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ARSTRACT

Fracture of concrete as well as other materials such as rocks
or sea jce js preceded by progressive distributed cracking., On the
macroscale, this behavior calls for a continuum model, and the
crack tip blunting due to distributed cracking necessitates a
nonlinear fracture mechanics approach.

The first part of this lecture gives a review of a recently
formulated nonlocal continuum model which permits distributed
cracking to occur in a stable manner over finite-size zones of the
material, and summarizes the finite element crack band model, which
is a special case of the nonlocal continuum approach. The size
effect in blunt fracture is also briefly reviewed.

The second part of this lecture presents in detail a new
method of jdentifying the material parameters for propagation of
fractures blunted by a cracking zone. This method exploits the
recently derived size effect law for blunt fracture for determining
the parameters of the R-curve and the parameters of the finite
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element crack band model (as well as Hillerborg's fictitious crack
model). No measurements of the crack length or of the unlpading
compliance are needed, and it suffices to measure only the maximum
load values for a set of geometrically similar notched specimens of
different sizes. From these data, the parameters of the size
effect law are identified by linear regression in certain
transformed variabies. The inverse slope of the regression line
yields the fracture energy. The regression has further a two-fold
benefit: it smoothes statistically scattered data according to a
theoretically known law, and it extends the range of the data, so
that fewer tests are needed than without the use of the size
effect law. Using the experimentally calibrated size effect law,
the R-curve may then be obtained as the envelope of family of
curves representing fracture equilibrium for different specimen
stzes. A simple aigebraic formula for the R-curve, which closely
agrees with the size effect law, s also presented. In the case of
the crack band model, the size effect regression plot makes it
again possible to determine all material parameters, particularly
the fracture energy, the crack band width and the strain-softening
moduius. Formulas for that purpose may he set up for each fracture
specimen geometry, and some are presented here. The parameters of
Hillerborg's fictitious crack model can be also easily ijdentjfied
from the sjze effect regression plot.

1. INTRODUCTION

Structures made of a heterogeneous brittle material such as
concrete often exhibit brittie failures in which the material
fractures progressively and the fracturing is distributed over a
zone of finite size. In the macroscopic continumm approximation,
the behavior of the fracturing zone is characterized by strain-
softening, i.e., a stress-strain relation in which the maximum
principal stress decreases at increasing strain. Strain-softening
may be easily implemented in a finite element code, however,
problems are encountered in convergence as the mesh is refined.
Using a finjte element discretization of the classical, local
continuum, the fajlure zone always localizes into a zone of
vanishing thickness, which means that in the 1limit of an infinitely
small mesh size the structure is indicated to dissipate zero energy
during failure. This aspect is obviously unrealistic, and it
causes an incorrect spurious sensitivity of the results to the
chosen element size 13,7,9.10,1671.

An expedient remedy is possible with the crack band model, in
which the cracking front is forced to have a fixed width which is a
material property. This type of analysis has been shown to yield
good agreement with all jmportant fracture test data for concrete,
as well as rock [3,16]. However, a disconcerting feature
remains. The mesh cannot be refined to sizes smaller than a
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certain charactristic length, and so one does not have a limiting
continuum which the finite element model s supposed to
approximate. Furthermore, the size of the strain-softening zone
and the strain distribution over the zone, which must be known if
the energy dissipated by cracking should be correctly calculated,
is unknown. To overcome these limitations, it is necessary to
abandon the classical idea of a local continuum, as will now be
shown in the first part of the lecture, in which a recently
established [5,7,12,13] nonlocal continuum model is described.

The existence of a characteristic length in the nonlocal
continuum mode! implies a size effect which differs from both the
failure criteria of 1imit analysis and the linear elastic fracture
mechanics. After reviewing the recently derived size effect law
6] that is associated with the nonlocal continuum approach, the
second part of the lecture deals with the problem of determination
of the material parameters for propagation of fractures blunted by
a cracking zone. A new method of their determination, which uses
experimental data on the size effect, is presented in detail.

2. CONTINUUM MODEL FOR DISTRIBRUTED CRACKING

2.1 Imbricate Nonlocal Continuum

From the works of Kroner, Kunin, Krumhansl, Levin and others
[21-2, 27-31], it is known that in a statistically heterogeneous
medium which is not in a macroscopically homogeneous state of
strain, the averaged {smoothed) stress at a certain point depends
not only on the gradient of the averaged displacements at that same
point (local properties), but also on the averaged displacements
within a certain characteristic finjte neighhorhood of that
point. The properties of such a medium cannot be said to be local,
and the medjum is, therefore, called nonlocal.

The nonlocal displacement gradient may be defined hy the ‘
relation

ouitn =L g 2] v
u(x) = — 4y’ = u{x") n.(x') ds' (1)
i v V(x) 3X v S(x) = it~

in which u, are the cartesian displacement components (i =1,2,3),

X is the c&ordinate vector of the given point characterized by
cartesian coordinates x., V(x) is the characteristic volume

(Fig. 1) of the material'centered at point x, S(x) is the surface
of this volume, n.(x') is the unit normal of this surface at point
'5', and D. is the gradient averaging operator. The surface
integral i Eg. 1 follows from the volume jintegral by application
of the Gauss integral theorem. More generally, a weighting function
can be introduced in Eq. 1. Using the gradient averaging operator,
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Fig. 2 -~ Finite Element Discretization of Imbricate Nonlocal
Continuum for One Dimension and Two Dimensions (the

continuum is the limiting case as the element size
tending to zero).

the mean strajns may be defined as

- 1
. = .u. + D.u; ?
€45 ?-(D1uJ DJUT) (2)
In previous works dealing with nonlocal continua, it has been
generally assumed that the continuum equation of motion has the
form :
ST

ax;
J

15km(€) O vy = oYy (3)
in which Ci' are secant elastic moduli which, in general, depend
on the mean %%Wain, p is the mass density, and superior dots refer
to time derivatives. It is found, however, that Eq. 3 is incapable
of describing a strain-softening continuum, It always leads to
unstable response as soon as strain-softening begins. The
difficulty has been traced to the asymmetry of these equations due
to the combinatin of partial derivatives 3/3x; with the gradient
averaging operator N . This feature gives tise to nonsymmetric
finite element matrices even if C"km are constant, i.e., if the
medjum is elastic. Such a nonsymm%%ry js certainly an unacceptable

characteristic.

For this reason, a systematic derivatijon of the continuum
equation of motion on the basis of Eq. 1 has been attempted, using
the calculus of varjations. It has been found [5,71 that the
proper form of the continuum equation of motion is

] . -
(1010 ,C 54m Py * € 57 Cign(®) 3 = 20 (4)

in which ¢ is an empirical coefficient between 0 and 1, and

C..km are the local secant moduli. In contrast to Eq. 3, each
te?& of the last equation has a symmetric structure, and
consequentiy, discretization by finite elements leads to symmetric

stiffness matrices if the elastic moduli C,. and C. . are
symmetric. Tikm Tjkm
Eq. 4 can be also written in the form
(I-C)chij +C Ty P Y (5)
in which
%5 % Cigkm (B%km = Cijim (8104 (6)
137 Cigkm Sk T Cqgkm 3 (7

in which Tij are the usual, local stresses, and %43 are the
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stresses characterizing the stress state in the entire
representative volume of the material and are called the broad-

range stresses [5,7].

When the continuum defined by Eq. 4 is discretized by finite
elements the size of which is smaller than the size £ of the
representative volume, one obtains a system of imhricated
(regularly overlapping) finite elements visualized in Fig. 2.
Therefore, the present type of nonlocal continuum has been called
the imbricate continuum [4], The finite elements keep a constant
size £ as the mesh is refined, and the number of imbricated finite
elements that cross a given point is inversely proportional to the
mesh size, while the cross section of these elements diminishes so
that all the imbricated finite elements have the same total cross
section for any mesh size. It can be also shown that the limiting
case of the finite difference equations describing such an
imbricated system of finite elements is the differential equation
in Eq. 4 [5,7]. If the finite element size h is larger than the
characteristic length £, then the finite element model of the
imbricate nonlocal continuum becomes identical to that for the

classical local continuum.

To assure convergence and stahility, the local stress-strain
relations (Eq. 7) may not exhibit strain-softening, or else
unstable response and spurious sensitivity to mesh size, along with
incorrect convergence, may be obtained. The strain-softening
properties must be described solely by the broad-range stress-

strain relation in Eq. 6.

Fig. 3 reproduces some of the results of explicit dynamic
finite element calculations from Ref. 7, in which wave propagation
in a strain-softening bar of length 2 was analyzed [7]. Both ends
of the bar are subjected to a constant outward velocity d beginning
at time t = 0. This loading produces step waves of strain
propagating inward. When these waves meet at midlength, the strain
suddenly increases and strain-softening ensues. If this problem is
analyzed with the usual finite element method for local continuum,
it is found that strain-softening is always limited to a single-
element width., Thus, the width of the strain-softening zone
reduces to zero as the element mesh is refined (Fig. 4). As a
consequence, the energy W consumed by failure decreases with
decreasing mesh size and approaches zero as the mesh size tends to
zero (Fig. 5). Moreover, the finite element model of local
continuum exhibits a discontinuous dependence of response on the
prescribed end velocities as well as on the slope E_ of the
strain-softening branch. The solution, however, conSerges to a
unique exact solution, although this solution is unrealistic from

the physical point of view.
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For the present imhricate continuum, by contrast, the solution
of wave propagation in the strajn-softening bar (Fig. 3) exhihits
correct convergence, with a strain-softening zone of a finite sjze
in the 1imit [7]. Also, the energy consumed hy failure in the bap
converges to a finite value, as shown in Fig. 5. The
characteristic length in these computations has been considered as

£ = L/5.

2.2 Differential Approximation of Imbricate Nonlocal Continuum

For the purpose of analytical solutions it may be useful to
approximate the integral operator that defines the mean strain by a
differential operator. To this end, we expand the integrand of Eq.
1 into Taylor series: '

$ - ] l 1 1 '
U527 =y S0 +ug 00 X+ g ug s (0 XX
This yields
_ 1 1
Diu\](,&) = uj,i('&) +?'! Akm uj,ikm('x\') + I!kapq u\],‘ikmpq(l) + ...(8)
where
2
1 _ 4
Am =7 Jv X % 9V 235 Sy (9)

and B =i IV X, X Xo X dV, provided that the representative
volume 1gqconsidered as a gphgre of diameter &, Negleting terms of
higher than second degree, we ohtain

U,

= 2 - 2.7 J
T),i uy = Uy g + A U5 ek (1 +>\V)Wi (1nm)
in which X = 22/40 and v - Laplace operator. Since £ equals

approximately 3d_ where d_ = maximum aggregate size, we note that
A approximately equals the maximum aggregate radius. In view of
Eq. 10, the field equations for the imbricate nonlocal continuum
(Eqs. 5-6) may now be written as follows 57:

~2 2 .
1- + A%V ...+ L. . = . 11
( C) “ ) 013 . c T]J ¥ o U_‘ ( )
oij = tijkm(s) €em Tij = Cijkm(s) €em (12)
g, = 2 42 _1
€xm (1 + 2% v¢) Cm® Skm = 7 (uk,m + um,k) (13)

The principal of virtual work for a body (whose domain is B
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and surface is S) made of the imbricate continuum may be stated as
follows:

L . ] - )
= g oy deij dv fS p; Sus dS + IR pus Suy dv =0 (14)
in which Su.(x) is any kinematically admissible displacement
variation, akd p, are the given distrihuted surface loads.
Substituting Eqg. 13 for %.. and applying repeatedly Gauss integral
theorem, one can derive the”field equations (Egs. 11-13) from the
virtual work relation (Fq. 14). Moreover, the varfational
procedure yields the boundary conditions at surface S:

either
u, =0or o.. n, = p, {on S) (15)

where

- 2 2

oij = {1 + A% ¥9) % (16)
In the classical nonlocal continuum theory, the mean strain is

more generally defined with the help of a certain given weighting

function w(r) where = x' - x, 7i.e.,
1 dus(x") .

in which f¥ w(r) dV' =1 (normalized weights). Introducing again
eri

the Taylor es expansion of aui/axi and truncating it after the
quadratic term, one finds that J
U,
Dou. = (1 +a 22 v2) _1 (18)
1 axj

in which o« = 5 Jy wlr) x; x! dV'.  However, as long as A is to
be galibrated empirically, one can determine only the product

@ A7, and not a and A" separately. Thus, it does not matter which
weighting function is used, and the simplest case

w(r) = 1/V = const. may be chosen.

It is interesting to compare the equation
= 2,2 1,2
- e, = ¢,, . .ol 19
€43 (T )513 £ij Yy (u1,3kk * uJ,1kk) (19)
with the well-known couple stress theories or micropolar
theories. In them, only first and second derivatives appear and
the second derivatives are skipped. Moreover, there is no need to
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associate with the higher displacement derivative any special type
of stress tensor of a higher rank, such as the couple stress
tensor. Only one, second-rank -stress tensor is used here.

Let us now check stability of the continuum. Consider
linearly elastic properties, characterized by Young's modulus E,

and the one-dimensional case, with x: = x, u; = u. From Egs. 11-
13 we obtain the differential equation of motdon
2 2.2 2
239 a-u p 3 u
(1-¢) 1+ —) — ==— (20)
3x ax E ot

Now seek a solution of the form u = A exp [i w(x - vt)] where v =
wave velocity, w = frequency. Substitution in Eq. 20 provides the
condition

2
veltn-o -8 v g (21)

For stability, v must always be real and positive, and so we must
have ¢ > 0.

The chief advantage of the approximation by derivatives is
that it facilitates analytical solutions, for which the boundary
layer method known from fluid mechanics may be utilized. For
computer programming, the use of imbricated finite elements (Fig.
1) seems, however, the simplest approach, since ordinary finite
elements may be used and the nonlocal properties are entirely taken
care of by the element imbrication (regular overlapping). Existing
finite element codes and the usual element types can be used and
the only change to be made in the existing finite element codes is
to properly define the integer matrix giving the nodal numbers
corresponding to each element number.

2.3 Crack Band Theory for Progressive Fracturing

For very fine meshes for which the element size h is less than
the characteristic length 2 of the medijum, the fracture front may
be many elements in width. However, for many practical
applications it is sufficient to use finite elements whose size is
equal to the characteristic length or is larger. In such a case,
the cracking zone is of a single-element width at its front, and
the finite element model of the imbricate continuum then coincides
with that of the classical local continuum. The fracture analysis
then becomes identical to what has been previously developed as the
crack band theory [3,16]1.

Distributed cracking has been modeled in finite element
analysis by adjustments in the material stiffness matrix since 1967
when Rashid [35] introduced this approach. Recently it has been
demonstrated this approach yields consistent results, independent
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of the mesh size, only if the stress-strain relation with strain-
softening is associated with a certain fixed finite element size,
L. For concrete, this size appears to be roughly £ = 3d where
d, = the maximum size of the aggregate, This size of finfte
e?ements is too small for many practical purposes. In the crack
band theory it has been proposed and verified that consistent
results can be obtained with larger finite elements provided that
the tensile strain-softening relation is adjusted so that it yields
the same fracture energy regardiess of the mesh size [10,16]1. The
fracture energy is expressed as
w

_ _ ¢ 2 1 1

Bp = W, [ ogg degy == f (£ - E:) (22)

in which w. now represents the width of the cracking front, w_= 2,
033 and €43 are the stress and strain in the finite element normal
tg the dirgction of cracking, f. is the direct tensile strength of
the material, By is the initial élastic Young's modulus, and E, is
the mean downward slope of the strain-softening segment of the
stress-strain diagram, which is negative (Fig. 6). If the finite
element size is h = 2, then Eq. 8 with & replaced by h must yield
the same value of Gg¢. This may be achieved by adjusting, first,
the downward strain-softening slope E., and second, if the slope
becomes vertical, by reducing the actual tensile strength fé to a
certain equivalent strength féq r3,8-10,167.

The crack band theory has been shown to agree with essentially
all fracture test data for concrete, including the maximum load
data and the R-curve data [3,16].

It may be noted that approximately the same results may also
be obtained if the cracking strain accumulated across the width of
the crack band is expressed as a single cracking displacement, and
a certain stress-displacement relation in the connections between
the finite elements is introduced into the analysis. This has been
the approach followed by Hillerborg, et al. 23],

2.4 Constitutive Relatijons for Strain-Softening

In the analysis of many practical situations, including all
fracture tests, the principal stress direction in the fracture
process zone remains constant during fracturing. Triaxial strain-
softening can then he jntroduced in the form

£=Dg+§ (23)

in which ¢ and g are the column matrices of the components of
strain and stress, 0 is the 6 x 6 matrix of elastic constants, and
& is a column matrix representing additional smeared-out strains
due to cracking, g = (611, Erps E33> 0, 0, 0)'. The normal



<10

O}}
w
o
:Ifxc —— ] ///
E |
. E
| Frepresentative
| i volume
© I A i Sp S &
Z h
z Section A-A é T e
\
smoothed Th
i +
!
' actual =t=T=T=
wellZ2l=lE==| |l T T T
Q AQ
0} P

Fig. 6 - Crack Band Model and Corresponding Tensile Stress-
Strain Relation with Strain-Softening.

211

stresses may be assumed to be uniquely related to their associated
cracking strains,

in which C is the secant modulus which reduces to zero at very
large cracking strains and may be calibrated from direct tensile
test data which cover strain-softening 1,4,19,33,34,36,39,417.
Different algebraic relations must, of course, be used for
unloading,

For some situations, especially in dynamics, it is necessary
to describe progressive formation of fracture during which the
principal stress directions rotate. In such a case, the foregoing
model is inadequate. A satisfactory formulation can he obtained
with an analog of the slip theory of plasticity, which is called
the microplane model [4,18]. In this model it is assumed that the
strain on a plane of any inclination within the macroscopic
smoothing continuum consists of the resolved components of one and
the same macroscopic strain tensor e... Using the condition that
the energy dissipation calculated in fdrms of the stresses and
strains on all such planes and in terms of the macroscopic stress
and strain tensors must be equal, one may obtain the stress-strain
relation

- nC
dcij = Dijkm d € (25)
in which
c 2r  w/2
Dijkm = IO fn Ny 0y M F'le,) sing ded¢ (26)

This equation superimposes contributions to inelastic stress
relaxations from planes of all directions within the material,
defined by spherical coordinates 6 and ¢: n. are the direction
cosines for all such directions, and F(e ) {s a function
characterizing the constitutive properties and representing the
stress-strain relation for one particular microplane within the
material; & =Ny Ny egy = normal strain on a plane with direction
cosines n,.

It has been demonstrated that the microplane model allows
describing tensile strain-softening under general stress or strain
histories and always leads to a reduction of stress to zero at
sufficiently large tensile strain. ’
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3. SIZE EFFECT AND ITS USE IN DETERMINATION OF FRACTURF PARAMETERS

3.1 Problem of Experimental Determination of Material Parameters

Analysis of distributed fracturing by nonlocal continuum,
crack band theory or other methods is feasible only if the material
parameters involved can be identified from test data. This
question will now be addressed and a novel method which exploits
the size effect will be presented in detail. Since this method can
be closely linked with the concept of R-curves, the use of R-curves
for characteizing nonlinear fracture associated with progressive
cracking will now be analyzed.

Fracture analysis of brittle heterogeneous materials, as well
as ductile metals, must take into account the blunting of the crack
front caused by microcracking or yielding. In consequence, the
fracture properties of these materials are not completely described
by a single parameter, the fracture energy, and at least two
further parameters are required. Several mathematical models with
additional parameters have been recenty formulated
f3,4,11,16,23,34,417 and shown capable of closely representing the
available experimental evidence. These models, however, are
practically useful only if their fracture parameters can be easily
determined from tests of a given materijal.

The simplest, although crudest, method consists of an
approximate linearly elastic fracture analysis using an equivalent
crack length (which is unrelated to the actual crack length) and a
function describing how the energy, R, required for crack growth
(per unit crack length and unit thickness) depends on the length ¢
of the crack extension from the notch. Irwin and Krafft, et al.,
[24,26], proposed that this function, called the resistance curve
or the R-curve, may be considered to be unique even though this is
not exactly true. Shah and co-workers 39,407, introduced the R-
curve concept to fracture analysis of concrete.

The existing gethod f°§ dstermining the R-curve utilizes the
relation R = k, P® a/(E_ b° d°) in which k, 1is a known
coefficient for a given gpecimen geometry, E is the Young's
elastic modulus, b = specimen thickness, d = characteristic
dimension of the specimen, a = the length of crack plus notch, and
P'= Toad at which the crack extends. A series of R-values is
determined either on a single specimen from the crack lengths, a,
corresponding to various loads P, or on a series of specimens from
their critical values of P and the corresponding critical values of
crack length a. In both cases, however, the crack length needs to
be measured. This is a considerable obstacle in the case of a
material like concrete, for two reasons: First, the crack length
is hard to define since the crack tip is blurred by a microcracking
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zone, and second, even if one succeeds to measure the location of
the crack tip, the mesurement is of dubious significance since the
R-curve is actually a function of a certain equivalent crack Tength
which yieids the correct remote elastic stress field rather than
the actual crack length.

In view of these difficultjes, it has been attempted to
determine the crack length indirectly, by measuring specimen
compliance, either at unloading or at reloading. However, this
approach is also questionable because at unloading or reloading the
microcracks within the fracture process zone do not complietely
close (due to rubble and fragments within the crack space, as well
as irreversihility of material deformation at microcrack tips).
Thus, the compiiance for unloading and reloading is smaller than
the compliance for continued loading, which, however, cannot be
measured since the crack growth cannot be arrested. Therefore, the
complian$e measurements tend to yield crack jengths which are much
too small.

The R-curve is in essence a device to make possible an
approximate linearly elastic solution even though the material
behaves noniinearly [11]. A nonlinear fracture analysis, which is
more realistic, may be carried out with the finite element blunt
crack band model [3,16,17], in which a certain fixed triaxial
tensile strain-softening constitutive relation is used, and the
crack front is assumed to have a certain characteristic width We
which is a material property (and equals about three maximum
aggregate sizes of concrete). A similar finite element model for

- nonlinear fracture analysis of concrete, due to Hillerborg, et

al.[23,24], utilizes, instead of a softening stress-strain
relation, a softening stress-displacement relation for the relative
displacement between two finite elements. The material parameters
for these finite element models can be determined 16,171 by
optimization or trial-and-error procedures using a finite element
program; but this is not exactly simple for every-day

applications. The fracture energy can, in theory, be also
determined by measuring the area under the complete load-deflection
diagram of a single specimen [34,387. This approach, however, has
certain disadvantages (see Section 3.9), and it does not yield the
nonlinear fracture parameters other than the fracture energy.

Thus, there is a need for another model, for which we propose here
;ofexploit the size effect, following an idea briefly outlined in
ef. 6.

3.2 Review of Structural Size Effect

For blunt fracture one can generally introduce the hypothesis
E4,7] that the total potential energy release W caused by fracture
in a given structure depends on both:
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1) the length a of the fracture, and

2) the area traversed by the fracture process zone, such that
the size of the fracture process zone at failure is constant,
jndependent of the sjze of the structure.

Dimensjonal analysis and simiiitude arguments then show that
the structural size effect for geometrically similar specimens or
structures made of the same material (and having the same
thickness) is governed by the simple law [61:

- 1/2

oy = Bf{ (1 + ab) (27)

in which o, = P/bd = nominal stress at failure, P = maximum load
(i.e., failure load, b = thickness, d = characteristic dimension of
the specimen or structure (e.g., the beam's depth), f. = direct
tensile strength: and B, dg = empirical constants, dj Reing a
certain multiple of the maximum aggregate size, da. The values of
B and of ratio A, = do/d depend on the geometrical shape of the
structure, but not on its size. In the graph of iog gy versus

log d, Eq. 27 is plotted in Fig. 7a.

If the structure is very small, then the second term in the
parenthesis in £q. 27 is neqligihie comprared to 1 and then
gy = Rf, in the failure condition, which represents the strength
(or yiefd) criterion and corresponds to a horizontal line in Fig.
7a. If the structure is very large, then 1 is negligible compared
to the second term in the parenthesis of Eq. 27, and then
oy = const./Vd . This is the type of a size effect typical of
Iynear elastic fracture mechanics:; it corresponds to the inclined
straight line in Fig. 7a, having the slope - 1/2.

The size effect law according to Eg. 27 represents a gradual
transition from the strength (or yield) criterion to the energy
criterion of linear elastic fracture mechanics. This law is
approximate because the hypothesis of a constant size of the
fracture process zone at failure cannot be considered to be
exact. However, the errors due to this approximation appear to be
insignificant compared to inevitable random scatter of materijal
properties. Statistical errors due to this scatter are, of course,
superimposed on Eq. 27, which describes only the mean behavior.

Let us now summarize the dimensional analysis from Ref. 6 that
leads‘to Eq. 27. To take the dispersed and progressive nature of
cracking at the fracture front into account, the following

log oy (psi.)

1,/05°x10"

strength criterion |

2
og 8 N1

. oy=BfATFd/d,
i BY,=60.39 (psi.)
1.5 = do=7.834 (in.)
L —— + 4 t } +
R 3 .5 7 .9 1.1 1.3
log d (in.)
12
- (v)
8-+

A=0.350x10"7*
C=2.742x107*
w",=1.0268x10-‘

* Jeng ond Shaoh's Test Dota

i |
}

5 10 15 20

beam depth d (in.)

Load Data.
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Fig. 7 - Size Effect Law and Regression Analysis of Maximum
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yp i i : meters &, are constant and only the characteris@ic dimension d
Mpothests may be introduced: sg;ges. Acco}ding te the chain rule of differentiation,
| . = i ich introduce the
The total potential energy release W caused by fracture in a af/3a = f, (3a,/3a) + fg (Eagéag)’ n ¥:1§ :3blgi;utgon of Eq. 29
iven structure is a function of both: notations “f, = af/aal, 5 = / 5. us, . 2

? ' into Eq. 30 yields

(1) the length of the fracture a, and 6ty 2 "

(2) the area of the cracked zone amda. (a“ * d2 ) ZbEC B Gf b

Here m = material constant characterizing the width of the
cracking zone at the fracture front. Under part (1) of this
hypothesis we understand the part of energy that is released from
the uncracked regions of the structures into the fracture front.

Furthermore, the fracture energy may be expresseq as the area under
the complete tensile stress-strain curve, including the str§1n-
softening down to zero stress, times the width of the cracking

front md,:
Variables a and amd, are not nondimensional. They are, £ £ 2
however, allowed to appear only in a nondimensional form. This 6. =md. (1 - c ) t (32)
form is given by the following variables f a E; ?E;
ay =2 4 = "9 (28) in which E. is the initial elastic modulus of concrete, Ft,is the
a2 d mean strajn-softening modulus, which is negative, and f! is the

direct tensile strength of concrete. Substituting Eq. 35 andp = oy bd

i i i i . 31, ay obtain:
representing the nondimensional fracture length and the into Eq. 31, we may

nondimensional area of tae cracked zone. Furthermore, W must be

proportional to volume d° b of the structure (where b = thickness) Spfro(1 o+ —9 - (33)
and to the characteristic energy density N t xod,
cN/ZE in which oy = P/bd = nominal stress at failure, P = given

app]iea load, and H = characteristic dimension of the structures.

3 3 = - 2 = o A
Consequently, we must have in which 8 = [(1 - E./E )/f,] "and X m¢7/f1 8 and are

)
constants when geomet?ic§11yzsimilar sgructuﬁes of different sizes

2 ‘ are considered. Thus, Eq. 33 proves our starting equation, Fq. 27.
=1 P 2
3.3 Equivalent Linear Fracture Analysis and R-Curves
in which f is a certain continuous and continuously : i ]
differentiable positive function, and parameters ¢. represent Frgq:eni%y §2ﬁu2§312"§$;e:§§§§§rgngrgﬁgszt:225 ;:dszglain
ratios of the structure dimensions characterizing thd geometrical compared to the ’ th 1most the
shape of the structure. For similar structures £. are fields remote from the fracture process zone are then almos
constant. The condition for the fracture to prépaggte is same as the elastic ones. The fracture may then he approximately

treated as an equivalent line crack which produces the same remote
elastic stress and strain fields. For this equivalent crack,
LI G, b (30) however, the energy, R, required for crack growth (also ca]]eq the
% f fracture resistance) may not be assumed constant (as is done in
linear elastic fracture mechanics) but must be considered as a

: . . ; i i h or smoothed
1: which G¢ is the fracture energy - - a material property :3:?:;:" ?fetheRcfaE?C§x§§"§;$2hc :rgmatrea;otgg = length of the
Characterizing the energy consumed per unit extension of the RSN ' ‘ h; see Fig. 8.
fracture, per unit thickness. notch, and a = total length of the crack plus notch; g

The energy that must be supplied to the structure to p{oduge Eheof
i is U = - = the total release
Consider now geometrically similar structures, for which crack is'U = b / R(c) da - W(a) where W(a) t
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strain energy from the structure. An equilibrium state of fracture
occurs if no energy needs to be supplied to change a by da and none
is released, i.e., if &8U = 0. Since 8U = (3U/3a) éa = 0, 1in
which 3u/3a = b(R - G) = 0 and bG = W' = dW/3a, it follows that
fracture equilibrium takes place if

G(a) = R(¢) (equilibrium) (34)

in which a = ag + ¢, G is the energy release rate of the structure
and R is its critical value characterizing the material. The
eqyilibrium fracture state is stable if the second variation

32U is pgsitige. ince 2 2
§°U = (3°U/3a")6a" where 3°Uf3a" = bl[dR/dc - 3G(a)/3al = blR'(c)

- G'(a)], bG'(a) = W"(a) = 3°W/3a°, the following conditions ensue

R—curve

™

Qe

R'(c) - G'(a)

" v

0 (stable)
0 {critical) (35)

Considering structures that are geometrically similar but
could have dissimilar notches, and using dimensjonal analysis for
the equivalent linear problem, ane can show that

~
crack length ¢ (in.)

(b)

G(a) = w'(a) = ng(a)
d
9

(36)

Fig. 8 - R-Curve.

. 5 gt
(w/1) (O)d ey - AL P21 (a)
' E

b d
(o4

(37)

in which d js the characteristic dimensjon of the structure,

© a=a/d, g'(a) = dg(a)/da, E_ = Young's elastic modulus; and
g{a) is a nondimensional funcfion that characterizes the geometry
of the structure. It can be determined by linear finite element
- analysis and it can be also found for typical shapes in handbooks
377, which ysually give the stress intensity factor Ky, from,
which G = KI/E!, E! = E_ for plane stress and E' = E (1 - v°)
°—<E:> (:E;F" - for plane st}aiﬁ vé= Pofsson ratio; since V% = 0.03 the
distinction between plane stress and plane strain is not very

important for concrete. Plane stress usually describes test
conditions better than plane strain. :

OQ‘C

(o)

ai

Substitution of Eqs. 34, 36 and 37 into Eq. 35 leads to the
conditions
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R(c) g'(a) = R'(c) g(a) d >0 (stable)
=0 (eritical)
Alternatively, since dg/dc = dg/da = g'(a)/d, the last condition is

equivalent to
R(c)
g'd,
in which a = (an + ¢)/d. So the critical state of failure may be

found by maximizing the ratio R(c)/g( a). This can be easily done
by evaluating £q. 39 for many values of c.

= Max (39)

The foregoing relations are generally true for any equivalent
linear analysis of nonlinear fracture. However, the function R(c)
is generally not the same for different specimen shapes and
different notch Jength. The R-curve concept of fracture analysis
rests on the hypothesis (24,267 that function R(c) may be
approximately considered as a unique material property, the same
for different notch length and different specimen shapes.

3.4 Identification of Fracture Energy from Size Effect

As an example, consider now three-point bent fracture tests on
specimens of various depth d, all with b = 1 in., span to depth
ragio L/d = 4, and initial notch depth ag = d/3; also, E. = 4.3 x
10° psi and f! = 3650 psi [25]. According to Tada's handbook
(371, for L/d § 4:

2
g(a) = 167 a(1.635 - 2.603 a.+ 12.30 o - 21.27 o> + 21.86 a*)
(40)
The following experimental data for the maximum loads are
considered for specimens of various depths d:
d= 1.5, 3%, 6", 9%, 12, 15, 18, 21 in.

P=82.4, 156.9"and 167.4" 239.6% 395.6, 490.0, 514.5, 555.5, 700 1b.

(41)
(asterisks label the values taken from Jenq and Shah's
measurements;, Ref. 25). Inevitably, the data are statistically

scattered. They may be smoothed out using the size effect law in
Eq. 27. This equation may be algebraically transformed to a linear
form, : .

Y=AX+C (42)

in which

221
2.2
b
k=d, ¥t =20 Al o0 (43)
e P 0 3 f 12

Thus, coefficients A and C can be determined by linear regression,
either by computsr or by hand; see Fig, 7b. This yields

C=2.742 x 1077, and A = 0.350 x 10", The coefficient of
variation w of the deviations from the regression line and the
corresponding 95% confidence limits are also shown in Fig. 7b.

As mentioned before, for very large specimen sizes
(d » =) linear elastic fracture mechanics applies, and the
corresponding value of R, calied the fracture energy G¢, may be
obtained from the inclined asymptote in Fig. la,,i.e., from Eq. 27
when 1 is neglected, in which case Y = AX = o, “. Noting that
@ ap for f§11ure of very large specimens, and substituting here
d and o, = GfEC/g(a )d, which follows from Eq. 36 by seting G

X =
= G; and P =" obd] Se obfain:
g(ao)
B¢ = e (4]

c

in which a5 = an/d. So the fracture energy is inversely
proportiona? to Qhe slope, A, of the regression line of size
effect. Substituting A and gl(a,) = 43.76 from Fq. 40, Fq., 44
yields the resuilt Ge = 0.291 1b./in.

The test data used (Eq. 47, asterisk labeled) are those of
Jenq and Shah [257. They measured the R-curve hy a certain novel
method not exploiting the size effect, and the asymptotic value of
their measured R-curve was Gf = 0,42 1b./in. This is not very
different from the value found here, in view of the radically
different methods of evaluation which must be influenced by
different sources of errors,

Evaluating Eq. 42 for various values of d, we may further
obtain smoothed values of maximum load data

d= 1.5, 3, 6, 9, 12, 15, 18, 21 in.
(45)
P=83.0, 154.1, 272.7, 370.8, 455.4, 530.6, 598.6, 661.0 1bs.

(This same smoothed data would be obtained even if the measurements
included only the three asterisk-marked values in Eq. 41.) Thus,
the size effect law in Eq. 42 ailows substantially increasing the
range of d-values compared to the range of measurements, which will
be useful for determining the R-curve,
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Geometric similarity is required only in two dimensions, and
thus the specimens could have different thicknesses h. However,
the fracture energy is not constant along the front edge of the
crack, and thus the thickness has some effect on the mean G¢ for
the whole thickness. There are two effects causing the thickness
effect. One is the disturbance of the free surface houndary
conditions due to Poisson effect and surface point singuiarity of
elastic solution [14], and another one is the different influence
of the aggregate size near the surface and the interior on the
microcracking zone size. The former effect is eliminated if b/d is
constant, and the latter one if b is constant. Thus, no perfect
answer exists for the chojce of thickness. The condition b =
constant seems, nevertheless, preferable.

Eq. 44 is valid for all equivalent linear analysis of
fracture. In particular, it does not depend on the hypothesis that

the R-curve is unique,.

The fact that the size effect plot of log o, versus iog d
possesses an inclined straight 1ine asymptote impyies that the R-
curve must have a horizontal asymptote, a property previcusiy
sometimes regarded as uncertain. The fracture energy, G¢ - a term
reserved here strictly for the final asymptotic vaiue of the energy
required for crack growth (per unit crack length and unit
thickness) - is uniqueiy defined by the straight iine asymptote of
the size effect plot of log oy versus log 4 (Fig. 7a). Thus, the
value of the fracture energy must be considered size independent.
Worrying about its size dependence wouid be meaningiess, just 1ike
saying that a value of some function F(x) at x; depends on

xo( # x;) or the values of F(x) at x,. It is important to realize
t%is with regard to the current deba%es on the size dependence of
fracture energy. In these debates, other determinations of
fracture energy that are not based on the size effect iaw have been
considered. For such other definitions, the fracture energy values
are in general different from the present one and can indeed depend
on the size of the structure; but this cannot be so for the present
definition. In this light the present definition of G, based on
the asymptote of the size effect regression plot, seems to be
preferable and circumvents the question of size dependence of
fracture energy for its other definitions. The present definition
relates most directly to the failure loads at different sizes of a
structure - usually the main concern of a structural analyst.

If three-point bent fracture specimens are sufficiently
slender, j.e., L/d is sufficiently large, the failure is governed

primarily by the bending moment M in the notched cross section, anc

the effect of the shear force may he negiected. Then it is not
necessary for the specimens of different sizes to he geometrically
similar., It suffices if the notched cross sections are similar,
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i.e, hae the same ratios ao/d.

Let the refefence specimen be characterized by d = dy and L =
Ly. Then the maximum load PE measured for a dissimilar specimen of

dimensions L,, d, such that d
! 2 2 2/ 2 % Ly/dy must be transformed to

the maximum load P, corresponding to span L = Lid.,/d Equatin
the bending moments, Prly/4 = PZ(lez/dl)/4 we %h%ai% ) ?
o o 2l

2" %2 19, (46)

*
specimen of span L, and the actual,
hayg the same cross“section, and therefore, they may be assumed to
fail at the same crack length ¢, i.e.. at the same a or the same
a {a = a/d). Thus, the energy release rates G at maximum load must
be the same for bdoth specimens, and so (according to Fg. 36)

dissimilar specimen of span L

N S R 22
6 = Phslay /€ 070] = 9% §%(a)/E b2 where a, = a,/d, = a;/dg:
this yieids
* p
> = P, (47

It may be checked numericall i
y that if both L,/d, are 1 Fgq. 4
reduces to Eq. 46, 2n wroe fa- A

Eg. 47 has an inconvenient featurg in that the crack length c
at fajiure must be estimated hefore P can he calculated
o =_(a? + c)/d,). The estimate, howéver, can be improved
iteratively. For“this purpose one has to solve also the R-curve as
described in the next section, and then solve

_ a,, from Eq. 37,
upon which one may obtain an improved value of S; i

from Eq. 47,

3.5 DNetermination of R-Curve as an Envelope

_Consider again that a series of geometrically simi
?pec1mens (of the same thickness b) hgs been testgd ;:3]2;e max imum
cg:gkp1;nP@ﬁx has been megsured for each of them, .However, the

. gth c corresponding to each failure load in each of these
Spec1men§ is ynkngwn (its measurement, no matter how careful. would
not really he:p since c¢ should be considered as the equivaleat
Crack length giving the same remote elastic stress field, rather
than the actual crack length). Using function g(a), which is
commoq tg all specimens, we can plot according to Fq. 36 the
eﬁu111§r1u¢ curves of G versus ¢ for each of these specimens, as is
shown in Fig. %a, Only one point on each of these equilibrium
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(Ib./in.)

R(c)
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Fig. 9 - R-Curve as an Envelope for (a) Smoothed Data

{b) Unsmoothed Data.
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curves is the failure state. Now, each equilibrium curve of G
versus ¢ must contain a failure point, and so this curve should be
tangent to the R-curve, as seen in Fig. 9a. This leads to the
following conclusion:

The R-curve is the envelope of all equlibrium curves of G
versus ¢ for the fajlure loads of specimens of different sizes.

To prove it rigorously, the curves in Fig. 9a are considered
as a one-parameter family of curves (with parameter X ) described
by the equation

flc, G, A} =0 (48)
in which
flc, G, ») = R(¢c) - 6 (ao + ¢, A) (49)

Differentiation of E£q. 48 yieids
of 3f ., af 3x ; N
—_— . —_— = -

ac oG G+ 3x ac R G' o+

-

af 3

Q
>

‘l

The envelope of the family of all curves is given by Eq. 50 with
the condition 3f/3x = 0, This leads then to the relation R'{c) -
G' = 0, which is the same as Eq. 35 for the critical state. So the
envelope of the curve represents the critical states.

[t may now seem that the R-curve could be constructed as an
envelope directly from measured data (Eq. 41) by plotting G versus
¢ according to Eq. 36. In practice, however, such an approach does
not work. This is because of inevitahle statistical scatter of
test results (see subsequent comments on Fig. 9b). Therefore, one
needs some simple law for the mean hehavior which couid he used to
smooth out the experimental data before construction of the
envelope is attempted. Eqg. 27 for the size effect provides such a
law. So we use the smoothed data from Fq. 45, and for each pair d
and P we plot the equilibrium curve of G versus ¢ according to fq.
36. This yields the family of curves shown in Fig, 9a. The
envelope, representing the R-curve, may he graphically plotted with
ease. To obtain the envelope numerically, it is simplest to locate
from the graph the approximate c-values of the points on the
envelope, then evaluate for each of them the G-value from Eq. 36,
and then fit these values of G with a suitable formula.

Although, from the viewpoint of representation of the original
measured data, many different formulas are about equally good [5]
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(due to large scatter of data), the choice of formulas becomes more
limited if one wants to closely match the size effect law {Fqs. 27
or 42). From this viewpoint,- the following formula appears to work
best

n
R(c) = fol - - %;) ] for ¢ < Coy s

R(c) = Ge for c > ¢, (51

Its parameters are found, according to the values in Eq. 45, as Ge
= 0.291 1b./in., ¢, = 1.895 in., and n = 3.6. This formula,
piotted graphicaliy in Fig. 9a, appears to be a perfect envelope,

Alternatively, one can also use the formula

) (52)
C + k

with coefficients Gf, kg, kl, m and n. It so happens that the
approximations of the envelope remain quite good if m and n in Fq.
52 are fixed as m = 0.19 and n = 4,24, Then Eq. 52 has the
advantage that parameters kn and k, may he determined by linear
regression. Indeed, Eq. 52 can be transformed to the form

y = A'x + C', in which

1/m -1

x ="y e, R S e - ky €% €' = /K

f
For the v?%ues in Egq. 45, one obtains knp = 1.53 x ?010, and ky =
3.58 x 10*",

For comparison, let us see what we would get if the size
effect law (Eq. 1) were not available to us. Then, plotting the
curves of G vesus c (Eq. 36) on the basis of the measured maximum
loads (Eq. 41), we would get the family of curves shown in Fig.
9b. This family of curves has no common envelope, and since the
failure points (i.e., the values of ¢ at failure) for each of the
curves are unknown, it is not even possible to deduce any R-curve
by statistical regression. Thus, knowledge of the size effect law
(Eq. 27) is crucial for being able to determine the R-curve without
having to measure the crack Tengths at failure states, a task
notorjous for its difficulty and ambiguity. For comparison, Fig.
9b also shows the R-curve which is obtained if the measured maximum
loads are first smoothed with the size effect law, Eq. 27. (The
fact that the R-curve is only an approximate concept and is not
strictly unique for different specimen shapes is not the cause of
the lack of a common envelope in Fig. 9b; indeed, if the curves in
Fig. 9b are calculated from fixed material properties, a smooth
common envelope always exists.)

227

Instead of constructing the envelope graphically (Fig. 9a),
one can define it analytically. For this purpose, we insert P =
oy bd in Eq. 36, and we set equal O the partial derivative of this
eq”ation with respect to X at constant G, which is the condition

for an envelope. This yields

d ap *+t ¢
\ 0
6= h o (i) gfa), a-= @ (53)
c
0FC 1 dgla) |, , 222 G (521
d0 g(a) da oNiki dA

in which functions JN(k) and gl(a) are defined by Eqs. 27 and 40,
Eqs. 53-54 represent a parametric equation of the R-curve, with

A as a parameter. To calculate points on the R-curve, a series of
A -values is chosen, and for each X the value of ¢ is solved from
Eq. 54 by Newton iterative method. G then results by substitution
in £q. 51 (in which ¢ = axd, - aj).

It is interesting to calculate the size effect curve
oy(A) from the R-curve R(c) that has previously heen calculated
from the size effect curve according to Eq. 27. Since Egs. 41 or
42 for the R-curve are only approximate, the resulting curve
cN(A) cannot be exactly the same as Eq. 27, but it should he
almost the same. The calculations are carried out for the present
example (Eq. 50), and the R-curve in Eq. 51 is obtained hy
maximizing the ratio in Eq. 38 in which d = X d,, with g(a) given
by Eq. 40. After solving ¢ from Eq. 39, G is obgained from Eq. 34
and P (or o) is obtained from Eq. 36. The results are plotted in
Fig. 10 and %abu?ated in Table 1. We see that the sjze effect
?urves thus obtained are indeed very close to the size effect law
Eq. 27).

As is well known, the R-curve concept is only approximate.
For different specimen geometries different R-curves must be
obtained, in theory, although usually the differences are not large
(especia)ly when compared to the scatter of test data). To check
it, we follow the procedure from Eq. 34 to Eg. 51 and calculate the
R-curves for three-point bent specimens of various span-to-depth
ratios, various notch length-to-depth ratios, and also for a
different type of specimen - the compact tension specimen. The
corresponding functions for these geometries were taken from Tada's
handbook [371. The shapes of the resulting R-curves R(c) are
plotted in Fig. 4b (the R-curves were scaled hoth vertically and
horizontally so that the final value be 1.0 and the point where
one-half of the final value is reached be common to all the R-
Curves). It is interesting to note how small are the differences
among the shapes of the R-curves for different specimen shapes.
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They are so small that they are hardly distinguishable

graphically. Therefore, the R-curves from Fig. 10 are also
tabulated in Table 2. (The parameters for the three columns in
this Table are Gy = 0.297, 0.748, 1.258, 0.260 1b./in., Cp = 1.895,
1.491, 1.919, 2.580 in., ¢, = 0.332, 0.267, 0.336, 0.363 in.,

respectively.)

In consequence of these considerations, it may be concluded
that the relationship between the size effect jaw and the R-curve
for a given specimen geometry may be considered as approximately
unique.

In the sjze effect law (Eq. 27), there are two independent
parameters, Bf! and d,. For the relative values of R-curve R(c)/h¢
in Eq. 41, therE are aiso only two parameters, n and Cm (Ge is
obtained by linear regression from Eq. 44). Hence, for al
specimens for which the values of Bf) and a. are the same, the
values of nondimensional parameters n-and Cp shouid also be the
same. This means that all geometricaliy similar specimens of
different sizes should be characterized by the same values of n and
¢n/dg- This property is verified by numerical exampies. We may,
twerefore, construct a table of n and c,/dy for various typical
specimen geometries, see Fig. 1i. For the specimen geometries
included in Fig. 13, it is not necessary to construct the R-curve
as an envelope. It suffices to carry out the linear regression
shown in Fig. 7b, and then take n and c_ /d, from Fig. 11.

3.6 Determination of Crack Band Model Parameters

The size effect law (Eq. 27) may be also exploited to identify
the material parameters for the finite element crack band model
[3,161. This may be done in two ways - either with or without an
equivalent linear elastic fracture analysis. Consider the latter
approach first.

In the crack hand model, the cracking, assumed to be uniformly
distributed throughout the finite element, is described hy a
triaxial constitutive relation with tensile strain-softening.

Under the assumption that the principal stress directions do not
rotate significantly during the passage of the fracture process
zone through a given point, the strain-softening may be defined by
3 total stress-strain relation (g =C g+ &, in which g = co;¥mn
matrix of stress components = Uy1s Onns OCmne Typy Opny O s
where T denotes a transpose of a %%trigzand3%he %gbsc?%pts3%efer to
cartesian coordinates x;{i =1, 2, 3), of which xy is the direction
of crack propagation ané x3 is normal to the crack plane;

€ = similar column matrix of strain components, C = 6 x 6 matrix
of elastic compiiances (constants), and £ = column matrix of
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additional averaged strains due to cracking. Only the normal
components of ; are nonzero and they are defined as

= ¢(oy ¢(o = ¢(035), In which ¢ is a certain
funét1on. %he pggcxs ggpe 03 this funct1on is not important, and
in the preceding work [3,16] this function is taken as bilinear.
It is calibrated according to the hilinear uniaxial tensile stress-
strain diagram shown in Fig. 12, characterized by negative tangent
modulus E for the strain- soften1ng segment, and by tensile

strength f’. For unloading (decreasing strain), a different
stress-strain diagram is considered.

It must be emphasized that the foregoing stress-strain
relation is valid only for a certain element size which corresponds
to the representative volume of the heterogeneous material and to a
certain width w. of the cracking front. If a different element
size has to be used, the stress-strain relation must be adjusted so
as to yield the same fracture energy, Gf.

The fracture energy is equal to the area under the tensile
uniaxial stress-strain diagram in Fig. 12a, times the width of
cracking front, w.;

6 = o5 F12 (1 - %) (55)

Approximately, w. = 3d, where d, = maximum aggregate size.

For geometrically similar specimens, the finite element
solution of the nominal stress at failure should depend only on
the material parameters. There are four of @h

fi, E, Gg, and w_. Parameter E, is not independent since it must
sa%1sfy Eq. Eonsequent]y, ¥or geometrically similar specimens

g—({= oy = ¢y (fL, €, Geuow) (56)

in which ¢, is a certain function. Now, according to Ruckingham's
T theorem &f dimensional analysis [2], the number n
independent nondimensional governing - parameters'shou?d be n, - Ny
where n_ = 4 = number of governing parameters in Eq. 56 and ng = 2
= numbe? of independent dimensions in these parameters. Since
there are among them only two independent dimensions, namely those
of length and of force, n. = 4 - 2 = 2. So there can be only two
independent nondimensiona? governing parameters. Along with the-
nondimensional function, they may be introduced as

o EG
. N _d _ f
S-T{’ 9-;‘——, K—_.—Z (57)
c w_ f
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and the governing Eq. 56 reduces to
s = ¢(6, «) (58)

Eqs. 57-58, describing the similitude of blunt fracture, greatiy
reduce the number of cases that have to be solved by finite
elements in order to cover all possible situations.

For identifying the material parameters of the crack hand
model, the following approach may be adopted. We choose a certain
specimen geometry, and by testing specimens of different sizes we
determine, by linear regression, parameters B and dy of the size
effect law, Eq. 27. Then, by carrying out finite element solutions
for specimens of different sizes and similar geometry, we determine
the size effect law as a function of the governing parameters

8 and x (Eq. 57). Finally, we determine those material parameter
values for which both sjze effect laws are matched. The
interjection of the size effect law not only facilitates anaiysis,
but aiso has the effect of smoothing and extending randoriy '
scattered measured data. The detaiied procedure is as follows.

:E: ft=b=1'

2. Fix the value of

1. Set We

k {k = Gf)'

3. Fix the value of ©& {6 = d) and solve by a finite eiement
prqgram'with incremental loading the maximum joad P (the load-
point displacements are prescribed and P is cajcuiated as the
reaction). From this, calculate s = P/ 8.

4, 'Repeag step 3 for various values of 8 and construct the plot

of s versus 6,

5. Now, according to the size effect law in fq. %7 this piot
shouid ideally agree with s = B[] + (8/r)] /2, which is
quiva1ent tg Y i Ax + C'_yhere X =8,y =

s, A= (B°r)"", C' =B and r = dy/We. Determine the
regression line of this plot; its y-intercept is C', from which
B =1/ vC", and its slope is A, from which r = C'/A. These
values of B and r correspond to the previously fixed value of

Ke

6. Repeat steps 2 - 5 for various values of « and construct the

grgphs R( «) and r(k) to be used for interpretatjon of test
ata. :

The calculation results show that the graphs of
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R(x) and r(«x) are linear. Thus, caiculation of only two points on
each graph is sufficient, and the values may generally be
calculated as

B(x) = ky *+ Kk, , Plx) = kg + kg x (59)

Fig. 13 shows the calculation results for several typical fracture
specimens.

We are now ready to give an example using the data from Eq. 45
for similar spec%mens of different sizes. The test resuits are
plotted as 1/0y" versus d (Fig. 7b), and from the slope and the
intercept of the regression line we get the values of R and dy for
the size effect law as measured {Eq. 27). For the data in Fig. 7h
we have B = 0,1817 and dg = 7.834, Then, for this value of R, we
calcuiate from Eg. 59, using the values from Fig. 13, that Ko =

8.9 and r = 11.9. From this we finally obtain -1
do WC 2 1 ZGf
= = 4 - -
Ye TR T Ge=e ft < B = Y (60)
ct

For specimen geometries other than those in Fig. 13 the
analyst needs to calculate first (with the help of finite element
solutions) the values of ky and k,.

Exploiting the size effect law (Eq. 27) makes it possible to
do with a iesser amount of measurements. If the values of maximum
loads for oniy a few specimens are fitted directly with the finite
element program for the crack band theory, the values of materijal
parameters which give good fits of data are quite ambiguous; even
very different materjal parameter values yield equally good fits.
This ambiguity and uncertainty is removed by the size effect law,
which has the effect of smoothing and extrapolating the measured
data.

If a smoothly curved tensile strain-softening constitutive
equation is used, one may calibrate it according to the value Gg
obtained as ahove. Instead of caiculating Et one needs to adjust
the tensile strain-softening unjaxial curve so that the area under
the strain-softening segment and under the unloading diagram
emanating from the peak stress point would be equal to Ge.

Construction of the graphs in Fig. 13 requires the use of a
noniinear finite element program with step-hy-step loading for the
crack band theory. Such a program is not needed, however, if
equivalent linear fracture analysis is used. The value of Gg may
then be calculated from Eq. 12 on the basis of the slope of the
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size effect regression plot and the value of g( a,) obtained by an

analytical or finite element solution according to 1inear elastic ., (1 Nt -
fracture mechanics. : Cf < (F F;
i rocedure based on Egq. A0, the value of w. . .
h bégntzgnggggiggngspunknown. As a rough approximation, however, Thus, if E¢ has been determined from measurement, C¢ can be found
was ~ 3d, where d; = maximum aggregate size [167; Ifhth1s also.
i j is adopted, and if f, is known, then the . ‘ o N
égprg?}?igzggn1gf mazeriai parameters of crack hand mode: hecomes Alternatively, we may use the sondition of g?ua1 fiactuge
;uga simpler; Gg is obtained from Eq. 44 on the basis of the siope energy for both theories: G¢ = fé /2Ce = w, (E7° - o) fLo/e.
of the regression piot for the size effect (Fig. 7h), ana R, is From this, Eq. 64 is again obtained.
thenlsimp1¥ solged from the relation Gg = w,
(E70 - E7y) 772, i.e.
-1
£, = (& - o (61)
t o E T ow_ fi
3.8 _On Materiai Parameter Identification Without the Size Fffect
Law
feis with Stress-Dispiacement Reiation To further jiiustratg the advantage derjved from the use of
e T p the size effect law, consider a series of tests of specimens of the
ime: ! : iysis, it 3 dimension 4 but different notch lengths a;. If one wishes to
h simpie extension of the foregoing anaiysis, 3%t 73S same C : : 0 :
sig?gozg dZterm?ne the material parameters for noniinear use the enveiope property, one would,plot for 3ach pair of a? and P
?os ture models, such as Hi]]erborg‘s modei for concrete 23,347, the curve of G versus ¢ where G = P g(a)/(F b°d) and o = (a, +
.rach:ch a sharé line fracture is assumed and a relation between ¢)/d. 1f the measurements were perfect, with no error, then these
12 wreiative displacement & and normal stress ¢ across the line piots would yieid a family of curves such as illustrated in Fig.
isejntrOduced as a material property. The displacement & jumps 14a, for which the envelope representing the R-curve can be, in
into a 1ine the accumulated normal strain due to cracking across theory, constructed. In practice, this does not wark, for two
i a : ; ] | . "
the crack band width w., and so reasons: 1) If d is constant, only a small portion of the R-curve

is covered by the failure states for various ap -values. 2) There
is always statistical scatter, which causes that these plots yield

5(0) = w_ Te(a) - 99 (62) a family of curves such as illustrated in Fig. 14b., Obviously, no
c - E envelope can he constructed for this famiiy, and thus smoothing of
i the data is imperative before the envelope could be traced,
. . : : However, for the effect of the notch length a, at a constant cross
h he tensile stress-strain diagram for the ver, T i - - 0, el
Whef$a12£:)cggzir;aiz Eode%e Most simply, the o - & reiation may section dimension d, there is no simple law which could be used for
ggulon;idered as a straight line of negative slope C¢ (Fig. 12¢}, smoothing the data. Such a law is known only for the size effect.
described as §(a) = (fl - 0)/Cc if o >0 and & >0, .

. Nevertheless, a more sophisticated procedure similar to that
! employed in Ref. 11, can be used. It consists of the following
Equating the total relative displacement across the craikfbagg steps:
i 0: h models and assuming the stress at the crac ro .
??Eo;dla?ntpi:gg) to be approximately uniaxiai, we have the 1. Choose a certain formula for the R-curve, such as Eq. 51 or 52,
relation

and o = 0 if & » fé/C

2. Choose certain values of the material parameters in the
' Vo ' ‘ formuia.
O A T O (63)
Th?sErelanon is sa%isffgd for angﬁ g if 3. Choose a certain value of initial notch length ap.
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4. For this value of an, solve crack extension at failure, ¢, from
the condition G (T)gg (a) = Max (=fmax), and then evaluate
P= (frax Ec o)

5. Repeat steps 2-4 for various values of ay between 0 and d.

6. Evaluate a suitable objecEive function to be minimized, such as
¢ = (P - ptest)/Ptest] :

7. Repeat steps 1-6 to find which R-curve parameters yield minimum
¢. A computer optimization subroutine, such as the Marquardt-
Levenberg algorithm may be used for this purpose [117.

This type of algorithm works well [111, but requires more
complicated optimization procedures - nonlinear optimization
instead of linear regression. In nonlinear optimization it is
not always guaranteed that a solution will be found. Moreover
the minimum of ¢ is not very sharp, which causes that aimost
equally good fits of test data are obtained with rather
different material parameter values [11]. This is, of course,
due to lack of data smoothing by a law known in advance.
Consequently, a larger amount of experimental results is needed
if this approach is used [11].

3.9 On Determining G, from Complete Load-Defiection Niagram

It has been suggested that the fracture energy G¢ can be
determined as the area under the complete 1oad-def1ec{ion diagram
for complete fracture of specimen [32,34,38]. However, the Gf -
vajues obtained in this manner are frequently inconsistent and
scattered. One likely source of error is that energy dissipation
which does not produce fracture may happen in the system., The
basic difference from the present approach is that the load values
for all crack lengths affect the result, while here only the peak
load value matters. The question then is whether the fracture
pocess zone at other than peak load values dissipates energy at the
same rate as it does at the peak load. This would certainly be
true if the fracture were a straight line, with a sharp tip and a
fracture process zone of negligible size. This is not so,
however. It is likely that the width and the length of the
microcracking zone at the fracture front are different than they
are at the peak load, and the fact that G¢ is far larger than
double the theoretical specific surface 6ibbs' free energy of the
solid serves as the proof that much energy dissipation must occur
due to microcracking on the sides of the final continuous crack.
The width of the microcracking zone ahead of the fracture front is
assumed to be constant in the crack band model as well as
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Hillerborg's fictitious crack model, but this is no douht a
simplification (the nonlocal continuum approach points to that,
too). In fact it is likely that the width w of this zone varies
(Fig. 12g), and especially that the widths at crack initiation
(Fig. 12d) and at crack termination (Fig. 12f) may be quite
different from the width at the peak load (Fig. 12), at which the
fracture front is remote from both the notch and the opposite
face. Consequently, G along the crack path is variable {(Fig. 12h)
and the mean vaiue G (obtained by dividing the area under the
load-deflection curve by the ligament length d-aj) need not be the
same as the value Gg at maximum load (Fig. 12h).

Now, of the values G and G, (Fig. 12h) which one is more
useful? That depends. If the goal is to predict the peak joads or
the response near the peak loads, then it is more reasonable to use
only peak ioad vaiues for determining G¢. Besides, they are e sier
to measure.

In the light of Fig. 14, there might also be another
difficulty. From this figure it is apparent that the use of 2
singie size specimen with different crack lengths cannot, due to
jnevitable random scatter, give information on the complete R-
curve, or the complete size-effect curve, It pertains only to a
portion of these curves, and does not indicate unamhiguously the
limiting value of the R-curve, which represents G¢ (Fig. 14). If
tests on singie size specimens (without crack length measurements)
do not give sufficient data on the R-curve, how can they
unambiguously yieid the R-curve asymptote?

R-Curves for Different Specimen Shapes. - Although this is not
the main objective of this study, the use of the present results
for the R-curves requires knowing to what extent the R-curve may he
considered unique. This is a strictly theoretical question, which
is hard to answer experimentally because the random scatter of
material properties and other measurement difficulties obfuscate
the comparisons of various experimentally determined R-curves.
Therefore, it is preferable to make comparisons of R-curves which
are calculated for specimens of different shapes using the same
material properties. Such calculations have been carried out as
described in Ref. 16 for specimens of various typical geometries.
The calculated R-curves are plotted and compared in Fig. 15, The
differences between some of these curves may seem large, however,
they are not large compared to the inevitable statistical scatter
of measured R-curve values. Therefore, the hypothesis of a unique
R-curve appears to be an acceptable approximation for the purposes
of crude structural analysis.




CONCLUSIONS

" The macroscopic continuum description of dispersed cracking

should properly be based on the nonlocal continuum concept. A
suitable type of nonlocal continuum is the jimbricate continuum,
representing the limit of an imbricated element system. This
model is capable of describing stable strain-softening zones of
a finite size. For large finite elements, this model reduces
to the previously formulated crack band theory. The existance
of a characteristic length implies a simple size effect law for
fajlures due to progressive cracking, which results from
dimensional analysis and represents a transition from limit
analysis (strength or yield criterion) to linear elastic
fracture mechanics. '

The size effect law of blunt fracture (Eq. 27) is useful for
identifying the material parameters for nonlinear fracture,
regardiess of whether the R-curve approach, or the strain-
softening crack band model, or the stress-displacement relation
(Hillerborg's model) is used. The basic idea is to transform
the size effect law to a linear plot and determine in this plot
the regression line for the measured data obtained hy tests of
geometrically similar specimens of djfferent sizes. The slope
of this regression line then yields the fracture energy (the
value of which is, by definition, size-independent). The
method can he also extended to certain dissimilar specimens of
similar cross sections. The remaining noniinear fracture
parameters for the R-curve or the crack band model (or
Hillerborg's model) may then be identified by finding a
matching size effect regression line for this modei.

The R-curve may be obtained as the envelope of a family of
fracture equilibrium curves determined on the basis of maximum
load data smoothed with the sjze effect law. Without this
smoothing, no envelope exists.

The size effect law and the parameters of the crack band model
are uniquely related. If one of them is specified, the other
one may then be calculated. The same is true of the R-curve
for specimens of given shape.

Exploiting the size effect law has important advantages:
Statistically scattered measurements are smoothed with a known
law permitting linear regression (Fig. 1b). The range of the
test data is extended, thus reducing ambiguity of data fitting
and uncertainty in the material parameter values.
Consequently, the experimentalist can get by with fewer tests
covering a narrower range of conditions. DNata smoothing
enables constructing an envelope. A simpler measurement
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procedure than with the existing methods is made possible.

Only maximum load values are needed. They can be obtained even
in a laboratory with the most rudimentary equipment. There is
no need to measure the crack length, which avoids the ambiguity
in defining the location of the crack tip and the difficulty of
its observation., No measurement of unloading or reloading
compliance is needed. Since the size effect law for blunt
fracture is applicable to djverse materials such as concrete,
rock, or ductile metals (6], the present method of
identification of materijal parameters should be applicahle to
ail these materials as well.

When the purpose of applying nonlinear fracture mechanics in
practice is the determination of the maximum load for monotonic
loading, rather than the maximum load after a serjes of
previous unloadings, it is more relistic to use only maximum
loads also for the experimental calibration of the mathematical
model.

Since material parameter identification is reduced to linear
regressions, it would be possible to introduce statistics, and
in particular, to determine the standard deviations of the
material parameters from the statistical characteristics of the
deviations from the regression line. As is generally agreed,
statistical aspects are very important for fracture
predictions.

Measuring maximum loads of specimens that have notches of
various lengths but are of the same size does not provide
sufficient basis for determining the nonlinear fracture
properties, e.g., the R-curve, accurately.
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1. INTRODUCTION

The proper fracture mechanics to be applied to crack propa-
gation in concrete is determined by scale effects. To ascertain
whether linear elastic fracture mechanics (LEFM) or a non-linear
approach is more applicable to a particular problem, one must
inswer the following question:

» How large is the process zone compared to the smallest
critical dimension of the structure under consideration?

The purpose of this paper is to address this question from the
particular point-of-view of discrete representation of a crack in
a finite element model. Before proceeding to outline the paper's
approach and methods, it is essential that key terms used in the
above question be defined and that important assumptions be stated:

+ The process zone is that area accompanying crack propaga-
tion in which inelastic material response is occurring.

+ The term crack is not used here in its classical sense, as
a complete discontinuity in both traction and displacement
fields. - Rather, it is used to describe an effective crack
which consists of a length of true crack (in the classical
sense) preceded by its process zone,

» The critical dimension might be the length of the crack
itself, including its process zone, or, if it is smaller,
the distance from the true crack tip to the nearest free
surface or reinforcing bar,
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These definitions are in the spirit of the approach to the fracture
' mechanics of metals first proposed by Irwin (1). In fact, through-
out this paper comparisons and analogies will be drawn between the

well-accepted formulations for process zone size in ductile metals

and the estimates derived here for brittle non-metallics.

The basis for any process zone size estimate, whether it be
for a zone of plastic deformation in a metal or for some form of
inelastic response in concrete, is a constitutive model for the
material in this zone. Whereas for metals a model might be
composed of the von Mises yield criterion, to relate the effective
stress to all the principal stresses, and a normality flow rule,
to relate the effective stresses to elastic and plastic strains,

a much simpler, yet analogous, constitutive model will be used in
this paper. To describe the inelastic behavior in the process zone
of a crack propagating in concrete the following assumptions are

made:

1.

The only constitutive modeling required for process zone
description in pure Mode I is the stress-versus-crack-
opening-displacement (C0D) relation which can be obtained
from a displacement-controlled direct tension test (2).
This relation is, in fact, the post-peak stress-COD curve
measured in such a test. A range of such process zone
softening models used in the present analyses is shown

in Figure 1.

The previous assumption implies that normal stress
continues to be transferred across a displacement dis-
continuity which may or may not be visible to the naked
eye. It is assumed that this stress transfer is due to
aggregate bridging and the undulating, three-dimensional
nature of the opposing crack surfaces (3).

It is assumed that the process zone localizes, due to the
rapid softening behavior shown in the models of Figure 1,
into a very narrow band ahead of the true crack tip. In
fact, for the purposes of the present finite element
analysis, all softening is confined to one-dimensional
interface elements lying in the crack plane ahead of the
true crack tip (4).

Although for metals the process zone size is especially
influenced by the principal stress parallel to the true
crack front, it is assumed that this stress has no
influence on the process zone in geomaterials such as
concrete and rock (5,6).

Schematically, these assumptions combine to paint the picture

shown in Figure 2. The constitutive model is defined by the direct

Tensile Stress, ksi

Figure 1.
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tensile strength, ff, which may be influenced by stress normal to

the crack front, the shape of the postpeak stress-COD relationship,
which, in conjunction with the COD-gradient characteristic of the
problem at hand, produces the shape of the inelastic stress
distribution, and finally, the characteristic CO0D, SC, which will

occur at the true crack tip. Given these observations and assump-
tions, it is natural to ask:

« How large must the critical dimension be for the applica-
tion of linear elastic fracture mechanics (LEFM) to be
valid? Or, from the perspective of assumption 3, above,
how long is the process zone?

+ How sensitive is the process zone length, r_, to structural
geometry and the constitutive model which drives it?

+ For a problem of effectively infinite domain, what is the
steady-state process zone length for a given constitutive
model?

The approach to answering these questions here will be a
series of numerical analyses. All will be based on the well-known
finite element method. The unique feature of all the analyses,
however, will be the "discrete" representation of the crack in the
mesh. The current state-of-the-practice for representing a crack
in a finite element mesh is the "smeared" approach, originally
proposed by Rashid (7). In that approach, the constitutive model
is used to simulate the cracking process: the mesh is not changed
as arbitrary cracking progresses, nor is a crack with a trajectory
known a priori accommodated with special meshing.

In the discrete approach as used here, the mesh 1s jtself
modified, automatically, to represent the cracking process (8,9).
In the case of arbitrary cracking, local remeshing, the introduc-
tion of new elements and nodes and the modification of some
previously existing elements, is performed for each crack at each
increment of cracking. Singularity elements are introduced at a
true crack tip under LEFM conditions. If the process zone,
because of its length, requires representation, it too is modeled
discretely as mentioned in assumption 3, above. If the crack
trajectory is known, as will be the case in most of the test cases
analyses to:be reported here, special meshing is introduced to
facilitate modeling of the complete fracture process. A thorough
discussion of the general advantages and disadvantages of the two
approaches is given, in an historical perspective, by Ingraffea
and Saouma (9).

The differences between the “"discrete" and "smeared" approaches
are stark when true crack modeling is performed. However, the
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distinctions begin to blur when a process zone is being represented.
It will be shown here that, under this condition, the only differ-
ence between the approaches lies in assumption 3, above.

Before beginning presentation of the finite element analyses
which address the questions presented above, it is necessary to
begin more simply, with hand calculations. These will enable one
to relate process zone effects in strain-softening geomaterials to
parallel processes in metals. Further they will offer a simple
check for the acceptability of the finite element calculations to
follow.,

2. PROCESS ZONE SIZE: SOME QUALITATIVE ASSESSMENTS

Figure 3, a complete stress-strain curve from a strain-
controlled, direct-tension test on a strain-softening material, is
the basis for the introductory calculations of this section. The
constitutitve models shown in Figure 1 can be derived from such a
test. Evans and Marathe were first to observe (10), that, once the
fracturing process of the test specimen has begun, nearly all the
strain is due to the formation of a crack. That is, if the gage
length were the specimen length, then the measured strain would be
approximately equal to the COD divided by the gage length,

Alternatively, one can groove or so shape the test specimen so
that the location of the fracture plane is known. The COD can then
be measured directly (2) as a function of applied stress.

For comparison, let's assume that two tests of the type shown
schematically in Figure 3 are performed, one on a concrete specimen
leading to the response shown, the other on a metal specimen, with
uniaxial yield stress f,, exhibiting elastic-perfectly plastic
behavior. We shall first seek to compare measures of process zone
size for these materials based on very simple assumptions.

2.1 Comparisons of Strain-Softening Versus Perfectly-Plastic
Behavior in the Process Zone

Focus first on the region ahead of a crack tip in the metal.
It is straightforward to show that a second-order measure of

process zone size for the metal fp is (11)
m
K., 2
pm fy
where,
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For equilibrium, area C must equal area A plus
area B.
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Kic = plane strain fracture toughness

This measure is the process zone length along the crack direction.
it assumes that the effective yield stress is the uniaxial yield
stress, that is, stress multiaxiality is neglected, and that
approximate stress redistribution has occurred to satisfy equilib-
rium in the y-direction (see Figure 4 for coordinate system).

Focus now on Figure 4, a simplified schematic of the region
ahead of a true crack tip in concrete. The first difference which
arises between this and the analogous situation in the elastic,
perfectly-plastic metal is that one does not know the shape of the
inelastic stress distribution in the process zone because the COD
profile is problem dependent. However, to continue the analysis,
we will assume a bilinear distribution as shown, with o as & shape
parameter, and seek to find the concrete's process zone length,

r , from
Pe
roo=d=+rt (2)
Pe Pe
where,
K 2
0 (o) (3)
Po 20 £

It can be easily shown (11) that r; is a first-order measure

¢
of process zone length which does not account for any stress
redistribution. To satisfy equilibrium in the y-direction it
is necessary that stress redistribution occur such that,

*
r

Po K
1 ' © Tl dr - fiet 4l a) fir® (4)
= daf' = {
2 "%y f /2nr e 2 TP
0

Solving Equation (2) for d yields,

d=r*

. \
rro(=2 -1 : (5)
pC

Qlw

It is interesting to comp2re now the second order process zone size
estimates for the two materials using Equations (1) and (2) and
(5). The comparison is done in Table 1 and it reveals the second



Table 1
Comparison of Process Zonme Size Measures for Concrete, rp .
and an Elastic, Perfectly-Plastic Metal, rp ¢
m
a d/r* r /e r /r
Pc P* Pe Pe” Pn
0.05 59 60 30
0.20 14 15 7.5
0.50 5 6 3
0.75 3 4 2
1.00 2 3 1.5

difference in process zone characteristics of the two materials:

when the y-stress is allowed to decay as the true crack tip is

approached, rp becomes significantly larger than rp . Some repre-
c

m
sentative inelastic stress distributions are plotted in Figure 5 in
terms of o. Again, it is important to emphasize that the rate of
decay, as indicated by «, will depend on the shape of the constitu-
tive curve and on the COD profile characteristic of the particular
structural geometry and boundary conditions under consideration.

As an example of the interaction of COD profile and consti-
tutive model, consider the following example. Assume the process
zone material model shown in Figure 6. Let us now solve for the
COD profile in the inelastic zone. First, write the COD profile

in terms of the ‘stress distribution using Figure 6,

COD(o) = & - =< o(r) (6)

Next, using the bilinear stress representation shown in Figure 4,
solve for the COD in terms of the r-coordinate,

For 0<r < d,

and,
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Figure 5. Representative stress distributions ahead of the true
crack tip for various values of a.
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_r
con(r) = s [1 - Y > 5 (=] (8)
a - . Pc
For d <r< rpc,
ofr) = f1{6 - 2} + (1 - o) F3(5) (9)
Pe
and,
con(r) = sc[2- 3+ (a - 1)) (10)
pC

Equations (8) and (10) are plotted in Figure 7 for inelastic stress
distributions previously seen in Figure 5. Using Table 1, one can
see that the COD-profiles of Figure 7 would correspond to process
zone lengths significantly larger than those in the metal with the
same order of approximations.

The inescapable conclusion to be drawn from these simple cal-
culations is that the size restriction for valid fracture toughness
measurement in metals (12), written in terms of multiples of "o

’

m
KIc ’
a, W-a > 2.5(—=) (11)
f
Y
where,
a = crack length,
W-a = remaining ligament

is unconservative for materials which exhibit tensile strain
softening. That is, crack lengths and ligaments longer than would
be indicated by simple substitution of f% for fY in Equation (11)

will be necessary to measure a valid fracture toughness. Further,
and a bit more subtly, the simple models used here indicate that
there is a strong dependence of process zone size on specimen type.
For example; assume the constitutive model of Figure 6. For a
specimen that would tend to produce a linear COD-profile, such as

a wedge loaded center-cracked plate, Figure 7 and Table 1 show that
specimen size restrictions would more nearly be,

Kie.2
a, W-a > 5(—=5) (12)
z

|
[
re

///ib
/pe
p
b c

Figure 7. COQOD profiles for the constitutive mode! of Figure 6 and
the stress distributions shown in Figure 5.

If the COD profile were closer to the elliptical shape exhibited
by, say, a center cracked plate loaded in remote tension, the
restriction would become,

Kie 2
a, W-a > 7.5 =< (13)

fr

At this point five material characteristics have been
introduced: £, the Young's modulus, KIc’ the fracture toughness,
and the f+ and £ pair which, together with its shape, define the
0-C0D curve. In fact, not all of these parameters are independent.
Assyme again the constitutive model of Figure 6. Since every
material element in the process zone must ride down this curve
before it cracks, in the LEFM sense, the critical energy absorption
rate is the area under this curve,

P R 14
Gy, chfT (14)
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If a test on a large enough specimen were performed, it would yield
a critical stress intensity factor related to GIC by the familiar
expression,

2
Ic £
with plane stress assumed. It follows from Equations (14) and (15)
that,
2,
3 = 16
C Efi‘ ( )

It is interesting to note that if a value of critical stress inten-
sity typical of the largest concrete specimens tested to date (13,
14), about 2.5 ksi vin (2.75 MNm-3/2), is used in Equation (16),
the predicted characteristic COD, S is about 0.01 inch (0.25 mm).

This value is surprisingly close, considering the approximations
employed here, to values measured experimentally (2,10), about
0.005 to 0.010 inch (.13 to .25 mm).

In the next section we investigate the implications of one of
these approximations on the assumption that the process zone width

can be viewed, from the numerical modeling standpoint, as no more
than Sc-

2.2 Stress Biaxiality Effects

Recall that the calculations of the previous section neglected
stréss multiaxiality in the process zone., Eguation (1), for
example, is based on a uniaxial yield criterion despite the fact
that tensile stress triaxiality theoretically occurs ahead of a
crack tip. A third-order measure of process zone length directly
ahead of the crack, and an estimate of the shape of the process
zone can be obtained by admitting stress multiaxiality inte the
yield criterion (11).

The same process will be used here to make qualitative
assessments of the influence of stress multiaxiality on process
zone shape in geomaterials. In what follows no stress redistribu-
tion is performed. Rather, we seek only the implications of stress

biaxiality on the tensile strength parameter, f%, in the process
zone constitutive model,

Consider the family of curves shown in Figure 8. They are
analogous to yield surfaces in plasticity and indicate, from
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Figure 8. A family of tensile strength interaction curves.
numbers 1 to 4, an increasing degree of principal stress inter-
action effect on tensile strength according to,
1 oy O 9y = fT
1.5 1.5 _ ¢:1.5
2 ! T (17)
3 oy * 9, = fT
0.7 0.7 _ ¢
4 01"+ 9, fr
where,
o1, 9y = principal stresses 1in the plane

2 normal to the crack plane

Note that the third principal stress has been neg1gcted for
simplicity, although its influence is probab!y minimal because

of the relatively low value of poisson's ratio for concrete (see
assumption 4 in the INTRODUCTION). It can easily -be shown that
substitution of Equations (14) into the well known expressions )
in polar coordinates for the principal stresses near a true crac
tip (11) leads directly to the envelop curves of Figure 9.

The conclusion we wish to draw from Figure 9 is that, as tze
degree of biaxial stress influence on tensile strength increases,
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Figure 9. Process zone shapes predicted by LEFM assumptions, no
stress redistribution, and the tensile strength interaction curves
of Figure 8.

the length of the process zone along the crack direction grows
faster than on any other radius. The qualitative implication here
is quite different from what one sees in a plastic zone at a crack
tip in a metal. It is generally assumed in elasto-plastic fracture
mechanics that post-yield, distortional strain energy absorption
accounts for the inelastic behavior in the process zone. This
energy is absorbed in zones of high shear, well off the crack axis,
and produces the familiar kidney-shaped plastic zones ahead of a
crack tip in Mode 1.

When, however, we posit that the inelastic energy absorption
mechanism is a function of the normal stresses, as implied by the
constitutive models of Figures 2 and 8, the process zone localizes
along the crack axis. This observation is supported experimentally
(13,14,15). Attempts to observe process zone shape in mortar and
concrete using interferometry (14) and scanning electron microscopy
(15), and in rock (13) using epoxy impregnation, have all indicated
that the width of the process zone, if at all measurable, is less
than its length. 1In the computer simulations to follow we will
take the approach that the process zone width is zero, that the
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process zone is the "fictitious crack” (18) shown in Figure 2. The
inelastic energy sink is the normal traction on this "crack" moving
through its COD: every point in this zone rides down a curve like
one of those in Figure 1 on its way to becoming part of a true
crack surface. For each unit of crack advance, the area under such
a curve is the energy absorbed in the cracking process per unit of
crack front length.

3. EXAMPLE PROBLEMS

In this section a series of three fracture tests on concrete
specimens will be simulated using the discrete cracking, finite
element approach and the constitutive models previously described.
There are some characteristics common to these tests. These are:

1. Unless otherwise noted, it is assumed that,

E=3x 103 ksi (20.7 Mpa)
v, Poisson's ratio = 0.2

2. Plane stress is assumed.

3. Simulations are performed with the Finite Element Fracture
Analysis Program (FEFAP) (8,9,19). All elements are iso-
parametric and of quadratic displacement order.

D as it is understood that

c
we refer only to concrete hereafter.

4, The symbol rp is replaced by r

3.1 Example 1: A Very Large Center-Cracked Plate

The first example problem is shown in Figure 10. The struc-
ture simulates an infinite plate with a central crack normal to
a remote tensile stress, the problem whose stability was first
investigated by Griffith (20) in formulating the basis for LEFM.
Here, however, we shall assume at first that LEFM is not appli-
cable and perform a non-linear fracture analysis using constitutive
model D, shown in Figure 1. The objectives of this simulation are:

1. Obtain the relationship between applied load and the COD
at the plate's center to investigate structural stability.

2. Compute COD profiles at various load levels to investigate
the relationship among total crack length, a + r_, visible

crack length (based on an assumed minimum, visib?e crack
width of 0.001 in. (0.025 mm)), and process zone length,

r .
p
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Figure 10. Example Problem #1.

3. investigate the evolution of r_, and ascertain whether it

reaches a steady state Iength.p’

The meshes used in this simulation are shown in Figures 11
and 12. Figure 11b, a detail of the initial crack region, shows
quarter-point singular elements arrayed around the initial, true
crack tip, the only place they were employed. A typical global
displacement pattern is shown in Figure 13, with the darkened area
indicating the process zone,

Results of this simulation are shown in Figures 14 through 16,
and they should be studied together. For example, Figures 14 and
15 show that at the peak load, 142 psi (0.98 MPa), softening had
occurred for about 5 inches (127 mm) ahead of the initial, true
crack tip. _Additional visible cracking began to occur between the
peak load and the next analysis step at 127 psi (0.88 MPa). The
true crack tip did not begin to extend, however, until the load
had dropped to about 84 psi (0.58 MPa). True crack length had
increased to about 120 inches (3.05 m) by the last analysis step.
Simulation was halted at this point because it was felt that, with
additional fracturing, the structure would cease to represent an
infinite plate to the crack.

—4
4
MV -\
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Figure 11. a. First mesh used in Example Problem #1.
of Figure 1la.
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Figure 12. Second mesh used in Example Problem #1.

The information shown in Figure 15 is replotted in a most
interesting form in Figure 16. Here the process zone length, r _,

is plotted against true crack length. It is clear that r_ firs
grows rapidly, reaching a peak value of about 60 inches (€.52 my,

and then decays asymptotically to a steady-state value of no more
than 36 inches (914 mm).

We are now in a position to make some direct comparisons of
the behavior of this simulation with the qualitative predictions
of the previous section and with the implications of LEFM. First,
is the steady-state r_ of 36 inches reasonable? To answer this

question, we must first estimate K c for this material. The area
under the Model D curve, Figure 1, yields a G,. of about 0.23 1b/
in. (0.04 N/mm). This translates, using Equation (15), into a Kic

o; about 830 psi vin (914 MNm'3/2). Now, it was previously shown
that

Amplification
Factor
347E+03

Figure 13.
level of g
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Amplified displaced shape of second mesh at a load
= 54 psi (0.38 MPa). Amplication factor 3.47E+03.
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Figure 16. Development of process zone length for Example
Problem #1.
K 2
ra (=S (18)
p f%

With the above estimate of KIC and the f+ of Model D, and using the
second-order, plasticity-based estimate, Equation (1), the process
zone length would be computed to be,

r = 1,37 inches (34.8 mm).

p

However, Table 1 shows that, with a softening constitu@ivg model,
this process zone must be longer than this. In fact, it is easy

to show, using the Model D stress-COD curve and the COD profiles

of Figure 16, that the inelastic stress distribution in the process
zone is concave upwards. It falls very steeply from f+ to less
than one-half f. over the first two inches of the process zone.
Table 1 and Figure 5 show that for such distribution§ the concrete
Process zone can be many times the estimate of Equation (19), the
factor of about 26 computed here certainly being believable.
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A second question to ask concerning this simulation is: to
how long would the true crack have to have grown for LEFM to be
acceptable? Assuming a steady-state r  of 36 inches (914 mm),

and a ratio of r_ to true crack length of 25 for acceptability, a

growth to about 900 inches (22.9 m) ‘would have been required with
Model D. At that point, LEFM would predict a critical load on an
infinite plate of only about 16 psi (0.11 MPa).

The key conclusion to be drawn from this simulation is this:
despite the fact that concrete seems more “brittle" than, say, an
elastic-perfectly plastic structural steel, in the sense that there
is a rapid drop in stress carrying capability past the tensile
strength, its process zone can be much larger than the steel's.

It is neither accurate nor sufficient to use Equation (3) to assess
the applicability of LEFM to concrete. Further implications of
this conclusion are pursued in the next example problem.

3.2 Example 2: A Finite, Center-Cracked Plate

The experiments of Kesler, Naus, and lLott {21,22) have stirred
much debate in the concrete fracture literature. They tested a
large number of hardened paste, mortar, and concrete specimens in
the configuration shown in Figure 17, and analyzed the results
using an approximate stress-intensity factor calibration. Since
all their results indicated a strong dependence of apparent
toughness, K,, on specimen size, they concluded that LEFM is not

applicable to these materials.

Recently, however, the first author re-analyzed their test
results (23) with a more accurate stress-intensity factor cali-
bration and reached the opposite conclusion, with KO being fairly
independent of specimen size.

These tests, however, will just not go away. Bazant and Oh
(24) have more recently shown that strain readings made near the
initial true crack tip during the tests could not be explained
using LEFM. What then is the explanation for this contradictory
behavior?

One of the concrete test specimens (Test 12, Series LC-2-AD-C
of (22)), the same one analyzed by Bazant and Oh (24), is analyzed
here with the hope of explaining this contradiction. Further, this
example problem seeks these additional objectives:

1. To investigate the difference in response to two con-

stitutive mocels, D of Figure 1, and E of Figure 6, fT
and SC remaining the same.
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Figure 17. Specimen configuration used in the tests of Reference
21 and 22. For Example Problem #2, W = 18 inches (4 = )
2.5 inches (63.5 m). S

2. To_invgstigate the shape of the inelastic stress dis-
tributions in the process zone on a problem for which the
CaD profi]e is theoretically linear, and compare to the
previous example in which it was theoretically elliptical.

The mesh used for this simulztion is shown, in one i
_ ) s of its
deflected states, in Figure 18. The linear strain interface (LSI)

e!ements used to model the process zone inelastic stress distribu-
tion are clearly seen,

The first result to be shown is the load-displacement
response, shown in Figure 19. To interpret this result properly
1; 1S necessary to understand the constitutive models used in thé
s1mu1§t1ons. The o-COD relationship for the material used in the
test 1s not known. The only material property reported in (22) is
the Sp]!tt1ng tensile strength, about 620 psi (4.28 MPa) at the age
of testing. It is well known that the direct tensile strength is
less than the splitting strength, so an f of 400 psi (2.76 Mpa)

is Tow but not unreasonable. Tests b
. y Petersson (2) show a stron
dependence of both dc and the shape of the ¢-COD curve on maximumg

aggregate size, Figure 20. The shape and 6c of Model D are close

E? the curve in Fjgure 20 corresponding to a maximum aggregate size
o 2 mm, The maximum aggregate size used in the specimen under

: nsideration, however, was 3/4 inch (19 mm). It is probable that
¢ for such a size is at least 0.008 inch (200 um), assuming the
zame bond strength and aggregate angularity as in Petersson's

ests. Also, the shape of the post-peak o-COD curve would be
éxpected to be straighter than the curves shown in Figure 20.
Therefore, the §. for both models is probably too small, and the
Shape for Model D much too steep.
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Figure 20. Measured o-COD retationships for two maximum aggregate
sizes. From Ref, 2.

Given these observations, the results shown in Figure 19 are
not surprising. With Model D, the process zone unloads much too
rapidly, and the peak load is underestimated by over 40 percent.
Model £, underestimating toughness because of too small a SC, but

overestimating because of its linear shape, yields a peak load pre-
diction about 18 percent too high., Note, however, that the ratio
of the two peak load predictions is about 2, while the GIC ratio

is about 4. This is exactly what would be expected from an LEFM
point of view. But is the specimen actually behaving according to
LEFM? Let us next investigate process zone length.

The process zone is described by Figures 21 and 22 for Model
D, and 23 and 24 for Model E. Comparisons of Figures 21 with 23
and 22 with 24 show the effect of the shape of the constitutive
model for the process zone on its COD profile and inelastic stress
distribution, respectively. Under LEFM assumptions, the COD
profile for this structure is linear except for the very near
crack tip region. For Model D, it is slightly concave downwards,
Figure 22, while for Model E it progresses from slightly concave
Upwards to nearly linear with progressive fracturing, Figure 24.
Comparison of Figures 22 and 24 with Figure 15 clearly shows how
different specimen loading arrangements can produce markedly
different COD profiles even for the same process zone constitutive
models. This rigorous numerical observation was predicted by the
approximate techniques used earlier in this paper, as in Figure 7.
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The direct result of these COD profile differences is the
shape of the inelastic stress distribution in the process zone.
The distributions for Model D, Figure 21, and Model E, Figure 23
mirror the shapes of these constitutive mdoels since the COD
profiles both deviate only moderately from straight lines.

The differences in these stress distributions, however,
are significant. The true crack tip actually advanced during the
simulation with Model E. No true crack advance occurred with
Model D even though the process zone tip was pushed nearly as far.
Instead, a long "tail" of relatively low stress evolved. '

[t is clear from Figures 22 and 24 that no steady-state
process zone length had developed in these simulations. In both
cases the zone had extended about 5 inches (127 mm) ahead of the
true crack tip. The tip of the process zone had arrived about
1 inch (25 mm) from the edge of the plate, This observation sug-
gests an important question: Why did the process zone become so
long in the previous example?

The answer is that the effectively infinite extent of the
plate in that problem allowed virtually uninhibited stress redis-
tribution ahead of the advancing true crack tip. In the present
example, boundary effects are felt almost immediately. Consider
the stress distributions shown in Figure 23. The first distri-
bution, for P = 5.08 kips (22.6 kPa), shows 3 regimes of stress
behavior. Beginning at the initial, true crack tip and extending
to about x = 5.5 inches (140 mm) is the inelastic stress distri-
bution of the process zone. Starting from the edge of the plate
and proceeding in a direction toward the crack to about x = 6.5
inches (165 mm) is a linear distribution arising from the bending
moment which must exist across the ligament. Between these two
distributions is a stress-concentration-like rise, not unlike what
one would expect in approaching a true crack tip, as the process
zone tip is approached,

However, the distribution corresponding to the last, post -peak
load level, P = 4,23 kips (18.8 kPa), is considerably different.
At this stage in the simulation, only about one inch (25.4 mm) of
ligament remains to try to accommodate the latter two regimes just
described. The distribution in the ligament has become essentially
linear, except for a small distance close to the edge of the plate
wherein the compressive stress rises precipitously. 1In the pre-
vious example; no bending moment distribution, with its compressive:
stress region, needs to exist. As the process zone tip extends
there is no need to rapidly unload the process zone as in the
present example., Further manifestations of the non-LEFM behavior
of this specimen are revealed in the following discussion.
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Figure 25.
Problem #2.

Comparison of measured and computed strain for Example

As mentioned above, Naus (22) made strain measurements during
his tests. Wire strain gages oriented to measure t¢  were arrayed

ahead of the initial, true crack tip. Strains measured just before
specimen failure are shown in Figure 25, Strain is seen to be

very high compared to the expected tensile failure value of about
200 uin/in. Further, it is seen to increase linearly except for
the last reading close to the initial true crack tip.

Comparison of these observations with predictions from the
present simulations, Figures 22 and 24, is encumbered by the fact
that gage length was not reported in (21,22). Figure 25 shows the
COD-profiles for peak load from Figures 22 and 24 converted to
strain profiles via assumed gage lengths. The predicted profiles
bracket the measured profile, except for the reading close to the
initial crack tip, and are nearly linear. It is likely that the
gage closest to the crack tip began to slip at this very high
strain; measurements from this gage location on other specimens
also showed this anomalous behavior,

Figure 25 shows that Bazant and Oh (24) are correct. The
measured strains can only be explained by considerable extension
of a process zone before peak load. Ffrom the perspective of the
methods of the present simulation, the gages were reading highly
localized strain: a crack-opening-displacement.
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Figure 18, with applied load, Example Problem #2.

All of the previous discussion concerning the process zone in
this example points decidedly towards this being a non-LEFM test,
and yet an enigma remains: why the apparently LEFM response of
this and companion tests when viewed on the basis of K independ-

ence from specimen size and crack length (23)? A very plausible
explanation, one that in fact requires our attention to be shifted
away from the initial crack and its propagation, proceeds as
follows.

Consider the location of point A, Figure 18, and the displaced
shape shown in the same figure. This shape shows that the top and
bottom halves of this specimen behave like deep beams with partial
moment restraint at their ends produced by remaining ligament.
Point A lies-at the location of highest fiber stress in tension of
such a beam. The writers find it more than just coincidental that
the x-direction tensile stress at point A for the specimen analyzed
in this example varies as shown in Figure 26: as the computed peak
load is approached, the concrete tensile strength is exceeded at
point A! Consistency in application of the constitutive model
would dictate that a second set of cracks would initiate at points
A at approximately the peak load. This phenomenon was not includec
in the present simulations. Note that it is not obvious that these
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cracks would have been visible after specimen failure, but their
existence would certainly have caused stress redistribution in the
specimen. s it possible that the apparently LEFM response of the
tests was the result of two obscuring non-linear effects? This
question could be definitively answered and these tests finally put
to rest by a study which included both nonlinearities and a range
of specimen sizes and crack lengths.

In the next example problem we relax another assumption by
extending our non-linear fracture modeling technique to a problem
in which crack growth is not self-similar,

3.3 Example 3: Mixed-Mode Fracture of a Plain Concrete Beam

The last example problem is the structure shown in Figure 27,
Mortar and concrete beams in this configuration were tested by
Arrea and Ingraffea (25). The antisymmetric loading produces
mixed-mode, KI'KII’ stress-intensity at the tip of the initial,
true crack tip.

The purpose of this example is to show that the technigues
used in the previous examples can be extended to curvilinear crack
propagation in geomaterials., Details of the algorithms necessary
for this extension can be found in References 4 and 19.

Because this example involves both crack sliding and crack
opening displacements, CSD and COD, respectively, there exists not
only normal stress transfer across the process zone but shear
stress as well. Consequently, the so-called "aggregate interlock"”
model of Fenwick and Pauley (26) in which shear transfer across a
crack is related to the COD was employed in this simulation,

Two analysis phases were employed. The first was a parameter
study in which the crack trajectory observed in testing was modeled
in the mesh, as shown in Figure 28, The 5-COD constitutive model
was then varied in an attempt to reproduce the observed load versus
crack-mouth-sliding-displacement, CMSD. This approach is the same
as the “fictitious crack" method (18), except that the crack is
discretely modeled.

The results of this parameter study are shown in Figure 29,
with the lettered models shown in Figure 1. The experimental
results shown in this figure and from two different tests on mortar
beams (25) with a maximum aggregate size of about 0.375 inch
(9.5 mm) and a compressive strength f', of about 6.6 ksi (45.5
MPa). These results indicate a trend towards a constitutive model
yith a &_ much less than that used in the previous example. This
is to be expected since the maximum aggregate size is much less in

this case. A typical displaced shape of the structure is shown in
Figure 30.
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Figure 27.
Problem #3.
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Figure 29. Results of parameter study for first phase of Example
Problem #3.

Although none of the models used proved completely satisfac-
tory, Model A was chosen for the second phase of this simulation.
In this phase only the cast-in starter crack was modeled in the
initial mesh, Figure 31. A discrete propagation analysis was per-
formed with automatic remeshing occurring at each crack increment.
The final mesh configuration and displaced shape are shown in
Figure 32.

. The predicted trajectory of the crack was very close to the
observed, and the computed load versus CMOD response, Figure 33,
was very similar to that obtained during the parameter study phase.

Experience with this simulation strongly suggests that the
response is sensitive to the shear transfer model across the
process zone and across the true crack itself. Although the shear
and normal stress transfer models used in these simulations were
uncoupled, some degree of coupling through dilatency is certain.
These are fertile areas for further research,
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4. CONCLUSIONS

This paper has shown how non-linear fracture processes can
be modeled in finite element simulations involving discrete crack
P representations. The most important assumption involved is that
the process zone is no more than an extension of the true crack
itself: the zone is not an area, it is a length.

The constitutive modelling for such a zone is then consider-
ably simplified. For Mode I propagation, one needs only a rela-
tionship between the normal tensile stress transmitted across the

process zone and the opening-displacement of that part of the crack
in this length.

We first showed how, with these simplifications, one could
arrive at quantitative assessments of process zone length in
geomaterials using only hand calculations. It was quickly seen
that the strain softening character of such materials produces

process zone lengths much larger than those in more ductile
materials.

These simple calculations were then supported by finite
element analyses of three example problems. In the first, hypo-
thetical problem, the growth of the process zone ahead of a true

. .. . Crack i i .
CISUTegots plnitiet mesh for second-phase, crack propagation study et et R e ek comatoorst o
' the process zone grew to a steady state length and that this length
was far in excess of that predicted by models based on elastic-
perfectly plastic constitutive models.
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Figure 33. Comparison of crack propagation model prediction with
experimental results for Example Problem #3.

The next two problems involved simulations of actual experi-
ments. The tests of Kesler, Naus, and Lott (21) were again
qnalyzed, but for the first time using a non-linear fracture model
in a discrete crack representation. It was concluded that these
tests were not valid measurements of KIc' Moreover, it was furthe

shown that they still have not been properly analyzed.

The final analysis involved curvilinear crack propagation.
The process zone constitutive modeling was extended to include
shear transfer across the zone as a function of its opening-
displacement. The automatic rezoning feature of FEFAP (19) was
employed here to permit cracking to evolve as predicted by the
non-lineal stress transfer models without being constrained by
meshing considerations,

Parameter studies performed during these simulations clearly
show the dependence of process zone length on the crack opening
profiles characteristic of the structure, and on the 5-COD rela-
tionship characteristic of the geomaterial.
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. Using the modeling tools described here, it is now possible
to make a rigorous, a priori assessment of the applicability of
LEFM to the fracture process occurring over a wide range of struc-
ture scale.
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