current configuration act on vectors from the tangent space at that point and produce vectors on the same
tangent space. Therefore, if the current configuration is subjected to a rigid rotation characterized by a
tensor Q, then E transforms to the fields QEQT on the rotated configuration and similarly for β.

The definition of G as a spatial gradient suggests that it is a vector-valued 1-form, i.e., an object that can
be integrated on curves to produce a vector. In the absence of defects E = G, and hence E belongs to the
same class of geometric objects. By (4.1), β is an areal density of defect lines, including disclinations,
that represents director non-integrability. This is best appreciated at a spatial point where β can be
written as a tensor product of two vectors, so that the defect density may be visualized as a line carrying
a vectorial attribute (Figure 1). If a is any oriented area patch with unit normal field ν and bounded by
the closed curve c, and a has no defect lines intersecting it, then E can be written as a gradient on the
patch. On the other hand, for an area patch intersected by the defect line, the integral∫

a

βν da

7



Continuum Mechanics of Line Defects in Liquid Crystals and Liquid Crystal Elastomers A. Acharya and K. Dayal

quantifies the failure of E to define a single-valued director field when integrated along the closed curve
c. Thus

βν da

characterizes the director vector defect content in the oriented infinitesimal area element νda. Hence, β
is a vector-valued two-form. An immediate consequence of the definition (4.1) is that β is a solenoidal
field and this implies that the defect lines either end at boundaries or are closed loops.

Figure 1: Director incompatibility defect lines.

It is natural to assume that these line-like objects move with a velocity and thus a velocity field βV ,
relative to the material, can be attributed to the director incompatibility field. The defect density field
may also be integrated over an area and an accounting of the defect content of a particular area-patch of
material particles over time can be carried out. This is the basis of the conservation laws that provide the
dynamics of such fields. In posing this dynamical statement, a central goal is to stay as close as possible
to the EL [Les92] theory. In particular, it is desirable that:

1. the EL dissipation is augmented only by the motion of director incompatibility defects (e.g. discli-
nations) and dislocations, and the occurrence of permeation,

2. the governing equations and constitutive equations are stated in terms of the current state of the
material and information on the current configuration, without reference to prior states except for
defining positional elastic response, and

3. the theory is consistent with material frame-indifference.

As we demonstrate, a conservation law that is consistent with these three requirements is of the form

˙∫
a(t)

βν da = −
∫
c(t)

β × βV dx−
∫
a(t)

(curl (Γ (E −G))) ν da, (4.2)

where a(t) is the area patch occupied by an arbitrarily fixed set of material particles at time t and c(t) is
its closed bounding curve. The corresponding local form of (4.2) is

β̊ = − curl
(
β × βV

)
− curl (Γ (E −G)) .
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The first term on the right side of (4.2) represents the flux of director incompatibility carried by defect
lines entering the material area patch a. This is best understood by decomposing β and βV on a special
orthonormal basis oriented with respect to an infinitesimal segment of the bounding curve c as shown
in Figure 2. Without loss of generality, we also assume that the basis chosen is such that ν of the
infinitesimal area element at the boundary is not parallel to p1 × p2 or p1 × p3 .

Figure 2: Orientation of local frame for understanding defect flux.

(
β × βV

)
dx = −dx

[
(βpi)⊗

(
pi × βV

)]
p1

= − (βp1) dx
[
p1 ×

(
βV 1p1 + βV 2p2 + βV 3p3

)]
· p1

− (βp2) dx
[
p2 ×

(
βV 1p1 + βV 2p2 + βV 3p3

)]
· p1

− (βp3) dx
[
p3 ×

(
βV 1p1 + βV 2p2 + βV 3p3

)]
· p1.

Mathematically it is clear that there is no contribution to the flux from the first term on the right side
above. Physically, this is because the motion of any defect line along itself clearly produces no flux into
the area element. Furthermore the motions along directions p2 and p3, of the defect line component
along p1, produce no intersection of this line component with the area element. Similar reasoning gives
the physical meaning of (

−β × βV
)
dx = − (βp2) dx

βV 3 + (βp3) dx
βV 2.

Note that the signs are consistent with the chosen orientation of a and c.

The second term on the right-hand-side of (4.2) represents a geometric source term that enables con-
sistency of the conservation law with the first and third requirements above, as we show at the end of
Section 8. Interestingly, it allows us to write the evolution equation for the director distortion implied by
(4.2) as an adapted convected derivative as we now show.

Arbitrarily fix an instant of time, say s, in the motion of a body and let F denote the time-dependent
deformation gradient field corresponding to this motion with respect to the configuration at the time s.

9



Continuum Mechanics of Line Defects in Liquid Crystals and Liquid Crystal Elastomers A. Acharya and K. Dayal

Denote positions on the configuration at time s as xs and the image of the area patch a(t) as a(s). We
similarly associate the closed curves c(t) and c(s). Then, using the definition (4.1) and Stokes theorem,
(4.2) can be written as

˙∫
a(t)

(curl (E −G)) ν da = −
∫
a(t)

curl
(
β × βV + Γ (E −G)

)
ν da

⇒
˙∫

c(s)

(E −G) F dxs = −
∫
c(s)

(
β × βV + Γ (E −G)

)
F dxs

⇒
∫
a(s)

curl
(

˙
(E −G) F +

[
β × βV + Γ (E −G)

]
F
)

ν da = 0

⇒ ˙
(E −G) F = −

[
β × βV + Γ (E −G)

]
F ,

(4.3)

since the conservation law holds for all area patches. Without loss of generality, we have made the
assumption that a possibly additive gradient vanishes. Consequently, we have

˙
(E −G)F + (E −G) LF = −

[
β × βV + Γ (E −G)

]
F (4.4)

and choosing s = t , we obtain (4.2) in the form

�

(E −G):= Γ (E −G) +
˙

(E −G) + (E −G) L = −β × βV . (4.5)

where
�

(E −G) defines a convected derivative. The reader content with accepting (4.2) as a natural
balance law that satisfies frame-indifference and thermodynamics can bypass the following subsection.
We provide there the geometric line of thought for the extremely specific source term and time derivative
in the balance equation (4.2) above.

4.1 Geometric motivation for the director incompatibility balance law

For those unfamiliar with the notion of convected (generalized Lie) derivatives, we begin with an exam-
ple specific to our context that exposes the geometric structure of these time derivatives. Recalling the
definition of the orthogonal tensor field R and defining its initial condition as

ṘRT = −Γ ; R(s) = I,

the left side of (4.5) can be expressed as[
RTΓ (E −G)F + RT ˙

(E −G)F + RT (E −G)LF
]
t=s

=

[
R

(
˙

RT (E −G)F

)
F−1

]
t=s

=
�

(E −G) .

Thus,
�

(E −G) represents the push-forward of the time derivative of the pull-back of E − G by the
pointwise time-dependent tensor functions R (front-leg) and F−T (back-leg), evaluated at s = t. Thus it
is a mixed, covariant convected derivative which cannot be viewed as a Lie derivative because of the fact
that two (more-or-less) unrelated time-dependent tensor functions are involved in the pull-back and push-
forward operations, one of which (i.e., R) may not lend itself to interpretation as a deformation gradient
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of any flow of the basic manifold. To see the resulting convected derivative transparently, consider two
sets of time-dependent bases

ci(t) = R(t)ci(s); ei(t) = F (t)ei(s),

where s is an arbitrarily fixed instant of time. The corresponding dual bases are denoted as (ci : i = 1, 2, 3)
and (ei : i = 1, 2, 3) with ci(t) = R(t)ci(s) and ei(t) = F−T (t)ei(s). We write the tensor (E −G) on
these mixed bases:

(E −G) = (E −G)ijc
i ⊗ ej; (E −G)ij = ci · (E −G)ej.

Then,
�

(E −G)=
[

˙
(E −G)ijc

i ⊗ ej
]
t=s

=

[
R

(
˙

(E −G)ijR
Tci ⊗ F Tej

)
F−1

]
t=s

.

It is because of this pull-back → time derivative → push forward structure that these derivatives are
useful to differentiate a one-parameter family of tensors where the elements of the family do not belong
to the same linear space.

We now provide the motivation behind stating the director incompatibility balance in the form (4.2). The
preliminary notion is a desire to write a balance law for densities of lines in the form

˙∫
a(t)

βν da = −
∫
c(t)

β × V dx.

Localization of the integral balance produces the term β̊ on the left side. However, from its definition,
β(x, t) is a tensor that maps a time-evolving tangent space at a point on the current configuration to itself.
Thus, simply adopting a ‘back-leg’ convected derivative for β does not make rigorous geometric sense.
Since we are working in Euclidean space, a valid meaning can still be attached to such a derivative, and
we could accept such an object if it did not interfere with the overall structure of the theory3. However,
in the situation with director incompatibility, such a device does not work; if the free energy density is
a function of E, as it is for the materials considered here, the dissipation of the model is not frame-
indifferent. Summing vectors from tangent spaces of different base points of a manifold, as implied in
the writing of an integral, also does not make rigorous geometric sense: however, again, the Euclidean
structure allows a meaning to be attached to the integral and, in this case, such an operation does not
interfere with frame-indifference down the road.

Hence, we define the auxiliary (front-leg) pulled-back, two-point tensor field

curl
(
RT (E −G)

)
=: βs, (4.6)

where s is still the arbitrarily fixed instant of time introduced in connection with (4.3). Now consider a
conservation law for βs in the form

˙∫
a(t)

βsν da = −
∫
c(t)

βs × V s dx ∀t,

3Balance of linear momentum is an example of a widely-accepted physical equation that contains a time derivative that is
not frame-indifferent.
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where V s is the velocity of the βs at time t. With arguments similar to (4.3), we arrive at

RTΓ (E −G)F + RT ˙
(E −G)F + RT (E −G)LF = −βs × V s for all t with s held fixed. (4.7)

From a mathematical standpoint this is a reasonable expression; however, physically it has the shortcom-
ing that it involves an arbitrary history dependence through the definition of R,F that cannot be relevant
in describing the evolution of director distortion or incompatibility. This is not an obstacle, as we evaluate
(4.7) at s = t, since s was fixed arbitrarily. Moreover, the procedure can be repeated for all values of
s, fixing s first, performing the time derivative, and then evaluating for s = t, i.e. choosing the current
configuration as the reference. Consequently, we arrive at the evolution equation for director distortion
(4.5).

On asking the question of what integral balance law is consistent with (4.5) for all instants of time, one
simply reverses the computation of arriving at (4.5) from (4.1) and (4.2) to observe that (4.2), with its
specific geometric source term, is the correct statement.

An interesting fact is that from the point of view of using an objective time rate, F−1 instead of RT

could just as well have been used for the pull-back in (4.6). However, this would not suffice for the frame
indifference arguments in Section 8. Physically, R is the obvious tensor to pull back the ‘front-leg’ of
(E −G).

5 Balance law for dislocation density and the evolution equation for
the inverse elastic distortion

The physical idea behind the dislocation density tensor α and the inverse elastic distortion W begins by
considering the body in the current configuration and an additive decomposition4 of the stress

T = T e + T d,

where T e(t) is independent of the velocity field at time t.

The fundamental assumption of conventional plasticity [e.g., LL67] is as follows. Grid the current con-
figuration, C, into a union of small, non-intersecting, elements. Now assume that there is a collection
of pieces composed of identical, unstressed, elastic material, one corresponding to each element of the
grid. These pieces may be of different sizes, but always of same orientation when such orientation can
be defined. The collection has the following properties:

1. each piece can be mapped to the corresponding element in the current configuration by a homo-
geneous deformation. That is, if ex is the element around x ∈ C and px its corresponding elastic
reference (ex, px are sets of points), then there exists an invertible second-order tensor field F e(x),
and a position field fx, such that

fx(px) 7→ ex

fx(X) = F e(x) (X −X0) + x ∀X ∈ px,X0 ∈ px;
4An additive decomposition into equilibrium and viscous parts is partially justified in [CM64].

12
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2. there exists a function T independent of x, such that

T e(x) = T (F e(x)) ∀x ∈ C.

Noll [Nol67] uses the suggestive name ‘materially uniform bodies’ for materials displaying an elastic
response as described above. In conventional plasticity, the collection {px} has a one-to-one correspon-
dence with x ∈ C and is called the ‘intermediate configuration’. These definitions naturally extend to
time-varying fields with the field F e defined for (x, t) and

T e(x, t) = T (F e(x, t)) ,

with T independent of time.

Define the inverse elastic distortion tensor

W (x, t) := (F e(x, t))−1 . (5.1)

It is often true that
curl W = 0,

in which case it is possible that the pieces {px : x ∈ C} fit together to form a coherent configuration and,
under appropriate topological assumptions, W is the gradient of a position field on C. An example is a
deforming elastic material without any dislocations.

By unloading the body, then making small pieces such that there are no incompatibilities remaining in any
of the unstressed pieces, and finally rotating all pieces to a common orientation, this procedure provides
a route to define the field W from microscopic simulations or experiments.

Thus, we define the departure of W from being a gradient on C as a measure of dislocation density:

curl W = −α. (5.2)

As in the case of the director incompatibility measure, the dislocation density may be physically visual-
ized as an areal density of lines carrying the Burgers vector as a vectorial attribute.

The object W is a two-point tensor between the current configuration and the intermediate configuration.
The intuition behind the conceptualization of the intermediate configuration implies that for two motions
that differ only by a time-dependent rigid transformation, the intermediate configuration can be assumed
to remain invariant without any loss of physical generality. Thus, under rigid rotations of the current
configuration characterized by an orthogonal tensor Q, W transforms as WQT .

We now pose a conservation law for the Burgers vector content of dislocation lines threading any arbitrary
area patch in the body, using the same geometric justification as for any well-defined spatial density:

˙∫
a(t)

αν da = −
∫
c(t)

α× αV dx

⇒ α̊ = − curl (α× αV ) .

(5.3)

Unlike the conservation law for the director incompatibility, there is no geometric source term since the
target-space of W remains invariant under superposed rigid motions of the current configuration. Now,
following similar reasoning as in (4.3), but not ignoring the vector field gradient that can arise, we have

Ẇ + WL = α× αV + grad p. (5.4)

13
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In smectic liquid crystals, we associate grad p with the permeation velocity gradient, where perme-
ation refers to the transverse flow of molecules relative to the smectic layers keeping the layers intact
(up to identity of molecules) [Hel69, dGP95, Wei97, Ste07]. This is in analogy with crystal plasticity
where such a gradient represents dissipative, compatible permanent deformation that, up to boundary con-
straints, produces no stress in the body [Ach04], e.g., lattice-invariant shears wherein the lattice remains
unchanged but lattice sites are occupied by different atoms in the course of time. Since the permeation
velocity is a field that affects the physics predicted by the model, it requires constitutive specification and
may not be thought of in the spirit of a gauge field.

We note that all terms in (5.4) are well-defined in terms of information available from operations on the
current configuration. Of course, the definition of W ,α,p depend upon a pre-multiplying orthogonal
tensor (that is constant in time and space) characterizing the orientation of the undistorted reference
which is also naturally involved in the definition of the materially uniform response function T. As in
material symmetry arguments in standard nonlinear elasticity, the changes induced in W and T cancel
each other so that the stress predicted on the current configuration is invariant with respect to the choice
of the undistorted reference. In addition, here we also require that if (W ,α,p) is a set of time-dependent
fields satisfying (5.4), then (QW ,Qα,Qp) also satisfy (5.4) for arbitrary orthogonal Q, as indeed they
do.

6 Summary of field equations

For ease of reference, we collect the field equations of the theory:

ρ̇+ ρ div v = 0

ρv̇ = div T + ρb

ρn× n̈ = div Λ−X : T + ρK

Γ (E −G) +
˙

(E −G) + (E −G)L = −(curl E)× βV

Ẇ + WL = −(curl W )× αV + grad p.

(6.1)

The equations (6.1)4,5 are derived from integral balance laws and hence satisfy jump conditions on sur-
faces of discontinuity [Ach07]. On any arbitrary surface with unit normal field N and moving with
normal velocity uN with respect to the material,

J−β × βV − Γ (E −G)K×N = Jβtan (uN − v ·N )K + JβN ⊗ vtanK
J−α× αV K×N = Jαtan (uN − v ·N )K + JαN ⊗ vtanK,

(6.2)

where J·K is the difference of the limiting values of its argument evaluated on either side of the surface of
discontinuity, and Atan := A−(AN )⊗N and gtan := g−(g ·N )N are the tangential actions of, respec-
tively, a second order tensor and a vector with respect to an orientation N . Equation (6.2) is geometric in
nature and includes the situation when the surface is ‘material’ in the sense that its normal velocity (with
respect to itself) coincides with that of the material surface it is coincident with instantaneously.

Using the fact that the fields β,α are solenoidal, the local forms of the integral balances for the director
incompatibility and dislocation density,

β̊ = − curl
(
β × βV

)
− curl (Γ (E −G))

α̊ = − curl (α× αV ) ,
(6.3)
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can be expressed in Eulerian form [cf. Ach07]:

∂β

∂t
= − curl

(
β ×

[
v + βV

])
− curl (Γ (E −G))

∂α

∂t
= − curl (α× [v + αV ]) ,

(6.4)

making transparent the relative nature of the dislocation and director incompatibility velocities.

The equations in (6.4) are capable of geometrically representing loop expansion as demonstrated in Sec-
tion 7 of [Ach03] for the dislocation density. As a simple special case, the loop is assumed to be planar,
with αV in-plane with the dislocation loop, being of constant magnitude V and pointwise perpendicular
to it. Within this ansatz, it is interesting to note that the tensorial system (6.4)2 reduces to the eikonal
equation for front propagation of a scalar field π in two space dimensions and time, (x, y, t), given by

(πt)
2 = V 2

[
(πx)

2 + (πy)
2
]
.

In (6.1) and (6.3), we have not included possible solenoidal nucleation terms for the director incompat-
ibility and dislocation density fields for simplicity. At this level of generality, they are easily admitted.
However, the possibility of nucleation as a dynamical instability [DB06] is obviously not ruled out within
the framework and it may even be expected to be the norm in liquid crystalline materials.

7 Consequences of frame-indifference and Ericksen’s identity for
this theory

In preparation for deducing constitutive guidance on elastic response and dissipative driving forces, we
consider a consequence of frame-indifference on the free energy density function, ψ, where ψ depends
on n,E,W ,α,β. We adapt the presentation of [ACF99] for this purpose. Frame indifference requires
that ψ satisfy

ψ (n,E,W ,α,β) = ψ
(
Qn,QEQT ,WQT ,αQT ,QβQT

)
(7.1)

for all proper orthogonal Q and for all elements n,E,W ,α,β in the domain of the function ψ. In
particular, (7.1) has to apply for all functions s→ Q(s), 0 ≤ s ∈ R, with

Q(0) = I;
dQ

ds
(0) = S = −dQ

T

ds
(0)

and S is an arbitrary fixed skew tensor. Differentiating (7.1) and then evaluating it at s = 0 implies[
∂ψ

∂n
⊗ n +

∂ψ

∂E
ET −ET ∂ψ

∂E
−W T ∂ψ

∂W
−αT ∂ψ

∂α
+
∂ψ

∂β
βT − βT ∂ψ

∂β

]
: S = 0

and due to the arbitrariness of S we obtain Ericksen’s identity for our model:(
∂ψ

∂n
⊗ n

)
skw

= −
(
∂ψ

∂E
ET −ET ∂ψ

∂E

)
skw

+

(
W T ∂ψ

∂W

)
skw

+

(
αT ∂ψ

∂α

)
skw

−
(
∂ψ

∂β
βT − βT ∂ψ

∂β

)
skw

.

(7.2)
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In the next section we will use the transformation rule for the partial derivatives of ψ; we record this rule
for only one case below as the rest are similar. Denoting the partial derivative of ψ with respect to its
second argument as ∂Eψ, (7.1) implies

∂Eψ (n,E,W ,α,β) = QT∂Eψ
(
Qn,QEQT ,WQT ,αQT ,QβQT

)
Q. (7.3)

We also note that if
X : (AB) = d

for second-order tensors A,B and a vector d then

X :
(
QAQTQBQT

)
= Qd, (7.4)

which is a direct consequence of the preservation of angles between, and magnitudes of, vectors under
the action of an orthogonal tensor.

8 Constitutive guidance for reversible response and driving forces

Assuming a free energy density function ψ with arguments as discussed in Section 7, we now re-examine
the mechanical dissipation D in (3.2). We first compute the material time derivative of ψ:

ψ̇ =
∂ψ

∂n
· ṅ +

∂ψ

∂E
: Ė +

∂ψ

∂W
: Ẇ +

∂ψ

∂α
: α̇ +

∂ψ

∂β
: β̇

= −∂ψ
∂n

⊗ n : Γ

+
∂ψ

∂E
:
(
−β × βV − (E −G)L + Ġ− Γ (E −G)

)
+

∂ψ

∂W
: (−α× αV + grad p−WL)

+
∂ψ

∂α
:
(
− div vα + αLT − curl (α× αV )

)
+
∂ψ

∂β
:
(
− div vβ + βLT − curl

(
β × βV + Γ (E −G)

))
.

(8.1)

Some useful formulae for subsequent use are

Ġ = ˙grad n = grad ṅ−GL,

A : grad ṅ = (X : (n⊗A)) : M −
(
AGT

)
: Γ = ejkinkAipMjp − AipGkpΓik

for an arbitrary second-order tensor A, and

ρ
∂ψ

∂β
: curl (Γ (E −G)) = −ρ

(
∂ψ

∂β
− tr

[
∂ψ

∂β

]
I

)
(E −G)T : M +

(
ρ
∂ψ

∂β

)
βT : Γ .

Recalling the dissipation (3.2)

D =

∫
V (t)

(
T : L + Λ : M + T : Γ − ρψ̇

)
dv,
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we collect the terms multiplying L,Γ ,M respectively:∫
V (t)

(
T − ρ

[
−ET ∂ψ

∂E
−W T ∂ψ

∂W
−
(
∂ψ

∂α
: α +

∂ψ

∂β
: β

)
I +

(
∂ψ

∂α

)T
α +

(
∂ψ

∂β

)T
β

])
: L dv,∫

V (t)

(
T −

[
−ρ∂ψ

∂n
⊗ n− ρ

∂ψ

∂E
ET − ρ

∂ψ

∂β
βT

])
skw

: Γ dv,∫
V (t)

(
Λ−X :

[
n⊗ ∂ψ

∂E

]
− ρ

[
∂ψ

∂β
− tr

(
∂ψ

∂β

)
I

]
(E −G)T

)
: M dv.

The remaining contributions to the dissipation are:∫
V (t)

(
X :

[(
ρ
∂ψ

∂E
+ curl

[
ρ
∂ψ

∂β

])T
β

])
· βV dv +

∫
∂V (t)

−ρ∂ψ
∂β

:
([

β × βV
]
× ν

)
da,

∫
V (t)

(
X :

[(
−ρ ∂ψ

∂W
+ curl

[
ρ
∂ψ

∂α

])T
α

])
· αV dv +

∫
∂V (t)

−ρ∂ψ
∂α

: ([α× αV ]× ν) da,

and
∫
V (t)

− ∂ψ

∂W
: grad p dv.

(8.2)

In the spirit of generalizing EL theory, we make the constitutive assumption for the equilibrium part T e

of the total stress T = T e + T d as

T e = ρ

(
−ET ∂ψ

∂E
−W T ∂ψ

∂W
−
(
∂ψ

∂α
: α +

∂ψ

∂β
: β

)
I +

(
∂ψ

∂α

)T
α +

(
∂ψ

∂β

)T
β

)
, (8.3)

and the couple-stress tensor as

Λ = X :

[
n⊗ ∂ψ

∂E

]
+ ρ

[
∂ψ

∂β
− tr

(
∂ψ

∂β

)
I

]
(E −G)T . (8.4)

Incorporating these assumptions, the dissipation can now be expressed as∫
V (t)

T d
sym : D dv +

∫
V (t)

T d
skw :

(
Ω − Γ T

)
dv

+

∫
V (t)

(
T e + ρ

∂ψ

∂n
⊗ n + ρ

∂ψ

∂E
ET + ρ

∂ψ

∂β
βT

)
skw

: Γ dv

+ terms displayed in (8.2).

(8.5)

We first consider the two boundary terms in (8.2). The dependence of the free energy on α,β accounts
for the energy content of individual defect cores, beyond the elastic energy in their stress-fields. Math-
ematically, they act as regularization [cf. Ach10, AMZ10]. For instance, the dislocation core energy
contribution may look like µb2α : α where µ is a shear modulus and b is of the order of the interatomic
spacing. Thus, the terms ∂ψ

∂β
, ∂ψ
∂α

are expected to be small away from cores in comparison to typical
derivatives of ψ with respect to E or W . Consequently, constitutive guidelines to ensure non-negative
dissipation in the model will be based only on the bulk terms in the expression for the dissipation.

The procedure used in [Wei97, Ste07] to find the driving force for permeation uses integration-by-parts
and subsequent neglect of the boundary term. For the term related to permeation in 8.2 we do not follow
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this procedure as it is unclear that the boundary term can be estimated to be small in comparison to the
other dissipative contributions.

An essential requirement is that the dissipation in the model be frame-indifferent or objective5. Given
that the director field transforms as n → Qn under a superposed rigid body motion characterized by the
time-dependent, spatially uniform orthogonal tensor field Q, it can be seen that T dsym, T dskw, D, Ω − Γ T

transform objectively, i.e. follow the transformation rule (·) 7→ Q(·)QT . Thus, the first two terms in
(8.5) transform as objective scalars, i.e. remain invariant under superposed rigid body motions.

By their physical definitions, the director incompatibility and dislocation velocities (with respect to the
material), βV , αV , are objective vector fields on the current configuration and therefore have to trans-
form by the rule (·) 7→ Q(·) under superposed rigid body motions. Due to its two-point nature, grad p
transforms as (·) 7→ (·)QT . Using the discussion surrounding (7.3) and (7.4), the bulk terms in (8.2)
transform as objective scalars.

To ensure frame-indifferent dissipation, only the third integral in (8.5) remains. Denoting by S(t) :=
Q̇(t)QT (t), Γ transforms as

Γ 7→ −S + QΓQT

under superposed rigid body motions, where arbitrary S generate corresponding funtions Q. Since the
coefficient of Γ in (8.5) transforms objectively, it has to vanish for the dissipation to transform as an
objective scalar. If not, the dissipation can be made to take arbitrarily different values in motions that
differ only by superposed rigid-body motions generated by varying S. To avoid imposing any constraints
on the function ψ beyond those due to frame-indifference and material symmetry6, it is necessary that the
coefficient of Γ in (8.5) vanish for all admissible choices of ψ. This is a strong constraint and its satisfac-
tion validates the mechanical structure of the theory. Using (7.2), (8.3) and that

(
ATB −BTA

)
skw

= 0
for any second order tensors A,B, we see that the requirement is indeed satisfied for all frame-indifferent
ψ.

We emphasize that the presence of the last two terms in the coefficient of Γ in (8.5) is a direct con-
sequence of the geometric source term in (4.2). Hence, these terms play a crucial role in ensuring the
frame-indifference of the theory. Since we are working with a 3-d body in 3-d Euclidean space the tan-
gent space of a material point is always the same vector space. Consequently, there is no ambiguity
in defining material time derivatives of tensor fields unlike in tensor calculus on manifolds. Curiously,
however, frame-indifference forces the consideration of geometrically ‘proper’ convected derivatives in
ordinary, ‘flat-space’, 3-d continuum mechanics as in (4.5).

Usually, the bulk terms in an expression for dissipation like (8.2) directly indicate the driving forces
for director incompatibility velocity, the dislocation velocity and the permeation velocity gradient as the
coefficients of βV , αV , grad p, respectively, in the sense that the absence of these forces render the cor-
responding dissipative mechanisms non-operational. Also, the simplest constitutive equations ensuring
non-negative dissipation are constructed by assigning linear relations between members of dissipative
power-conjugate pairs. But here we face an obstacle with the last integral in (8.2). The driving force for
the permeation velocity gradient, as it stands, is not necessarily a gradient of a vector field. Moreover, as
mentioned above, there is no justification to integrate this term by parts and ignore the resulting boundary
contribution.

5These are notions we use interchangeably with invariance under superposed rigid body motions.
6Note in (8.5) that T e

skw is also expressed in terms of ψ and its derivatives.
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We deal with this by using a Stokes-Helmholtz decomposition for − ∂ψ
∂W

=: P stated as

− div grad HP = curl P ; div HP = 0 on V
HP × n = 0 on ∂V
div grad gP = div P ; (grad gP − P ) n = 0 on ∂V and
P = curl HP + grad gP on V.

Given a square-integrable tensor field P with square-integrable gradients on the body, the decomposition
guarantees the existence of a unique tensor field HP and a unique (up to a constant) vector field gP .
Utilizing this decomposition∫

V (t)

− ∂ψ

∂W
: grad p dv =

∫
V (t)

grad gP : grad p dv

where the boundary condition on HP in the Stokes-Helmholtz decomposition is crucial. Consequently,
we consider grad gP as the driving force for the permeation velocity gradient grad p. For αV , βV we
identify driving forces directly from the bulk expressions in (8.2).

In ending this section, we note the decidedly nonlocal nature of the non-negative dissipation arguments.
Clearly, positive dissipation is guaranteed only in a global sense over the entire body.

9 Constitutive structure and the modeling of common classes of liq-
uid crystalline materials

The quantities ψ,T ,Λ, αV , βV , grad p require constitutive specification. The constitutive choices

T = T e + T d,

T e = ρ

(
−ET ∂ψ

∂E
−W T ∂ψ

∂W
−
(
∂ψ

∂α
: α +

∂ψ

∂β
: β

)
I +

(
∂ψ

∂α

)T
α +

(
∂ψ

∂β

)T
β

)
,

T d
sym = identical to restrictions of Ericksen-Leslie theory [Les92],

Λ = X :

[
n⊗ ∂ψ

∂E

]
+ ρ

[
∂ψ

∂β
− tr

(
∂ψ

∂β

)
I

]
(E −G)T ,

βV in the direction of X :

[(
ρ
∂ψ

∂E
+ curl

[
ρ
∂ψ

∂β

])T
β

]
=: fβ,

αV in the direction of X :

[(
−ρ ∂ψ

∂W
+ curl

[
ρ
∂ψ

∂α

])T
α

]
=: fα,

(9.1)

achieve non-negative dissipation in the model. Reasonable constitutive equations for defect motion may
be assumed to be

βV = mβ fβ∣∣fβ
∣∣ ; αV = mα fα

|fα|
,

where mα,mβ ≥ 0 are frame-indifferent scalar functions. For example, mα = |fα|
Bα|α| with Bα a material

constant that characterizes the dislocation drag that arises from energy dissipated at scales that are not
resolved by the continuum fields.
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We note that non-negative dissipation and frame-indifference are the only constraints on the kinetic func-
tions for the defect velocity specification.

With regard to a constitutive equation for grad p, any gradient of a vector field on the body satisfies the
constraint ∫

V (t)

grad gP : grad p dv ≥ 0

and transforms as (·) 7→ (·)QT under superposed rigid-body motions of the current configuration suffices;
the notion is not empty as a reasonable and simple choice is

grad p =
1

BP
grad gP ; BP > 0,

where BP is a material viscosity constant related to the permeation mechanism.

As examples, we record possible forms of constitutive assumptions for modeling various classes of liquid
crystalline materials.

9.1 The nematic liquid with director defects

A proposed model is the standard Ericksen-Leslie nematic liquid augmented with a treatment of director
defects. We make the choices

∂ψ

∂W
≡ 0,

∂ψ

∂α
≡ 0,

∂p

∂x
≡ 0, αV ≡ 0.

Then, (6.1)5 is simply the kinematic compatibility relationship between the deformation gradient map
of the current configuration from any arbitrarily fixed reference configuration and the velocity gradient
field on the current configuration. Denoting the deformation gradient from this arbitrary reference as
F := W−1, we note that

Ẇ = −WL ⇔ Ḟ F−1 = L.

Thus, this equation is identically satisfied if the current configuration is achieved by a motion of the body
that is compatible with the reference at all instant of time.

If the nematic is further assumed to be incompressible, one adds a term −PI to (9.1)1 to account for the
incompressibility constraint

div v = 0

and the latter is an additional equation to be solved. Here P is a constitutively undetermined pressure
field that is determined by the field equations and boundary conditions.

For the free energy density, one could adopt the OZF form [Ose33, Zoc33, Fra58] augmented by a simple
defect core energy. We make the necessary changes to account for our relaxation of the unit magnitude
constraint on n:

ñ :=
n

l
; Ẽ :=

E

l
; β̃ :=

β

l

ψn =
1

2ρ0

 k1

(
Ẽ : I

)2

+ k2

(
ñ ·
(
X : Ẽ

))2

+ k3

∣∣∣ñ×
(
X : Ẽ

)∣∣∣2
+ (k2 + k4)

((
Ẽ
)2

: I −
(
Ẽ : I

)2
)

+ k5l
2
β

(
β̃ : β̃

)
+ p (|ñ| − 1)2 .

(9.2)
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Here, k1, k2, k3 are the splay, twist, and bend constants; (k2 + k4) is the saddle-splay constant and k5 is
a modulus related to defect core energies, expected to be of the order of the other standard moduli; lβ is
a length of the order of the spatial extent of the cross section of the defect core; and l is the length of the
nematic molecule along the director. E is naturally assumed to be dimensionless (following G) and the
various moduli have the physical units of force or energy per unit length [see e.g. Hal72, Ste04]. ρ0 is the
density of the state in which the measurement of the moduli were made and p > 0 is a penalty moduli
with units of stress to impose the fixed-length constraint on the director.

We note that while the energy density (9.2) is essentially the same as the OZF energy in the absence of
defects, it deviates from the OZF energy in the presence of defects due to the fact that grad n 6= E, even
when n is locally close to a unit vector field and the core term is ignored. Maintaining the correspondence
in the presence of defects appears to be difficult, primarily because of the ambiguity in defining a director
field that corresponds to an E in the presence of defects (see Appendices A and B for further discussion).

In correspondence with the elasticity of solids, it is natural to expect that the OZF energy displays non-
convexity in the director distortion at large magnitudes to reflect a breakdown in director elastic strength
with increasing director deformation.

A constitutive equation for βV is required, and a simple form that may be assumed is

βV =
fβ

Bβg (|β|)
; g (|β|) = 1 or |β|

where Bβ is a defect drag coefficient.

Finally, the viscous stress can follow the EL theory [e.g. Ste04]:

T d = α1 (ñ ·Dñ) ñ⊗ ñ+α2

(
˙̃n−Ωñ

)
⊗ ñ+α3ñ⊗

(
˙̃n−Ωñ

)
+α4D+α5 (Dñ)⊗ ñ+α6ñ⊗Dñ.

The various α(·) are the well-established Leslie viscosities.

9.2 The cholesteric liquid with director defects

The model is structurally the same as for the nematic, except for the replacement of k2

(
ñ ·
(
X : Ẽ

))2

by k2

(
t0 + ñ ·

(
X : Ẽ

))2

in the nematic energy (9.2).

9.3 The smectic-A phase with director defects and dislocations

The liquid-like response remains the same as for the nematic. However, there is additionally a solid-like
response due to the positional ordering of the smectic layers.

Our model is motivated by those in [Wei97, Ste07]. We posit an undeformed director a0 that characterizes
the smectic layer normal in the undistorted elastic reference (Section 5) with |a0| being the undistorted
inter-layer spacing. Now define the deformed layer normal as

a = W Ta0.
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Then a simple phenomenological energy density for the smectic is

ψs = ψn + ψe (|a| − |a0|) +
1

2
ρ0ps

(
1−

(
n · a
|n| |a|

)2
)

+
1

2
ρ0µb

2α : α. (9.3)

Here, ψe is a positive scalar function characterizing (positional) elasticity of the smectic layers that pe-
nalizes changes in interlayer spacing. The third term penalizes orientations of the layer normal that are
not aligned with the director, with ps a penalty modulus with units of stress. In the fourth term, µ is a
typical modulus related to the elasticity of layer deformation and b is a length scale of the order of the
cross-section of the dislocation core.

A simple constitutive equation for the dislocation velocity αV that may be assumed is

αV =
fα

Bαg (|α|)
; g (|α|) = 1 or |α| ,

where Bα is a dislocation drag coefficient.

The fluid viscous response, i.e. the specification for T d, is as in nematics. However, a distinguishing
feature of flow in smectics is a very high flow viscosity [Hel69]. In crystalline materials, the primary
source of non-Newtonian viscosity is slip deformations in the lattice. Extending that analogy to the
smectic case, a simple constitutive equation might be

grad p = mP grad gP

where mP is a permeation mobility constant that is set to reflect the higher observed viscosity due to
permeation.

9.4 The Smectic-C phase with director defects and dislocations

The model is identical to the Smectic A except the third term in (9.3) is replaced:

1

2
ρ0ps

(
1−

(
n · a
|n| |a|

)2
)

changes to
1

2
ρ0ps

(
(cos θ0)

2 −
(

n · a
|n| |a|

)2
)

where θ0 is the angle between the smectic-C layer normal and the director.

9.5 The nematic, cholesteric, and smectic A/C liquid crystal elastomers with dis-
locations and director defects

We set T d = 0 in the various liquid crystal models as well as mP = 0 for the smectics. We then add an
appropriate solid free energy response for the elastomer to obtain a nematic liquid crystal elastomer. A
possible choice for this additional energy is the neo-classical energy density of Bladon et al. [BWT94]:

ψnc =
1

2
µ
[(

l (ñ0) W−T l−1 (ñ) W−1
)

: I
]
,

where l is a given symmetric invertible tensor-valued function of ñ, and ñ0 is a known reference director
field that remains unchanged under superposed rigid body motions.
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10 Conclusion

We have relied on four primary design criteria in developing this model:

1. Defects are introduced through geometrically rigorous spatial densities (Euclidean-space analogs
of 1,2,3 forms) and the consequent conservation laws.

2. In the absence of defects, the model for liquid crystalline materials should reduce to the Ericksen-
Leslie model.

3. The specification of nematic elasticity response must depend only on the current configuration
(both positional and orientational) of the body and not prior states.

4. Defects should be identified as localizations in fields and it should not be necessary to deal with
them as individual entities in specifying the rules of dynamic evolution.

Even though very general, and therefore weak, criterion 1 has non-null content. For example, consider a
second-order tensor order parameter Q which is not known or defined to be a spatial density, i.e., it is not
an object that can be integrated along curves, or areas, or volumes. Then, even if one were to write a con-
servation law for it, the nature of the flux of Q is not clear. For instance, if Q was the volume-density of
a (second order) tensor field (i.e. a second order tensor-valued 3-form), the appropriate rate of change of
Q would be the divergence of a third order tensor flux field that represents a second order tensor-valued
2-form. On the other hand, if Q were an areal density of a vector field (a vector-valued 2-form), the
appropriate time derivative would be the curl of a second order tensor flux field that represents a vector-
valued 1-form. Moreover, the appropriate convected time derivatives also take distinctly different forms
in the two cases7. For this reason, despite our high regard for Ericksen’s intuition for the mechanics of
liquid crystals and his seminal contributions to the understanding of these materials, we have reservations
about the balance law for the degree of orientation field, S, in [Eri91]: it is not physically clear to us what
the generalized momentum P (corresponding to S) represents. A similar comment applies to the corre-
sponding flux, T , although, from the mathematical balance law it is clear that the generalized momentum
P is intended to be a scalar-valued 3-form (a volume density of a scalar) and its flux, therefore, is a scalar
valued 2-form (an areal density of a scalar).

Criterion 1 has practical implications for computation. Conservation forms have advantages for the
design of numerical approximation schemes, e.g. based on the finite volume method in computational
fluid dynamics [LeV02], or providing natural weak forms for the finite element method [LW02]. In
combination with Criterion 4, the regularized nature of the auxiliary fields permits us to bypass the
explicit tracking of individual defects in contrast to configurational force treatments as in, e.g., [SSF09,
AK91b, PB03]. We emphasize, however, that the kinetic relation between the defect velocity and the
driving force can, in principle, be as complex as necessary to model the material, in marked contrast to
conventional regularizations of defect motion as demonstrated in, e.g., [AK91a]. This enables a temporal
multiscale strategy that can easily incorporate kinetic laws from molecular calculations [e.g. following
the procedure outlined in DJ09]. Finally, Criteria 1 and 4 allow a clear separation between the defect
kinetics and the energetics even with the regularization of defects.

7The (back-leg) convected derivative, with respect to a flow, of a 2-form (2.1) is naturally different from that of a 1-form
(4.4). For a 3-form a, it equals ȧ + adiv v. Essentially, they arise from transport theorems for areas, curves, and volumes,
respectively.
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Criterion 2 has important practical consequences as the EL model has been thoroughly validated and
there is a wealth of information about these features of the model. There also exists a comprehensive
literature on experimental measurements of the material constants [e.g. Lar99]. The practical difficulties
in going to a format far-removed from the EL model can be appreciated from a reading of Sonnet et al.
[SMV04].

Criterion 3 is, to us, a physical requirement that can be justified from a molecular basis. In adhering to
this, our model stands at odds with that presented in [ACF99].

With respect to Smectic A response, our elastic response function for the couple stress tensor differs
from that given in [Ste07]. This is a direct consequence of the integration-by-parts carried out there, as
discussed in Section 8 surrounding (8.5). The flow viscosity coefficients admitted in [Ste07] are more
general than in EL theory and consequently ours. Stewart’s smectic A model is a mechanically sound
generalization of E’s model [Wei97], making clear the manner in which balance of angular momentum
and the couple stress tensor are to be understood in the latter theory. A fundamental construct of both
models is a field equation for the ‘layer variable’ whose evolution uses a newly-introduced ‘permeation
force at the boundary’ [Wei97], that expends power associated with the evolution of the layer variable.
Smectic A response represents a gradual transition of the liquid crystalline material towards positional or-
der characteristic of solids and defects in such ordering, and we believe that the ‘extra-nematic’ response
is best posed in the context of positional kinematics and elasticity of solids.

A very interesting recent paper by Klein et al. [KLGCC08], in accord with Criterion 4 above, demon-
strates a practical theory for liquid crystal polymers that is capable of predicting the occurrence of discli-
nations in flows. Their model is motivated from the microscopic theory due to Doi [Doi81]. An averaging
procedure with several closure assumptions provides an evolution equation for the second moment of the
distribution function in Doi’s theory. An asymmetric stress tensor for a non-simple material is intro-
duced, following Feng et al. [FSL00], and a result from Doi and Edwards [DE88] is used to justify a
‘body torque’ that balances the torque produced by the skew symmetric part of the stress. A similar
model is utilized to understand defect morphology and dynamics in Yang et al. [YFMW09]. The fun-
damental basis of our model is obviously very different from these approaches, especially the treatment
of angular momentum balance and the operational dissipative mechanisms. However, our model shares
features with these works in being able to deal with defects, seamless interpolation between the solid and
liquid-like states, and the relative ease (expected, in our case) of practical computation. Hence, it would
be useful to compare future predictions that emerge from a numerical implementation of our model.

Criteria 1 and 4 enable computation of defects by recognizing that incompatibilities in the director dis-
tortion field are associated with multi-valued director field when defects are present. Therefore, our
approach utilizes well-defined defect density fields instead of a multi-valued director field. This feature
has significant implications for the practically important task of defect detection through a local tool, as
emphasized in [YFMW09]. Nevertheless, there are important practical situations that require knowledge
of a director field away from defect cores, e.g. as pre-processing to provide initial conditions to our
model, or as post-processing to calculate derived otpical properties. Hence, in Appendix A we provide
a pragmatic algorithm to reconstruct a director field that is consistent with given defect fields. We em-
phasize, however, that our theory does not require such a definition. A related issue is the construction
of defect fields in our theory when the disclination is specified in terms of classical quantities such as
disclination strength. In Appendix B, we provide some details on this question. We also explain there
how our theory allows for defects that include disclinations, but are more general.
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We believe that this work is the first to lay out a geometrically exact framework for the study of both
orientational and positional defects in liquid crystal materials. This can enable the study of a rich class
of theoretical questions and physical phenomena in liquid crystalline materials spanning the liquid to
the solid state. For example, Fried and Sellers [FS06] show that the inverse elastic distortion (here
W ) in a liquid crystal elastomer can become incompatible in the presence of a radial hedgehog defect
in the nematic director field. In conventional liquid crystal elastomer models, this is a serious practical
problem as an incompatible total deformation requires abandoning the fundamental kinematics; this leads
Fried and Sellers to question the validity of the assumed defect structure or the constitutive equations in
their static calculations. In our setting, this merely describes a dislocation defect in the positional order
associated with a hedgehog defect in the orientational order, and what persists in time is decided by
dynamics that is, at the least, approximately computable. As is known, disclinations in bulk are observed
in liquid crystal polymers (LCP) both in the liquid [GM84] and solid [DWH06] phases. An important
mechanism of time-dependent deformation for polymers is nonlinear viscoelasticity, and this can be
modeled within our framework by a straightforward augmentation following the ideas of [Doi81] and
[BB98].
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A Connecting to observed fields

Recall that the director incompatibility field is expressed as

curl(E −G) = β.

We note that at spatial locations where β = 0, E can differ from G by the value of the gradient of a
locally defined vector field (this is allowed by (4.5)). This is important because localized defects have
nonvanishing, irrotational elastic director distortion fields in domains excluding the defect cores. Thus,
even away from defect cores, E and G are not point-wise coincident:

E =: grad n̂ 6= grad n away from defect cores, (A.1)

where the first equality requires interpretation. When E is incompatible on the body, i.e. there is a region
where β is nonvanishing, it is not possible to uniquely define a field n̂ even up to a constant vector
field. We emphasize that our theory does not require such a definition. However, the classical theory, e.g.
[dGP95, SS74, Ste04], implicitly requires such a construct. We consider that contrast and related issues
in this section.

The interest in liquid crystalline materials is driven in large part by their unusual optical properties. The
director field away from defect cores is the primary contributor to these properties. Hence, we outline
methods to construct the director field in regions away from the defect cores. While the pair

(
n, Q̂

)
that

emerges from the Helmholtz decomposition mentioned in the Introduction would seem to contain this
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information8, we leave a careful characterization of this information content for future work. Instead,
we outline possible pragmatic algorithms to reconstruct a director field, e.g. to use in calculating optical
properties. As stated in the Introduction, we shall require that the field n, whether given or constructed,
satisfies the unit magnitude constraint at least approximately; however, the field n̂ need not.

The problem with defining a continuous n̂ field may be understood as follows: if the gradient field of a
continuous function was to exist, with the gradient matching the smooth E field outside the core region,
then the line integral of the gradient on any closed curve surrounding the core would vanish. But the line
integral of E along such a closed curve surrounding the core cannot vanish. Thus, such a continuous
function cannot exist.

A.1 Extracting our field variables from an observed director field

A pointwise spatial gradient, say based on finite differences, of the observed director field can be calcu-
lated. This spatial gradient can then be smoothed and set equal to E and the defect field is derived from
β := curl E. We emphasize that smoothing does not necessarily make E compatible, especially if the
observed field contains defects. A Stokes-Helmholtz projection can then be performed via

min
r

1

2

∫
V

(
(grad r −E) : (grad r −E) + p

(
|r|
l
− 1

)2
)
dv p� 1,

where l is the nematic molecular length along the director direction and p is a non-dimensional penalty
parameter. A minimizer over all smooth unconstrained vector fields on the body yields an n field that
may be required as input to the theory, e.g. as initial condition.

A.2 Reconstructing observed director fields from our field variables

The field E is irrotational away from cores. Therefore a formal vector ‘field’ n̂ can be constructed such
that E = grad n̂ away from cores, e.g. adapting the formula of Bârză [Bâr05], see next subsection. As
constructed the field n̂ may not be a unit vector field; a possible prescription for an approximate unit
vector field is to take the corresponding unit norm field.

A.3 Characterization of irrotational vector fields

Continuously differentiable irrotational (curl-free) vector fields on non-simply connected domains are
not necessarily gradients of scalar fields. The following result provides an explicit formula for the ‘non-
gradient’ part of such an irrotational vector field. The result is due to Bârză [Bâr05].

Let C1, C2, . . . Cn be n pairwise disjoint curves (i.e., Ci ∩ Cj = ∅ for every i 6= j), each diffeomorphic
to either a straight line or a circle. Further, let Ci be generated as the intersection of two surfaces defined
by fi1, fi2 : R3 → R where fi1, fi2 are differentiable as many time as required. For each i, at any
(x, y, z) ∈ R3 where f 2

i1 + f 2
i2 > 0, let the gradients of fi1 and fi2 not vanish. Define the zero-set surfaces

of fi1 and fi2 as
Sik =

{
(x, y, z) ∈ R3|fik(x, y, z) = 0

}
, k = 1, 2; i = 1 to n

8Indeed, even more information: the state of average molecular orientation within defect cores.
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and let Ci = Si1 ∩ Si2. Define scalar fields Gik : R3\Sik → R, i = 1 to n; k = 1, 2 as

Gi1(x, y, z) := arctan
f2(x, y, z)

f1(x, y, z)
; Gi2(x, y, z) := − arctan

f1(x, y, z)

f2(x, y, z)

Define the vector fields Ei : R3\Ci → R3 as:

Ei :=
1

f 2
i1 + f 2

i2

[
fi1
∂fi2
∂x

− fi2
∂fi1
∂x

, fi1
∂fi2
∂y

− fi2
∂fi1
∂y

, fi1
∂fi2
∂z

− fi2
∂fi1
∂z

]
and note that

gradGik = Ei on R3\Sik, i = 1 to n, k = 1, 2

Let the domain Ω := R3\ ∪ni=1 Ci. For each i, let γi be any small circle with center at a point of Ci. It
can be verified that ∮

γi

Ei · dx = ±2π

so that Ei is not a gradient of a C1 scalar field in Ω. Note that gradGik, i = 1 to n; k = 1, 2 is not a
gradient in Ω.

Theorem (Bârză): For E : Ω → R3 an irrotational vector field in Ω, there exist constants αi, i = 1 to n
such that the vector field F : Ω → R3 defined by

F := E −
n∑
i=1

αiEi

is the gradient of a C1 scalar field on Ω. The constants αi are defined by

αi =

∮
γi

E · dx∮
γi

Ei · dx

Thus, for some purposes F +
n∑
i=1

αiEi may be formally considered a gradient of a discontinuous scalar

field in Ω.

The non-uniqueness in the definition of an n̂ field referred to in the beginning of this appendix arises
from the possibility of more than one distinct set of two surfaces Sik, k = 1, 2, i fixed, defining the same
defect curve Ci.

B Disclinations in our model and some classical defect solutions

The director defects that are admissible in our model include disclinations but are more general. This is
because we have been unable to fit a coordinate-independent definition of disclinations into a generaliza-
tion of EL theory. Following Dzyaloshinskii and Volovick [DV80], an abstract orthogonal tensor valued
order parameter field could be introduced with its spatial incompatibilities related to disclinations, but
giving this construct a physical interpretation within a single-director theory like EL is difficult, if not
impossible. Moreover, in the so-called Yang-Mills type theory [DV80] there appears to be the freedom
to introduce new order parameters into the energy at will; in contrast, in our model there is not much
room to introduce an additional orientational order-parameter field in the free energy density once we
have commited to a director field and balance of linear and angular momentum along with director-based
orientational elasticity.
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B.1 Definition of a disclination

Unit vectors are parametrized (at least locally) by two parameters. Consider any such parametrization
(θα : α = 1, 2). Specifically, we think of the θα as parametrizations of the unit sphere by angles from
some fixed orthonormal frame, Figure 3. Denote a generic point on the sphere by the unit vector

cos θ2 cos θ1ex + cos θ2 sin θ1ey + sin θ2ez

where ex, ey, ez are the unit vectors along the axes of the frame.

Figure 3: Director incompatibility defect lines.

Now for fixed α, consider the vector field of disclination density

dαi = ∆θαli, (B.1)

where ∆θα is a specified constant in radians and l is a specified vector field (the line direction) with
compact support on a small cylinder along the disclination curve. l has physical dimensions of reciprocal
area. For brevity, we consider the straight disclination. Then, the vector field l may be defined as

l = A(x)t,

where t is a constant unit vector in the line direction of the disclination and A is any smooth scalar
function supported on the core cylinder such that the integral of A over the core cross-section is unity. If
we try to generate a function θα from the equation

curl grad θα = dα,

we observe that the only possibility of a solution is if it is multivalued, and further that along closed
circuits enclosing the core the value of θα changes by exactly ∆θα. We note that this exercise is simply
to aid intuition and we do not use multivalued fields in our work.

Having chosen an orthonormal frame to define the spherical angles, we adopt the procedure above to
define disclinations. It is similar to the classical theory up to the smoothing of the cores. Unfortunately,
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this definition is not independent of the frame. While it is suited to specifying the topological charge
of a disclination field containing many disclination loops, it is currently not clear to us how to define
the disclination density field in a coordinate-invariant manner and fit such a construct into a generalized
Ericksen-Leslie theory.

Of course, regardless of our difficulties above, disclinations are observed discontinuities in the director
field. Appendix A outlined practical strategies to make approximate connections.

B.2 Solving for spherical angle fields corresponding to a given disclination den-
sity

Given solenoidal disclination fields dα, we solve for vector fields Θα from the equations

curl Θα = dα,

div Θα = 0.
(B.2)

This is a standard problem of potential theory. The Θα are irrotational outside the core region. The result
in [Bâr05] provides a construction to formally express Θα as gradients of scalar fields θ∗α, i.e.

grad θ∗α = Θα (B.3)

in the punctured domain consisting of the body without the core cylinders, see Appendix A. However, the
θ∗α are generally not defined on specific surfaces of the body. These scalar spherical angle ‘functions’
immediately define a field, say n∗, away from defect cores and the ‘singular’ surfaces.

Away from the cores, an alternative way of generating E for a given disclination configuration is to
simply calculate grad n∗ wherever it is well-defined.

A natural question to ask is how a given disclination density such as dα may be described directly in
terms of the field variables of the theory, in particular E,β. Partial progress towards the answer can be
made by considering the composition of an arbitrarily smooth function, say f , with a smooth vector field,
say n, on the body, the latter being well-defined at each point of the body. Then

f,j =
∂f

∂ni
ni,j

⇒ 0 = erkjf,jk = erjk

(
∂f

∂ni
ni,j

)
,k

= erkj

(
∂2f

∂ni∂np
np,kni,j +

∂f

∂ni
ni,jk

)
.

Motivated by the above formula, it seems that the system of equations

curl E = β

dα = X
(
ETAαE

)
+ βTaα, α = 1, 2

(B.4)

is relevant to the specification of disclination defect fields on the body in terms of E,β, where Aα,aα and
dα are respectively a symmetric tensor-valued field and two vector-valued fields that may be specified.
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B.3 The classical equilibrium, straight wedge and twist disclination fields

With reference to Figure 3, we assume that ∆θ1 = 2πm where m is the strength of the disclination and
l is in the direction of z for a wedge disclination, and in the directions x or y for the twist disclination.
Define d∗1 from these ingredients. Equilibrium for the 1-constant director elastic energy is characterized
by [dGP95, SS74, Ste04],

div grad θ1 = 0. (B.5)

Let a solution to (B.2,B.3) with d∗1 as data be θ∗1. Then, grad θ∗1 satisfies (B.5) away from the cores due
to (B.2)2. Thus, the field n∗ defined from θ∗2 ≡ 0, θ∗1 gives an equilibrium director field away from the
cores (and singular surfaces) corresponding to the disclinations involved, and this may also be considered
as the n̂ field (Appendix A) in this case.

In more complicated cases where equilibrium is not characterized by (B.5) away from cores, e.g. if the
1-constant energy is not invoked, the only change in the argument is to add a gradient, say grad θ

α
, to

the solution of (B.2)1 (which keeps the topological charge of the solution intact) and determine this extra
field θ

α
as a solution to the more involved equilibrium equation where the θ∗α act as forcing fields. The

overall director field, n̂, away from cores arises from the parameters
(
θ
α

+ θ∗α : α = 1, 2
)

.
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