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ARSTRACT 

Fracture of concrete as well as other materials such as rocks 
or sea ice is preceded by progressive distributed cracking. On the 
macroscale, this behavior calls for a continuum model, and the 
crack tip blunting due to distrihuted cracking necessitates a 
nonlinear fracture mechanics approach. 

The first part of this lecture gives a review of a recently 
formulated nonlocal continuum model which permits distributed 
cracking to occur in a stable manner over finite-size zones of the 
material, and summarizes the finite element crack band model, which 
is a special case of the nonlocal continuum approach. The size 
effect in blunt fracture is also briefly reviewed. 

The second part of this lecture presents in detail a new 
method of identifying the material parameters for propagation of 
fractures blunted by a cracking zone. This method exploits the 
recently derived size effect law for blunt fracture for determining 
the parameters of the R-curve and the parameters of the finite 
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element crack band model (as well as Hillerborg's fictitious crack 
model). No measurements of the crack length or of the unlpading 
compliance are needed, and it suffices to measure only the maximum 
load values for a set of geo~etrically similar notched speCimens of 
different sizes. From these data, the parameters of the size 
effect law are identified by linear regression in certain 
transformed variables. The inverse slope of the regression line 
yields the fracture energy. The regression has further a two-fold 
benefit: it smoothes statistically scattered data according to a 
theoretically known law, and it extends the range of the data, so 
that fewer tests are needed than without the use of the size 
effect law. Using the experimentally calibraterl size effect law, 
the R-curve may then be ohtainerl as the envelope of family of 
curves representing fracture equilibrium for different specimen 
sizes. A simple algehraic formula for the R-curve, which closely 
agrees with the size effect law, is also presented. In the case of 
the crack band model, the size effect regression plot makes it 
again possihle to determine all material parameters, particularly 
the fracture energy, the crack band width and the strain-softening 
modulus. Formulas for that purpose may he set up for pach fracture 
specimen geometry, and some are presented here. The parameters of 
Hillerhorg's fictitious crack model can he also easily identifierl 
from the size effect regression plot. 

1. I NTROOUCT ION 

Structures made of a heterogeneous brittle material such as 
concrete often exhibit brittle failures in which the material 
fractures progressively and the fracturing is distrihuted over a 
zone of finite size. In the macroscopic continumm approximation, 
the behavior of the fracturing zone is characterized by strain­
softening, i.e., a stress-strain relation in which the maximum 
principal stress rlecreases at increasing strain. Strain-softening 
may be easily implemented in a finite element code, however, 
problems are encountered in convergence as the mesh is refined. 
Using a finite element discretization of the classical, local 
continuum, the failure zone always localizes into a zone of 
vanishing thickness, which means that in the limit of an infinitely 
small mesh size the structure is indicated to dissipate zero energy 
during failure. This aspect is obviously unrealistic, and it 
causes ~n incorrect spurious sensitivity of the results to the 
chosen elemeDt size [3,7,Q.10,161. 

An expe!'lient remedy is possihle with the crack hand model, in 
which the c~acking front is forced to have a fixed width which is a 
material property. This type of analYSis has been shown to yield 
good agreement with all important fracture test data for concrete, 
as well as rock [3,16J. However, a disconcerting feature 
remains. The mesh cannot he refined to sizes smaller than a 
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certain charactristic length, and so one does not have a limiting 
continuum which the finite element model is supposed to 
approximate. Furthermore, the size of the strain-softening zone 
and the strain distribution over the zone, which must he known if 
the energy dissipated hy cracking should he correctly calculated, 
is unknown. To overcome these limitations, it is necessary to 
abandon the classical idea of a local continuum, as will now be 
shown in the first part of the lecture. in which a recently 
established [5,7,12,13] nonlocal continuum model is described. 

The existence of a characteristic length in the nonlocal 
continuum model implies a size effect which differs from hoth the 
failure criteria of limit analysis and the linear elastic fracture 
mechanics. After reviewing the recently derived size effect law 
[6J that is associated with the nonlocal continuum approach, the 
second part of the lecture deals with the problem of determination 
of the material parameters for propagation of fractures blunted by 
a cracking zone. A new method of their determination, which uses 
experimental data on the size effect, is presented in detail. 

2. CONTINUUM MODEL FOR DISTRIRUTEO CRACKINr, 

2.1 Imbricate Nonlocal Continuum 

From the works of Kroner, Kunin, Krumhansl, Levin and others 
[21-2, 27-31], it is known that in a statistically heterogeneous 
medium which is not in a macroscopically homogeneous state of 
strain, the averaged (smoothed) stress at a certain point depends 
not only on the gradient of the averaged displacements at that same 
pOint (local properties), hut also on the averagerl displacements 
within a certain characteristic finite neighhorhood of that 
pOint. The properties of such a medium cannot be sairl to he local 
and the medium is, therefore, called nonlocal. ' 

The nonlocal displacement gradient may be defined hy the 
relation 

D.u.(x) = ~ J 
, J - V(~) 

au. (x' ) 
~x - dV I = ~ J u

J
. (x ') n. (x ') dS I 

i v S(~) - 1-
(1) 

in which u· are the cartesian displacement components (j = 1,2,3), 
~ is the c30rdinate vector of the given point characterized by 

cartesian coordinates x., V(x) is the characteristic volume 
(Fig. 1) of the materiallcent~red at point x, S(x) is the surface 
of this volume, n. (x') is the unit normal of this surface at point 
~', and D. is the'gradient averaging operator. The surface 

integral i~ Eq. 1 follows from the volume integral by application 
Of .the Gauss integral theorem. More generally, a weighting function 
can he introduced in Eq. 1. USing the gradient averaging operator, 
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Fig. 2 - Finite Element Discretization of Imbricate ~onlocal 

Continuum for One Dimension and Two Dimensions (the 

continuum is the limiting case as the element size 
tending to zero). 

the mean strains may be defined as 

g" =.;. (D,u, + D,u,) 
1J Co 1 J J 1 

(2) 

In previous works dealing with nonlocal continua. it has been 
generally assumed that the continuum equation of motion has the 
form 

a.,.. (-) 0 = 
ax, l.ijkm £. m uk pU i 

J 

(3) 

in which Cii~m ~re secant elastic moduli which. in general, depend 
on the mean ~tra,n. p is the mass density, and superior dots refer 
to time derivatives. It is found, however, that Eq. 3 is incapable 
of describing a strain-softening continuum. It always leads to 
unstable response as soon as strain-softening begins. The 
difficulty has been traced to the asymmetry of these equations due 
to the combinatin of partial derivatives a/ax; with the gradient 
averaging operator n. This feature gives rise to nonsymmetric 
finite element matric~s even if C. 'k are constant, i.e., if the 
medium is elastic. Such a nonsymm~tr~ is certainly an unacceptable 
characteri st i c • 

For this reason, a systematic derivation of the continuum 
equation of motion on the basis of Eq. 1 has been attempted, using 
the calculus of variations. It has been found (5,71 that the 
proper form of the continuum equation of motion is 

(4) 

in which c is an empirical coefficient between 0 and 1, and 
Ciik are the local secant moduli. In contrast to Eq. 3. each 

term ~f the last equation has a symmetric structure. and 
consequently, discretization by finite elements leads to symmetric 
stiffne~s matrices if the elastic moduli Cijkm and Cijkm are 
symmetrlc. 

Eq. 4 can be also written in the form 

(1-c)OJ,ol'J' + c T., , = P U. 
1 J .J , 

in which 

(5) 

°ij = Cijkm (f)Ekm = Cijkm (f)Omuk (6) 

aUk 
Tij = Cijkm Ekm = Cijkm ax- (7) 

m 

in which Tij are the usual, local stresses. and 0ij are the 



stresses characterizing the stress state in the entire 
rep~esentative volume of the ~aterial and are called the broad­
range stresses [5.7]. 

When the continuum defined by Eq. 4 is discretized by finite 
elements the size of which is smaller than the size t of the 
representative volume. one obtains a system of imhricated 
(regularly overlapping) finite elements visualized in Fig. 2. 
Therefore. the present type of nonlocal continuum has been called 
the imbricate continuum [4]. The finite elements keep a constant 
size t as the mesh is refined. and the numher of imhricated finite 
elements that cross a given pOint is inversely proportional to the 
mesh size. while the cross section of these elements diminishes so 
that all the imbricated finite elements have the same total cross 
section for any mesh size. It can be also shown that the limiting 
case of the finite difference equations describing such an 
imbricated system of finite elements is the differential equation 
in Eq. 4 [5.7]. If the finite element size h is larger than the 
characteristic length t. then the finite element model of the 
imbricate nonlocal continuum hecomes identical to that for the 
classical local continuum. 

To assure convergence and stahility. the 10cal stress-strain 
relations (Eq. 7) may not exhibit strain-softening. or else 
unstable response and spurious sensitivity to mesh size, along with 
incorrect convergence. may he obtained. The strain-softening 
properties must be described solely by the broad-range stress­
strain relation in Eq. 6. 

Fig. 3 reproduces some of the results of explicit dynamic 
finite element calculations from Ref. 7. in which wave propagation 
in a strain-softening bar of length t was analyzed [7]. Roth ends 
of the bar are subjected to a constant outward velocity d beginning 
at time t = O. This loading produces step waves of strain 
propagating inward. When these waves meet at midlength. the strain 
suddenly increases and strain-softening ensues. If this prohlem is 
analyzed with the usual finite element method for local continuum. 
it is found that strain-softening is always limited to a single­
element width. Thus. the width of the strain-softening zone 
reduces to zero as the element mesh is refined (Fig. 4). As a 
consequence. the energy W consumed by failure decreases with 
decreasing mesh size and approaches zero as the mesh size tends to 
zero (Fig. 5). Moreover. the finite element model of local 
continuum exhibits a discontinuous dependence of response on the 
prescribed end velocities as well as on the slope E of the 
strain-softening branch. The solution, however, con~erges to a 
unique exact solution. although this solution is unrealistic from 
the phYSical pOint of view. 
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Continuum. 
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For the present imhricate continuum, by contrast, the solution 
of wave propagation in the strain-softening bar (Fig. 3) exhihits 
correct convergence, with a strain-softening zone of a finite size 
in the limit [71. Also, the energy consumed hy failure in the bar 
converges to a finite value, as shown in Fig. 5. The 
characteristic length in these computations has heen considered as 

1 = LIS. 

2.2 l1ifferential Approximation of Imbricate Nonlocal Continuum 

where 

and Rkm = t Iv Xk x x x dV, provided that the representative 
volume 1~qconsidered asma ~ph~re of diameter 1. Negleting terms of 
higher than second degree, we ohtain 

2 2_7 au. 
n

1
· u

J
. = u .. + )..- u. ·kk = (1 + ).. V-) -a J (I()) 

J,1 J,1 xi 

in which ).. = 1
2
/40 and v2 = Laplace operator. Since 1 equals 

approx;ma~ely 3rl
a 

where da = m~ximu~ aggregate size, we note that 
).. approxlmately equals the maX1mum aggregate radius. In view of 

Eq. 10, the field equations for the imhricate nonlocal continuum 
(Eqs. 5-6) may now he written as follows ~51: 

(1-c) (1 + ~2V2) 0 ... + C T. •• = P u
1
. (11) 

1J,J 1J,J 

o .. :: ~ .. k (e:) - = C .. 
k 

(e:) (I2 ) E:
km 

1: •• E:
km 1J 1J m '" 

, 
1J 1J m '" 

E:
km 

:: (1 + )..2 V2) E:
km

, E:
km 

_ 1 
(Uk + u k) (13 ) - I ,m m, 

The principal of virtual work for a body (whose domain is B 
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and surface is S) made of the imbricate continuum may be stated as 
foll ows: 

oW = IR 0ij Q~ij dV - IS Pi QUi dS + IR P~i QUi dV = () (14) 

in which QUi(~) is any kinematically admissible displacement 
variation, and p. are the given distrihuted surface loads. 
Substituting Eq. 13 for E .. and applying repeatedly Gauss integral 
theorem, one can derive thJJfield equations (Eqs. 11-13) from the 
virtual work rel ation (Eq. 14). Moreover, the variational 
procedure yields the boundary conditions at surface S; 

either 

o or - (on S) ui = O'ij n. = Pi J 
(15) 

where 

°ij 
:: (1 + )..2 V

2
) 0' •. 

1J 

In the classical nonlocal continuum theory, the mean strain is 
more generally defined with the help of a certain given weighting 
function wee) where r:. = ~I -~, i.e., 

_1 aUi(~') 
DiUjC~) - V Iv(~) w (r) ax'. dV' 

J 

(17) 

in which I w(t) dV' = 1 (normalized weights). Introducing again 
the Taylor ¥eries expansion of aUi/axJ~ and truncating it after the 
quadratic term, one finds that 

2 2 
au. 

D (1 + ~, ,",)_1 i u
J
. = "''' v aX

j 

in whi:h a = i ~V.w(t) xk xk dV'. However, as 
be ~allbrated emp1rlc~11y, one can determine only 
a A , and not a and A separately. Thus, it does 
weighting function is used, and the simplest case 
w(t) = l/V = const. may be chosen. 

It is interesting to compare the equation 

_ ( 2 2 1 2 
E: ij - l+>.. V )E: ij :: E: ij + '2).. (ui,jkk + uj,ikk) 

(18) 

long as A is to 
the product 
not matter which 

(19) 

with the well-known couple stress theories or micropolar 
theories. In them, only first and second derivatives appear and 
the second derivatives are skipped. Moreover. there is no need to 

, 
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associate with the higher displacement derivative any special type 
of stress tensor of a higher rank. such as the couple stress 
tensor. Only one. second-rank ,stress tensor is used here. 

Let us now check stability of the continuum. Consider 
linearly elastic properties. characterized by Young's modulus E. 
and the one-dimensional case. with x· = x. u· = u. From EQs. 11-
13 we obtain the differential equatio~ of motion 

2 2 2 2 
(1 - c) (1 + >. 2 a ) a u - p a u (20) 

~ ~ -E~ 
Now seek a solution of the form u = A exp [i w(x - vt)l where v = 

wave velocity. w = frequency. Substitution in Eq. 20 provides the 
condition 

(21) 

For stability. v must always be real and positive. and so we must 
have c > o. 

The chief advantage of the approximation by derivatives is 
that it facilitates analytic~l solutions. for which the houndary 
layer method known from fluid mechanics may be utilized. For 
computer programming. the use of imbricated finite elements (Fig. 
1) seems. however. the simplest approach. since ordinary finite 
elements may be used and the nonlocal properties are entirely taken 
care of by the element imbrication (regular overlapping). Existing 
finite element codes and the usual element types can be used and 
the only change to be made in the existing finite element codes is 
to properly define the integer matrix giving the nodal numbers 
corresponding to each element number. 

2.3 Crack Band Theory for Progressive Fracturing 

For very fine meshes for which the element size h is less than 
the characteristic length 1 of the medium. the fracture front may 
be many elements in width. However, for many practical 
applications it is sufficient to use finite elements whose size is 
equal to the characteristic length or is larger. In such a case. 
the cracking zone is of a Single-element width at its front and 
the finite element model of the imbricate continuum then coincides 
with that of the classical local continuum. The fracture analysiS 
then becomes identical to what has been previously developed as the 
crack band theory [3.161. 

Distributed cracking has been modeled in finite element 
analYSis by adjustments in the material stiffness matrix since lq67 
when Rashid [35] introduced this approach. Recently it has been 
demonstrated this approach yields consistent results, independent 
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of the mesh size, only if the stress-strain relation with strain­
softening is associated with a certain fixed finite element size, 
t. For concrete. this size appears to be roughly 1 = 3d where 

d = the maximum size of the aggregate. This Size of finfte 
e~ements is too small for many practical purposes. In the crack 
band theory it has been proposed and verified that consistent 
results can be obtained with larger finite elements provided that 
the tensile strain-softening relation is adjusted so that it yields 
the same fracture energy regardless of the mesh size [10.161. The 
fracture energy is expressed as 

w 
r d c f,2 1 1 

Gf = Wc J 0 33 e: 33 = '2 t (r:- - r) (22) 
o t 

in which Wc now represents the width of the cracking front. w ~!, 

a~3 and e:3~ are the stress and strain in the finite element n&rmal 
to the dir~ction of cracking, fi is the direct tensile strength of 
the material, EO is the initial elastic Young's modulus, and tt is 
the mean downward slope of the strain-softening segment of the 
stress-strain diagram. which is negative (Fig. 6). If the finite 
element size is h = ~,then Eq. R with ~ replaced by h must yield 
the same value of Gf • This may be achieved hy adjusting, first. 
the downward strain-softening slope Et • and second. if the slope 
becomes vertical. by reducing the actual tensile strength ft to a 
certain equivalent strength f~q [3.R-IO.lnl. 

The crack hand theory has been shown to agree with essentially 
all fracture test data for concrete, including the maximum load 
data and the R-curve data [3,16]. 

It may be noted that approximately the same results may also 
be obtained if the cracking strain accumulated across the width of 
the crack band is expressed as a single cracking displacement, and 
a certain stress-displacement relation in the connections between 
the finite elements is introduced into the analysis. This has been 
the approach followed by Hillerborg. et al. [231. 

2.4 Constitutive Relations for Strain-Softening 

In the analysis of many practical situations, including all 
fracture tests. the principal stress direction in the fracture 
process zone remains constant during fracturing. Triaxial strain­
softening can then he introduced in the form 

(23) 

in which e: and 0 are the column matrices of the components of 
strain and-stress, 0 is the 6 x 6 matrix of elastic constants, and 
~ is a column matrix representing additional fmeared-out strains 

due to cracking, ~:: (~11' ~22' ~33' O. 0, 0) • The normal 
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stresses may be assumed to be uniquely related to their associated 
cracking strains, 

in which C is the secant mOdulus which reduces to zero at very 
large cracking strains and may be c~librated from direct tensile 
test data which cover strain-softening (1,4,19,33,34,36.3Q.41]. 
nifferent algebraic relations must. of course, be used for 
unloading. 

For some situations. especially in dynamics, it is necessary 
to describe progressive formation of fracture during which the 
principal stress directions rotate. In such a case. the foregoing 
model is inadequate. A satisfactory formulation can he obtained 
with an analog of the slip theory of plasticity. which is called 
the microplane model [4,181. In this model it is assumed that the 
strain on a plane of any inclination within the macroscopic 
smoothing continuum consists of the resolved components of one and 
the same macroscopic strain tensor E

ji
• Using the condition that 

the energy dissipation calculated in terms of the stresses and 
strains on all such planes and in terms of the macroscopic stress 
and strain tensors must be equal, one may obtain the stress-strain 
rel ati on 

dO ij = D~jkm d Eij 

in which 
21T 1T/2 

= J J 
o o 

(25) 

n.n.nkn FI(e) sin4> d8d4> 
1 J m n 

(26) 

This equation superimposes contributions to inelastic stress 
relaxations from planes of all directions within the material, 
defined hy spherical coordinates 8 and 4>: nj are the direction 
cosines for all such directions, and F(e) 1S a function 
characterizing the constitutive propertie~ and representing the 
stress-strain relation for one particular microplane within the 
material; e = n. n. E .. = normal strain on a plane with direction 
cosines n .• n 1 J 1J 

1 

It has been demonstrated that the microplane model allows 
describing tensile strain-softening under general stress or strain 
histories and always leads to a reduction of stress to zero at 
suffiCiently large tensile strain. 
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3. SIZE EFFECT ANn ITS USE IN nETERMINATION OF FRACTllRF. PARAMETERS 

3.1 Problem of Experimental Determination of Material Parameters 

Analysis of distributed fracturing by nonlocal continuum, 
crack band theory or other methods is feasible only if the material 
parameters involved can be identifierl from test data. This 
question will now be addressed and a novel method which exploits 
the size effect will be presented in detail. Since this methorl can 
be closely linked with the concept of R-curves, the use of R-curves 
for characteizing nonlinear fracture associated with progressive 
cracking will now be analyzed. 

Fracture analysis of brittle heterogeneous materials as well 
as ductile metals, must take into account the blunting of' the crack 
front caused by ~icrocracking or yielding. In consequence, the 
fracture propert1es of these materials are not completely described 
by a single parameter, the fracture energy, and at least two 
further parameters are required. Several mathematical models with 
additional parameters have been recenty formulated 
(3,4,11,16,23,34,411 and shown capahle of closely representing the 
available experimental evidence. These models, however, are 
practi~ally useful only if their fracture parameters can he easily 
determ1ned from tests of a given material. 

The simplest, although crudest, method consists of an 
approximate linearly elastic fracture analysis using an equivalent 
crack length (which is unrelated to the actual crack length) and a 
functio~ describing how the energy, R, required for crack growth 
(per un1t crack length and unit thickness) depends on the length c 
of the crack extension from the notch. Irwin and Krafft, et al., 
[24,26], proposed that this function, called the resistance curve 
or the R-curve, may be considered to be unique even though this is 
not exactly true. Shah and co-workers [39,401, introduced the R­
curve concept to fracture analysis of concrete. 

~he existing ~ethod f02 d~termining the R-curve utilizes the 
relat~o~ R = k1 P .a/(E b d ) in which k is a known 
coeff~c1ent for a glven ~pecimen geometry. t is the Young's 
elast1c modulus. b = specimen thickness, d =ccharacteristic 
dimension of the speCimen, a = the length of crack plus notch. and 
P = load at w~ich the crack extends. A series of R-values is 
determined. either on a single speCimen from the crack lengths, a, 
cor~espo~d~ng to various loads P, or on a series of specimens from 
the1r cr1tlcal values of P and the corresponding critical values of 
crack length a. In both cases, however, the crack length needs to 
be measured. This is a considerable obstacle in the case of a 
~aterial like concrete, for two reasons: First, the crack length 
1S hard to define since the crack tip is blurred hy a microcrackinq 
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zone, and second, even if one succeeds to measure the location of 
the crack tip, the mesurement is of dubious significance since the 
R-:urve.i~ actually a function of a certain equivalent crack length 
Wh1Ch Y1elds the correct remote elastic stress field rather than 
the actual crack length. 

I~ view of these difficulties, it has been attempted to 
determ1ne the crack length indirectly, by measuring specimen 
compliance, either at unloading or at reloading. However this 
approach is also questionable because at unloading or rel~ading the 
microcracks within the fracture process zone do not completely 
close (due to rubhle and fragments within the crack space as well 
as irreversibil~ty of material deformation at microcrack tips). 
Thus, the compl1ance for unloading and reloading is smaller than 
the compli~nce for continued loading, which, however, cannot be 
measured Slnce the crack growth cannot be arrested. Therefore. the 
compliance measurements tend to yield crack lengths which are much 
too small. 

The R-curve is in essence a device to make possible an 
approximate linearly elastic solution even though the material 
behaves n~nl~nearly [11]. A nonlinear fracture analysis, which is 
more real1st1c, may be carried out with the finite element blunt 
crack band model [3,16,17], in which a certain fixed triaxial 
tensile strain-softening constitutive relation is used and the 
crack front is assumed to have a certain characteristi~ width w 
which is a material property (and equals about three maximum c 
aggregate sizes of concrete). A Similar finite element model for 
nonlinear frac~u~e analysis of concrete, due to Hillerborg, et 
al.[23,24], ut1llzes, instead ofa softening stress-strain 
r:lation. a softening stress-displacement relation for the relative 
dlsplacement between two finite elements. The material parameters 
for.t~ese.finite e~ement models can be determined (16,171 by 
optlmlzatTon or tr1al-and-error procedures using a finite element 
prog~am;.but this is not exactly simple for every-day 
appllc~t1ons. The fracture energy can, in theory, be also 
d:term1ned by measuring the area under the complete load-deflection 
dlagr~m 0: a single speCimen [34,38l. This approach, however. has 
certaln d1sadvantages (see Section 3.9) and it does not yield the 
nonlinear fr~cture parameters other tha~ the fracture energy_ 
Thus, th~re 1S a . need for another model, for which we propose here 
to explo1t the Slze effect, following an idea briefly outlined in 
Ref. 6. 

3.2 Review of Structural Size Effect 

For blunt fracture one can generally introduce the hypothesis 
~4,7] that the total potential energy release W caused by fracture 
1n a given structure depends on both: 
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1) the length a of the fracture. and 

2) the area traversed by the fracture process zone. such that 
the size of the fracture process zone at failure is constant, 
independent of the size of the structure. 

Dimensional analysis and similitude arguments then show that 
the structural size effect for geometrically similar specimens or 
structures made of the same materi a 1 (and havi ng the same 
thickness) is governed by the simple law [6l: 

d - 1/2 
oN = Bf ~ (1 + (f ) 

o 
( 27) 

in which oN = Plod = nominal stress at failure, P = maximum load 
(i.e., failure load, b = thickness, d = characteristic dimension of 
the specimen or structure (e.g., the beam's depth), f; = direct 
tensile strength: and R, dO = empirical constants, dn t"ieing a 
certain multiple of the maximum aggregate size, da' The values of 
R and of ratio An = dO/d depend on the geometrical shape of the 
structure, but not on lts asize. In the graph of log o~ versus 
log d, Eq. 27 is plotted in Fig. 7a. 

If the structure is very small, then the second term in the 
parenthesis in cq. 27 is negligihle comprared to 1 and then 
oN = Rf t in the failure condition, which represents the strength 
(or yierd) criterion and corresponds to a horizontal line in Fig. 
7a. If the structure is very large, then 1 is negligihle compared 
to the second term in the parenthesis of Eq. 27, and then 
a = const.lld. This is the type of a size effect typical of 
l~near elastic fracture mechanics: it corresponds to the inclined 
straight line in Fig. 7a, having the slope - 111. 

The size effect law according to Eq. 27 represents a gradual 
transition from the strength (or yield) criterion to the energy 
criterion of linear elastic fracture mechanics. This law is 
approximate because the hypothesis of a constant size of the 
fracture process zone at failure cannot be considered to be 
exact. However, the errors due to this approximation appear to be 
insignificant compared to inevitable random scatter of material 
properties. Statistical errors due to this scatter are, of course, 
superimposed on Eq. 27, which describes only the mean behavior. 

Let us now summarize the dimensional analysis from Ref. 6 that 
leads to Eq. 27. To take the dispersed and progressive nature of 
cracking at the fracture front into account, the following 
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hypothesis may be introduced: 

The total potential energy re1 ease W caused by fracture in a 
given structure is a function of both: 

(l) the length of the fracture a, and 

(2) the area of the cracked zone amd
a

• 

Here m = material constant characterizing the width of the 
cracking zone at the fracture front. Under part (1) of this 
hypothesis we understand the part of energy that is rel easerl from 
the uncracked regions of the structures into the fracture front. 

Variables a and amda are not nonoimensional. They are, 
however, allowed to appear only in a nondimensional form. This 
form is given by the following variahles 

(28) 

representing the nono;mens;onal fracture length and the 
nondimensional area of t~e cracked zone. Furthermore. W must be 
proportional to volume d b of the structure (where b = thickness) 
an~ to t~e ch~racteristic energy denSity 
aN/?E 1n Wh1Ch aN = P/bd = nominal stress at fail ure, P = given 

appl1e~ load, and ~ = characteristic dimension of the structures. 
Consequently, we must have 

(29) 

in which f is a certain continuous and continuously 
dif!erentiable positive :unct~on, and parameters ~. represent 
rat10s of the structure dlmenSlons characterizing thJ geometrical 
shape of the structure. For similar structures, ~. are 
constant. The condition for the fracture to propaglte is 

in which Gf i~ the fracture energy - - a material property 
characterizing the energy consumerl per unit extension of the 
fracture, per unit thickness. 

(30) 

Consider now geometrically Similar structures, for which 
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parameters ~. are constant and only the characteristic dimension d 
varies. Accofding to the chain rule of differentiation, 
3ftaa = fl (aul/aa) + f (aa /aa), in which we introduce the 

notations fl = aflaa
l
, ~2 = ~f/aa2' Thus, substitution of Eq. 2q 

into Eq. 30 yields 

( 31) 

Furthermore, the fracture energy may be expressed as the area under 
the complete tensile stress-strain curve, including the strain­
softening down to zero stress, times the width of the cracking 
front md a: 

f ,2 
t 

~ 
(32) 

in which Ec is the initial elastic modulus of concrete, Et is the 
mean strain-softening modulus, which ;s negative, and f' is the 
direct tensile strength of concrete. Substituting Eq. 3~ anrlP = aN bd 

into Eq. 31, we may obtain: 

aN = Bft (1 + ri-) _1/2 (33) 
o a 

in which B = ((1 - E IE )/f ,1/2 and 1.0 = mf2/f
1

• R and An are 
constants when geOmetFic~11y2similar structures of rlifferent sizes 
are considered. Thus, Eq. 33 proves our starting equation, Eq. ~7. 

3.3 Equivalent Linear Fracture AnalYSis anrl R-Curves 

Frequently the nonlinear fracture process zone is small 
compared to the structure dimensions and the stress and strain 
fields remote from the fracture process zone are then almost the 
same as the elastic ones. The fracture may then be approximately 
treated as an equivalent line crack which produces the same remote 
elastiC stress and strain fields. For this equivalent crack. 
however, the energy, R, required for crack growth (also called the 
fracture resistance) may not be assumed constant (as is done in 
linear elastic fracture mechanics) but must be considered as a 
function of the crack extension c from the notch or smoothed 
surface, i.e., R = R(c) in which c = a - ao' ao = length of the 
notCh, and a = total length of the crack plus notch; see Fig. 8. 
Tne energy that must be suppl ied to the structure to produce the 
crack is U = b f R(c) da - W(a) where W(a) = the total release of 
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strain energy from the structure. An equilibrium state of fracture 
occurs if no energy needs to be supplied to change a by 6a and none 
is re 1 ea s ed, i. e ., if W = O. Sin c e W = (a U / a a) c5 a = O. i n 
which 3U/3a = b(R - G) = 0 and bG = W' = 3W/3a. it follows that 
fracture equilibrium takes place if 

G(a) = R(c) (equilibrium) (34 ) 

in which a = aO + c. G is the energy release rate of the structure 
and R is its critical value characterizing the material. The 
eq~ilibrium fracture state is stable if the second variation 
32U is p~siti!e. ~ince 2 2 
6 U = (a U/aa )6a where 3 ULaa = b(dR/dc - 3G(a)/3a] = b(R'(c) 
- G'(a)]. bG'(a) = W"(a) = aZW/aa 2• the following conditions ensue 

R'(c) - G'(a) > 0 
= 0 

(stable) 
(critical) 

(35) 

Considering structures that are geometrically similar hut 
could have dissimilar notches. and using Mimensional analysis for 
the equivalent linear problem. one can show that 

G(a) = W'(a) = p2g(a) 
---0- E b2cj 

c 
G'(a) = W"(a) = p2gl(a) 

~ E b2i 
c 

in which d is the characteristic dimension of the structure. 

(3~) 

( 37) 

a = aid, g' (a) = dg(a)/da. E = Young's elastic modulus; and 
9(a) is a nondimensional function that characterizes the geometry 
of the structure. It can be determined by linear finite element 
analysis and it can be also found for typical shapes in handbooks 
(37]. which ~sually give the stress intensity factor KI , from 2 which G = KylE', E~ = E for plane stress and E' = E (1 - v ) 
for plane st~ain v = Po~sson ratiO; since vZ • 6.03 the 
distinction between plane stress and plane strain is not very 
important for concrete. Plane stress usually describes test 
conditions hetter than plane strain. 

Substitution of Eqs. 34, 36 and 37 into Eq. 35 leads to the 
conditions 
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R(c) g'(a) - R'(c) g(a) d > 0 (stable) 

:: 0 (critical) 

Alternatively, since dg/dc :: dg/da :: g'(a)/d, the last condition is 
equivalent to 

R(c) :: Max (3Cl) 
grar 

in which a:: (a
O 

+ c)/d. So the critical state of failure may be 
found by maximiZlng the ratio R(c)/g( a). This can be easily done 
by evaluating Eq. 39 for many values of c. 

The foregoing relations are generally true for any equivalent 
linear analysis of nonlinear fracture. However. the function R(c) 
is generally not the same for different specimen shapes and 
different notch length. The R-curve concept of fracture analysis 
rests on the hypothesis (24,26] that function R(c) may he 
approximately considered as a unique material property, the same 
for different notch length and different specimen shapes. 

3.4 Identification of Fracture Energy from Size Effect 

As an example, consider now three-point bent fracture tests on 
specimens of various depth d, all with b :: 1 in., span to depth 
raSio L/d = 4, and initial notch depth aQ :: d/3; also, Ec :: 4.3 x 
10 psi and f' = 3650 psi [25]. Accordlng to Tada's handbook 
[37], for L/d , 4: 

2 3 
g(a) = 16w a(1.635 - 2.603 a+ 12.30 a - 21.27 a + 

4 2 
21.86 a ) 

(40) 

The following experimental data for the maximum loads are 
considered for specimens of various depths d: 

d:: 1.5. 9*, 12, 15, 18, 21 in. 

* * * P=82.4, 156.9 and 167.4, 239.6, 395.6, 490.0, 514.5, 555.5. 700 lb. 

( 41) 

(asterisks label the values taken from Jenq and Shah's 
measurements~ Ref. 25). Inevitably, the data are statistically 
scattered. They may be smoothed out using the size effect law in 
Eq. 27. This equation may be algebraically transformed to a linear 
form. 

Y-AX+C (42) 

in which 
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1 b 2d 2 C 1 
X = d, Y = ~ :: -:r ' A = cr:' c = ~ 

ON P 0 R f ~ 
(43) 

Thus, coefficients A and C can be determineo hy linear regression. 
either by compu!!r or hy hand; see ~i24 7b. This yields 
C = 2.742 x 10 ,and A = 0.350 x iO • The coefficient of 

variation w of the deviations from the regression line and the 
corresponding 95% confidence limits are also shown in Fig. 7b. 

As mentioned before. for very large specimen sizes 
(d + =) linear elastic fracture mechanics applies, and the 

corresponding value of R, called the fracture energy Gf , may be 
obtained from the inclined asymptote in Fig. la'2i-e., from Eq. 27 
when 1 is neglected, in which case Y = AX = 0N-. Noting that 

a + aO for f~ilure of very large specimens, and substituting here 
X = d and ON = GfEc/g(ao)d, which follows from Eq. 36 by seting G 
• Gf and P = cNnd, we obtain: 

g(aO) 
Gf = Ar 

c 
(44) 

in which a = a Ide So the fracture energy is inversely 
proportiona9 to ~he slope, A, of the regression line of size 
effect. Substituting A and g(a?) = 43.76 from Eq. 40, Eq. 44 
yields the result Gf = 0.291 lh. in. 

The test data used (Eq. 41, asterisk labeled) are those of 
Jenq and Shah (251. They measured the R-curve hy a certain novel 
method not exploiting the size effect, and the asymptotic value of 
t~eir measured R-curve was Gf = 0.42 lb./in. This is not very 
dlfferent from the value found here, in view of the radica11y 
different methods of evaluation which must he influenced hy 
different sources of errors. ' 

Evaluating Eq. 42 for various values of d, we may further 
obtain smoothed values of maximum load data 

d= 1.5, 3, 6, 9, 12, IS, 18, 21 in. 
(45) 

P=83.0, 154.1 • 272.7, 370.8, 455.4, 530.6, 598.6, 661.0 1bs. 

(This same smoothed data would be obtained even if the measurements 
included only the three asterisk-marked values in Eq. 41.) Thus, 
the size effect law in Eq. 42 ailows substantially increasing the 
range of d-values compared to the range of measurements. which will 
be useful for determining the R-curve. 
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Geometric similarity is required only in two ~imen~ions, and 
thus the specimens could have different thicknesses h. However, 
the fracture energy is not constant along the front edge of the 
crack, and thus the thickness has some effect on the mean Gf for 
the whole thickness. There are two effects causing the thickness 
effect. One is the disturbance of the free surface houndary 
conditions due to Poisson effect and surface point singularity of 
elastic solution (14l. and another one is the different influence 
of the aggregate size near the surface and the interior on the 
microcracking zone size. The former effect is eliminated if bid is 
constant. and the latter one if b is constant. Thus, no perfect 
answer exists for the choice of thickness. The condition b = 
constant seems. nevertheless, preferable. 

Eq. 44 is valid for all equivalent linear analysis of 
fracture. In particular, it does not depend on the hypothesis that 
the R-curve is unique. 

The fact that the size effect plot of log 0 versus log d 
possesses an inclined straight line asymptote imp¥ies that the R­
curve must have a horizontal asymptote, a oroperty prev~olls~y 

sometimes regarded as uncertain. The fracture energy, Gf - a term 
reserved here strictly for the fir'lal asymptotic value of the energy 
requi red for crack growth (per unit crack "1 ength and u'1it 
thickness) - is uniquely defined by the straight line asymptote of 
the size effect plot of log oN versus log d (~ig. 7al. Thus, the 
value of the fracture energy must he considered size ~nrlependent. 

Worrying about its size dependence would he meaningless, just like 
saying that a value of some function F(x) at xl depends on 
x?( t- x ) or the val ues of F( x) at x? It is 1mportant to real ize 
tnis with regard to the current debates on the size dependence of 
fracture energy. In these debates, other determinations of 
fracture energy that are not based on the size effect law have been 
considered. For such other definitions, the fracture energy values 
are in general different from the present one and can inrleed depend 
on the size of the structure; but this cannot he so for the present 
definition. In this light the present definition of Gf , based on 
the asymptote of the size effect regression plot, seems to he 
preferable and circumvents the question of size dependence of 
fracture en.ergy for its other definitions. The present definition 
relates most directly to the failure loads at different sizes of a 
structure - usually the main concern of a structural analyst. 

If three-point bent fracture specimens are sufficiently 
slender, i.e., Lid is sufficiently large, the failure is governed 
primarily by the bending moment M in the notched cross section, anr 
the effect of the shear force may he neglecte~. Then it is not 
necessary for the specimens of different sizes to he geometrically 
similar. It suffices if the notched cross sections are similar, 
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i.e. hae the same ratios aO/d. 

Let the reference specimen be characterized by d = d and L = 
LI · T~en the maximum .load P2 measured for a dissimilar s~eCimen of 
d1mens Ions L2, d2 such that [.,/d 

• . r.. 2 t- LI/d I must be transformed to 
the max'7 um load P2 corresponding to span·L~ = L

1
d

2
/d

1
• Equating 

the bending moments, P2L2/4 = P2(L
1
d

2
/d

1
)/4 we obtain 

* L2d1 
P2 = P2 L

l
d

2 
(46) 

* specimen of span L? and the actual, diSSimilar specimen of span L 
ha~~ the same cross-section, and therefore, they may be assumed t02 

fa1~ a~ the same cr~ck length c, i.e •• at the same a or the same 
ex ,ex - a/dl. Thus, the energy release rates G at maximum load must 

be the same for both speCimens, and so (according to Eq. 36) 

G - p2 ( , IE 2 2 *2 * ;:> 2 * 
- 2g ( 2 ) c h d2 P2 g (a2 )/Ec b-d

2 
where cx;:> = a

2
/d

2 
= a

Z
/d

2
: 

this yieids 

* 
g(a

Z
) 

P
2 

D 
;:> -*~- ( 47) 

9 (Cl
Z

) 

It may be checke~ numerically that if hoth L2/d;:> are large rq. 47 
reduces to Eq. Mi. 

~9' 47 has an inconvenient featur~ in that the crack length c 
at fa2) ure must be estimated. before P

2 
can he cal cUI aterl 

. (a2 -. (a o + C)/d 2)· The est1mate, however, can he improved 
1tera~lveT~. For this purpose one has to solve also the R-curve as 
descr1h~d 1n the next section, and then solve ex * from Eq. 37, 
upon wh1Ch one may ohtain an improved value of ~2 from Eq. 47. 

3.5 Determination of R-Curve as an Envelope 

.Consider again that a series of geometrically Similar 
Spec1mens (of the same thickness b) has been tested and the maximum 
load P = Pmax has been measured for each of them. However the 
crac~ leng~h c corresponding to each failure load in each ~f these 
spec1men~ 15 ~nkn?wn (its measurement, no matter how careful, would 
not reallY help Slnce c should be considered as the equivalent 
crack length giving the same remote elastic stress field, rather 
than the actual crack length). Using function g(a) which;s 
Common to all specimens, we can plot according to Fq' 3fi the 
equil·h . . • 
sho 1 .rl~~ curves of, G versus.c for each of these specimens, as is 

wn 1n .1g. gao OnlY one pOint on each of these equilihrium 
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curves is the failure state. Now, each equilibrium curve of G 
versus c must contain a fail ure point, and so this curve should be 
tangent to the R-curve, as seen in Fig. 9a. This leads to the 
following conclusion: 

The R-curve is the envelope of all equlibrium curves of G 
versus c for the failure loads of specimens of different sizes. 

To prove it rigorously, the curves in Fig. 9a are considered 
as a one-parameter family of curves (with parameter A) described 
by the equation 

f(c, G, A) ::: 0 (4R) 

in which 

f(c, G, A) ::: R(c) - G (a
O 

+ C, A) (49) 

Differentiation of Eq. 48 yieids 

~+ 3f G' +~~:: R' _ G' +i!:~:: 0 
a c a G' a A de a A ac (50) 

The envelope of the family of all curves is given by Eq. 50 with 
the condition af/a,,:: O. This leads then to the relation R'(c) 
G' :: 0, whi ch is the same as Eq. 35 for the crit i ca 1 state. So the 
envelope of the curve represents the critical states • 

It may now seem that the R-curve could be constructed as an 
envelope directly from measured data (Eq. 41) by plotting G versus 
c according to Eq. 36. In practice, however, such an approach does 
not work. This -is because of inevitahle statistical scatter of 
test results (see suhsequent comments on Fig. 9b). Therefore, one 
needs some simple law for the mean hehavior which could he used to 
smooth out the experimental data before construction of the 
envelope is attempted. Eq. 27 for the size effect provides such a 
law. So we use the smoothed data from Eq. 45, and for each pair d 
and P we plot the equilihrium curve of r, versus c according to (q. 
36. This yields the family of curves shown in Fig. 9a. The 
envelope, representing the R-curve, may he graphically plotted with 
ease. To obtain the envelope numerically, it is simplest to locate 
from the graph the approximate c-values of the points on the 
envelope, then evaluate for each of them the G-value from Eq. 36, 
and then fit these values of G with a suitable formula. 

Although, from the viewpoint of representation of the original 
measured data, many different formulas are ahout equally good [51 
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(due to 
1 imited 
or 42). 
hest 

large scatter of data), the choice of formulas hecomes mOre 
if one wants to closely match the size effect law (~qs. 27 

From this viewpoint,· the following formula appears to WOrk 

R(c) (51 \ 

Its parameters are found, according to the values in Eq. 45, as Gf 
= 0.291 lb./in., cm = l.B95 in •• and n = 3.n. This formula, 
plotted graphically in Fig. ga, appears to be a perfect envelope. 

A Iternati vely, one can also use the formul a 

kO 
-m 

R (c) = G ( 1 + n) (52) 
f 

c + kl c 

with coefficients Gf , kO' k1• m and.n. ~t so hap~ens that t~e 

approximations of the envelope remain qU1te good 1f ~ and n 1n tq. 
52 are fixed as m = 0.19 and n = 4.24. Then Eq. 52 has the 
advantage that parameters kn and kl may he determined by linear 
regression. Indeed, Eq. 52 can be transformed to the form 
y = A'X + C' , in which 

1 
l/m -1 

x=c
n

- l y=[(GfR-) -11 Ic,AI=klCI,C'=l/kl. 

For the v~~ues in Eq. 45. one ohtains kn = 1.53 x 1010, and kl 
3.58 x 10 • 

For comparison, let us see what we would get if the size 
effect law (Eq. 1) were not available to us. Then, plotting the 
curves of G vesus c (Eq. 36) on the basis of the measured maximum 
loads (Eq. 41), we would get the family of curves shown in Fig. 
9b. This family of curves has no common envelope, and since the 
failure points (i.e., the values of c at failure) for each of the 
curves are unknown, it is not even possible to deduce any R-curve 
by statistical regression. Thus, knowledge of the size effect law 
(Eq. 27) is crucial for being able to determine the R-curve without 
havi ng to meC3sure the crack 1 engths at fail ure states, a task 
notorious for its difficulty and ambiguity. For comparison, Fig. 
9b also shows the R-curve which is obtained if the measured maximum 
loads are first smoothed with the size effect law, Eq. 27. (The 
fact that the R-curve is only an approximate concept and is not 
strictly unique for different specimen shapes is not the cause of 
the lack of a common envelope in Fig. 9h; indeed, if the curves in 
Fig. 9b are calculated from fixed material properties, a smooth 
common envelope always exists.) 
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Instead of constructing the envelope graphically (Fig. 9a), 
ne can define it analytically. For this purpose, we insert P = . 

Ocr bd in Eq. 36, and we set equal 0 the partial derivative ?f.th1S 
eq~ation with respect to A at constant G, which is the cond1t10n 
for an envelope. This yields 

dO 2 , (' \ (' G = r "oN A) g Cl. I , 

C 

1 dg(a) 
9(a)~ 

(53) 

(54) 

in which functions J. (A) and g(a) are defined by Eqs. 27 and 40. 
Eqs. 53-54 represent ~ parametric equ~tion of the R-curve. W1~h 
A as a parameter. To calculate points on the R-curv~. a ser1es of 
A -values is chosen, and for each A the value of c 1S solved from 

Eq. 54 by Newton iterative method. G then results by suhstitution 
in Eq. 51 (in which c = aAdO - an'. 

It is interesting to calculate the size effect curve 
o (Al from the R-curve R(c) that has previously h~en calculated 

fr~m the size effect curve according to Eq. 27. Slnce Eqs. 41 or 
42 for the R-curve are only approximate, the resulting curve 

cr (A) cannot be exactly the same as Eq. 27, but it should he 
al~ost the same. The calculations are carried out for the present 
example (Eq. 50), and the R-curve in Eq. 51 is obtai~ed hy . 
maximizing the ratio in Eq. 38 in which d =. A dO,.Wlth g(a) glven 
by Eq. 40. After solving c from Eq. 39, G 1S obta1ned from Eq. 3~ 

and P (or 0) is obtained from Eq. 36. The results. are plotted ln 
Fig. 10 and ~a~ulated in Table 1. We see that the Slze effect 
Curves thus obtai ned are indeed very close to the si ze effect law 
(Eq.27). 

As is well known. the R-curve concept is only approximate. 
For different specimen geometries different R-curves must be 
obta i ned, in theory, although usua 11 y the differences are not large 
(especially when compared to the scatter of test data). To check 
it we follow the procedure from Eq. 34 to Eq. 51 and calculate the 
R-~urves for three-point bent specimens of various span-to-depth 
ratios various notch length-to-depth ratios, and also for a 
differ;nt type of specimen - the compact ~ension specimen. The 1 

corresponding functions for these geometrles were taken from Tada s 
handbook r371. The shapes of the resulting R-curves R(c) are 
plotted in Fig. 4b (the R-curves were scaled both vert~cally and 
horizontally so that the final value be l.n and the pOlnt where 
one-half of the final value is reached be common to all the R­
Curves). It is interest i ng to note how sma 11 are t~e differences 
among the shapes of the R-curves for different speclmen shapes. 
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They are so small that they are hardly distinguishable 
graphically. Therefore, the R-curves from Fig. 10 are also 
tabulated in Table 2. (The parameters for the three columns in 
this Table are Gf = ~.291, 0~748~ 1.258, ;.2fiO lh./in., crt! = 1.895, 
1.491,1.919,2.280 In., ch - 0 • .)32,0.26" 0.33fi, 0.3fi3 In., 
respectively. ) 

rn consequence of these considerations, it may be concluded 
that the relationship between the size effect law and the R-curve 
for a given specimen geometry may he considered as approximately 
unique. 

In the size effect law (Eq. 27), there are two independent 
parameters, 8f; and dO. For the relative values of q-curve R(c)/G f 
in Eq. 41, there are also only two parameters, nand cm (Gf 

is 
obtained by linear regression from Eq. 44). Hence, for al 
specimens for which the values of Rf~ and nO are the same, the 
values of nondimensional parameters nand cm should also he the 
same. This means that all geometrically similar specimens of 
di fferent si zes should be characteri zed by the same val ues of nand 
cm/d O• Thi s property is verifi ed by numeri ca 1 exampl es. We may, 
therefore, construct a table of nand cm/d O for various typical 
specimen geometries, see Fig. 11. For the specimen geometries 
included in Fig. II, it is not necessary to construct the R-curve 
as an envelope. It suffices to carry out the linear regression 
shown in Fig. 7b, and then take nand cm/d O from I='ig. 11 • 

3.6 Oeterrni nation of Crack Rand Model Parameters 

The size effect law (Eq. 27) may be also exploited to identify 
the material parameters for the finite element crack band model 
[3,161. This may be done in two ways - either with or without an 
equivalent linear elastic fracture analysis. Consider the latter 
approach fi rst • 

In the crack hand model, the cracking, assumed to he uni formly 
distributed throughout the finite element, is descrihed by a 
triaxial constitutive relation with tensile strain-softening. 
Under the assumption that the principal stress directions do not 
rotate significantly during the passage of the fracture process 
zone through a given point, the strain-softening may be defined hy 
a to~al stress-strain relation f = ~ £ + ~, in which £ = col~mn 

matnx of stress components = (0", 01'2' 031· 012; on' 031) , 
where T denotes a transpose of a matrix and the Subscflpts refer to 
cartesian coordinates xi(i = 1,2,3), of whi:h Xl is the direction 
of crack propagation ann x3 is normal to the crack plane: 
f = similar column matrix of strain components, C = 6 x 6 matrix 

of elastic compliances (constants), and ~ = colum~ matrix of 
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additional averaged strains due to cracking. Only the normal 

components of ~ are nonzero anri they are defi ned as 

~ :: $(0 ), ~ :: $(11 ), ~ 3 :: $(033)' in which <j) is a certain 

fu~ttion. Ithe pF~cise s~&pe o~ this function is not important, anri 

in the preceding work (3,10] this function is taken as bilinear. 

It is cal i brateri according to the bil i near uni ax; al tensile stress­

strain diagram shown in Fig. 12, characterized by negative tangent 

modu1us Et for the strain-softening segment, and by tensile 

strength f~. For unloading (decreasing strain), a different 

stress-straYn diagram is conSidered • 

It must be emphasized that the foregoing stress-strain 

re1ation is va1id on1y for a certain e1ement size which corresponds 

to the representative v01ume of the heterogeneous material and to a 

certain width Wc of the cracking front. If a different element 

size has to be used, the stress-strain relation must be adjusted so 

as toyie1d the same fracture energy. Gf 
• 

The fracture energy is equa1 to the area under the tenSile 

uniaxial stress-strain diagram in Fig. 12a, times the width of 

cracking front, wc: 

(55) 

Approximately. Wc = 3da where ria :: maximum aggregate size. 

For geometrically similar specimens, the finite element 

solution of the nominal stress at failure ON shoulrl depend only on 

the material parameters. There are four of them, 

f~, E. Gf • and w • Parameter Et is not independent since it must 

satisfy Eq. 55. Eonsequently, for geometrically similar specimens 

p 
Dd = ON :: ~1 (ft. E, Gf , .wc ) (56) 

in which ~l is a'certain function. Now, according to Ruckingham's 

IT theorem Of dimensional ana1ysis [2], the number n of 

independent nondimensiona1 governing ·parameters Shou~d be np - nd 

where n = 4 :: number of governing parameters in Eq. 56 and nd :: 2 

= numbe~ of independent dimensions in these parameters. Since 

there are among them only two independent dimensions. namely those 

of length and of force. n = 4 - 2 = 2. So there can be only two 

independent nondimensionaf governing parameters. Along with the 

nondimensional function. they may be introduced as 

d 
e -­

w 
c 

E Gf 
K = --:::-:z 

w f' 
c t 

(57) 



232 

and the governing Eq. 56 reduces to 

s = <p(e, K) (58) 

Eqs. 57-58, describing the similitude of blunt fracture, greatly 
reduce the number of cases that have to be solved by fi~ite 

elements in order to cover all possible situations. 

For identifying the material parameters of the crack hand 
model, the following approach may be adopted. t~e choose a certain 
specimen geometry, and by testing specimens of different sizes we 
determine, by linear regression, parameters R and dO of the size 
effect law, Eq. 27. Then, by carrying out finite element solutions 
for specimens of different sizes and similar geometry, we determine 
the size effect law as a function of the governing parameters 

9 and K (Eq. 57). Final1y, we determine those materia: parameter 
values for which both size effect laws are matched. The 
interjection of the size effect law not only facilitates analysis 
hut aiso has the effect of smoothing and extending rando""~v' , 
scattered measured data. The detaned procedure is as f(J;~ows. 

1. Set Wc = E = ft = b = 1. 

2. Fix the value of K (K G
f

). 

3. Fix the value of a (e = d) and solve hy a finite e:ement 
program with incremental loading the maximum load P (the 10ad­
point displacements are prescrihed and D is calculated as the 
reaction). From this, calculate s = P/ 9. 

4. Repea!2step 3 for various values of e and construct the plot 
of s versus e. 

5. Now, according to the size effect law in Eq: f?~ this plot 
should ideally agree with s = Rei + (e/r)] ,which is 
eq~~valent t~ y-1 Ax,+ C'_~here x = e, y = 
s ,A. = (8. r) ,C. = Band r = dO/We- Oetermine the 

regresslon llne of thlS plot; its y-intercept is C', from which 
B = 1/ IG', and its slope is A, from which r = C'/A. These 
values of 8 and r correspond to the previously fixed value of 

K. 

6. Repeat steps 2 - 5 for various values of K and construct the 
graphs R( K) and r(K) to be used for interpretation of test 
data. 

The calculation results show that the graphs of 
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R(K) and r(K) are linear. Thus, calculation of only two points on 
each graph is sufficient, and the values may generally be 
cal cUI ated as 

(59) 

Fig. 13 shows the calculation results for several typical fracture 
specimens. 

We are now ready to give an example using the data from Eq. 45 

for similar spec~mens of different sizes. The test results are 
plotted as liON versus d (Fig. 7h), and from the slope and the 
intercept of the regression line we get the values of Rand dn for 
the si ze effect 1 aw as measured (Eq. 271. For the rlata in Fi g. 7h 

we have R = 0.1817 and dO = 7.834. Then, for this value of R, we 
calculate from Eq. 5q, using the values from Fig. 13, that Km = 
8.9 and r = 11.9. From this we finally obtain -1 

dO = wc f,2 E = 1 2G f 
Wc = rTK::!' Gf E t Km, t r - ~ 

m Wc t 

(fin) 

For specimen geometries other than those in Fig. 13 the 
analyst needs to calculate first (with the help of finite element 
solutions) the values of kl and k2. 

Exploiting the size effect law (Eq. 27) makes it possihle to 
do with a lesser amount of measurements. If the values of maximum 
loads for only a few specimens are fitted directly with the finite 
element program for the crack band theory, the values of material 
parameters which give good fits of data are quite ambiguous; even 
very di fferent materi al parameter val ues yi eld equally good fits. 
This ambiguity and uncertainty is removed hy the size effect law, 
which has the effect of smoothing and extrapolating the measured 
data. 

If a smoothly curved tensile strain-softening constitutive 
equation is used, one may calihrate it accorrling to the value Gf 
obtained as ahove. Instead of calculating Et one needs to arljust 
the tensile strai n-softeni ng uni axi al curve so that the area under 
the strain-softening segment and under the unloading rliagram 
emanating from the peak stress point would be equal to Gf • 

Construction of the graphs in Fig. 13 requires the use of a 
nonlinear finite element program with step-hy-step loarling for the 
crack band theory. Such a program is not needed, however, if 
equivalent linear fracture analysis is used. The value of Gf may 
then be calculated from Eq. 12 on the basis of the slope of the 
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size effect regression plot and th~ value of.g( a o) ohtained hy an 
analytical or finite element solut10n acCOr rl lng to linear elastic 

fracture mechanics. 

In the preceding procedure based on Eq. nO, the value of wc 
has been considered as unknown. As a rough approximatio:, however, 
w - 3d where d = maximum aggregate size C161. If thiS 
agproximgtion is ~doPted, and if ft is known, then the. 
identification of material parameters of crack hand mode: hecomes 
much simpler; G

f 
is obtained fro~ Eq. 44 on t~e basis of the slope 

of the regression plot for the SlZe effect (F1g. 7b), ane! Et is 
thenlsimplt sol~ed from the relation Gf = Wc 
(C - C

t
) f~ /2, i.e. 

1 2G f 
E

t 
= (r - WF) 

c t 

-1 

3.7 Fracture Modeis with Stress-Displacement Re~atio~ 

(61 ) 

Through a simple extension of the foregoing anaiysis, it is 
possible to determine the material oarameters for nonlinear 
fracture models, such as HillerbOrg;s model for concrete (23,341, 
in which a sharp line fracture is assumed and a relation between 
the relative displacement 5 and normal stress 0 across the line 
is introduced as a material property. The rlisplacement 6 lumps 
into a line the accumulaterl normal strain riue to cracking acrosS 
the crack band width wC' and so 

6(0) 
(6() 

where E(O) descrihes the tensile stress-strain riiagram for the 
equivalent crack band morlel. Most simply, the 0 - :S re;ation may 
be considered as a straight line of negative slope Cf (Fig. Pc:, 
descrihed as 6(0) = (f~ - o)/C f if a > 0 ann c " 0, 

and a = 0 if 6 " f~/Cf' 

Equating the total relative displacement across the crack hand 
according to;both models and assuming the stress at the crack front 
(in a thin plate) to be approximately uniaxial, we have the 
relation 

a f t - a ft - a f t 
w r+ = w _ + r 
Th~s rela~fon is sa~isfi~. for any a if 

(1)3 ) 
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(64) 

Thus, if Et has been determi ned from measurement, Cf can be found 
alsO. 

AlternativelY, we may use the 2ondition of e~ual ftactu~e 

energy for both theories: Gf =. f~. /2C
f 

= Wc (C - Et ) f t /2. 
From this, Eq. 64 is again obta1nea. 

3.8 On Material Parameter Identification Without the Size Effect 
Law 

To further iiiustrate the advantage derived from the use of 
the Size effect ~aw. consider a series of tests of specimens of the 
same dimensi?~ d but different notch lengths aO- If one wishes to 
use the enve; ope property, one would;>plot for ~ach pair of at) and P 
the Curve of G versus c where G = P-g(a)/(E b-d) and a = (aO + 

el/d. If the measurements were perfect, wit~ no error, then these 
plots would y~eirl a family of curves such as illustrated in Fig. 
14a, for which the envelope representing the R-curve can be, in 
theory. constructed. In practice, this does not work, for two 
~easons: I) If d is constant, only a smail portion of the R-curve 
~s covered by the failure states for various aO -values. 2) There 
1S always statistical scatter, which causes that these plots yield 
a family of curves such as illustrated in Fig. 14b. Obviously, no 
envelope can be constructed for this family, and thus smoothing of 
the data is imperative before the envelope could be traced. 
Howe~er, ~or t~e effect of ~he notch length aO at a constant crosS 
sect10n dlmenSlon d, there 1S no simple law which could be used for 
smoothing the data. Such a law is known only for the size effect. 

Nevertheless, a more sophisticated procedure similar to that 
employed in Ref. 11, can be used. It consists of the following 
steps: 

1. Choose a certain formul a for the R-curve. such as Eq. 51 or 52. 

2. Choose certain values of the material parameters in the 
formula. 

3. Choose a certai'1 value of initial notch length aO' 
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4. 

5. 

6. 

7. 

3.9 

For this value of aQ' solve crack extension at failure, c, 
the condition Gc(i)~g (al = Max (=fmax )' and then evaluate 
P = (f E bd) 

max c 

Repeat steps 2-4 for various values of aO between 0 and d. 

from 

Evaluate a suitable objec~ive function to he minimized, such as 
~ = ~[(P - Ptest)/PtestJ • 

Repeat steps 1-6 to find which R-curve parameters yield mlnlmum 
~. A computer optimization subroutine, such as the Marquardt­

Levenberg algorithm may he used for this purpose [111. 

This type of algorithm works well [111, hut requires more 
complicated optimization procedures - nonlinear optimization 
instead of linear regression. In nonlinear optimization it is 
not always guaranteed that a solution will be found. Moreover 
the minimum of ~ is not very sharp, which causes that almost 
equally good fits of test data are obtained with rather 
different material parameter values [Ill. This is, of course, 
due to lack of data smoothing by a law known in advance. 
Consequently, a larger amount of experimental results is needed 
if this approach is used [llJ. 

On Determining Gf from Complete Load-Deflection Diagram 

It has been suggested that the fracture energy Gf can be 
determined as the area under the complete load-deflection diagram 
for complete fracture of specimen [32,34,38J. However, the G

f 
-

values obtained in this manner are frequently inconsistent and 
scattered. One likely source of error is that energy dissipation 
which does not produce fracture may happen in the system. The 
basic difference from the present approach is that the load values 
for all crack lengths affect the result, while here only the peak 
load value matters. The question then is whether the fracture 
pocess zone at other than peak load values dissipates energy at the 
same rate as it does at the peak load. This would certainly he 
true if the fracture were a straight line. with a sharp tip and a 
fracture process zone of negligihle size. This is not so, 
however. It is likely that the width and the length of the 
microcracki~g zone at the fracture front are different than they 
are at the peak load, and the fact that G

f 
is far larger than 

double the theoretical specific surface Glhhs' free energy of the 
solid serves as the proof that much energy dissipation must occur 
due to microcracking on the sides of the final continuous crack. 
The width of the microcracking zone ahead of the fracture front is 
assumed to be constant in the crack band model as well as 
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Hi1lerhorg's fictitious crack model, but this is no doubt a 
simplification (the nonlocal continuum approach points to that, 
too). In fact it is likely that the width w of this zone varies 
(Fig. 12g), and especially that the widths at crack initiation 
(Fig. 12d) and at crack termination (Fig. 12f) may he quite 
different from the width at the peak load (Fig. 12), at which the 
fracture front is remote from hoth the notch and the opposite 
face. Consequently, G along the crack path is variable (Fig. 12h) 
and the mean value G (obtained by dividing the area under the 
load-deflection curve by the ligament length d-aO) need not be the 
same as the value Gf at maximum load (Fig. 12h). 

Now, of the values G and Gf (Fig. 12h) which one is more 
useful? That depends. If the goal is to predict the peak loads or 
the response near the peak loads, then it is more reasonable to use 
only peak load values for determining Gf . Resides, they are e3sier 
to measure. 

In the light of Fig. 14, there might also be another 
difficulty. From this figure it is apparent that the use of a 
Single size specimen with different crack lengths cannot, due to 
inevitable random scatter, give information on the complete R­
Cijrve, or the complete size-effect curve. It pertains only to a 
portion of these curves, and does not indicate unamhiguously the 
limiting value of the R-curve, which represents Gf (Fig. 14). If 
tests on single size specimens (without crack length measurements) 
do not give sufficient data on the R-curve, how can they 
unambiguously yield the R-curve asymptote? 

R-Curves for Different SpeCimen Shapes. - Although this is not 
the main objective of this study, the use of the present results 
for the R-curves requires knowing to what extent the R-curve may he 
considered unique. This is a strictly theoretical question, which 
is hard to answer experimentally because the random scatter of 
material properties and other measurement difficulties obfuscate 
the comparisons of various experimentally determined R-curves. 
Therefore, it is preferable to make comparisons of R-curves which 
are calculated for specimens of different shapes using the same 
material properties. Such calculations have heen carried out as 
described in Ref. 16 for specimens of various typical geometries. 
The calculated R-curves are plotted and compared in Fig. 15. The 
differences between some of these curves may seem large. however. 
they are not large compared to the inevitable statistical scatter 
of measured R-curve values. Therefore, the hypothesis of a unique 
R-curve appears to be an acceptable approximation for the purposes 
of crude structural analysis. 
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4. 

1. 

2. 

3. 

CONCLUSIONS 

The macroscopic continuum description of dispersed cracking 
should properly be hased on the nonlocal continuum concept. A 
suitable type of nonlocal continuum is the imbricate continuum, 
representing the limit of an imbricated element system. This 
model is capable of describing stable strain-softening zones of 
a finite size. For large finite elements, this model reduces 
to the previously formulated crack band theory. The existance 
of a characteristic length implies a simple size effect law for 
failures due to progressive cracking, which results from 
dimensional analysis and represents a transition from limit 
analysis (strength or yield criterion) to linear elastic 
fracture mechanics. 

The size effect law of blunt fracture (Eq. 27) is useful for 
identifying the material parameters for nonlinear fracture, 
regardless of whether the R-curve approach, or the strain­
softening crack band model, or the stress-displacement relation 
(Hillerborg's model) is used. The basic idea is to transform 
the size effect law to a linear plot and determine in this plot 
the regression line for the measured data obtained hy tests of 
geometrically similar specimens of different sizes •. The slope 
of this regression line then yields the fracture energy (the 
value of which is, by definition, size-independent). The 
method can be also extended to certain dissimilar specimens of 
similar cross sections. The remaining nonlinear fracture 
parameters for the R-curve or the crack band model (or 
Hillerborg's model) may then be identified hy finding a 
matching size effect regression line for this model. 

The R-curve may be obtained as the envelope of a family of 
fracture equilibrium curves determined on the basis of maximum 
load data smoothed with the size effect law. Without this 
smoothing, no envelope exists. 

4. The size effect law and the parameters of the crack band model 
are uniquely related. If one of them is specified, the other 
one may then be calculated. The same is true of the R-curve 
for specimens of given shape. 

5. ExploitiOg the size effect law has important advantages: 
Statistically scattered measurements are smoothed with a known 
law permitting linear regression (Fig. Ib). The range of the 
test data is extended. thus reducing ambiguity of data fitting 
and uncertainty in the material parameter values. 
Consequently. the experimentalist can get by with fewer tests 
covering a narrower range of conditions. nata smoothing 
enables constructing an envelope. A simpler measur.ement 
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procedure than with the existing methods is made possible. 
Only maximum load values ~re needed. They can be obtained even 
in a laboratory with the most rudimentary equipment. There is 
no need to measure the crack length, which avoids the ambiguity 
in defining the location of the crack tip and the difficulty of 
its observation. No measurement of unloading or reloading 
compliance is needed. Since the size effect law for hlunt 
fracture is applicable to diverse materials such as concrete, 
rock, or ductile metals (61, the present method of 
identification of material parameters should be applicahle to 
all these materials as well. 

n. When the purpose of applying nonlinear fracture mechanjcs in 
practice is the determination of the maximum load for monotonic 
loading, rather than the maximum load after a series of 
previous unloadings, it is more relistic to use only maximum 
loads also for the experimental calibration of the mathematical 
model. 

7. Since material parameter identification is reduced to linear 
regressions, it would be possible to introduce statistics, and 
in particular, to determine the standard deviations of the 
material parameters from the statistical characteristics of the 
deviations from the regression line. As is generally agreed, 
statistical aspects are very important for fracture 
predictions. 

8. Measuring maximum loads of specimens that have notches of 
various lengths but are of the same size does not provide 
sufficient basis for determining the nonlinear fracture 
properties, e.g., the R-curve, accurately. 
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1. INTRODUCTION 

The proper fracture mechanics to be applied to crack propa­
gation in concrete is determined by scale effects. To ascertain 
whether linear elastic fracture mechanics (LEFM) or a non-linear 
~pproach is more applicable to a particular problem, one must 
!nswer the fo 11 owi ng quest ion: 

How large is the process zone compared to the smallest 
critical dimension of the structure under consideration? 

The purpose of this paper is to address this question from the 
particular point-of-view of discrete representation of a crack in 
a finite element model. Before proceeding to outline the paper's 
approach and methods, it is essential that key terms used in the 
above question be defined and that important assumptions be stated: 

The process zone is that area accompanying crack propaga­
tion in which inelastic material response is occurring. 

The term crack is not used here in its classical sense, as 
a complete discontinuity in both traction and displacement 
fields. Rather, it is used to describe an effective crack 
which consists of a length of true crack (in the classical 
sense) preceded by its process zone. 

The critical dimension might be the length of the crack 
itself, including its process zone, or, if it is smaller, 
the distance from the true crack tip to the nearest free 
surface or reinforcing bar. 
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These definitions are in the spirit of the approach to the fracture 
mechanics of metals first proposed by Irwin (1). In fact, through_ 
out this paper comparisons and analogies will be drawn between the 
well-accepted formulations for process zone size in ductile metals 
and the estimates derived here for brittle non-metallics. 

The basis for any process zone size estimate, whether it be 
for a zone of plastic deformation in a metal or for some form of 
inelastic response in concrete, is a constitutive model for the 
material in this zone. Whereas for metals a model might be 
composed of the von Mises yield criterion, to relate the effective 
stress to all the principal stresses, and a normality flow rule, 
to relate the effective stresses to elastic and plastic strains, 
a much simpler, yet analogous, constitutive model will be used in 
this paper. To describe the inelastic behavior in the process zone 
of a crack propagating in concrete the following assumptions are 
made: 

1. The only constitutive modeling required for process zone 
description in pure Mode I is the stress-versus-crack­
opening-displacement (COD) relation which can be obtained 
from a displacement-controlled direct tension test (2). 
This relation is, in fact, the post-peak stress-COD curve 
measured in such a test. A range of such process zone 
softening models used in the present analyses is shown 
in Fi gure 1. 

2. The previous assumption implies that normal stress 
continues to be transferred across a displacement dis­
continuity which mayor may not be visible to the naked 
eye. It is assumed that this stress transfer is due to 
aggregate bridging and the undulating, three-dimensional 
nature of the opposing crack surfaces (3). 

3. It is assumed that the process zone localizes, due to the 
rapid softening behavior shown in the models of Figure 1, 
into a very narrow band ahead of the true crack tip. In 
fact, for the purposes of the present finite element 
analysis, all softening is confined to one-dimensional 
interface elements lying in the crack plane ahead of the 
true crack tip (4). 

4. Although for metals the process zone size is especially 
influenced by the principal stress parallel to the true 
crack front, it is assumed that this stress has no 
influence on the process zone in geomaterials such as 
concrete and rock (5,6). 

Schematically, these assumptions combine to paint the picture 
shown in Figure 2. The constitutive model is defined by the direct 
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Figure 1. Various constitutive models for a discrete representa­
tion of the process zone in concrete. 
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Figure 2. A schematic of the hypothesized process zone in 
concrete. 
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tensile strength, fT' which may be influenced by stress normal to 
the crack front, the shape of the postpeak stress-COD relationship, 
which, in conjunction with the COO-gradient characteristic of the 
problem at hand, produces the shape of t~e ~nelastic stre~s 

distribution, and finally, the characterlstlc COD, '\' WhlCh will 
occur at the true crack tip. Given these observations and assump­
tions, it is natural to ask: 

How large must the critical dimension be for the applica­
tion of linear elastic fracture mechanics (LEFM) to be 
valid? Or, from the perspective of assumption 3, above, 
how long is the process zone? 

How sensitive is the process zone length, r , to structural 
geometry and the constitutive model which d~ives it? 

For a problem of effectively infinite domain, what is the 
steady-state process zone length for a given constitutive 
model? 

The approach to answeri ng these quest ions here wi 11 be a 
series of numerical analyses. All will be based on the well-known 
finite element method. The unique feature of all the analyses, 
however, wi 11 be the "di screte" representation of the crack in the 
mesh. The current state-of-the-practice for representing a crack 
in a finite element mesh is the "smeared" approach, originally 
proposed by Rashid (7). In that approach, the constitutive model 
is used to simulate the cracking process: the mesh is not changed 
as arbitrary cracking progresses, nor is a crack with a trajectory 
known a priori accommodated with special meshing. 

In the discrete approach as used here, the mesh 1S itself 
modified, automatically, to represent the cracking process (8,9). 
In the case of arbitrary cracking, local remeshing, the introduc­
tion of new elements and nodes and the modification of some 
previously existing elements, is performed for each crack at each 
increment of cracking. Singularity elements are introduced at a 
true crack tip under LEFM conditions. If the process zone, 
because of its length, requires representation, it too is modeled 
discretely a~ mentioned in assumption 3, above. If the crack 
trajectory is known, as will be the case in most of the test cases 
analyses to~be reported here. special meshing is introduced to 
facilitate modeling of the complete fracture process. A thorough 
discussion of the general advantages and disadvantages of the two 
approaches is given, in an historical perspective, by Ingraffea 
and Saouma (9). 
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distinctions begin to blur when a process zone is being represented. 
It will be shown here that, under this condition, the only differ­
ence between the approaches lies in assumption 3, above. 

Before beginning presentation of the finite element analyses 
which address the questions presented above, it is necessary to 
begin more simply, with hand calculations. These will enable one 
to relate process zone effects in strain-softening geomaterials to 
parallel processes in metals. Further they will offer a simple 
check for the acceptability of the finite element calculations to 
foll ow. 

2. PROCESS ZONE SIZE: SOME QUALITATIVE ASSESSMENTS 

Figure 3, a complete stress-strain curve from a strain­
controlled, direct-tension test on a strain-softening material, is 
the basis for the introductory calculations of this section. The 
constitutitve models shown in Figure 1 can be derived from such a 
test. Evans and Marathe were fi rst to observe (10), that, once the 
fracturi ng process of the test specimen has begun, nearly all the 
strain is due to the formation of a crack. That is, if the gage 
length were the specimen length, then the measured strain would be 
approximately equal to the COD divided by the gage length. 

Alternatively, one can groove or so shape the test specimen so 
that the location of the fracture plane is known. The COO can then 
be measured directly (2) as a function of applied stress. 

For comparison, let's assume that two tests of the type shown 
schematically in Figure 3 are performed, one on a concrete specimen 
leading to the response shown, the other on a metal specimen, with 
uniaxial yield stress fy' exhibiting elastic-perfectly plastic 
behavi or. We shall fi rst seek to compare measures of process zone 
size for these materials based on very simple assumptions. 

2.1 Comparisons of Strain-Softening Versus Perfectly-Plastic 
Behavior in the Process Zon€ 

Focus first on the region ahead of a crack tip in the metal. 
It is straightforward to show that a second-order measure of 
process zone size for the metal rp , is (11) 

m 

K 2 
1 ( Ic, 

:: l-) 
'!T fy 

(1) 

The differences between the "discrete" and "smeared" apPioaches 
are stark when true crack modeling is performed. However, the Where, 
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Figure 3. Idealized stress-strain curve for concrete loaded in 
uniaxial tension under strain control. 
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Figure 4. Hypothesized stress redistribution ahead of a true crack 
tip in concrete. For equilibrium, area C must equal area A plus 
area B. 
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K
Ic 

= plane strain fracture toughness 

This measure is the process zone length along the crack direction. 
It assumes that the effective yield stress is the uniaxial yield 
stress, that is, stress multiaxiality is neglected, and that 
approximate stress redistribution has occurred to satisfy equilib­
rium in the y-direction (see Figure 4 for coordinate system). 

Focus now on Figure 4, a simplified schematic of the region 
ahead of a true crack tip in concrete. The first difference which 
arises between this and the analogous situation in the elastic, 
perfectly-plastic metal is that one does not know the shape of the 
inelastic stress distribution in the process zone because the COD 
profile is problem dependent. However, to continue the analysis, 
we will assume a bilinear distribution as shown. with a as a snape 
parameter, and seek to find the concrete's process zone length, 
r , from 
Pc 

r d + r* 
Pc Pc 

where, 

K 2 
* 1 ( Ic I r - 271 7o) 
Pc T 

It can be easily shown (11) that r; is a fi rst-order measure 
c 

of process zone length which does not account for any stress 
redistribution. To satisfy equilibrium in the y-direction it 
is necessary that stress redistribution occur such that, 

* r 

1 fPc KI 
- daf' = --
2 T 1211 r 

dr - f'r* + 1 (1 - a) f'r* 
T Pc 2 T Pc 

o 

Solving Equation (2) for d yields, 

d = r* (1 - 1 j 
Pc'Cl. 

(2) 

(3) 

(4) 

(5 ) 

It is interesting to comp3re now the second order process zone size 
estimates for the two materials using Equations (1) and (2) and 
(5). The comparison is done in Table 1 and it reveals the second 



Tabl e 1 

Comparison of Process Zone Size Measures for Concrete, rp , 
and an Elastic, Perfectly-Plastic Metal, rp c 

m 

a d/r* 
Pc 

r /r; 
p c 

r /r 
Pc Pm 

0.05 59 60 30 
0.20 14 15 7.5 
0.50 5 6 3 
0.75 3 4 2 
1.00 2 3 1.5 

difference in process zone characteristics of the two materials: 
when the y-stress is allowed to decay as the true crack tip is 
approached, rp becomes significantly larger than rp. Some repre-

c m 
sentative inelastic stress distributions are plotted in Figure 5 in 
terms of.a. Again, it is important to emphasize that the rate of 
decay, as indicated by a, will depend on the shape of the constitu­
tive curve and on the COD profile characteristic of the particular 
structural geometry and boundary conditions under consideration. 

As an example of the interaction of COD profile and consti­
tutive model, consider the following example. Assume the process 
zone material model shown in Figure 6. let us now solve for the 
COD profile in the inelastic zone. First, write the COD profile 
in terms of the stress distribution using Figure 6, 

COD(a) °c - a(r) 
f' 

T 

(6) 

Next, using the bilinear stress representation shown in Figure 4, 
solve for the COD in terms of the r-coordinate, 

For 0 (" r (" d, 

aft 

a( r) = 3 T * r 
(a - 1) r 

Pc 

(7) 

and, 

255 

a = I 
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Figure 5. Representative stress distributions ahead of the true 
crack tip for various values of a. 

COD 

Figure 6. A simple constitutive model for the discrete process 
zone. 
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COO( r) o [1 _ a (r)l 
c (1 _ 1) 'Tp j 

a C 

For d ~ r ~ rp , 
c 

o(r) 

and, 

COD(r) 5 :1 - 3 + (a _ 1): rn 
CLa '-;:*)j 

Pc 

(8) 

(9 ) 

(10 ) 

Equations (8) and (10) are plotted in Figure 7 for inelastic stress 
distributions previously seen in Figure 5. Using Table 1, one can 
see that the COD-profiles of Figure 7 would correspond to process 
zone lengths significantly larger than those in the metal with the 
same order of approximations. 

The inescapable conclusion to be drawn from these simple cal­
culations is that the size restriction for valid fracture toughness 
measurement in metals (12), written in terms of nultiples of r , 

Pm 

a, W-a > (11 ) 

where, 

a crack length, 
W-a remaining ligament 

is unconservative for materials which exhibit tensile strain 
softening. That is, crack lengths and ligaments longer than would 
be indicated by simple substitution of fr for fy in Equation (11) 

will be necessary to measure a valid fracture toughness. Further, 
and a bit more subtly, the simple models used here indicate that 
there is a strong dependence of process zone size on specimen type. 
For example; assume the constitutive model of Figure 6. For a 
specimen that would tend to produce a linear COD-profile, such as 
a wedge loaded center-cracked plate, Figure 7 and Table 1 show that 
specimen size restrictions would more nearly be, 

K 2 
a, W-a > 5(~1 

f' ' 
T 

(12 ) 

£QQ. 
8e 

0.5 

a =0.5 

I~ 

Figure 7. COD profiles for the constitutive model of Figure 6 and 
the stress distributions shown in Figure 5. 

If the COD profile were closer to the elliptical shape exhibited 
by, say, a center cracked plate loaded in remote tension, the 
restriction would become, 

K 2 
a, W-a > 7.5'~ 

f' ' 
T 

(13 ) 

At thi s poi nt fi ve materi al characteri st i cs have been 
introduced: E, the Young's modulus, KIc ' the fracture toughness, 

and the f+ and 5c pair which, together with its shape, define the 

a-COD curve. In fact, not all of these parameters are independent. 
Assume again the constitutive model of Figure 6. Since every 
material element in the process zone must ride down this curve 
before it cracks, in the LEFM sense, the critical energy absorption 
rate is the area under this curve, 

G= 1. ;: f' 
Ic 2 ~c T 

(14 ) 
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If a test on a large enough specimen were performed, it would yield 
a critical stress intensity (actor related to GIc by the familiar 
expression, 

2 
K1c 

G =-
Ic E 

(15 ) 

with plane stress assumed. It follows from Equations (14) and (15) 
that, 

2 2K Ic , = - (16) 
"c Ef' 

T 

It is interesting to note that if a value of critical stress inten­
sity typical of the largest concrete specimens tested to date (13, 
14), about 2.5 ksi Iln (2.75 MNm- 3/2), is used in Equation (16), 
the predicted characteristic COD, 5c ' is about 0.01 inch (0.25 mm). 
This value is surprisingly close, considering the approximations 
employed here, to values measured experimentally (2,10), about 
0.005 to 0.010 inch (.13 to .25 mm). 

In the next section we investigate the implications of one of 
these approximations on the assumption that the process lone width 
can be viewed, from the numerical modeling standpoint, as no more 
than 6c ' 

2.2 Stress Biaxiality Effects 

Recall that the calculations of the previous section neglected 
stress multiaxiality in the process lone. Equation (1), for 
example, is based on a uniaxial yield criterion despite the fact 
that tensile stress triaxiality theoretically occurs ahead of a 
crack tip. A third-order measure of process lone length directly 
ahead of the crack, and an estimate of the shape of the process 
zone can be obtained by admitting stress multiaxiality into the 
yield criter!on (11). 

The same process will be used here to make qual itat i ve 
assessments ~f the influence of stress multiaxiality on process 
zone shape in geomaterials. In what follows no stress redistribu­
tion is performed. Rather, we seek only the implications of stress 
biaxiality on the tensile strength parameter, fT' in the process 
zone constitutive model. 

Consider the family of curves shown in Figure 8. They are 
analogous to yield surfaces in plasticity and indicate, from 
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Figure 8. A family of tensile strength interaction curves. 

numbers 1 to 4, an increasing degree of ~rincipal stress inter­
action effect on tensile strength acCordlng to, 

1 °1 
or °2 

= f' 
T 

2 1. 5 + 
°1 

1.5 
°2 

f' 1. 5 
T 

3 °1 + ° = 2 
f' 
T 

0.7 0.7 f' 4 °1 
+ °2 T 

where, 

01' ° = principal stresses in the plane 
2 normal to the crack pl ane 

(17) 

Note that the third principal stress has been ne~l~cted for 
simplicity, although its influence is ~rObab~y mlnlmal because 
of the relatively low value of poisson s ratlo.for concrete (see 
assumption 4 in the INTRODUCTION). It can easlly -be shown .that 
substitution of Equations (14) into the well known expresslons 
in polar coordinates for the principal stresses ne~r a true crack 
tip (11) leads directly to the envelop curves of Flgure 9. 

The conclusion we wish to draw from F~gure 9 is th~t, as ;~e 
degree of biaxial stress influence on tenslle strength lncreas , 
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Figure 9. Process zone shapes predicted by LEFM assumptions, no 
stress repistribution, and the tensile strength interaction curves 
of Figure 8. 

the length of the process zone along the crack direction grows 
faster than on any other radius. The qualitative implication here 
is quite different from what one sees in a plastic zone at a crack 
tip in a metal. It is generally assumed in elasto-plastic fracture 
mechanics that post-yield, distortional strain energy absorption 
accounts for the inelastic behavior in the process zone. This 
energy is absorbed in zones of high shear, well off the crack axis, 
and produces the familiar kidney-shaped plastic zones ahead of a 
crack tip in Mode I. 

When, however, we posit that the inelastic energy absorption 
mechanism is a function of the normal stresses, as implied by the 
constitutive models of Figures 2 and 8, the process zone localizes 
along the crack axis. This observation is supported experimentally 
(13,14,15). Attempts to observe process zone shape in mortar and 
concrete using interferometry (14) and scanning electron microscopy 
(15), and in rock (13) using epoxy impregnation, have all indicated 
that the width of the process zone, if at all measurable, i~ less 
than its length. In the computer simulations to follow we will 
take the approach that the process zone width is zero, that the 
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process zone is the "fictitious crack" (18) shown in Figure 2. The 
inelastic energy sink is the normal traction on this "crack" moving 
through its COD: every point in this zone rides down a curve like 
one of those in Figure 1 on its way to becoming part of a true 
crack surface. For each unit of crack advance, the area under such 
a curve is the energy absorbed in the crack i ng process per un it of 
crack front 1 ength. 

3. EXAMPLE PROBLEMS 

In this section a series of three fracture tests on concrete 
specimens will be simulated using the discrete cracking, finite 
element approach and the constitutive models previously described. 
There are some characteristics common to these tests. These Jie: 

1. Unless otherwise noted, it is assumed that, 

E = 3 x 103 ksi (20.7 MPa) 
~, Poisson's ratio = 0.2 

2. Plane stress is assumed. 

3. Simulations are performed with the Finite Element Fracture 
Analysis Program (FEFAP) (8,9,19). -All elements are iso­
parametric and of quadratic displacement order. 

4. The symbol r is replaced by rp as it is understood that 
Pc 

we refer only to concrete hereafter. 

3.1 Example 1: A Very Large Center-Cracked Plate 

The first example problem is shown in Figure 10. The struc­
ture simulates an infinite plate with a central crack normal to 
a remote tensile stress, the problem whose stability was first 
investigated by Griffith (20) in formulating the basis for LEFM. 
Here, however, we shall assume at first that LEFM is not appl i­
cable and perform a non-linear fracture analysis using constitutive 
model 0, shown in Figure 1. The objectives of this simulation are: 

1. Obtain the relationship between applied load and the COD 
at the plate's center to investigate structural stability. 

2. Compute COD profiles at various load levels to investigate 
the relationship among total crack length, a + rp' visible 
crack length (based on an assumed minimum, visible crack 
width of 0.001 in. (0.025 rrrn)), and process zone length, 
rp' 
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Figure 10. Example Problem #1. 

3. Investigate the evolution of r , and ascertain whether it 
reaches a steady state 1ength. P 

The meshes used in this simulation are shown in Figures 11 
and 12. Fi gure llb, a detail of the i ni t i a1 crack regi on, shows 
quarter-point singular elements arrayed around the initial, true 
crack tip, the only place they were employed. A typical global 
displacement pattern is shown in Figure 13, with the darkened area 
indicating the process zone. 

Results of this simulation are shown in Figures 14 through 16, 
and they should be studied together. For example, Figures 14 and 
15 show that at the peak load, 142 psi (0.98 MPa), softening had 
occurred for about 5 inches (127 rrm) ahead of the initial, true 
crack tip. _Additional visible cracking began to occur between the 
peak load and the next analysis step at 127 psi (0.88 MPa). The 
true crack tip did not begin to extend, however, until the load 
had dropped to about 84 psi (0.58 MPa). True crack length had 
increased to about 120 inches (3.05 m) by the last analysis step. 
Simulation was halted at this point because it was felt that, with 
additional fracturing, the structure would cease to represent an 
infinite plate to the crack. 
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Figure 11. a. First mesh used in Example Problem #I. 
of Fi gure lla. 
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Figure 12. Second mesh used in Example Problem #1. 

The information shown in Figure 15 is replotted in a most 
interesting form in Figure 16. Here the process zone length, r , 

is plotted against true crack length. It is clear that r firsf 

grows rapidly, reaching a peak value of about 60 inches (~.52 m), 
and then decays asymptotically to a steady-state value of no more 
than 36 inches (914 mm). 

We are now in a position to make some direct comparisons of 
the behavior of this simulation with the qualitative predictions 
of the previous section and with the implications of LEFM. First, 
is the steady-state r of 36 inches reasonable? To answer this 
question, we must fir~t estimate K

Ic 
for this material. The area 

~nder the Model 0 curve, Figure 1, yields a G
IC 

of about 0.23 lb/ 

In. (0.04 N/mm). This translates, using Equation (15), into a K
Ic 

of about 830 psi !Tn (914 MNm- 3/ 2). Now, it was previously shown 
that 

Amplification 

Factor 

3.47E+03 

Figure 13. 
level of a 

<Xl 

, 

I I I 
III I 

! 
i 

I 

Iii 
I 

I 

i 
[ 
I 

I ! 

II 
I I I , 

I I 
I 

II 
; 

! 

I [II 
i 
i; 

I , , 
I 

III ! . I 

i 
, 

, 
I II! I 

I 

iii i! ill ! 

III i ' I 
, . 

i I 

I 
III 

i I 

I I I 

i , 
, 
, 

~iJ : i .! i 

-l 
! i, II i! I 

I I 
I1I1 II i: I)I! Ii 

: 

II' I J Ii' 'II' 
, 

II 
1 i W 1/ J' 1 1 El 

Amplified displaced shape of second mesh at a load 
= 54 psi (0.38 MPa). Amplication factor 3.47E+03. 

Softenino Model 0 

o Mesh 1 

S Mesh 2 

2 3 
COO/2 a1 ~ (,103 ). in 

265 

Figure 14. Predicted load versus displacement curve for Example 
Problem #1. 
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140 

(18) 

With the above estimate of K
1c 

and the f+ of Model 0, and using the 
second-order, plasticity-based estimate, Equation (1), the process 
zone length would be computed to be, 

rp ~ 1.37 inches (34.8 mm). 

However, Table 1 shows that, with a softening constitutive model, 
this process zone must be longer than this. In fact, it is easy 
to show, using the Model 0 stress-COD curve and the COD profiles 
of Figure 16, that the inelastic stress distribution in the process 
zone is concave upwards. It fall s very steep1 y from f+ to less 
than one-half f+ over the first two inches of the process zone • 
Table 1 and Figure 5 show that for such distributions the concrete 
process zone can be many times the estimate of Equation (19), the 
factor of about 26 computed here certainly being believable. 
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A second question to ask concerning this simulation is: to 
how long would the true crack have to have gro~n for LEFM to be 
acceptable? Assuming a steady-state r of 36 lnches (914 rrm), 

p b ·1 . and a ratio of r to true crack length of 25 for accepta 1 lty, a 

growth to about ~OO inches (22.9 m) ·woul~ have b~e~ required with 
ModelO. At that point, LEFM would predlct a crltlcal load on an 
infinite plate of only about 16 psi (0.11 MPa). 

The key conclusion to be drawn from this simulation is this: 
despite the fact that concrete seems more "brittle" than, say, an 
elastic-perfectly plastic structural steel, in the sense th~t there 
is a rapid drop in stress carrying capability past the tenSlle 
strength, its process zone can be much larger than the steel's. 
It is neither accurate nor sufficient to use Equation (3) to assess 
the applicability of LEFM to concrete. Further implications of 
this conclusion are pursued in the next example problem. 

3.2 Example 2: A Finite, Center-Cracked Plate 

The experiments of K,=sler, Naus, and Lott (21,22) have stirred 
much debate in the concrete fracture literature. They tested a 
large number of hardened paste, mortar, and concrete specimens in 
the configuration shown in Figure 17, and analyzed the results 
using an approximate stress-intensity factor calibration. Since 
all their results indicated a strong dependence of apparent 
toughness, K

Q
, on specimEm size, they concluded that LEFM is not 

applicable to these materials. 

Recently, however, the first author re-analyzed their test 
results (23) with a more accurate stress-intensity factor cali­
bration and reached the opposite conclusion, with KO being fairly 
independent of specimen size. 

These tests, however, will just not go away. Bazant and Oh 
(24) have more recently shown that strain readings made near the 
initial true crack tip during the tests could not be explained 
using LEFM. What then is the explanation for this contradictory 
behavior? 

One of the concrete test specimens (Test 12, Series LC-2-AD-C 
of (22)), th;e same one analyzed by Bazant and Oh (24), is analyze~ 
here with the hope of explaining this contradiction. Further, thlS 
example problem seeks these additional objectives: 

1. To investigate the difference in response to two con­
stitutive moclels, 0 of Figure 1, and E of Figure 6, fr 
and 8 remaining the same. 

c 

W (variable) 

_D=125in 

(32 mm) 
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Figure 17. Specimen configuration used in the tests of References 
21 and 22. For Example Problem #2, W = 18 inches (457 mm), a = 
2.5 inches (63.5 rrm). 

2. To investigate the shape of the inelastic stress dis­
tributions in the process zone on a problem for which the 
COO profile is theoretically linear, and compare to the 
previous example in which it was theoretically elliptical. 

The mesh used for this simulction is shown, in one of its 
deflected states, in Figure 18. The linear strain interface (LSI) 
elements used to model the process zone inelastic stress distribu­
tion are cl early seen. 

The first result to be shown is the load-displacement 
response, shown in Figure 19. To interpret this result properly, 
i~ is necessary to understand the constitutive models used in the 
slmulations. The a-CO~ relationship for the material used in the 
test is. no~ known •. The only material property reported in (22) is 
the Spllttlng tenslle strength, about 620 psi (4.28 MPa) at the age 
of testing. It is well known that the direct tensile strength is 
less than the splitting strength, so an f+ of 400 psi (2.76 MPa) 

is low but not unreasonable. Tests by Petersson (2) show a strong 
dependence of both 8c and the shape of the a-CO~ curve on maximum 
aggregate size, Figure 20. The shape and 8 of Model 0 are close 

to the curve in F~gure 20 corresponding to ~ maximum aggregate size 
of 2.mm. !he maXlmum aggregate size used in the specimen under 
conslderatlon, however, was 3/4 inch (19 mm). It is probable that 
°c for such a size is at least 0.008 inch (200 ~m), assuming the 
same bond strength and aggregate angularity as in Petersson's 
tests. Also, the shape of the post-peak a-COD curve would be 
expected to be straighter than the curves shown in Figure 20. 
rherefore, the 8c for both models is probably too small, and the 
shape for Model 0 much too steep. 
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Figure 20. Measured a-COD relationships for two maximum aggregate 
sizes. From Ref. 2. 

Given these observations, the results shown in Figure 19 are 
not surprising. With Model D, the process zone unloads much too 
rapidly, and the peak load is underestimated by over 40 percent. 
Model E, underestimating toughness because of too small a :c' but 

overestimating because of its linear shape, yields a peak load pre­
diction about 18 percent too high. Note, however, that the ratio 
of the two peak load predictions is about 2, while the G

rc 
ratio 

is about 4. This is exactly what would be expected from an LEFM 
point of view. But is the specimen actually behaving according to 
LEFM? Let us next investigate process zone length. 

The process zone is described by Figures 21 and 22 for Model 
0, and 23 and 24 for ModelE. Compari sons of Fi gures 21 with 23 
and 22 with 24 show the effect of the shape of the constitutive 
model for the process zone on its COD profi 1 e and inel ast i c stress 
distribution, respectively. Under LEFM assumptions, the COD 
profile for this structure is linear except for the very near 
crack tip region. For Model D, it is slightly concave downwards, 
Figure 22, while for Model E it progresses from slightly concave 
upwards to nearly linear with progressive fracturing, Figure 24. 
Comparison of Figures 22 and 24 with Figure 15 clearly shows how 
different specimen loading arrangements can produce markedly 
different COD profiles even for the same process zone constitutive 
models. This rigorous numerical observation was predicted by the 
approximate techniques used earlier in this paper, as in Figure 7. 
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The direct result of these COD profile differences is the 
shape of the inelastic stress distribution in the proces~ zone. 
The distributions for Model D, Figure 21, and Mo~el E, Flgure 23 
mirror the shapes of these corrstitutive mdoels ~lnce ~he COD 
profiles both deviate only moderately from stralght llnes. 

The differences in these stress distributions, however, 
are significant. The true crack tip actually advanced dur~ng 
simulation with Model E. No true crack advance occurred wlth 
Model D even though the process zone tip was pushed nearly as 
Instead, a long "tail" of relatively low stress evolved. 

the 

far. 

It is clear from Figures 22 and 24 that no steady-state 
process zone length had developed in these simulations. In both 
cases the zone had extended about 5 inches (127 mm) ahead of the 
true crack tip. The tip of the process zone had arrived about 
1 inch (25 mm) from the edge of the plate. This observat1on sug­
gests an important question: Why did the process zone become so 
long in the previous example? 

The answer is that the effectively infinite extent of the 
plate in that problem allowed virtually uninhibited stress redis­
tribution ahead of the advancing true crack tip. In the present 
example, boundary effects are felt almost immediately. C?nsi~er 

the stress distributions shown in Figure 23. The first dlstrl­
bution for P = 5.08 kips (22.6 kPa), shows 3 regimes of stress 
behavi~r. Beginning at the initial, true crack tip and extending 
to about x = 5.5 inches (140 mm) is the inelastic stress distri­
bution of the process zone. Starting from the edge of the plate 
and proceeding in a direction toward the crack to about x = 6.~ 
inches (165 mm) is a linear distribution arising from the bendlng 
moment which must exist across the ligament. Between these two 
distributions is a stress-concentration-like rise, not unlike what 
one would expect in approaching a true crack tip, as the process 
zone tip is approached. 

However, the distribution corresponding to the last, post-peak 
load level, P = 4.23 kips (18.8 kPa), is conside~ably different. 
At this stage in the simulation, only about one lnch (25.4 mm) of 
ligament remains to try to accommodate the latter two regimes ~ust 
described. The distribution in the ligament has become essentlally 
linear, except for a small distance close to the edge of the plate 
wherein the compressive stress rises preCipitously. In the pre-. 
vious example~ no bending moment distribution, with its compresslve 
stress region, needs to exist. As the process zone tip extends 
there is no need to rapidly unload the process zone as in the . 
present example. Further manifestations of the non-LEFM behavlor 
of this specimen are revealed in the following discussion. 
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Figure 25. Comparison of measured and computed strain for Example 
Prob 1 ern #2. 

As mentioned above, Naus (22) made strain measurements during 
his tests. Wi re strain gages oriented to measure s were arrayed 
ahead of the initial, true crack tip. Strains meas~red just before 
specimen failure are shown in Figure 25. Strain is seen to be 
very hi gh compared to the expected tens ile fail ure value of about 
200 uin/in. Further, it is seen to increase linearly except for 
the last reading close to the initial true crack tip. 

Comparison of these observations with predictions from the 
present simulations, Figures 22 and 24, is encumbered by the fact 
that gage length was not reported in (21,22). Figure 25 shows the 
COD-profiles for peak load from Figures 22 and 24 converted to 
strain profiles via assumed gage lengths. The pr~dicted profiles 
bracket the measured profile, except for the readlng close to the 
initial crack tip, and are nearly linear. It is likely that the 
gage closest to the crack tip began to slip at this very high 
strain; measurements from this gage location on other specimens 
also showed this anomalous behavior. 

Figure 25 shows that Bazant and Oh (24) are correct. Th: 
measured strains can only be explained by considerable extensl0n 
of a process zone before peak load. From the perspect~ve 0: the 
methods of the present Simulation, the gages were readlng hlghly 
localized strain: a crack-opening-displacement. 
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Figure 26. Predicted variation of tensile stress at point A, 
Figure 18, with applied load, Example Problem H2. 

All of the previous discussion concerning the process zone in 
this example points decidedly towards this being a non-LEFM test, 
and yet an enigma remains: why the apparently ~EFM resp~nse of 
this and companion tests when viewed on the basls of KQ lndepend-

ence from specimen size and crack length (23)? A.very plausi~le 
explanation, one that in fact requires our attentlon to be shlfted 
away from the initial crack and its propagation, proceeds as 
follows. 

Consider the location of point A, Figure 18, and the displaced 
shape shown in the same figure. This shape shows that ~he top ~nd 
bottom halves of this specimen behave like deep beams wlth partlal 
moment restraint at their ends produced by remaining ligament. 
Point A lies:at the location of highest fiber stress in tension of 
such a beam.' The writers find it more than just coincidental that 
the x-direction tensile stress at point A for the specimen analyzed 
in this example varies as shown in Figure 26: as the computed peak 
load is approached, the concrete tensile strength is exceeded at 
pOint A! Consistency in application of the constitutive model. 
would dictate that a second set of cracks would initiate at pOlnts 
A at approximately the peak load. This phenomenon was not includec 
in the present simulations. Note that it is not obvious that theSE 
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cracks would have been visible after specimen failure, but their 
existence would certainly have caused stress redistribution in the 
specimen. Is it possible that the apparently LEFM response of the 
tests was the result of two obscuring non-linear effects? This 
question could be definitively answered and these tests finally put 
to rest by a study which included both nonlinearities and a range 
of specimen sizes and crack length-s-.-

In the next example problem we relax another assumption by 
extending our non-linear fracture modeling technique to a problem 
in which crack growth is not self-similar • 

3.3 Example 3: Mixed-Mode Fracture of a Plain Concrete Beam 

The last example problem is the structure shown in Figure 27. 
Mortar and concrete beams in this configuration were tested by 

Arrea and Ingraffea (25). The antisymmetric loading produces 
mixed-mode, KI-K

II
, streSS-intensity at the tip of the initial, 

true crack tip. 

The purpose of this example is to show that the techniques 
used in the previous examples can be extended to curvilinear crack 
propagation in geomateria1s. Details of the algorithms necessary 
for this extension can be found in References 4 and 19. 

Because this example involves both crack sliding and crack 
opening displacements, CSD and COD, respectively, there exists not 
only normal stress transfer across the process zone but shear 
stress as well. Consequently, the so-called "aggregate interlock" 
model of Fenwick and Pauley (26) in which shear transfer across a 
crack is related to the COD was employed in this simulation. 

Two analysis phases were employed. The first was a parameter 
study in which the crack trajectory observed in testing was modeled 
in the mesh, as shown in Figure 28. The a-COD constitutive model 
was then varied in an attempt to reproduce the observed load versus 
crack-mouth-sliding-displacement, CMSD. This approach is the same 
as the "fictitious crack" method (18), except that the crack is 
discretely modeled. 

The results of this parameter study are shown in Figure 29, 
with the lettered models shown in Figure 1. The experimental 
results shown in this figure and from two different tests on mortar 
beams (25) with a maximum aggregate size of about O~375 inch 
(9.5 mm) and a compressive strength f', of about 6.6 ksi (45.5 
MPa). These results indicate a trendCtowards a constitutive model 
with a 6 much less than that used in the previous example. This 
is to becexpected since the maximum aggregate size is much less in 
this case. A typical displaced shape of the structure is shown in 
Figure 30. 
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Figure 27. 
Probl em #3. 
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Figure 29. Results of parameter study for first phase of Example 
Probl em #3. 

Although none of the models used proved completely satisfac­
tory, Model A was chosen for the second phase of this simulation. 
In this phase only the cast-in starter crack was modeled in the 
initial mesh, Figure 31. A discrete propagation analYSis was per­
formed with automatic remeshing occurring at each crack increment. 
The final mesh configuration and displaced shape are shown in 
Fi gure 32. 

The predicted trajectory of the crack was very close to the 
observed, and the computed load versus CMOD response, Figure 33, 
was very similar to that obtained during the parameter study phase • 

Experience with this simulation strongly suggests that the 
response is sensitive to the shear transfer model across the 
process zone and across the true crack itself. Although the shear 
and normal stress transfer mOdels used in these Simulations were 
uncoupled, some degree of coupling through dilatency is certain. 
These are fertile areas for further research. 
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Figure 30. Amplified displaced shape of mesh shown in Figure 28. 
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Figure 31. Initial mesh for second-phase, cracK propagation study 
of Example Problem #3. 
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Figure 32. Amplified displaced shape after 5 cracK increments 
through the mesh shown in Figure 31. Amplification factor = 438. 

4. CONCLUSIONS 

This paper has shown how non-linear fracture processes can 
be modeled in finite element simulations involving discrete crack 
representations. The most important assumption involved is that 
the process zone is no more than an extension of the true crack 
itself: the zone is not an area, it is a length. 

The constitutive modelling for such a zone is then consider­
ably simplified. For Mode I· propagation, one needs only a rela­
tionship between the normal tensile stress transmitted across the 
process zone and the opening-displacement of that part of the crack 
in this length. 

We first showed how, with these simplifications, one could 
arrive at quantitative assessments of process zone length in 
geomaterials using only hand calculations. It was quickly seen 
that the strain softening character of such materials produces 
process zone lengths much larger than those in more ductile 
materials. 

These simple calculations were then supported by finite 
element analyses of three example problems. In the first, hypo­
thetical problem, the growth of the process zone ahead of a true 
crack was studied in a very large structure. It was concluded 
that, as predicted by hand calculation and LEFM conSiderations, 
the process zone grew to a steady state length and that this length 
was far in excess of that predicted by models based on e1astic­
perfectly plastic constitutive models. 
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figure 33. Comparison of crack propagation model prediction with 
experimental resul ts for Example Probl em #3. 

The next two problems involved simulations of actual experi­
ments. The tests of Kesler, Naus, and Lott (21) were again 
analyzed, but for the first time using a non-linear fracture model 
in a discrete crack representation. It was concluded that these 
tests were not valid measurements of KIc ' Moreover, it was furthe 
shown that they still have not been properly analyzed. 

The final analysis involved curvilinear crack propagation. 
The process zone constitutive modeling was extended to include 
shear transfer across the zone as a function of its opening­
displacement. The automatic rezoning feature of FEFAP (19) was 
employed bere to permit cracking to evolve as predicted by the 
non-linear stress transfer models without being constrained by 
meshing considerations. 

Parameter studies performed during these simulations clearly 
show the dependence of process zone length on the crack opening 
profiles characteristic of the structure, and on the o-COD rela­
tionship characteristic of the geomaterial. 
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Using the modeling too~s described here, it is.now.p~ssible 
to make a rigorous, a priorl assessment of the appllcablllty of 
LEFM to the fracture process occurring over a wide range of struc­
ture scal e. 
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