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ABSTRACT: We introduce a continuum model for polymer melts filled with
nanoparticles capable of describing in a unified and self-consistent way their
microstructure, phase behavior, and rheology in both the linear and nonlinear
regimes. It is based on the Hamiltonian formulation of transport phenomena for
fluids with a complex microstructure with the final dynamic equations derived by
means of a generalized (Poisson plus dissipative) bracket. The model describes
the polymer nanocomposite melt at a mesoscopic level by using three fields (state
variables): a vectorial (the momentum density) and two tensorial ones (the
conformation tensor for polymer chains and the orientation tensor for
nanoparticles). The dynamic equations are developed for nanoparticles with an
arbitrary shape but then they are specified to the case of spherical ones.
Restrictions on the parameters of the model are provided by analyzing its
thermodynamic admissibility. A key ingredient of the model is the expression for
the Helmholtz free energy A of the polymer nanocomposite. At equilibrium this reduces to the form introduced by Mackay et al.
(Science 2006, 311, 1740−1743) to explain the phase behavior of polystyrene melts filled with silica nanoparticles. Beyond
equilibrium, A contains additional terms that account for the coupling between microstructure and flow. In the absence of chain
elasticity, the proposed evolution equations capture known models for the hydrodynamics of a Newtonian suspension of
particles. A thorough comparison against several sets of experimental and simulation data demonstrates the unique capability of
the model to accurately describe chain conformation and swelling in polymer melt nanocomposites and to reliably fit measured
rheological data for their shear and complex viscosity over large ranges of volume fractions and deformation rates.

I. INTRODUCTION

Composite or heterogeneous materials can be found in
abundance in nature. Two simple, nature-produced, polymer-
based examples are wood (made up of fibrous chains of
cellulose in a matrix of lignin) and bone (composed of hard
inorganic crystals, hydroxyapatite, embedded in an organic
matrix of collagen).1 These materials find numerous
applications in electronics, optics, catalysis, ceramics, and
magnetic data storage devices.2 Their widespread applications
(from bulletproof vests to golf clubs, from vehicle tires to
missile parts, etc.) has certainly integrated them into our lives.3

Polymer matrix nanocomposites (PNCs), in particular, are
hybrid organic/inorganic composites formed by the addition of
nanoparticles to a polymer matrix, and blood and paint are only
two of the numerous examples that demonstrate their
importance.4 Recent applications include use in solar photo-
voltaic devices,5 in the development of lightweight materials for
electrical applications,6 and in diagnostics and therapy (e.g., as
drug carriers to fight cancer7). At least one of the dimensions of
the filler phase is in the nanometer scale leading to a large
interfacial contact area with neighboring polymer chains. As a
result, the composite material can have significantly improved
properties relative to the pure polymer even at extremely small

volume fractions (loadings) of the filler, and this has renewed
interest in these systems in the past few years. Low-volume
additions (1−10%) of isotropic (e.g., titania, alumina, and
silver) or anisotropic (e.g., layered silicates, carbon nanotubes
and nanofibers) nanoparticles result in significantly improved
properties, comparable to those achieved via conventional
loading (15−40%) of micrometer-scale inorganic fillers.8

Materials with a variety of shapes may be employed as fillers
in PNCs, such as nanoclays (primarily polymer-layered silicates,
PLS),9,10 nanoscopic silica particles,9,11 nanotubes,12 nano-
fibers,13 and many others. This justifies the large number of
simulation studies,14,15 theories,16 and rheological measure-
ments17 that have appeared recently in an effort to explain
properties of this important class of materials and to
understand fundamental issues related to chain dynamics in
the vicinity of nanoparticle surface,18,19 entanglement and
disentanglement effects via primitive path analysis,20,21 melt
rheology,22,23 and the importance of energetics and cluster-
ing.24
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From the point of view of industrial applications, the interest
lies in the rheological behavior of PNCs, with an emphasis on
the dependence of the key material functions (shear viscosity,
first and second normal stress coefficients, storage and loss
moduli) on shear rate and nanoparticle volume fraction. The
celebrated equation of Einstein25 for the relative viscosity,
namely ηr = η/η0 = 1 + (5/2)ϕ, where η denotes the viscosity
of the suspension, η0 the viscosity of the solvent, and ϕ the
nanoparticle volume fraction, has been shown to accurately
describe the rheological behavior of Newtonian spherical
suspensions at low volume fractions (ϕ ∼ 0.02), provided
interparticle interactions are neglected. Batchelor and Green26

extended Einstein’s equation to higher volume fractions (ϕ ∼
0.1) by considering the effect of pairwise interactions and thus
deriving the second-order term in the expansion of ηr with
respect to ϕ; this correction has been verified experimentally.27

Einstein’s expression was extended to spheroids by Jeffery28

who showed that the effective viscosity depends on particle
orientation, namely ηr = 1 + Cϕ, where C is a numerical
parameter whose value depends on whether the spheroid is
oblate or prolate. Hinch and Leal29 computed an ensemble-
averaged effective viscosity by including effects due to rotational
diffusion. A general theory for dilute particle suspensions was
put forth by Batchelor and Brenner.30

Most of the above hydrodynamic theories are limited to
small volume fractions. Experimental data show that eventually
the relative viscosity diverges at a volume fraction commonly
denoted as the maximum packing fraction ϕT, which
experimentally is found to lie in the range 0.55−0.71 [see,
e.g., ref 31]. To account for this, simple empirical extensions
have been proposed that employ a 1 − (ϕ/ϕT) term in the
denominator. Such equations will be discussed later in this
article.
For PNCs, the situation is more complicated: experimental

observations fail to provide a satisfactory picture of their
rheological behavior. Although early observations were in favor
of an increased viscosity relative to the pure polymer,32

evidence has been accumulated recently pointing (in many
cases) to a reduced viscosity for PNCs when filled with
spherical particles, which is unique only to this type of
nanosized fillers. In particular, when fullerenes are added to
monodisperse, linear, high molecular weight polysterene, the
viscosity decreases,33 an effect which has been attributed to the
thermodynamic stability of the dispersion (this is attained only
when the size of the fullerenes is smaller than the radius-of-
gyration Rg of the polymer chains). The phenomenon seems to
be connected with entanglement effects, since unentangled or
nearly entangled systems (characterized by molecular weight
Mmw ∼ Mc, where Mc is the critical molecular weight at which
entanglement effects become important) exhibit an increased
zero shear rate viscosity when nanoparticles are added; in
contrast, samples withMmw exceedingMc exhibit a reduced zero
shear rate viscosity. Initially, this decrease was postulated to be
related to the increase in the free volume of the melt caused by
the addition of nanoparticles but later such an explanation was
ruled out. According to Tuteja et al.,33 the viscosity η0 will
decrease when (a) polymer chains are long enough to be
entangled and (b) the average distance between nanoparticles is
smaller than twice the polymer Rg. Additional experimental
studies on poly(propylene) showed a similar decrease in the
viscosity when silica nanoparticles were introduced into the
matrix, which was attributed to the selective adsorption of high
molecular weight polymer chains on the surface of silica.34

Wang and Hill35 explained this behavior by proposing (in the
framework of a continuum hydrodynamic model) that in a
PNC melt, a polymeric layer is formed in the neighborhood of
the nanoparticle characterized by a smaller viscosity than the
bulk polymer; the model, however, suffers from the assumption
that the polymer matrix behaves as a Newtonian fluid.
Needeless to say that, from a practical point of view, such a
decrease in the viscosity would be highly desirable, since it
implies that the processability of the material will be enhanced.
Starr et al.36 have shown that the glass transition temperature

Tg of a polymer melt can be shifted to either higher or lower
temperatures by tuning the interactions between polymer and
filler. The relaxation time of the radially averaged intermediate
scattering function of the filled system should be larger than
that of the unfilled one when the polymer−nanoparticle
interactions are attractive (implying an increased Tg) but
should decrease when the interactions are nonattractive
(implying a decreased Tg).

36 The increase in relaxation time,
which has also been observed in recent molecular dynamics
(MD) simulations,37 has been reported to be exponential.15

From the processing point of view, in addition to Tg, another
important issue is that of miscibility, i.e., of the proper
dispersion of nanoparticles in the polymeric matrix. Theoretical
work by Hooper and Schweizer38 has revealed two distinct
spinodal curves: one at low nanoparticle−monomer attraction
strengths associated with the formation of a thermodynamically
stable polymer layer around nanoparticles (this is insensitive to
nanoparticle size asymmetry ratio D/bd with D and bd denoting
the nanoparticle diameter and monomer diameter or bead size,
respectively) and a second one at higher attraction strengths
associated with the formation of thermodynamically stable
bridges as polymer segments connect different nanoparticles
(this is more sensitive to the ratio D/bd). The two spinodal
curves are separated by a “miscibility window”. These
theoretical findings have also been confirmed by recent MD
simulations.39 The proper dispersion of spherical nanoparticles
is typically associated with polymer swelling (the increase in the
dimensions of polymer chains when nanoparticles are
introduced in the polymer matrix).34 This further motivated
Mackay et al.40 to propose a modified Flory−Huggins theory to
describe the experimental findings.
Despite ample experimental41 and simulation15,18,21 evidence

that the addition of nanoparticles induces polymer swelling,
Crawford et al.42 found that the ratio Rg/Rg0 (where Rg0 denotes
the chain radius-of-gyration of the unfilled polymer) remains
close to unity even up to ϕ ∼ 0.35. However, these authors
have shown that for Rg ≤ a (a = D/2) PNCs phase separate
whereas for Rg>a a uniform dispersion should be obtained.
Given that similar Rg/a ratios were used, the disagreement of
their study with previous works [e.g., that of ref 40] suggests
that polymer size may not be the only relevant parameter
controlling chain swelling.
As far as the nonlinear rheology of PNCs is concerned, the

works of Anderson and Zukoski43,44 and Zhang and Archer45

have shown that, following the linear viscoelastic (LVE)
plateau, polymers filled with spherical nanoparticles exhibit a
shear thinning behavior as the shear rate increases. Shear
thinning occurs when hydrodynamic stresses prevail over
thermodynamic ones,43 resulting in a fast reduction of the
viscosity with shear rate. By further increasing the shear rate,
the viscosity curves for different volume fractions approach
more and more that of the pure polymer. At very large shear
rates, finally, the viscosity curves approach a plateau (an infinite
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shear rate viscosity).43 A similar shear-thinning behavior has
been reported in the case of polymer melts filled with
nanoclays46 and nanofibers.47

In network theories,48 physical entanglements between
chains are considered as junctions between segments which
may be destroyed and later recreated. Doremus and Piau49

realized that the addition of nanoparticles would induce
additional junctions due to adsorption of portions of chains
on nanoparticles. Thus, a double network should emerge with
different creation and destruction probabilities for each of the
polymer−polymer and polymer−nanoparticle segments.50 A
similar double network approach has been adopted by
Sarvestani and Picu51 who derived expressions for the rates
of chain attachment to and detachment from the nanoparticle;
in a subsequent study, they used these expressions to introduce
modifications to the friction coefficient of an encapsulated
FENE dumbbell. Another kinetic theory approach was that of
Xu et al.52 where elastic dumbbells (being isotropic or
anisotropic, with or without hydrodynamic interactions) were
used to model nanofiber suspensions. It turns out that several
authors53 have proposed modifications to the reptation time
due to chain attachment-detachment in the presence of
nanoparticles.
In a number of more recent papers, Grmela and co-workers

employed the GENERIC54,55 formalism of nonequilibrium
thermodynamics (NET) to describe the rheology of
PNCs.56−58 To model polymer chains they used the
conformation tensor C while for the orientation of the fibers
they employed a constrained (to reflect the constant length of
fibers) orientation tensor a (both of these tensors will be
discussed in due detail in the next section). Grmela and co-
workers also made attempts to model nanoclay PNCs initially
with the FENE-P model56,57 and later by explicitly considering
reptating chains.46,58 To the best of our knowledge and despite
several nonequilibrium thermodynamics studies of polymer−
nanofiber and polymer−nanoclay systems, there has been no
work addressing the case of polymer nanocomposite melts with
nanospheres.
In this work, we introduce a rheological model for PNCs

with spherical nanoparticles in the context of the generalized
bracket formalism of NET,59 by means of which several systems
(primarily liquid crystals and polymers) and phenomena (such
as polymer-wall interactions and polymer diffusion due to stress
gradients in inhomogeneous flow fields) have been successfully
addressed over the years.55,59 Our approach (as well as that of
Grmela and co-workers based on GENERIC) has the
advantage that the final equations are developed in the context
of a formalism which guarantees consistency with the first and
second law of thermodynamics. In addition, it is very systematic
(offering a unified description of phase behavior, transport
phenomena and rheology) and can easily be coupled with a
microscopic model for the underlying molecular interactions
allowing for the full parametrization of the model. For practical
applications, this is actually also the major disadvantage of the
model, since it shows that it is not autonomous: for the
complete description of the problem, additional input is
required from lower-level simulations or models. We mention,
for example, the expression for the free energy which should be
independently derived from a microscopic model. Our aim in
this study is ultimately to generalize our recent rheological
model for homopolymers,60,61 which has proven quite accurate
in describing the results of direct atomistic non-equilibrium
molecular dynamics (NEMD) simulations60,61 and thermody-

namically guided simulations at low and moderate shear rates,62

to the more complex case of (unentangled or entangled)
polymer matrices containing nanoparticles.
The paper is structured as follows: in section II a brief

overview of the generalized bracket formalism of non-
equilibrium thermodynamics is given. In section III, the new
model is introduced: our choice of the state variables is
discussed, the expression for the extended Helmholtz free
energy is provided, and the full formulae for the Poisson and
dissipation brackets are given. The dynamic equations for the
case of spherical nanoparticles are derived and the model
equations are reduced to known expressions in the limiting case
of spherical particles dispersed in a Newtonian liquid. Also
included in section III is the analysis of the thermodynamic
admissibility of the model and the positive-definiteness of the
conformation tensor. In section IV the expressions for the
relevant rheological material functions obtained by analyzing
the asymptotic behavior of the model in the limits of small
shear and small uniaxial elongational flows are reported. In
section V, the results obtained with the new model are
presented: we first discuss its parametrization and then we
show how accurately and reliably it can describe available
experimental and simulation data for the shear viscosity of
several PNC melts as a function of nanoparticle volume fraction
over a wide range of shear rates. The paper concludes with
section VI where the most important aspects of the new model
are summarized and future plans are discussed.
At this point, we clarify that, in this work, (a) we have

restricted ourselves to the case of well-dispersed nanoparticles
in the polymer matrix and (b) we have used Einstein’s implicit
summation convention for any repeated Greek indices. We
have also tried to keep in the paper only the most important
material (equations and calculations) necessary to follow the
presentation and derivation of the new model leaving technical
(mostly mathematical) details for the accompanying Support-
ing Information.

II. NON-EQUILIBRIUM THERMODYNAMICS

In the context of classical mechanics, the appropriate set of
state variables to consider for an N-particle system is x = {r,p}
with r = (r1,..,rN) and p = (p1,..,pN), where rj and pj denote the
position and momentum vectors of the jth particle, respectively.
Then, the time evolution of an arbitrary functional F is
governed by Hamilton’s equation of motion:54,55,59,63

=
F

t
F E

d

d
{ , }

(1)

where E is the total energy or the Hamiltonian H of the system
and {.,.} denotes the Poisson bracket. These systems are purely
conservative, and the Poisson bracket has the bilinear form

∫ δ

δ

δ

δ
= · ·F E

F E

x
L

x
r{ , } d3

(2)

where L is the Poisson matrix.54,55 The Poisson bracket must
be antisymmetric {F,G} = −{G,F}, in order for the energy to be
conserved, dE/dt = 0. It must also be time invariant and as such
it should satisfy the Jacobi identity {F,{G,P}} + {G,{P,F}} +
{P,{F,G}} = 0 for arbitrary functionals F, G and P.54,55 In the
literature, one can find guidelines and rules how to choose the
Poisson bracket or, equivalently, the L matrix in order for the
Jacobi identity to be automatically satisfied.55 In addition, there
is an automated code available online to check the Jacobi
identity.64
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In actual applications, however, it is almost impossible to
work with all degrees of freedom of the N-particle system.
Instead, it is preferable to keep only a set of few slowly varying
variables, meaning that fast degrees of freedom are averaged
out, a procedure known as coarse-graining. Through such a
procedure irrelevant degrees of freedom are eliminated at the
expense of introducing entropy and dissipation.65 To account
then for the friction associated with the eliminated fast degrees
of freedom, irreversibility must be added to the evolution
equations at the coarse-grained level of description. Even when
we start from a coarser (than the atomistic) level in which
irreversible contributions have already been considered,
additional irreversibility will be born when we will further
coarse-grain by eliminating extra (fast) degrees of freedom. At
this (coarse-grained) level of description, the evolution of state
variables is elegantly separated as55,63

= +
t t t

x x xd

d

d

d

d

dreversible irreversible (3)

with the second contribution given (in a spirit similar to the
first) as

=
F

t
F S

d

d
[ , ]

irreversible (4)

where S is the system’s total entropy and [.,.] denotes the
dissipation bracket. Similar to eq 2, the latter is expressed as

∫ δ

δ

δ

δ
= · ·F S

F S

x
M

x
r[ , ] df
3

(5)

where Mf is the friction matrix54,55 associated with the
increasing number of processes treated as fluctuations upon
coarse-graining to slower and slower variables,64 a direct
consequence of the fluctuation−dissipation theorem. The
dissipation bracket must be symmetric [F,G] = [G,F] and
positive semidefinite [F,F] ≥ 0 in order for the evolution
equation(s) to satisfy the second law of thermodynamics (the
principle of non-negative rate-of-entropy production). Thus, we
have a Poisson matrix L (or a Poisson bracket) that turns
energy gradients into reversible dynamics and a friction matrix
Mf (or a dissipation bracket) that turns entropy gradients into
irreversible dynamics. To strictly separate reversible and
irreversible contributions, the following mutual degeneracy
requirements are further introduced:54,55

δ

δ

δ

δ

= ⇒ · =

= ⇒ · =

F S
S

F E
E

L
x

M
x

{ , } 0 0

[ , ] 0 0f (6)

The above conditions express the conservation of energy in the
presence of dissipation and the conservation of entropy for any
reversible dynamics.
Closely related to GENERIC is the generalized bracket

approach,59 a one-generator formalism expressed as

= +
F

t
F H F H

d

d
{ , } [ , ]

(7)

Except from subtle issues in the case of systems described (e.g.)
by the Boltzmann equation66 (i.e., through distribution
functions) that favor GENERIC, the two formalisms are in
complete agreement,67 and thus may be used interchangeably.

A key issue in all nonequilibrium thermodynamics formal-
isms is the choice of state variables.63,65 Althouth this is obvious
when one deals with structureless media [in which case the
state variables include the mass density ρ, the momentum
density M (or the velocity u = M/ρ), and the energy density ε
(or the entropy density s or the temperature T)], it is an issue
of paramount importance when structured media are
considered because of the additional internal variables that
need to be considered in order to describe the microstructure
of the system.63 It is an issue requiring deep physical intuition
and experience.63 Typical choices for structural variables
include a distribution function, the tensor of second moments
of a distribution function, a scalar, etc.

III. GENERALIZED BRACKET BUILDING BLOCKS FOR
POLYMER NANOCOMPOSITES

A. The Vector of State Variables. We restrict our analysis
to the case of incompressible and isothermal polymer
nanocomposites (the general case of compressible and
nonisothermal systems is treated in the Supporting Informa-
tion). Following the corresponding analysis for homopolymer
melts,60,61 the vector x of state variables is typically expressed as
x = {M(r,t), C(r,t), a(r,t)}, where M is the momentum density,
C the chain conformation tensor, and a the nanoparticle
orientation tensor. C is defined as the tensor of the second
moment of the distribution function Ψ(Rete,r,t) for the chain
end-to-end vector Rete; i.e., Cαβ ≡ ⟨Rete,αRete,β⟩ = ∫ Rete,αRete,β-
Ψ(Rete,r,t)d

3Rete with the brackets denoting a configurational
average (see Figure 1). The spring constant is K = 3kBT/

⟨Rete
2 ⟩eq

0 where ⟨Rete
2⟩eq

0 denotes the equilibrium mean-square
end-to-end distance of the dumbbell in the pure homopolymer
case. In the following, we will also employ the dimensionless
conformation tensor C̃ defined as C̃αβ ≡ 3Cαβ/⟨Rete

2⟩eq
0 = KCαβ/

kBT. We further clarify that at equilibrium, and contrary to
Stephanou et al.,60,61 C̃ will not coincide with the unit tensor I
but will be proportional to it; the proportionality constant will
be evaluated below. The orientation tensor a, on the other
hand, is defined as aαβ ≡ ∫ nαnβψ(n,r,t)d

3n, where ψ(n,r,t)
denotes the orientational distribution function for the vector or
director n at position r and time t (see Figure 1). The tensor a
is constrained to have a constant trace, namely tr(a) = A0 where
A0 is the surface area of the nanoparticle. For a sphere, A0 ≈ D2,
where D is its diameter while for nanofibers or nanotubes A0 ≈
L2 where L is the length of the nanofiber or nanotube.47 We
also define the dimensionless orientation tensor a ̃ = (3/A0)a so
that aeq = (A0/3)I, implying aẽq = I. At the coarse-grained level
description of our model, the distribution functions Ψ(Rete,r,t)
and ψ(n,r,t) are only needed to define C and a (also to assign
to them a clear physical interpretation); in the following only
the tensors C and a will appear.

Figure 1. Polymer chains are modeled as dumbbells whose end-to-end
distance vector Rete defines the conformation tensor C and
nanoparticles as spheroids for which the distribution of the director
vector n defines their phase-space state through the orientation tensor
a.
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B. The Hamiltonian. For incompressible and isothermal
systems, the Hamiltonian is written as the sum of a kinetic
energy Ken and a Helmholtz free energy term A:59 Hm = Ken + A
= ∫ (M2/(2ρ)d3r + A. The latter is given here by the following
expression:

= + + + ‐A A A A Amix pol np pol np (8)

where Amix denotes the free energy of nanoparticle−polymer
mixing, Apol is the elastic energy of polymer chains, Anp is the
free energy due to nanoparticle orientation, and Apol‑np is the
free energy due to (enthalpic, steric, and topological)
interactions between polymer chains and nanoparticles.
Free Energy of Mixing. For Amix, we choose the modified

Flory−Huggins expression proposed by Mackay et al.:40

χϕ ϕ ϕ ϕ ϕ ϕ= − + + − −
v A

Vk T
t(1 ) ln (1 ) ln(1 )M

np mix

B

(9)

where vnp denotes the volume of the nanoparticle, kB the
Boltzmann constant, χ the Flory mixing parameter, V the
volume of the sample, ϕ the volume fraction of nanoparticles,
and the parameter tM is defined as tM = (D/2Rg0)

3(ρp/ρ0),
where Rg0 denotes the chain radius-of-gyration of the neat
polymer at equilibrium, ρp the density of the neat polymer melt,
and ρ0 the density of a single polymer chain. Alternatively, the
parameter tM can be expressed as tM = vnpρpNav/Mmw =
np
pure/na

pure, where np
pure and na

pure denote the pure nanoparticle
and pure polymer number densities, respectively. If ρp denotes
the polymer mass density and Nav is the Avogadro number,
then np

pure = ρpNav/Mmw and na
pure = vnp

−1. Equation 9 accounts
for the Helmholtz free energy of mixing between polymer
chains and nanoparticles and is able to describe (see Appendix
A) the phase behavior of the nanocomposite in the sense that it
can reproduce the bimodal obtained by Mackay et al.40 An
additional term called the Carnahan−Starling potential
describing the nonideal part of the translational entropy of a
hard-sphere gas can also been used,68 but since it does not alter
the phase behavior,40 it will be omitted here. In general, the
form of Amix in our model has to be chosen with care, based on
intuition and experience for the particular system at hand,
because several different forms can be accommodated at our
(coarse-grained) level of description.
Elastic Energy of Polymer Chains. For Apol we have directly

used the expression provided by Stephanou et al.60,61 with a
slight modification:

∫
ϕ

=
+

Φ − ̃
⎧
⎨
⎩

⎫
⎬
⎭

A
n K f k T

K
C C r

[1 ( )]

2
(tr ) ln det d

p

pol
B 3

(10)

Equation 10 describes the total elastic energy of the polymer
phase (as such, it is proportional to the polymer chain number
density np) with polymer chains modeled as elastic (and, in
general, nonlinear) springs with a spring constant K and a
spring potential energy function Φ. This term is proportional to
f(ϕ), a function which is introduced in order for the theory to
be able to capture Einstein’s equation for the viscosity of a
Newtonian suspension of spherical particles. Indeed, with the
form of eq 10 for Apol, it turns out that the shear stress in shear
flow is given by ταβ = η0[1 + f(ϕ)]γα̇β (see section III.H).
Therefore, by choosing f(ϕ) = (5/2)ϕ, we recover Einstein’s
formula for the reduced viscosity of a Newtonian suspension of

hard spheres. Of course, one may employ any other functional
form for f available from a lower-level theory or experiments.
Formally, there are two ways to reproduce Einstein’s

equation for the viscosity of a dilute suspension of nanoparticles
using the generalized bracket: one is to add to the Hamiltonian
a separate kinetic energy term for the particles due to their
translational motion; the second is to consider (in addition to
the linear momentum vector) the vorticity vector in the list of
state variables and specify some additional coupling in the
dissipation matrix (see examples 7.3 and 7.5 in ref 59). To keep
the model simple, here we have used a third method: to use a
multiplicative factor in the expression for the free energy due to
polymer elasticity, implying an effective spring constant for
polymer dumbbells in the presence of nanaparticles equal to the
product of K with the function f(ϕ).
As far as the −ln det C̃ term in eq 10 is concerned, this

accounts for entropic contributions due to chain deformation
by the flow. Note that for simplicity we have not made use of
the B(C) function employed by Stephanou et al.60,61 For the
spring potential we shall use the FENE-P(Cohen) expression,
eq B5 in Appendix B, in which the finite extensibility parameter
b is identified with b = 3Lc

2/⟨Rete
2⟩eq

0 = KLc
2/kBT (Lc being the

contour length of the chain).
Free Energy Due to Nanoparticle Orientation. For the

contribution to the free energy due to nanoparticle orientation,
following Rajabian et al.47 and Eslami et al.,56 we use

∫

κ

= − −

− −

⎡

⎣

⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦

⎥
⎥

A
n k T

A A

n

A

a a
a

a a r

2

3
tr( ) ln det

3

9

3
[tr( ) (tr ) ] d

a

a

np
B

0
eq

0

0

2

2 2 3

(11)

where na is the number density of nanoparticles and κ a
parameter with dimensions of volume accounting for nano-
particle−nanoparticle interactions56 whose magnitude is
expected to be of the same order as the nanoparticle
dimensions.

Polymer−Nanoparticle Interactions. The contribution to
free energy due to polymer−nanoparticle interactions (en-
thalpic, steric, topological) is proportional to both np and na,
and is expressed in terms of a single parameter κ′ which (like κ)
has dimensions of volume:56

∫ κ
=

′
· −‐A

n k T n

A

K

k T
C a C a r

2
[tr( ) (tr )(tr )] d

p a
pol np

B

0 B

3

(12)

As illustrated in section III.I, for the model to be
thermodynamically admissible, the parameter κ′ must be non-
negative (κ′ ≥ 0). Below, we will show that this parameter
controls variations in the size of polymer chains due to
nanoparticles: if κ′ = 0, adding nanoparticles will have no effect
on the size of chains (e.g., ref 42); if κ′ > 0, adding
nanoparticles to the polymer will cause chains to swell (e.g., ref
40).

Resulting Expression for the Free Energy. Putting all
contributions to the free energy together, we obtain
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The last term in this equation (independent of the tensors C
and a) has been added so that at equilibrium this reduces
exactly to the form proposed by Mackay et al.;40 in the absence
of flow, however, its contribution is irrelevant. It turns out that
in the final transport equations the Volterra derivatives of A
with respect to the tensors C and a are needed; expressions are
provided in the Supporting Information. For high molecular
weight polymers b ≫ 1 implying that heq ≈ 1, and in this
casesee eq SI.3a in the Supporting Informationone gets
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As will be shown in section III.I, strict thermodynamic
arguments require that the parameter κ′ must be non-negative.
Then, eq 14a implies that the ratio ⟨Rete

2⟩eq/⟨Rete
2⟩eq

0 of the
equilibrium mean-square end-to-end distance of polymer chains
in the presence and absence of nanoparticles is a nondecreasing
function of ϕ: the dimensions of the chains will either remain
the same (if κ′ = 0) or increase (if κ′ > 0), which supports the
findings of Mackay et al.40 How well eq 14a can reproduce the
experimentally measured data of Mackay et al.40 is discussed in
Stephanou et al.69 In the context of the present model, chain
swelling is the net result of all possible interactions (steric,
enthalpic, topological) between polymer chains and nano-
particles at our coarse-grained level of description, as embodied
in the mesoscopic parameter κ′. For a very dilute suspension of
nanoparticles in a melt of Gaussian chains (b ≫ 1), eq 14a
predicts the following linear relationship between degree of
chain swelling and ϕ (irrespective of the particular form of the
function f(ϕ)):

ϕ ϕ⟨ ⟩ ⟨ ⟩ ≈ + ≈ +R R c c/ 1 1
1

2
ete

2
eq ete

2
eq
0

0 0 (14b)

where c0 = 2/3κ′na
pure.69

At this point, it is interesting to check the form of the
expression for the free energy at equilibrium, for spherical
nanoparticles. Setting a = aeq = (3/A0)I in eq 13 and taking the
equilibrium limit gives
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But tr((K/kBT)Ceq −I) = 3[(⟨Rete
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0 ) − 1], which

leads to
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the second line holding for small ϕ values for which eq 14b
applies. Equation 15b demonstrates that at equilibrium we
recover the free energy expression proposed by Mackay et al.40

based on a modified Flory−Huggins theory for the description
of the phase behavior of the polymer nanocomposite. For
example, by considering the case of small ϕ and by setting the
first derivative of Aeq with respect to ϕ equal to zero,70 one
obtains ϕB = exp [−(1 + χ −(3c0 − 1)tM)], which is exactly the
binodal proposed by Mackay et al.40

C. The Poisson Bracket. The expression for the Poisson
bracket associated with the state variables M and C is well-
known and can be found in many references.55,59 For a
conformation tensor C, which is of the upper-convected type,59

it reads
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The additional part associated with the tensor a subject to the
constraint tr(a) = A0 can be derived (following Edwards et
al.71) by starting with the corresponding Poisson bracket for the
unconstrained orientation tensor a ̑ (treated as an upper-
convected type tensor):47,56
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and by using the following moment mapping [see refs 59 and
71] to project the unconstrained tensor to a new one whose
trace is constrained:
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Through this, for the new tensor a, the constraint tr(a) = A0

holds automatically. By applying eqs 16c to 16b then we obtain
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which is identical to the expression proposed by Eslami et al.56

and Rajabian et al.47

Given the above expressions for the Poisson brackets, the

following convective terms arise in the evolution equations of

the state variables in our model (using that δHm/δM = u):
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where p denotes the thermodynamic pressure and
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the convective part of the stress tensor τ.

D. The Dissipation Bracket. For the dissipation bracket,

which is responsible for the additional terms in the final

dynamic equations that specify the various transport processes

and their couplings, the following most general expression (in

terms of the tensors C and a)̑ is used:
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The fi r s t t e rm in the fi r s t in t eg r a l i nvo l v ing
(δF/δCαβ)Λαβγε

CC (δG/δCγε) and the entire second integral are
the same with those proposed by Beris and Edwards59 and used
by Stephanou et al.60,61 for pure homopolymer melts. To
account for the constraint tr(a) = A0, we can make again use of
the moment mapping technique as we did for the Poisson
bracket. Following Beris and Edwards,59 we use
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in the first integral and eq 16c in the last integral (together with
Lαβγε
a = L̃αβγε

a (A0/tra)̑) to find
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The first integral involves terms already presented by Grmela
and co-workers,47,56 whereas the rest are all new. The first
accounts for relaxation effects in the nanocomposite through
the fourth-rank semidefinite symmetric matrices Λ: Λαβγε

CC

describes pure chain relaxation (inversely proportional to a
characteristic chain relaxation time λp), Λαβγε

aa describes pure
nanoparticle relaxation (inversely proportional to a character-
istic nanoparticle orientational relaxation time λa), and Λαβγε

Ca

describes coupled chain-nanoparticle relaxation (inversely
proportional to a characteristic chain-nanoparticle relaxation
time λpa, taken here as λpa = (λpλa)

1/2);47,56 the terms
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proportional to 1/3 and 1/9, respectively, are direct
consequences of the trace constraint. The terms involving the
second, third and fourth integrals in eq 17c introduce a
coupling between the velocity gradient and the conformation
and orientation tensors through (again) fourth-rank tensors L:
Lαβγε
C describes chain nonaffine motion59 while Lαβγε

a is needed
to provide the correct form of the evolution equation for
nonspherical (but spheroidal) nanoparticles in the correspond-
ing Jeffery equation.28 As far as the term involving the fourth-
rank tensor Q is concerned, this introduces an additional
coupling between the velocity gradient and the orientation
tensor which is important only for nonspherical nanoparticles
and appears exclusively in the expression for the stress tensor.
E. The Evolution Equations. Calculating the contributions

arising from the dissipative bracket and adding them up to
those already calculated from the Poisson bracket, we arrive at
the following full set of dynamic equations:
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We also obtain the following (complete now) equation for the
stress tensor:
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F. The Matrices L, Q, and Λ. To be able to use the above
set of equations in actual calculations, we need to provide
expressions for the fourth-rank tensors ΛCC, Λaa, ΛCa, LC, La

and Q. For the L tensors, the following choices are made:

ξ
δ δ δ δ= − + + +αβγε αγ βε αε βγ βγ αε βε αγL C C C CC( )

2
( )C

(19a)

θ
δ δ δ δ=

−
+ + +αβγε αγ βε αε βγ βγ αε βε αγL a a a aa( )

1

2
( )a

(19b)

Lαβγε
C (C) describes nonaffine deformation effects for polymer

chains through the so-called slip or nonaffine parameter ξ.59−61

Lαβγε
a (a) introduces additional coupling between the orientation

tensor and the velocity gradient field and in the form employed
here it corresponds to Jeffery’s equation with θ being a
geometric parameter related to the nanoparticle aspect ratio
through28,72 θ = (υ2 − 1)/(υ2 + 1) where υ = l/D (l is the
length and D the diameter of the cross-section of the
nanoparticle); clearly, for spheres, θ = 0.
The tensor Q is given by

η ϕ ϕ
δ δ δ δ= + + +

+ ̅
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and satisfies Onsager’s relations: Qαβγε = Qβαγε = Qαβεγ = Qγεαβ.
In eq 20, A̅ and B are scalar functions of the geometric
parameter θ which are available by Letwimolnun et al.73 (in
their notation A̅ = A).
For the relaxation matrices ΛCC, Λaa and ΛCa we have made

the following choices:
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The relaxation tensor ΛCC is very similar to that employed by
Stephanou et al.60,61 while for Λαβγε

Ca and Λαβγε
aa the simplest

possible bilinear couplings have been chosen, namely Λαβγε
Ca ∼

Cαγaβε and Λαβγε
aa ∼ aαγδβε. Currently this is a postulate, but once

NEMD simulation data are made available for these systems,
we will be able to check their validity and properly modify them
as we did in ref 60 for unfilled polymers. Also, Λ0

aa and Λ0
Ca in

eq 21 denote numerical constants. Following Stephanou et
al.,60,61 the polymer chain longest relaxation time λp is allowed
to depend on the conformation tensor via

τ

λ ϕ λ λ

ϕ ϕ

λ ε

= * ̃

=

* ̃ = − ̃

X

X x

C

C

( ) ( )

( ) exp( )

( ) exp( tr )

p 0

rel

(22a)

Here λ0 is the relaxation time of the pure polymer at
equilibrium while the function X(ϕ) accounts for the
dependence of chain relaxation time on nanoparticle volume
fraction; and guided by recent simulation studies,15,37 we have
taken X(ϕ) = exp(xrelϕ) where xrel a numerical constant
characteristic of the particular molecular system (polymer plus
nanoparticles) under study. According to ref 15, xrel = 8.98 for
volume fractions up to ϕ = 0.2 (please note the typo in their eq
6 where instead of the common logarithm the natural one
should have been used). A more recent simulation work74 with
unentangled polymer melts and roughly spherical nanoparticles
suggests that (for nanoparticle volume fractions up to ϕ =
0.23), xrel = 1.1. For the relaxation time of the nanoparticles, on
the other hand, we have taken
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λ ϕ λ= Y( )a 0 (22b)

with Y(ϕ) = ϕ as suggested by Eslami et al.56,58 It can be shown

(see Appendix C) that this corresponds to the limiting case of a

very dilute suspension of nanoparticles in the matrix. For the

mobility tensor β̃, a linear dependence on the stress tensor τ is

typically considered (see also Stephanou et al.60,61):

β τα̃ = + ̃I (23)

with the magnitude of the Giesekus parameter α determining

the degree of anisotropicity in the mobility of polymer chains

due to their deformed shape by the flow field.

The expressions for Λaa and ΛCa are compatible with those of

Eslami et al.56 and Rajabian et al.47 but not identical. For

example, Eslami et al.56 have adopted a similar expression for

Λaa like ours (setting f1 = 1 and f 2 = f 3 = 0 in their Λaa). They

have also used a simpler expression for ΛCC, since they have

taken β̃ = I + C̃. Rajabian et al.,47 on the other hand, have used

similar expressions for Λaa and ΛCa but for ΛCC they have taken

β̃ = I.

G. The Full Form of the Model. With the above choices,

and using tr(a) = A0, the evolution equations for C and a and

the corresponding equation for the stress tensor τ become
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respectively. This set of equations is valid both under
equilibrium and nonequilibrium conditions and provides a
unified description of the coupling between microstructure and
viscoelasticity in PNCs, irrespective of the value of nanoparticle
volume fraction ϕ. It is thus capable of describing several sets of
experimental data referring (e.g.) to particle dispersion,
morphology, viscoelastic behavior, and response to a shear or
extensional flow field. An alternative derivation of the model via
the GENERIC formalism which avoids the assumptions of
incompressible and isothermal fluid is presented in the
Supporting Information.
H. Reduction to Simpler Cases. Newtonian Suspension

of Ellipsoidal Particles. The case of ellipsoidal nanoparticles
suspended in a Newtonian solvent is captured by choosing ξ =
0 (Newtonian fluids deform affinely), C̃ = I (thus also β̃αβ =
δαβ), Λ0

Ca = 0, κ′ = 0 (thus also κ = 0), and X(ϕ) = 1 (the
relaxation time of a simple Newtonian fluid is negligible).
Hence,
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where a ̅ = a/A0 = ∫ n̂n̂ψ(n̂, r, t)d3n̂ (so that tr(a)̅ = 1).
Choosing Λ = Λ0

aa tr(a ̅
−1)/(27λa), eq 25b takes exactly the

form that describes a Newtonian suspension [see, e.g., ref 73.]:
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The above choice for Λ is in accord with Folgar and Tucker,72

who have suggested that Λ = 2CIγ0̇ (i.e., that Λ should not be a

constant). The corresponding expression for the stress tensor is
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where we have used f(ϕ) = Cϕ (see, e.g., Letwimolnun et al.73)
in the final equation. The Newtonian viscosity is then identified
with η0 = np

purekBTλ0.
A Newtonian Suspension of Spherical Nanoparticles.

Setting a ̅ = ae̅q = (1/3)I and θ = 0 (meaning that A̅ = B = 0
and C = 2.5) in the above equation, we obtain
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i.e., we recover Einstein’s equation for the viscosity of a
Newtonian suspension of spherical particles. Actually, the
model yields the following more general relation between stress
and rate-of-strain tensors

τ η ϕ γ= + ̇αβ αβ
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0 (26b)

which agrees perfectly with several generalizations of Einstein’s
equation over the years:31
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The first corresponds to the second-order correction to
Einstein’s equation derived by Batchelor and Green26 and the
last with the empirical equation proposed by Krieger and
Dougherty75 for dense Newtonian suspensions.

A Polymer Melt Filled with Spherical Nanoparticles. For
the more complex case of spherical nanoparticles dispersed in a
polymeric fluid, we take a ̅ = ae̅q = (1/3)I and υ = 1 (or,
equivalently, θ = 0, implying that A̅ = B = 0). The evolution
equations then for the chain conformation tensor and
nanoparticle orientation tensor assume the following form (in
dimensionless units):
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Equation 27b is needed in order to prove the thermodynamic
admissibility of the model (see next section). As far as the stress
tensor is concerned, this becomes
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In the above equations, the nanoparticle and polymer number

densities are given as na = 6ϕ/πD3 and np = ρp(1 − ϕ)Nav/Mmw,

respectively. Equations 27a and 27c are the main results of this

work.

I. Thermodynamic Admissibility and Positive Semi-

definiteness of the Conformation Tensor. Any thermody-

namic system has to satisfy the universal restriction of a non-

negative total rate of entropy production. For incompressible

and isothermal flows for which the entropy production results

from the degradation of mechanical energy this restriction is

expressed59 as dHm/dt = [Hm, Hm] ≤ 0 (note the typo in

Stephanou et al.,60 section II.G). For this to be satisfied, we find

that (see proof in the Supporting Information)
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The constraints in eq 28 define the range of thermodynamically

admissible values for the most important parameters of the

proposed model. An alternative derivation of the thermody-

namic admissibility of the new model is presented in the

Supporting Information following the CMDCM
T factorization

scheme proposed by Edwards.76

The above set of constraints also guarantees the positive-

definite nature of the tensor C (this is actually a prerequisite for

checking thermodynamic admissibility). To see this, we follow

Beris and Edwards59 to bring first the evolution equation for C

in the form
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Then, a sufficient (but not necessary)59 condition for C to be

positive definite is g0(C̃) > 0, which is true provided the

constraints in eq 28 hold. We therefore conclude that the

conditions for the thermodynamic admissibility of our model

and the positive-definiteness of the tensor C are those dictated

by eq 28.

IV. ASYMPTOTIC BEHAVIOR OF THE MODEL IN
STEADY STATE SHEAR

In this section, we provide analytical expressions describing the

asymptotic behavior of the new model in the limit of low

deformation rates for the following two types of flow: steady

shear flow (SSF) described by the kinematics u = (γ0̇y,0,0) and

uniaxial elongation flow (UEF) described by the kinematics u =

(ε0̇x, − 0.5ε0̇y, − 0.5ε0̇z), where x, y and z denote the three

Cartesian coordinates. The material functions to be analyzed

are the shear viscosity η (= τxy/γ0̇) and the two normal stress

coefficients Ψ1(= (τxx − τyy)/γ0̇
2) and Ψ2(= (τyy − τzz)/γ0̇

2) in

SSF, and the extensional viscosity η1E(=(τxx − τyy)/ε0̇) in UEF.

In SSF we find that
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In UEF we find that
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In the above expressions, η0 = np
purekBTλ0 denotes the viscosity

of the Newtonian plateau while the quantities H̃eq, Λ̃0
CCand Λ̃0

Ca

have been defined as H̃eq = heq −(2/3)naκ′[1 + f(ϕ)]−1, Λ̃0
CC =

(1−ϕ)/X(ϕ), Λ̃0
Ca = (1−ϕ)Λ0

Ca(X(ϕ)Y(ϕ))−1(1/3)κ′(npna)
1/2.

Equations 30 constitute generalizations of those introduced by
Stephanou et al.60 for pure homopolymers to the case of
polymer nanocomposites. Equation 30b shows that the zero
elongation rate extensional viscosity obeys Trouton’s law,
η1E,0(ϕ) = 3η0(ϕ) for all ϕ.
We close section IV by noting that for melts of PNCs with

spherical nanoparticles the model contains the following
parameters:

1. the Giesekus parameter α accounting for anisotropic
hydrodynamic drag in the constitutive equation for the
conformation tensor

2. the PTT parameter ε controlling the variation of the
longest chain relaxation time with chain conformation

3. the nonaffine parameter ξ accounting for the fact that
individual chains will not deform affinely following
macroscopically imposed flow field

4. the finite chain extensibility or FENE parameter b
accounting for the finite size of real polymer chains

5. the chain longest relaxation time in the pure polymer
melt, λ0

6. the parameter κ′ describing polymer−nanoparticle
interactions

7. the parameter xrel describing the dependence of polymer
relaxation time on nanoparticle volume fraction

8. the parameter Λ0
Ca entering the expression for the

relaxation matrix; this controls the coupling between the
two structural variables

Parameters 1−5 are needed to capture correctly the
rheological response of the neat polymer matrix (both in
shear and elongation), and should be known prior to analyzing
the PNC case. Then, one is left with three unknown parameters
only, the set {xrel, κ′, Λ0

Ca}, whose values must be specified
either through comparison with experimental data or by
carrying out independent molecular simulations for the specific
polymer nanocomposite melt.
It turns out that the above set can be reduced even more,

since one can obtain a good estimate for κ′ (accounting,
effectively, for nanoparticle-mediated excluded volume inter-
actions) in terms of just the diameter D of the nanoparticles
and the equilibrium radius-of-gyration Rg0 of the polymer
chains. The analysis is carried out in the Supporting
Information and the main idea is to treat the term proportional
to tr(C·a) − (tr a)(tr C) in eq 12 as a Maier−Saupe type of
entropy by generalizing the approach presented by Khokhlov
and Semenov77 to the case of a hard spheroidal nanoparticle
and a soft polymer coil. We find (see the Supporting
Information)

κ′ ≅ +b D DR6 ( )d g0 (31)

which is an extremely useful expression, since it provides a very
good estimate for κ′ in terms of geometric factors for
nanoparticles and polymer chains.
Alternatively, one can precisely fix the value of κ′ but also of

the other two parameters (xrel and Λ0
Ca) from independent

NEMD simulations. To see how this can be done, we can
analyze the asymptotic behavior of the model predictions for
the elements of the conformation tensor in the limit of small
shear rates to come up with the following set of equations in
the case of simple shear flow:

ξ
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and

̃ = ̃ −C Hzz eq
1

(32d)

where k = (1 − ξ)[H̃eq
2Λ̃0

CC + Λ̃0
Ca]−1, αe = α(1 − ξ)[1 + f(ϕ)],

and We = λ0γ0̇ denotes the dimensionless shear rate. Similar

expressions can be obtained for UEF. These expressions are
consistent with what is known about the dependence of
viscometric functions on shear rate in simple shear flows: the
nondiagonal component Cxy increases linearly with We while
the two diagonal ones Cxx and Cyy increase quadratically with
We.78 But what is more interesting is that these constitute a
system of four algebraic equations in four unknowns (κ′, Λ0

Ca,
xrel, f(ϕ)); therefore, one can utilize independent NEMD
simulation data for a given polymer−nanoparticle melt to
obtain κ′, Λ0

Ca, xrel, and f(ϕ), thus totally avoiding the need for
any fitting.
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V. RESULTS

All predictions of the new model discussed in this Section have
been obtained with the FENE-P(Cohen) approximation for the
function h needed in eqs 27a and 27c, since this provides a
better description of available rheological data for the
corresponding neat homopolymers than the Warner approx-
imation.60,61 We have also used the following parameter values
referring to the polymer component: α = 0.05, ξ = ε = 0.01, b =
50 and ρp = 1gr/cm3. We have further employed Einstein’s
formula for the function f, namely f(ϕ) = (5/2)ϕ. Our goal
then is to discuss how the addition of nanoparticles alters the
viscometric functions of the melt in SSF and UEF, and how it
affects the components of the conformation tensor. Recall that
for the neat polymer melt, the zero shear rate viscosity is given
by ηp = η0(1 − ξ)2.60,61 The results will be analyzed in terms of
nanoparticle volume fraction ϕ, for several values of the set of
parameters {xrel, κ′, Λ0

Ca}. Most of the results have been
obtained for nanoparticles with diameter D = 1 nm and
molecular weight Mmw = 1000 g/mol, but some additional
results for different values of Mmw and D will also be presented.
A. Material Functions in Simple Shear. Figure 2 shows

the variation of the relative zero shear rate viscosity ηr = η/ηp

with ϕ for different values of the set {xrel, κ′, Λ0
Ca}. When both

κ′and Λ0
Ca are zero, ηr follows the Einstein formula as expressed

by eq 30a. By introducing xrel = 1 (i.e., by allowing for an
exponential increase in the polymer longest relaxation time
with nanoparticle volume fraction), eq 30a shows that ηr
increases also exponentially with ϕ. Assuming a nonzero
value for κ′ (e.g., using κ′ = 1 nm3) is then sufficient to further
push the curves upward (since H̃eq < 1). For example, for ϕ =
0.5 and κ′ = 0 the relative zero shear rate shear viscosity ηr is
∼3.7 whereas for ϕ = 0.5 and κ′ = 1 nm3 the value of ηr
increases to ∼5.1. The effect of Λ0

Ca, on the other hand, is to
shift the curve downward.
In Figure 3 we present the growth of the shear viscosity upon

inception of shear flow for three different values of We: We =
0.1, 1, and 10. In Figure 3a, the results are compared for two
different volume fractions: ϕ = 0 (corresponding to the pure
polymer melt) and ϕ = 0.1 (corresponding to a PNC with a
low concentration in nanoparticles). The numerical data have
been obtained for Λ0

Ca = κ′ = xrel = 0. For small We values, the
results can be easily obtained by solving the model in the linear

viscoelastic (LVE) regime, i.e., by using η0(ϕ)[1− exp(−t/
λ(ϕ))] where λ(ϕ) = λ0H̃eq[H̃eq

2 Λ̃0
CC + Λ̃0

Ca]−1 and η0(ϕ) is
given by the first formula in eq 30a. For the pure polymer melt,
η0(ϕ = 0) = ηp. The figure shows that for We = 0.1 the viscosity
initially increases equally in the two systems, but the resulting
steady-state values are different (since they depend on ϕ).
Despite the fact that these steady-state viscosity values are
strong functions of ϕ, as the We increases, the model predicts
similar values between the pure polymer and the nano-
composite with ϕ = 0.1. We will come back to this issue when
we will discuss Figure 4. In Figure 3b, we present the model
predictions for the transient shear viscosity for two different
values of the parameter xrel: xrel = 0 and xrel = 1. A nonzero
value for xrel shifts the entire viscosity curve upward, and this is
more pronounced for the smaller We values. Similar trends are
observed in Figure 3c presenting the effect of κ′ on the
transient viscosity: a nonzero value for κ′ (e.g., κ′ = 5 nm3)
shifts the viscosity curve slightly upward (especially at smaller
We values). The most distinctive effect, however, is the
appearance of the overshoot even for We = 0.1. The
corresponding effect of the parameter Λ0

Ca is illustrated in
Figure 3(d): for Λ0

Ca = 0.1, the entire viscosity curve is shifted
slightly downward but its overall shape remains the same as
when Λ0

Ca = 0 [the case presented in Figure 3(c)].
The long-time asymptotic limits of the curves shown in

Figure 3 define the corresponding steady-state shear viscosity
values; their dependence on We (for several values of the
important model parameters) is discussed in Figure 4. Part a of
Figure 4 shows the comparison between the case with ϕ = 0
(the neat polymer melt) and the cases with ϕ = 0.1, ϕ = 0.2,
and ϕ = 0.3. For We = 0.1, all curves approach the zero shear
rate limit, in agreement with the analytic expression of eq 30a.
As the value of We increases above ∼0.1 and especially above
∼1, shear thinning becomes pronounced. Interestingly enough,
for Λ0

Ca = κ′ = xrel = 0, the high shear rate asymptotic behavior
of all curves in Figure 4a is the same. Figure 4b shows the effect
of xrel on viscosity: by increasing xrel, the Newtonian plateau is
shifted upward and the onset of shear thinning occurs at lower
We values, but the high shear rate regime remains practically
unaltered. It is only for a very large value of xrel (e.g., xrel = 5 in
Figure 4b) that some differences can be detected in the high
shear rate behavior of the nanocomposite. Exactly the same
trends are observed when the value of κ′ is increased (see
Figure 4c). As far as the parameter Λ0

Ca is concerned, Figure 4d
shows that its effect is to shift the viscosity values in the
Newtonian plateau downward without affecting the shear
thinning behavior. The dependence of the model predictions
for the shear viscosity on the molecular weight Mmw of the
polymer is discussed in Figure 4e: increasing Mmw causes a
slight increase of the viscosity in the Newtonian regime but
apart from that the behavior at high We values remains
unaltered. Finally, in Figure 4f, we show the effect of
nanoparticle diameter D on viscosity: increasing D decreases
the viscosity at low shear rates without significantly affecting the
shear thinning behavior (at large We values).

B. Material Functions in Uniaxial Elongational Flow.
Figure 5 illustrates the growth of the transient elongational
viscosity in UEF for three different values of the dimensionless
elongational rate We (now defined as We = λ0ε̇0): We = 0.1, 1,
and 10. First we compare the pure polymer to a nanocomposite
containing 10% of nanoparticles (Figure 5a). For We = 0.1, the
curve corresponding to the nanocomposite is above the one
corresponding to the pure polymer; for We = 1, the opposite

Figure 2. Model predictions for the relative zero shear rate viscosity ηr
of a PNC for different values of the set of model parameters {xrel,κ′,
Λ0

Ca}. In the particular case that all these parameters are zero, the
model reproduces Einstein’s formula for the viscosity (i.e., ηr = 1 +
5/2ϕ).
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behavior is observed; and for We = 10, the two curves are seen
to lie almost one on top of the other. This last feature is
analogous to the results discussed in Figures 3 and 4 where
upon increasing We the viscosity curve for the nanocomposite
was found to approach that for the pure polymer. In Figure 5b,
we present the viscosity curves for the nanocomposite for the
case xrel = 1: the curves are shifted upward but in a less
pronounced way as the value of We is increased. And the same
happens when κ′ = 5 nm3. Taking Λ0

Ca = 0.1, on the other hand,
causes the opposite effect, see Figure 5d: the viscosity curves
are slightly shifted downward, similar to the behavior of the
shear viscosity discussed in Figure 3d.
C. Conformation Tensor. The dependence of the most

important elements (C̃xx, C̃yy, C̃zz, and C̃xy) of the conformation
tensor C̃ on We in the case of steady-state shear flow is
examined in Figure 6. Several sets of curves are shown in the
figure corresponding to different values of the set {xrel,κ′,Λ0

Ca},
and they refer to a PNC with ϕ = 0.1 in addition to that for the
pure polymer. For κ′ = 0 (for which no swelling of polymer
chains takes place), all diagonal elements of C̃ start from the
value of unity; in contrast, for κ′ > 0, chains swell; in this case,
the three diagonal elements of C̃ start from values slightly larger
than one. We also note that for Λ0

Ca = 0 one can calculate
analytically the asymptotic values of all four components C̃xx,
C̃yy, C̃zz, and C̃xy in the limit of infinitely high We, the resulting
expressions being:
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where αe = α(1 − ξ)[1 + f(ϕ)], K̃ = 2/3naκ′[1 + f(ϕ)]−1 and q
= (C̃zz

∞/C̃xx
∞) + (2/ξ)(C̃yy

∞/C̃xx
∞) (q is identical to ψ of ref 60;

note also the correction to a typo to ψ in ref 60). Also shown in
Figure 6 (by orange dotted lines) are the predictions of eq 31
for the asymptotic behavior of the four components in the limit
of small We. The following conclusions can be drawn by
inspecting the graphs of Figure 6:

• C̃xx increases monotonically with increasing We reaching
a constant asymptotic value at We above approximately
200. Increasing the value of either xrel or Λ0

Ca shifts the
curve at intermediate values of We upward and only
slightly affects the value of the plateau in the limit of
infinitely high shear rates. Compared to the pure polymer
melt, polymer nanocomposites are characterized by
relatively larger values of C̃xx, especially for nonzero
values of the parameter xrel. Overall, C̃xx seems to be
more sensitive to parameter xrel than to parameters κ′

and Λ0
Ca. Keeping the values of xrel and κ′ fixed (equal to

5 and 1 nm3, respectively), the asymptotic value of C̃xx

for Λ0
Ca = 0.1 is slightly below that for Λ0

Ca = 0.
• C̃yy decreases monotonically with increasing We reaching

an asymptotic value for We larger than ∼200. This
asymptotic value seems to be very small (equal to ∼0.1)
and practically insensitive to the exact values of the set
{xrel, κ′,Λ0

Ca}. We also observe that upon increasing the

Figure 3. Model predictions for the growth (in time) of the relative viscosity ηr of the PNC for various values of the applied shear rate (or We
number). Different sets of data are shown corresponding to different values of the set of model parameters {xrel, κ′, Λ0

Ca}.
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value of xrel the entire curve shifts downward (especially
at intermediate We). Keeping the value of xrel constant
(e.g., equal to 5), increasing the values of κ′ and Λ0

Ca

affects the behavior of the C̃yy-vs-We curve only in the
regime of small shear rates. Therefore, and similar to C̃xx,
C̃yy is more sensitive (overall) to parameter xrel than to
parameters κ′ and Λ0

Ca. We also see that PNCs are
characterized by relatively smaller values of C̃yy

(especially when xrel attains nonzero values) compared
to the corresponding pure polymer matrices. Keeping the
values of xrel and κ′ fixed (equal to 5 and 1 nm3,
respectively), the asymptotic value of C̃yy for Λ0

Ca = 0.1 is
slightly below that for Λ0

Ca = 0.
• Like C̃yy, C̃zz decreases monotonically with We reaching

also a constant asymptotic value at high enough We
values (approximately above 200). However, and in
contrast to C̃yy, C̃zz undergoes a smaller variation with

We. For example, its asymptotic value (in the limit of
infinitely high shear rates) is always larger than 0.5. We
also find that this asymptotic value depends strongly on
the value of Λ0

Ca: increasing Λ0
Ca, causes the entire C̃zz-vs-

We curve to shift upward. The parameter κ′, on the other
hand, seems to affect the variation of C̃zz with shear rate
only in the regime of small We.

• In contrast to the three diagonal elements (C̃xx,C̃yy, and
C̃zz), the nondiagonal C̃xy element of C̃ changes with We
in a nonmonotonic way: with increasing We, its value
initially increases, goes through a maximum at an
intermediate We value, and then drops rapidly. The
maximum value of C̃xy is slightly above 1 and is attained
for a value ofWe that depends slightly on the exact values
of the parameters xrel, κ′, and Λ0

Ca (in all cases, it is close
to 100).

Figure 4. Model predictions for the variation of the relative zero shear rate viscosity of a PNC with shear rate (orWe number). Different sets of data
are shown corresponding to different values of the set of model parameters {xrel, κ′, Λ0

Ca}.
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Figure 5. Same as with Figure 3 but for the uniaxial elongational viscosity (in scaled units).

Figure 6.Model predictions for the components of the conformation tensor for different values of the set of model parameters {xrel, κ′, Λ0
Ca}. Similar

to Figure 4, we have used that f(ϕ) = (5/2)ϕ.
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D. Comparison with Experimental Data. The capability
of our model to describe quite accurately experimentally
measured data for several nanocomposite melts is demon-
strated in Figures 7 and 8. Figure 7 shows how well the new

model can describe the relative viscosity of an unentangled
PEO melt with molecular weight Mmw = 1000 g/mol filled with
silica nanoparticles of diameter D = 43 nm.43 The pure polymer
exhibits a constant viscosity with shear rate suggesting the
following values for the pure polymer parameters: ξ = α = ε = 0
and b → ∞ (i.e., Hookean dumbbells), see also Stephanou et
al.69 Furthermore, due to the large nanoparticle volume
fractions covered in the measurements (close to 50%), neither
the Einstein equation nor the Einstein−Berthelot−Green one
are applicable.43 A better choice is the empirical equation
proposed by Krieger−Dougherty75 for dense Newtonian
suspensions with ϕT denoting the value of the maximum
packing fraction. We also observe that for ϕ ≥ 0.27 the data in
Figure 7 exhibit a plateau in the limit of infinitely high shear

rates. This is due to the fact that, at these high shear rates, flow
is so fast that thermal motion cannot destroy the imposed
structure (fully aligned molecules) on polymer chains. Inspired
by the Carreau−Yasuda model,78 such a behavior in our work is
captured by using [η − η∞(ϕ)]/[η0(ϕ) − η∞(ϕ)] =
τxy/[η0(ϕ)γ0̇] which for We ≪ 1 approaches unity so that η
= η0(ϕ) while forWe≫ 1 we obtain η = η∞(ϕ) (i.e, the infinite
shear rate viscosity). Using then ϕT

−1 = 2.242, κ′ = 103 nm3 and
xrel = 4.4, our model offers a very satisfactory description of the
experimental data provided that a ϕ-dependent value is used for
Λ0

Ca. The corresponding results are shown in Figure 7 and have
been obtained with the following best-fit values for Λ0

Ca: Λ0
Ca =

10−11 for ϕ = 0.091, Λ0
Ca = 7 × 10−11 for ϕ = 0.177, Λ0

Ca = 3 ×

10−7 for ϕ = 0.27, Λ0
Ca = 5 × 10−7 for ϕ = 0.373, and Λ0

Ca = 3 ×
10−2 for ϕ = 0.445; also, η∞(ϕ = 0.445) = 15, η∞(ϕ = 0.373) =
7, and η∞(ϕ = 0.27) = 3 (in units of η0). The best-fit value of κ′
(= 103 nm3) is very close to the one calculated by eq 31 which
gives κ′ ≈ 6 × 103 nm3 (the bead size has been obtained via bd

2

= m0(⟨Rete
2⟩eq/Mmw) where m0 = 44 g/mol for PEO). We

further note that the equilibrium relaxation time of the pure
polymer comes out to be λ0 = 0.15 s. A similar calculation for
PEO40068 gives λ0 = 8 × 10−3 s. Combining the two sets of
data suggests a scaling of the form λ0 ∼Mmw

1.76, which does not
deviate much from the scaling λ0 ∼ Mmw

2 proposed by the
combined Rouse-free volume theory.79 Overall, our model
provides a very good description of the nonlinear rheological
properties of the PEO-silica nanocomposites studied by
Anderson and Zukoski43 over a very large range of shear
rates, irrespective of the nanoparticle volume fraction ϕ used in
the rheological measurements. An interesting observation is
that the fitted η∞ values are not only in excellent agreement
with those reported by Anderson−Zukoski (ref 43, Figure 4B)
but also fully compatible with the expression η∞(ϕ) ≈
(1 − yϕ)−2 with y ≈ 1.66 proposed on the basis of a large
amount of literature data on monodisperse spheres.80

Figure 8 presents a further comparison of our model with the
coarse-grained NEMD simulation predictions of Kairn et al.22

The data refer to an unentangled polypropylene melt with
chain molecular weight Mmw = 2200 g/mol filled with
nanoparticles interacting with a modified WCA potential with
D = 1.55 nm. Here, the pure polymer melt exhibits shear-
thinning, and this is captured by using the following set of
parameters: α = ξ = 0.01, ε = 0.02, and b = 36.6. Actually, the
value of b was not fitted but was directly obtained from b =
3Lc

2/⟨Rete
2⟩eq by using Lc = 19 and ⟨Rete

2⟩eq = 29.5 (in units of σ
and σ2, respectively).22 For the function f we made use of the
Einstein-Berthelot-Green expression (as suggested by Kairn et
al.), namely f(ϕ) = 2.5ϕ + 6.2ϕ2. The best fits to the simulation
data were then obtained for Λ0

Ca = 1, xrel = 0.3 and κ′ = 1 nm3.
As far as the infinite shear rate viscosity values are concerned,
these came out to be: η∞(ϕ = 0.3) = 0.4, η∞(ϕ = 0.215) = 0.36,
η∞(ϕ = 0.157) = 0.33, η∞(ϕ = 0.087) = 0.28, and η∞(ϕ = 0) =
0.23 (in units of ηp = (1−ξ)2η0). The curves shown in Figure 8,
then give a picture of the accuracy that the model can
reproduce the simulation data.

VI. DISCUSSION AND CONCLUSIONS

A constitutive model has been introduced for the thermody-
namics and hydrodynamics of polymer nanocomposite melts at
a mesoscopic level of description, capable of providing a very
accurate and self-consistent picture of many important
properties of this class of materials. The model has been
developed in the framework of the generalized bracket and

Figure 7. Comparison of model predictions for the relative viscosity of
a PNC as a function of nanoparticle volume fraction and imposed
shear with the experimental measurements of Anderson and
Zukoski.43

Figure 8. Same as with Figure 6 but with the simulation data of Kairn
et al.22
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GENERIC formalisms of nonequilibrium thermodynamics and
leads to a set of time evolution equations for the important
transport processes and their couplings in polymer nano-
composites, nicely extending previous approaches developed
for simpler systems, such as a Newtonian suspension of
particles or a pure homopolymer melt. The proposed model
has several attractive features: (a) it is based on a few
fundamental building blocks that have either a clear physical
meaning (such as the terms in the Helmholtz free energy
describing polymer−nanoparticle interactions) or a strict
mathematical structure (such as the Poisson and the dissipative
brackets); (b) the formulation in terms of thermodynamic
quantities (such as an extended free energy) allows for the
consistent extension of equilibrium theoretical approaches to
nonequilibrium conditions; (c) the building blocks are put
together in a form allowing for the smooth incorporation into
the model of new physics coming from more detailed
approaches (such as atomistic simulations) or more funda-
mental theories (e.g., kinetic theory for the description of the
most important hydrodynamic interactions); (d) the model
obeys the first and second law of thermodynamics, which poses
important constraints on its parameters; (e) there is a clear
correspondence of all terms in the evolution equations to an
underlying molecular mechanism or phenomenon (this adds
extra power to its predictive capability); (f) the final equations
provide a clear description of the coupling between micro-
structure, thermodynamics and transport properties; (g) for
simpler systems, the proposed set of dynamic equations
correctly reduces to known (and well-tested) models.
Overall, the proposed model offers a unified description of

several aspects of PNCs: it can describe their phase behavior
(miscibility), conformational properties (degree of chain
swelling due to nanoparticles), zero shear rate viscosity and
dependence on nanoparticle volume fraction and size, and all
rheological material functions in shear and elongation
(including the dependence on nanoparticle volume fraction
and deformation rate).
The new model has been validated by showing how it can

describe (fit) several sets of thermodynamic and rheological
data reported in the literature either from direct experimental
measurements or from simulations. For example, the model can
provide a very reliable description of the experimental
measurements of Anderson and Zukoski43 for the dependence
of viscosity on nanoparticle volume fraction both in the
Newtonian plateau and in the shear thinning regime. This was
also true with the corresponding simulation data of Kairn et
al.22 Moreover, the model can describe very satisfactorily the
experimental result of Mackay et al.40 for the dependence of
chain swelling on nanoparticle volume fraction in several
polystyrene-based nanocomposites.69

As a continuation of the present work, we would like to (a)
introduce strategies for estimating most (if not all) of the
model parameters from lower-level studies (e.g., from detailed
molecular simulations), (b) extend the model to entangled
polymers, and (c) use the new model to study how the applied
flow can affect the phase behavior of the polymer nano-
composite.

■ APPENDIX A

A Quick Overview of Flory−Huggins Theory

According to the Flory−Huggins theory (Flory,81 Chapter
XII):

ϕ ϕ χ ϕ
Δ

= − + + −
A

Vk T
n nln(1 ) [ln (1 )]p a

B (A1)

where na and np denote the polymer chain density and
nanoparticle number density, respectively, χ the Flory−Huggins
mixing parameter, and V the volume of the specimen. Equation
A1 can also be written as
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By further multiplying with the nanoparticle volume vnp we get

ρ
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Following Mackay et al.,40 we can introduce next the parameter
tM = vnpρpNav/Mmw, which can also be written as
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where a denotes the radius of the nanoparticles, ρ0 is the
density of one chain, and Rg0 is the radius-of-gyration of the
polymer chains in the pure polymer state. An alternative
expression in terms of the polymer molecular weight Mmw =
m1NavN, where N is the polymerization and m1 the mass of one
monomer, and the density of the pure polymer ρp = m/V =
NpNm1/NpNv1 = m1/v1 (v1 = 4/3πbd

3 is the volume occupied by
one monomer) is

ρ
= = =t

v N

M
v
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m N N

v

v N

1
M

pnp av

mw
np

1

1

av

1 av

np

1 (A5)

■ APPENDIX B

Finite Nonlinear Chain Extensibility

We focus on the definition of the chain extensibility parameter
μ introduced by Stephanou et al.60 (their eq 19):

μ =
⟨ ⟩ − ⟨ ⟩

− ⟨ ⟩

R R

L Rc

2 ete
2

ete
2
eq
0

2
ete

2
eq
0

(B1)

It should be noted that the reference state is again60,61 the pure
polymer one. The parameter μ2 can be cast in terms of
dimensionless quantities by multiplying and dividing with K/
kBT:

μ =
−

̃ −
b

C I
1

3
tr( )2

(B2)

For a pure polymer and under equilibrium conditions (i.e., for
C̃ = I), μ2 = 0. The effective spring constant defined as (the
correction in eq (5a) of Stephanou et al.60 should be noted)

δ

δ
= =

∂Φ
∂

=
∂Φ

∂ ̃
h

A K

k T
C

C C C
(tr ) 2

tr tr trB (B3)

is thus given by
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for the FENE-P(Warner) approximation and the FENE-
P(Cohen) approximation, respectively. We note that, contrary
to the case discussed in Stephanou et al.,60,61 the effective
spring constant at equilibrium does not reduce to unity unless
chains are very long (b ≫ 1). Equations B4 and B5 are
obtained from eq B3 by assuming the following expressions,
respectively, for the potential energy:
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It should be noted that the correct form of eq (23a) in
Stephanou et al.60 is (in their notation):
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Although eqs B7a and eq 23a in Stephanou et al.60 both give
the same effective spring constant, eq 21, only eq B7a gives
ϕW = tr(C̃ − I), which vanishes at equilibrium; in contrast, eq
23a in Stephanou et al.60 gives ϕW = tr C̃, which does not
vanish at equilibrium. Equation 23b in Stephanou et al.60 may
be rewritten as
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Equations B7a and B7b agree with eqs B6 by taking KΦj/kBT =
ϕj, j={W,C}.

■ APPENDIX C

Rotational Relaxation Time of a Spheroid and Its
Dependence on Volume Fraction
We first consider the case of a pure unentangled polymer melt
at equilibrium whose viscosity ηp is typically given in terms of
its number density np and chain longest relaxation time λ0
through

η λ λ
η

= ⇒ =n k T
n k Tp p

p

p
B 0 0

B (C1)

The volume fraction of the particle is ϕ = vnp/V, where vnp
denotes the volume of the particle and V the volume of the
specimen. Since only one particle has been added, the volume is
considered to remain unchanged (equal to that of the pure
polymer), namely V = m/ρ = Mmv/(Navρ) = (np)

−1, thus vnp =
ϕ/np. The rotational friction coefficient for a prolate ellipsoid is
ζr ∼ ηpLa

3, where La is the length of the long axis (actually, the
expression is more complex and contains also the prolate
ellipsoid’s aspect ratio; see Jeffery28 and Doi and Edwards,79 p
292). The rotational diffusion coefficient is therefore Dr =
kBT/ζr, implying that the characteristic time needed for the
particle to complete one full rotation is

λ
η

∼ ∼−
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D
L

k T
( )a r

p a1

3

(C2)

Note that in the case of a sphere ζr ∼ ηpD
3 and λa ∼

ηpLa
3/(kBT); the latter agrees with the rotation time given by

Tanford82 (reference available in Doi and Edwards79 p. 103, eq
4.83). Since only one particle has been inserted, we can take the
polymer viscosity and the polymer chain radius-of-gyration to
be constant (but we will revisit this below); by combining then
the above equations, we get
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In the case of a sphere vnp ∼ La
3 = D3. This shows that for very

dilute suspensions the rotational relaxation time of the
nanoparticles is proportional to ϕλ0.
Let us consider now the case where the viscosity of the

suspension follows Einstein’s law ηp(ϕ) = ηp(1 + c1ϕ). As we
add nanoparticles to the matrix, the polymer number density
will decrease according to np(ϕ) = (1 − ϕ)Navρ/Mmw =
(1 − ϕ)np. Combining the two expressions, we see that
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But ϕ is negligibly small, thus again λa ∼ ϕλ0(La
3/vnp).
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