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The continuum model of the twisted graphene bilayer [Lopes dos Santos, Peres, and Castro Neto, Phys. Rev.

Lett. 99, 256802 (2007)] is extended to include all types of commensurate structures. The essential ingredient of

the model, the Fourier components of the spatially modulated hopping amplitudes, can be calculated analytically

for any type of commensurate structures in the low-twist-angle limit. We show that the Fourier components that

could give rise to a gap in the sublattice exchange symmetric (SE-even) structures discussed by Mele [Phys. Rev.

B 81, 161405 (2010)] vanish linearly with angle, whereas the amplitudes that saturate to finite values, as θ → 0,

ensure that all low-angle structures share essentially the same physics. We extend our previous calculations

beyond the validity of perturbation theory to discuss the disappearance of Dirac cone structure at angles below

θ � 1◦.
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I. INTRODUCTION

Barely a year after the discovery of a new form of quantiza-
tion of the Hall effect in graphene monolayers,1–4 the bilayer
attracted considerable attention by displaying yet another type
of quantum Hall effect.2 Experimental and theoretical studies
quickly followed on the electronic structure,5 Landau-level
spectrum,6 transport,7–11 disorder, and interactions.12,13

These early studies focused on the AB stacked bilayer.14

Unlike the monolayer, in which carriers near the Fermi
level behave like massless fermions, the AB stacked bilayer
has quadratic dispersion near the Fermi level (for undoped
samples). It is gapless, as the monolayer, but only in the
absence of a perpendicular electric field. An important feature
of this system is the existence of a variable energy gap
induced by an external electric field perpendicular to the
layers.15,16

The first experimental indications of the existence of
rotational disorder in ultrathin graphite films came from
films grown on the 4H−SiC(0001̄) (carbon side) of SiC
crystals;17 however, it had been known for years that in
graphite crystals, the top layer is often found rotated with
respect to the underlying ones, giving rise to long-wavelength
modulations of the scanning tunneling microscopy (STM)
signals, displaying as Moiré patterns.18–21 Few-layer graphene
films grown by chemical vapor deposition methods22–24 often
show rotations of successive graphene layers. It has also
been possible to produce twisted bilayers using mechanically
exfoliated samples.25

The electronic structure of the twisted bilayer was consid-
ered by the authors26 in the context of a continuum, Dirac-Weyl
equation, description of the two layers, coupled by a spatially
modulated hopping. The model predicted the persistence of
linear dispersion, with well-defined Dirac cones, as in the
monolayer, but with an angle-dependent suppression of the
Fermi velocity; it was also predicted that there would be

no gap in the presence of a perpendicular electric field.
These results were subsequently confirmed experimentally
by Raman25 and Landau-level spectroscopy,27 and by band-
structure calculations,28,29 although the earliest calculations
appeared to question the suppression of the Fermi velocity.30,31

The most striking confirmation of the electronic structure
proposed in Ref. 26 came from the observation, with scanning
tunneling spectroscopy, of two low-energy van Hove peaks in
the density of states, with a strongly angle-dependent energy
difference; these were identified with the occurrence of two
saddle points in the band structure.24

The continuum description was originally developed for

a specific family of commensurate structures, dense in the

low-angle limit, in which the relative displacement of corre-

sponding Dirac points in each layer �K = Kθ − K (Kθ is

obtained from K by a rotation of the twist angle between

the layers) is not a reciprocal lattice vector of the Moiré

superlattice; as a consequence, there is no direct hopping

matrix element between these two Dirac points. Mele32

considered the commensurability conditions more generally,

and pointed out the existence of another family of structures

in which �K is a reciprocal lattice vector of the Moiré

superlattice. This matrix element between the Dirac points

of the two layers should then give rise to a significant gap,

raising the possibility of quite different physics from the one

discussed in Ref. 26.
Meanwhile, several authors28,29,33 addressed the physics at

very low twist angles (θ � 1◦), finding significant deviations
from some of the results presented in our previous work. The
continuum model is similar to a quasifree electron calculation,
where the kinetic energy scale is h̄vF �K = 2h̄vF K sin(θ/2)
and the periodic potential scale is given by the interlayer
hopping. The original calculation included a minimum set
of plane waves, an approximation which is only valid if the
kinetic energy scale dominates.
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In this work, we review and extend the continuum model
to address these issues. We are able to present a complete
analytical calculation of all the Fourier components of the
spatially modulated hopping for any family of commensurate
structures in the low-angle limit. The structures considered
by Mele turn out to be a quasiperiodic repetition of simpler
structures of the type we originally considered. The Fourier
components of the hopping amplitude that could lead to a gap
vanish as the angle decreases, due to an interference effect,
whereas other amplitudes saturate, essentially ensuring the
low-angle physics of all commensurate structures is the one
we discussed previously.

The complete characterization of the Fourier components
of the interlayer hopping amplitude allows us to extend the
treatment of the continuum model to very small angles.
The Fermi velocity vanishes at an angle θ ∼ 1◦ in very
good agreement with the results obtained from band-structure
calculations;28,29,33 an almost dispersionless band appears at
this angle, corresponding to localized states around regions
of AA stacking.33 Using the continuum model, with only
the dominant Fourier amplitude, Bistritzer and MacDonald34

showed that at even smaller angles, the Fermi velocity becomes
nonzero again, vanishing at a series of “magic angles,” of
which θ ∼ 1◦ is the first in the series. We present a simple
explanation of this observation based on the differences of the
band structures of pure AB and pure AA stacked bilayers.

In Sec. II, we review the geometry of commensurate
structures in the twisted bilayer in order to establish notation
and present an alternative derivation of the results obtained
by Mele32 and Shallcross et al.28 We formulate the continuum
model in Sec. III and present an analytical formulation of
the calculation of the Fourier components of the spatially
modulated interlayer hopping, valid for small angles and any
kind of structure. The main results of the model are presented
in Sec. V, followed by a brief summary.

II. GEOMETRY OF COMMENSURATE STRUCTURES

The conditions for the commensurability of a Moiré
pattern of two rotated honeycomb lattices have already been
considered by Mele32 and Shallcross et al.28 We review
this question, both to establish notation and to present an
elementary approach to this question, more directly based on
the symmetries of the hexagonal lattice. In this section, we
sketch the main argument, leaving details for the Appendix.

The honeycomb (HC) lattice of graphene has an underlying
Bravais lattice with basis vectors which we choose as (lattice
parameter a = 2.46 Å)

a1 = a

{
1

2
,

√
3

2

}
, (1a)

a2 = a

{
−

1

2
,

√
3

2

}
. (1b)

This lattice is made up of two sublattices, A and B, where A

atoms occupy Bravais lattice nodes, and the B are shifted by
δ1 = (a1 + a2)/3:

rA(m,n) = ma1 + na2, (2a)

rB(m,n) = rA(m,n) + δ1, m,n ∈ Z. (2b)

In an AB stacked bilayer, there are two such lattices, vertically
displaced by c = 3.35 Å, with the B atoms of layer 2 (B2) with
the same horizontal positions as the A atoms in layer 1 (A1),
rB2(m,n) = rA1(m,n).

In a twisted bilayer, the layers are rotated relative to each
other. We will assume we rotate layer 2 by an angle θ , about
a common A1B2 horizontal position, that we take to be the
origin. A commensurate structure will occur if such a stacking
A1B2 occurs elsewhere, say at T1; the rotation might as well
have been made about that second point, so T1 is a superlattice
translation, although not necessarily a primitive vector. For
A1B2 stacking to occur, a B2 site must rotate to an A1 site,

ka1 + la2 → ma1 + na2, k,l,m,n ∈ Z (3)

which can only occur if

k2 + l2 + kl = m2 + n2 + mn (4)

since |ka1 + la2|2 = (k2 + l2 + kl)a2.
Shallcross et al. in Ref. 28 present a detailed discussion

of the solutions of this Diophantine equation. The same
conclusions can be reached by exploring the point symmetries
of the hexagonal lattice, namely, the existence of a sixfold
rotation axis and of six reflection axes (the lines along the
basis vectors a1,a2 and a2−a1, and three axis at angles of π/6
with these). These symmetries imply that a shell of Bravais
lattice sites at a given distance from the origin must be built
of groups of two sets of six sites, with position vectors Pi and
Qi , i = 1, . . . ,6, such as displayed in Fig. 1(b): the Pi(Qi)
lie at directions making an angle of π/3, and the two sets
are related to each other by reflection on the symmetry axis;
these two sets may degenerate into one if it occurs on the

symmetry axes. Naturally, a rotation of layer 2 by the angle
θ that brings P1 → Q1 will leave six A1B2 sites at the Q

sites, each defining a lattice translation Ti of a commensurate
structure (from origin to Qi). The same can be said of the
conjugate rotation θ ′ = π/3 − θ that maps Q6 → P1, in which
case the lattice translations are defined by the Pi . Now, there
may be, at a given shell, more than one of these groups of
symmetry-related sites. A shell of say 24 atoms will have two
such groups Pi , Qi and Ri , Si . A rotation that, say, maps
Ri → Qi must map Si → Pi by symmetry, leaving us with 12
A1B2 sites at the same distance from the origin: these lattice
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4
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FIG. 1. (Color online) (a) Geometry of the honeycomb lattice.

(b) A shell of 12 Bravais lattice sites, their position related by the

rotation and reflection symmetries of the hexagonal lattice.
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translations can not be primitive translations since the Bravais
superlattice is hexagonal by symmetry, and only has six nearest
neighbors. Thus, in order to find all angles of commensuration,
and the corresponding primitive vectors, we need only consider
rotations that map {Pi} → {Qi} or {Qi} → {Pi}, where each of
these sets of six points is obtained from the other by reflection
about the symmetry axes.

These observations, and some elementary manipulations
(see the Appendix) are sufficient to establish the following
results for the possible commensurate structures.

Angles: The following equation, with m and r coprime
positive integers, defines all possible angles of commensurate
structures with 0 < θ < π/3:

cos θ (m,r) =
3m2 + 3mr + r2/2

3m2 + 3mr + r2
. (5)

Primitive vectors: The primitive vectors of the superlattice
for a commensurate structure of angle θ (m,r) are as follows
[gcd(r,s) is the greatest common divisor of r and s]:

(i) If gcd(r,3) = 1,

[
t1

t2

]
=

[
m m + r

−(m + r) 2m + r

] [
a1

a2

]
. (6)

(ii) If gcd(r,3) = 3,

[
t1

t2

]
=

[
m + r

3
r
3

− r
3

m + 2r
3

] [
a1

a2

]
. (7)

The superlattice unit-cell area is larger than that of graphene
by a factor 3m2 + 3mr + r2 in the first case, and m2 + mr +
r2/3 in the second one.

These two types of structures can be distinguished both
in real and in reciprocal space.32 Using the results of the
Appendix, it is straightforward to show that in the first case
gcd(r,3) = 1, the vertices of the real-space Wigner-Seitz (WS)
cell of the superlattice alternate between B1A2 sites and
hexagon centers; in the second case, each corner of the WS
cell is a hexagon center of one layer and an atom of the other.
In the reciprocal space, the shift in the Dirac point of the
rotated layer Kθ − K is a reciprocal lattice vector only in
the second case. Mele,32 who called attention to these two
types of commensurate structures, refers to them as sublattice
exchange even (SE-even) when gcd(r,3) = 3 and SE-odd when
gcd(r,3) = 1.

III. CONTINUUM MODEL

The continuum description of the twisted bilayer was
introduced by the authors26 in 2007. A single graphene layer
admits an effective description in terms of the Dirac-Weyl
equation for states close to one of the Dirac points.3,14 We
use this description for the intralayer Hamiltonians in the
twisted bilayer, taking into account that layer 2 is rotated with
respect to layer 1 by θ . We consider states near the Dirac point
K = 4π (1,0)/3 in layer 1 and Kθ = (4π/3)(cos θ, sin θ ) in
layer 2. We denote by �i(r), i = 1,2, the two-component Dirac
fields for each of the layers i = 1,2, and write the momentum
as K + k in layer 1 and Kθ + k in layer 2.

In momentum space, the intralayer Hamiltonians are26

H1 = h̄
∑

k

�
†
1,kvF τ · k�1,k, (8)

H2 = h̄
∑

k

�2,k
†vF τ

θ ·k�2,k; (9)

the coordinate axes have been chosen to coincide with those
of layer 1, τ = (τx,τy),τ θ = e+iθτz/2

τe−iθτz/2, and τx and τy

are Pauli matrices. For the moment, we will ignore coupling
between different Dirac valleys K, Kθ and K′ = −K, K′θ =
−Kθ ; we will return to this point later.

To model the interlayer coupling H⊥, we retain hopping
from each site in layer 1 to the closest sites of layer 2 in

either sublattice. We denote by δ
β ′α(r) the horizontal (in-plane)

displacement from an atom of layer 1, sublattice α (α =
A1,B1), and position r to the closest atom in layer 2, sublattice
β ′ (β ′ = A2,B2). The tight-binding interlayer coupling is

H⊥ =
∑

i,α,β ′

t⊥(δβ ′α(ri))c
†
α(ri)cβ ′ (ri + δ

β ′α(ri)) + H.c.,

(10)

where t⊥(δαβ(r)) ≡ t
αβ

⊥ (r) is the interlayer, position-dependent
hopping between pz orbitals with a relative displacement
c0 + δ, and cα(r) is the destruction operator for the state in
sublattice α at horizontal position r.

Denoting by �K = Kθ − K the relative shift between
corresponding Dirac wave vectors in the two layers, the usual

replacement26 cα(r) → v
1/2
c ψ1,α(r) exp(iK · r), where vc is the

graphene unit-cell area, leads to

H⊥ =
∑

αβ

∫
d2r t

βα

⊥ (r)eiKθ ·δβα(r)ei�K·rψ
†
1,α(r)ψ2,β(r) + H.c.

(11)

We used ψβ[r + δ
βα(r)] ≈ ψα(r) since the Dirac fields are

slowly varying on the lattice scale.
In Fourier space, it is convenient to define φi,k,α as the

Fourier component of ψi,α(r) for momentum k ± �K/2, the
plus sign applying in layer 1 and the minus sign to layer 2. With
this choice, the Dirac fields φi,k,α with the same k vector in
both layers correspond to the same plane waves in the original
lattice; the Dirac cones occur at k = −�K/2 in layer 1 and
�K/2 in layer 2.

For commensurate structures, the function t
αβ

⊥ (r) exp

[iKθ · δ
αβ(r)] is periodic and has nonzero Fourier components

only at the vectors G of the reciprocal lattice:

t̃
αβ

⊥ (G) =
1

Vc

∫

uc

d2r t
αβ

⊥ (r)eiKθ ·δαβ (r)e−iG·r. (12)

The integral is over the unit cell of the superlattice, of area Vc.
With these definitions, the low-energy effective Hamilto-

nian, near K, is

H = h̄
∑

k,αβ

φ
†
1,k,αvF ταβ ·

(
k +

�K

2

)
φ1,k,β

+ h̄
∑

k,α,β

φ
†
2,k,αvF τ

θ
αβ ·

(
k −

�K

2

)
φ2,k,β

+

(
∑

α,β

∑

k,G

t̃
βα

⊥ (G)φ
†
1,k+G,αφ2,k,β + H.c.

)
. (13)
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TABLE I. The first and second lines express exact relations

between the Fourier amplitudes of the modulated hopping at different

reciprocal lattice vectors. In the next two lines, the stated relations

have corrections of order a/L, where L is the period of the

superlattice; t̃⊥ is real.

G 0 −G1 −G1 − G2

t̃BA
⊥ (G) t̃⊥ t̃⊥ t̃⊥
t̃AB
⊥ (G) t̃⊥ e−i2π/3 t̃⊥ ei2π/3 t̃⊥
t̃AA
⊥ (G) t̃⊥ ei2π/3 t̃⊥ e−i2π/3 t̃⊥
t̃BB
⊥ (G) t̃⊥ ei2π/3 t̃⊥ e−i2π/3 t̃⊥

Before proceeding, it is perhaps worthwhile to remark that
including other interlayer hopping amplitudes does not alter
this description in a fundamental way. We would still arrive
at a Hamiltonian similar to the one of Eq. (10), but the

hopping t
αβ

⊥ (r) exp[iKθ · δ
αβ(r)] would be replaced by a more

complicated expression.
In this formulation, this problem is similar to that of a

quasifree electron band problem because each layer has been
reduced to a continuum, so that the only periodicity remaining
in the problem is that of the Moiré superlattice. The most

important parameters are then the Fourier amplitudes t̃
βα

⊥ (G)
defined by Eq. (12).

The implications of Mele’s discussion of SE-even
structures32 can now be clearly stated. In the SE-odd r = 1
structures we discussed in 2007, �K = (2G1 + G2)/3 is not

a reciprocal lattice vector of the Moiré. There is no matrix
element coupling between the Dirac cones K and Kθ of the
two layers. There is, in fact, a matrix element coupling the
different valleys since K

′θ − K is a reciprocal lattice vector;
but, this wave vector has magnitude O(1/a), and for Moirés

with large periods L ≫ a, t
βα

⊥ (r) is very slowly varying on
the graphene lattice scale, and one would expect such matrix
elements to be very small. But, as Mele pointed out, for an
SE-even structure [gcd(r,3) = 3], �K = r(G1 + G2)/3 is a
reciprocal lattice vector of magnitude of order O(1/L) and
there seems to be no a priori reason to neglect it. It lifts the
degeneracy between the two Dirac points and leads to a gap.
A complete analysis of the Fourier amplitudes, to which we
now turn, will allow us to resolve this issue.

IV. CALCULATION OF FOURIER AMPLITUDES

A. Structures with r = 1

We begin by considering the calculation of Fourier ampli-
tudes for r = 1 structures. Surprisingly, for small angles, the
amplitudes for other structures can be reduced to these. In
Ref. 26, we stated that in the low-angle limit, and for an r = 1
structure, the dominant amplitudes are given by the results of
Table I. We now give a complete justification of this statement,
and show how one can calculate analytically all amplitudes
for low angles. We begin by showing how certain symmetries
imply relations between the horizontal shifts δ

βα for different
sublattices.

As stated in Sec. II, three of the six vertices of the WS cell
are B1A2 sites: for instance,

R =
2t1 − t2

3
= ma1 + δ1 = (m + 1)a′

1 − δ
′
1.

Since the origin is an A1B2 site, R is simultaneously a A1 →
B1 and a B2 → A2 translation. Therefore, if there is an A1 site
at r and B2 site at r + δBA(r), there will be a B1 site at r + R

and A2 site at r + R + δ
BA(r), implying

r + δ
BA(r) + R = r + R + δ

AB(r + R),

and δ
BA(r) = δ

AB(r + R).
A somewhat more involved symmetry of this structure,

namely, invariance under reflection about the origin, sub-
lattice exchange (A1 ↔ B1, A2 ↔ B2) and translation by R =
ma1 + δ1, leads to a similar relation δ

BB(r) = −δ
AA(−r + R).

These symmetries are exact and imply the following relations
for the Fourier amplitudes:

t̃AB
⊥ (G) = e−iG·R t̃BA

⊥ (G), (14a)

t̃BB
⊥ (G) = e−iG·R[t̃AA

⊥ (G)]∗. (14b)

With G = kG1 + lG2, we get G · R = 2π (2k − l)/3.
The WS cell also has three vertices which are hexagon

centers (see Sec. II); one such vertex is (t1 + t2)/3 for r = 1
structures. This means that R = (t1 + t2)/3 + δ1 is an A1 site
and R′ = (t1 + t2)/3 + δ

′
1 is an A2 site, and so δAA(R + δ1) =

δ
′
1 − δ1 ∼ O(θ ). If this were exactly zero, R + δ1 would be

A1 → A1 and B2 → A2 translations, implying

δAA(r) = δBA(r − R − δ1) + O(θ ).

This leads to

t̃AA
⊥ (G) ≈ e−iG·(R+δ1) t̃BA

⊥ (G). (15)

As before, G = kG1 + lG2 and G · (R + δ1) = 2π (k +
l)/3 + O(1/L).

These three relations [Eqs. (14) and (15)] express all
amplitudes in terms of t̃BA

⊥ (G) and have been thoroughly
confirmed by numerical evaluation of the Fourier amplitudes
by calculating the integrals of Eq. (12) as a lattice sum. For
the specific values of G considered in Table I, they lead to the
phase factors relating amplitudes for different sublattices.

Let us now consider the expression for t̃BA
⊥ (G), and write it

as a lattice sum:

t̃BA
⊥ (G) =

1

Nc

∑

i∈uc

t⊥[δBA(ri)]e
iKθ ·δBA(ri )e−iG·ri . (16)

In terms of G′ := �K + G, we get

t̃BA
⊥ (G) =

1

Nc

∑

i∈uc

t⊥[δBA(ri)]e
iKθ ·[ri+δBA(ri )]e−iK·ri e−iG′·ri .

(17)

In the WS cell of an r = 1 structure, this simplifies because
exp[iKθ · (r + δ

BA(ri))] exp[−iK · r] = 1 for all sites. It turns
out, and this is a property that is exclusive to r = 1 structures,
that the B2 site closest to A1 at rA = ma1 + na2 is at rB ′ =
ma′

1 + na′
2 (same m and n), so that Kθ · rB ′ = K · rA. As a

result,

t̃BA
⊥ (G) =

1

Nc

∑

i∈uc

t⊥[δBA(ri)]e
−iG′·ri . (18)
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Since rB2
:= rA1

+ δ
BA(rA1

) = R(θ ) · rA, where R(θ ) is the
rotation matrix, and for small angles R(θ ) = 1 + dω × r, we
get |δBA(r)| = θr. We can therefore approximate the sum of
Eq. (18) as an integral:

t̃BA
⊥ (G) =

1

Nc

∑

i∈uc

t⊥[δBA(ri)]e
−iG′·ri

≈
1

Ncσ

∫

uc

d2r t⊥(θr)e−iG′r cos φ .

To simplify, we replace the hexagonal unit cell with a circle
of the same area Ncσ =

√
3L2/2, where L is the superlattice

parameter. The radius of the circle is RWS = (
√

3/2π )1/2L and

t̃BA
⊥ (G) =

2
√

3L2

∫ RWS

0

dr rt⊥

(
r

L

) ∫ 2π

0

dφ eiG′r cos φ

=
4π
√

3

∫ (
√

3
2π

)1/2

0

dx xt⊥(x)J0(G′Lx), (19)

where J0(x) is a Bessel function.
To calculate this integral, we need to parametrize the

hopping between pz orbitals as a function of the horizontal
shift δ. We express it in the Slater-Koster parameters Vppσ (d)
and Vppπ (d), where d is the distance between the two atomic

centers d =
√
c2

0 + δ2. For the d dependence of Vppσ (d) and

Vppπ (d), we used the parametrization of Ref. 35; Vppπ (a0/
√

3)
is the in-plane nearest-neighbor hopping t , and Vppσ (c0) is
the interlayer hopping t⊥ in an AB stacked bilayer. The
contribution of Vppπ turns out to be negligible, and t⊥(δ) is

proportional to t⊥: for δ = a0/
√

3, the carbon-carbon distance
in a layer t⊥(δ)/t⊥ ≈ 0.4.

With this parametrization, we represent the amplitude as
a function of G′L in Fig. 2. If t⊥(δ) were constant, the
integral would be proportional to J1(G′L)/(G′L) and decay
as (G′L)−3/2. This is actually the way this amplitude decays,
as could be seen by plotting G′3/2 times the integral. We have
calculated numerically, as lattice sums, several amplitudes,
using Eq. (16); Fig. 2 shows that the analytical approximation
to t̃BA

⊥ (G) gives an excellent account of the values found
numerically.

FIG. 2. (Color online) The t̃BA
⊥ (G)/t⊥ as a function of G′L: the

dots are numerically calculated values for a (m,r) = (10,1) structure,

with θ = 3.15◦, and the red line is the integral of Eq. (19).

These results are worthy of the following comments:
(i) The three reciprocal lattice vectors selected in Table I,

G = 0,G = −G1, and G = −G1 − G2, all have G′L = 4π/3.
The corresponding values of t̃BA

⊥ (G) are equal, t̃BA
⊥ (G) =

0.4t⊥; all other reciprocal lattice vectors have larger values
of G′, and the amplitudes are correspondingly smaller; these
other amplitudes were ignored in Refs. 26 and 34.

(ii) For a general G = kG1 + lG2,G
′ = (k + 2/3)G1 +

(l + 1/3)G2. Since Gi ∝ 1/L, G′L becomes independent of
the angle or rotation. The amplitudes for a given (k,l) become
independent of angle for small angles, tending to the values
given by our analytical approximation.

(iii) This complete characterization of the Fourier ampli-
tudes allows one, in principle, to include in the calculation of
the spectrum as many plane waves as necessary to achieve
convergence. The characteristic energy from the in-plane
motion is h̄vF �K ∼ 0.190 θ , with the energy in eV and
the angle in degrees, and for small angles one requires more
plane waves than those used in Ref. 26. The physics of these
small-angle structures has been widely discussed recently in
the literature, and we will use these results to discuss it in
the framework of the continuum model. But, before that, we
consider the calculation of the Fourier amplitudes in other
families of commensurate structures.

B. Importance of r = 1 structures

In this section, we show that, in the small-angle limit, the
r = 1 structures are special, and determine the physics of
all types of commensurate structures. In scanning tunneling
microscopy (STM) images,18 Moiré patterns appear to satisfy
the following relation between period and angle of rotation:
L = a/[2 sin(θ/2)]. For a general (m,r) structure,

sin

(
θ (m,r)

2

)
=

1

2

r
√

3m2 + 3mr + r2
, (20a)

L(m,r) = a
√

3m2 + 3mq + q2, (20b)

where q = r/ gcd(r,3), so the above relation is only satisfied
for r = 1. The plot 2L sin(θ/2)/a as a function θ , in Fig. 3(a),
makes this clear. Remark that all these families of superlattices,
with different values of r , are dense as θ → 0. This means that
a very small change in θ , with little effect in the structure in
real space, can nevertheless change L by an arbitrary large
factor. The implication is that, for very small angles, all
commensurate structures are almost periodic repetitions of
structures with r = 1. That is seen very clearly by inspecting
visually a few Moiré patterns [see Fig. 3(b)].

Let us show this explicitly for a SE-even structure, (m,r)
with r = 3r ′. At one of the corners of the Wigner-Seitz cell,

r :=
t1 + t2

3
= mδ1 +

r

3
a2 = mδ

′
1 +

r

3
a′

1. (21)

If m mod 3 = 1, like in the (7,3) structure in Fig. 3(b), this
site has B1 atom of layer 1 and a hexagon center of layer
2. Therefore, at r − δ1 there is an A1 site and at r − δ

′
1, a

B2 one. This implies that δ
BA(r) = δ

′
1 − δ1 = O(θ ). If this

were zero, r would be a lattice translation of the Moiré. The
corresponding structure would be of SE-odd with m′ = (m −
1)/3 and r ′ = r/3. In real space, a SE-even structure (m,r),
with m − 1 divisible by 3, is then very similar to a SE-odd
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FIG. 3. (Color online) (a) 2(L/a) sin(θ/2) vs θ . The various lines

correspond to different values of r; the lower line corresponds to

the structures with r = 1. (b) A SE-even structure is almost periodic

with the period of a structure with r = 1; here, a (m,r) = (7,3) is

shown overlaid with the Wigner-Seitz cells of (m,r) = (2,1); the

black hexagon is the true unit cell of the structure.

with (m′,r ′) = [(m − 1)/3,r/3]. In the following paragraphs,
we refer to these two lattices as L (SE-even) and L̃ (SE-odd).

Let us now relate the reciprocal lattice primitive vectors of
L and L̃. Using the results of the Appendix, one arrives at

[
G̃1

G̃2

]
=

([
2 1

−1 1

]
+ O(θ )

)[
G1

G2

]
. (22)

Ignore, for the moment, the O(θ ) corrections. These equations
tell us that the real-space basisL, t1,t2, are linear combinations
with integer coefficients of the basis of L̃. In the present case,
we have

[
t1

t2

]
≈

[
2 1

−1 1

] [
t̃1

t̃2

]
. (23)

In the calculation of t̃
βα

⊥ (G) for the lattice with primitive

vectors t1,t2,we can take into account that the δ
βα(ri) are

(approximately) periodic in t̃1 and t̃2, and split the sum over
ri in the unit cell L into a sum over the unit cell of L̃, r′

i and a

sum over the nc unit cells of L̃ contained in the unit cell L:

t̃
βα

⊥ (G) =
1

nc

∑

Rn

e−iG·T̃n

×
1

Ñc

∑

r′
i∈ũc

t⊥[δβα(r′
i + T̃n)]eiKθ ·δβα (r′

i+T′
n)e−iG·r′

i

≈
1

nc

∑

T̃n

e−iG·T̃n
1

Ñc

∑

r′
i∈ũc

t⊥[δβα(r′
i)]e

iKθ ·δβα (r′
i )e−iG·r′

i .

(24)

We achieved a factorization of t̃
βα

⊥ (G):

t̃
βα

⊥ (G) = S(G)

[
1

Ñc

∑

i∈ũc

t⊥[δβα(ri)]e
iKθ ·δβα(ri )e−iG·ri

]
,

(25a)

S(G) =
1

nc

∑

T̃n

e−iG·T̃n . (25b)

The second factor is t̃
βα

⊥ (G) for the lattice L̃. As for the
structure factor S(G), note that, by definition, G · T = 2mπ , if
T is a translation vector of L (periodic boundary conditions),
and, if G =G̃, a reciprocal vector of L̃, exp[iG · T̃n] = 1.
Therefore, we obtain in this approximation

t̃
βα

⊥ (G) =

[
1

Ñc

∑

i∈ũc

t⊥[δβα(ri)]e
iKθ ·δβα(ri )e−iG·ri

]
δG,G̃, (26)

where G̃ is any reciprocal vector L̃. This is a very important
result:

(i) it expresses the Fourier amplitudes of SE-even in terms
of those of structures with r = 1, which we calculated in
Sec. IV A;

(ii) it states an approximate selection rule, which becomes
more accurate as the angle of rotation decreases, allowing us
to identify Fourier amplitudes that must tend to zero for small
angles.

We have checked this result by numerical calculation of

t̃
βα

⊥ (G) for various lattices using Eq. (16). In Fig. 4, each

point on the plot has an x coordinate equal to t̃
βα

⊥ (G̃),

G̃ = kG̃1 + lG̃2, for the (m′,r ′) = [(m − 1)/3,r/3] lattice,

and a y coordinate t̃
βα

⊥ (G), G = (2k − l)G1 + (k + l)G2 of the
SE-even (m,r) lattice; Eq. (26) predicts that these amplitudes
should be equal and the agreement is excellent.

The second implication of Eq. (26) concerns the behavior
of Fourier amplitudes for which G is not a reciprocal lattice
vector of L̃, the r = 1 superlattice. Of particular interest is
G = �K = G1 + G2 because it determines the magnitude
of the gap in a SE-even structure. In Fig. 5, we show that

|t̃βα

⊥ (�K)| → 0 as θ → 0, as a result of the vanishing of the
structure factor S(G). In other words, there is a destructive
interference in the sum of Eq. (16) because of the quasiperiod-
icity of the hopping amplitudes inside the unit cell of the larger
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FIG. 4. (Color online) Comparison of Fourier amplitudes of

pairs of structures: each point has an x coordinate t̃
βα

⊥ (G) for

[(m − 1/3,r/3] and a y coordinate t̃
βα

⊥ (G) for a SE-even structure

(m,r). G̃ = kG̃1 + lG̃2 and G = (2k − l)G1 + (k + l)G2. According

to Eq. (26), these amplitudes should be equal. The line is y = x,

not a fit. The inset has an expanded scale to include the dominant

amplitudes (k,l) = {(0,0), (−1,0), (−1,−1)}. The angles are in the

range 2.5◦ < θ < 7.3◦.

period lattice. When G matches a reciprocal lattice vector G̃ of
the smaller period lattice S(G) ≈ 1 (constructive interference),
the amplitudes saturate to finite values as θ → 0. With this
knowledge of the Fourier amplitudes for any structure, we
finally address the calculation of the low-energy bands of a
small-angle bilayer with a twist.

V. CONTINUUM MODEL AT LOW ANGLES

In the absence of the interlayer coupling H⊥, states with
energy close to zero occur at k = −�K/2 in layer 1 and k =
+�K/2 in layer 2. The interlayer Hamiltonian H⊥ couples

5 10

 θ 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

~ t ⊥
(G

)/
t ⊥

(1,1)
(2,1)
(−1,1)

(deg)

FIG. 5. (Color online) |t̃βα

⊥ (G)|/t⊥ for G = kG1 + lG2 for SE-

even lattices, with different angles of rotation. For (k,l) = (−1,1) or

(2,1), G is approximately equal to a reciprocal lattice vector of an r =
1 lattice and, t̃

βα

⊥ (G)/t⊥is almost constant; but for (k,l) = (1,1), which

corresponds to G = �K, the amplitude vanishes linearly with θ .

the states of momentum k in layer 1 to states k − G, in layer

2 with a matrix element t̃
βα

⊥ (G). The most important Fourier
amplitudes (of modulus t̃⊥ = 0.4t⊥) in r = 1 structures occur
for G = 0, G = −G1, and G = −G1 − G2 for which G′L =
4π/3, where G′ = G + �K (see Fig. 2). Neglecting other
Fourier amplitudes,26 the states of momentum k in layer 1 are
coupled directly only to states of layer 2 of momentum k, k +
G1, and k + G1 + G2; conversely, the states of momentum k

in layer 2 only couple to states k, k − G1, and k − G1 − G2.
To investigate the spectrum at a momentum k close to zero
energy, one can truncate the Hamiltonian to include only these
six momentum values (three for each layer) giving a 12 × 12
matrix to diagonalize (three momentum values, two layers, and
two sub-lattices).26 When k is close to the Dirac cone of one
layer, the three momentum values that it couples to lie at the
same distance �K from the Dirac point of the opposing layer;
we have zero-energy states coupling to two triplets of states at
±vF �K . The spectrum obtained from the diagonalization of
the Hamiltonian matrix can be interpreted in a perturbative
way when t̃⊥/vF �K ≪ 1. This analysis was presented in
previous works and will not be repeated here.24,26 The main
conclusions were (i) the persistence of the Dirac cones, with
linear dispersion; (ii) a renormalization of the Fermi velocity,
relative to the single layer, which, in perturbation theory, was
predicted as ṽF /vF = 1 − 9[t̃⊥/(h̄vF �K)]2 (vF is the single-
layer value); (iii) the appearance of two low-energy van Hove
peaks due to the appearance of saddle points in the low-energy
bands, arising from the mixing of the two Dirac cones.

In SE-even structures, however, there is a direct matrix
element coupling the two Dirac cones; will the physics change
relative to SE-odd structures due to the appearance of a gap?

According to Eq. (22), the dominant Fourier amplitudes, in
this case, occur for G = 0, G = −2G1 − G2, and G = −G1 −
2G2 since these correspond to G̃ = 0, −G̃1,−G̃1 − G̃2; on
the other hand, �K = r(G1 + G2)/3 = G1 + G2. Therefore,
these three dominant amplitudes couple the Dirac point of
layer 1 to states of the layer 2 which are shifted from its Dirac
point by −�K = −(G1 + G2), −�K + 2G1 + G2 = G1, and
−�K + G1 + 2G2 = G2; since the angle between G1 and G2

is 2π/3, these are three vectors of the same modulus |�K| at
2π/3 angles, and we recognize exactly the same situation as
discussed above for the r = 1 structures: the degeneracy points
of each layer couple to two triplets at energies ±vF �K . It is
true that, for this structure, there is a direct matrix element
coupling the two degeneracy points, corresponding to G1 +
G2, which will lift the degeneracy and lead to a gap. However,
as we saw in Fig. 5, this matrix element decreases with angle,
and below 5◦ is under 5 meV.

One can say that the differences between the various types
of structures in momentum space are somewhat of a red
herring. Two structures which are almost identical in real
space must display similar physics. The momentum space
description can look very different, but the magnitudes of the
Fourier amplitudes must ensure similar results.

The perturbation theory in t̃⊥/(h̄vF �K) clearly breaks
down for very small angles since, as we have seen, the
numerator becomes constant of order 0.4t⊥ ∼ 0.1 eV and the
denominator is h̄vF �K ∼ 0.190 × θ eV (angle in degrees).
This has led some authors28,29,33 to question the validity of the
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FIG. 6. (Color online) Velocity renormalization, by perturbation

theory in t̃⊥/(h̄vF �K), and by the continuum model with numerical

diagonalization of the secular equation, with a sufficient set of

momentum values for convergence. The latter calculation deviates

from the perturbative results as (h̄vF �K) becomes comparable to

t̃⊥, but is in quite good agreement with band-structure calculations

(Refs. 28,29 and 33).

continuum description in the small-angle limit. Band-structure
calculations, while confirming the prediction of depressed
Fermi velocity ṽF /vF = 1 − 9[t̃⊥/(h̄vF �K)]2, find deviations
from it below about θ ≈ 5◦.

One should not, however, confuse the perturbative result
with the continuum model. In fact, the continuum model
should be better at smaller angles since the scale of variation
of the interlayer hopping becomes larger. What one must do,
however, is to include a larger set of plane waves in order to
achieve convergence of the low-energy spectrum.

In the following, we present some results for small angles,
obtained by diagonalizing numerically the Hamiltonian of
Eq. (13), truncated to a finite basis (largest matrix used of
168 × 168), and including all the required Fourier amplitudes,
as given by the analytical expression of Eq. (19). This limit
has already been addressed by Bistritzer and MacDonald34

in an approximation that includes only the dominant Fourier
amplitudes. Some of our calculations, particularly those of
the density of states, apparently require larger matrices for
convergence than those that these authors claimed to have used.

The results for the ratio of the Fermi velocity to the single-
layer value, as function of θ , are shown in Fig. 6. As expected,
for small angles, they deviate from the perturbative result,
and compare very well with the values obtained from band-
structure calculations:28,29,33 the Fermi velocity becomes zero
at about θ ≈ 1◦.

In Fig. 7(a), we show a density plot of lowest positive
energy bands for θ = 1.79◦ (̃vF /vF ≈ 0.3); the Dirac cones,
as well as the saddle point between them, are clearly visible; at
even smaller angles, θ = 1.20◦, the corresponding plot shows
an almost flat region in the arc joining the two Dirac cones
through the saddle point [Fig. 7(b)]; the range of energies with
linear dispersion becomes very small.

The density of states (DOS) is a very convenient tool to
check for the presence of Dirac cones in the band structure. If
the cones are present, the DOS shows a linear dependence near
zero energy, as can be clearly seen in Fig. 8(a) for θ = 1.79◦;
for θ = 1.2◦, one can still define a (very small) Fermi velocity,
but one should bear in mind that that the range of energies of
linear dispersion is contracted to a few meV.

At an even smaller angle, θ = 1.08◦, one observes a sharp
peak in the DOS at low energy, corresponding to an almost
dispersionless band [Fig. 9(a)], with a barely resolved two-
peak structure. Surprisingly, if the angle decreases further, the
central band broadens [Fig. 9(b)]. This curious behavior was
found by Bistritzer and MacDonald34 and characterized as an
oscillation of the Fermi velocity. In fact, at the meV resolution
of the figure, the DOS is finite between the peaks. It is not clear
that a region of linear dispersion even exists, but, if it does, it is
so narrow that we prefer to concentrate on this curious variation
of the width of the central peak. The diagonalization of the
secular equation gives the eigenstates in the momentum basis,
as well as the eigenvalues, so it is straightforward to calculate
the local density of states. The density plots shown in Fig. 10

FIG. 7. (Color online) Contour plot of the first positive energy band; the hexagon is the first Brillouin zone. (a) θ = 1.79◦, the cones are

visible, but the saddle point is not located on the line joining the two Dirac cones; (b) θ = 1.20◦, the arc joining the cones through the saddle

point has become a very flat valley, and the cones are no longer well defined.
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FIG. 8. (Color online) Densities of states (DOS) for two angles:

(a) for θ = 1.79◦, the cones are still well defined and the dispersion

shows the usual linear dependence near zero energy; (b) for θ = 1.2◦,

there appears to be a finite density of states near zero energy, making

if difficult to define a Fermi velocity: the dispersion is no longer

linear. The red line is the DOS for two uncoupled layers.

show the local DOS in the superlattice unit cell, integrated over
a narrow energy range, close to zero; the dispersionless band
is composed of states localized in the AA stacking region, as
was found de Laissardière and co-workers.33

The reason for this localization, and for the curious fact
that the degree of localization can oscillate with angle, can
be traced to the difference of band structures of AA and
AB (or BA) bilayers. In a twisted bilayer of small angle,
there are well-defined regions of AA, AB, and BA stacking,
and it is legitimate to reason in terms of the corresponding
band structures. The band structure for an AA stacked bilayer,
near each Dirac point, is composed of two cones shifted in
energy by ±t⊥, corresponding to the bonding and antibonding
combinations of pz orbitals in each plane (Fig. 11). As a result,
the Fermi surfaces for electrons and holes, at zero energy,
are circular with radius kF = t⊥/h̄vF . But, on an AB or BA

stacked bilayer at zero energy, the Fermi surface is a point.
From conservation of momentum parallel to an AA ↔ AB

interface, one can immediately conclude that there can be no
transmission AA → AB(BA) for any nonzero angle; in fact,
a calculation shows that the transmission coefficient is also

FIG. 9. (Color online) Densities of states (DOS) for two small

angles: (a) for θ = 1.08◦, there is a very sharp central peak, with

a barely resolved two-peak structure, corresponding to a flat band

of states localized in AA stacking regions of the unit cell; (b) for

θ = 0.87◦, the central band is broader, and still displays the two-

peak structure, although, at the meV resolution, there is a finite DOS

between the peaks, precluding the unambiguous definition of a Fermi

velocity.

zero for zero angle of incidence and energy. Since the AA

region is enclosed by a hexagon of AB and BA stacking,
this raises the possibility of localization of zero-energy states
in the AA region. However, this localization only occurs for
zero energy; for finite energy, some transmission is possible.
Now, a confined AA region will have a discrete spectrum. The
energy levels move toward the corresponding Dirac energies
(±t⊥) if the size of the unit cell size increases. It is clear then
that when a discrete level in an AA region occurs at zero

energy, we can expect strong localization and a dispersionless
band. If we further decrease the angle, by increasing the unit
cell, the discrete level moves away from zero energy, it starts
tunneling into the neighboring AB and BA regions, and the
low-energy band broadens. This, we believe, is the rather
simple explanation for the oscillation of the bandwidth of the
central peak in the DOS. De Laissardière and co-workers36

recently found confirmation of this explanation in large-scale
tight-binding calculations. Another explanation for this same
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FIG. 10. (Color online) Density plots of the local density of states, in the Wigner-Seitz cell, integrated for |ǫ| < 20 meV: (a) θ = 1.78◦,

(b) θ = 1.08◦.

oscillation, formulated in terms of non-Abelian effective gauge
fields, has recently been proposed.37

The extremely flat bands, which Bistritzer and
MacDonald34 associate with the zeros of the Fermi velocity,
correspond to the passage of a confined state in an AA region
through energies ±t⊥ above (below) the corresponding Dirac
energies (i.e., through zero energy). It has been pointed out
by de Laissardière et al.36 that this interpretation is consistent
with the values of the magic angles at which flat bands occur.
They are roughly described by the formula θn(◦) ∼ 1.05/n,
n = 1,2, . . . (see Ref. 34); zero-energy states in the AA

region have a momentum k = t⊥/h̄vF , so one would expect a
quantization condition of the type kL(θ ) ∼ 2πn, where L(θ )
is the Moiré period, L(θ ) ≈ a/θ for small angles, or

θ ∼
1

2π

t⊥

h̄vF

a

n
= 1.08◦ ×

1

n
(27)

(t⊥ ≈ 0.3 eV). The double-peak structure originates in the fact
that zero energy is equally distant from the electron and hole

AA AB

FS

2 t
E = 0

FS

FIG. 11. (Color online) Band structures of pure AA and pure AB

stacking bilayers.

Dirac point energies (∓t⊥), so states cross zero energy in pairs
(one electron and one holelike state) in the AA regions.

VI. DISCUSSION AND CONCLUSIONS

We have analyzed in detail the continuum description
of the twisted bilayer focusing on small-angle structures.
We generalized our previous treatment to include all types
of commensurate structures, and addressed in particular the
possibility of a gapped electronic spectrum for SE-even
structures raised by Mele.32 We have shown, that for small
angles, all commensurate structures are either of the type
r = 1, in which the relation between the period and angle
or rotation is that found in STM studies of Moire patterns
L = a/[2 sin(θ/2)], or almost periodic repetitions of such
structures. As a consequence, even though the momentum
space description can be quite different, small-angle commen-
surate structures share the same physics.

We have achieved a complete analytical characterization of
the Fourier components of the spatially modulated hopping
amplitudes, which allows a detailed study of very-small-angle
structures. This continuum description accounts very well for
the renormalization of the Fermi velocity relative to the single-
layer value. The density of states is a revealing tool; if the angle
is not too small, two well-defined van Hove peaks appear at
low energies, and, near zero energy, the DOS rises linearly,
as expected for linear dispersion [Fig. 8(a)]; at θ = 1.08◦, the
van Hove peaks are no longer resolved, as the range of linear
dispersion shrinks to zero; a low-energy, almost flat, band
appears, separated by gaps from the rest of the spectrum (at
positive and negative energies). This flat band is formed from
states localized in AA stacking regions which, at zero energy,
can not tunnel into AB and BA regions. However, if the angle is
further decreased, the energy of these localized states changes,
and they can start tunneling into the neighboring regions. This
explains the oscillation with angle of the bandwidth of the
central peak of the density of states.
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APPENDIX: GEOMETRY

Given an arbitrary site of the hexagonal Bravais lattice P1 =
ka1 + la2, the rotational/reflection symmetry implies that it is
part of a set of 12 {Pi,Qi : i = 1, . . . ,6}, π/3 being the angle
between directions of consecutive points in {Pi} or in {Qi}, and
each of these sets being the image of the other under reflection
about the symmetry axes [see Fig. 1(b)]. These two sets merge
into one if and only if either k or l is zero or k = l. In the main
text, we argued that we need only consider rotations that map
one of these sets onto its image by reflection, in order to obtain
all angles and primitive vectors of commensurate structures.
Without loss of generality, we can choose

P1 = na1 + ma2, (A1a)

Q1 = ma1 + na2, (A1b)

Q6 = (m + n)a1 − ma2 (A1c)

with n > m > 0; values of m or n zero, or m = n, correspond
to π/3 rotations, that transform an AB stacked bilayer
into an AA one [see also Fig. 1(b)]. So, anticlockwise
commensurate rotations with angles 0 < θ < π/3 are of two
types:

θ : P1 → Q1; (n,m) → (m,n); (A2a)

θ ′ : Q′
6 → P′

1; (p + q, − p) → (q,p). (A2b)

In the first case, T1 := ma1 + na2 is a superlattice translation;
in the second, it is T′ = qa1 + pa2. We will soon see
under what conditions these are primitive vectors. These two
rotations are conjugate, θ + θ ′ = π/3, if m = p and n = q.

In the following, it will be useful to to define these rotations
in terms of the pair of integers m,r with r = n − m, and p,s

with s = q − p:

(m + r,m) → (m,m + r), (A3a)

(2p + s,−p) → (p + s,p). (A3b)

One easily derives the following results for the angles by taking
the scalar product of final and initial vectors

cos θ =
3m2 + 3mr + r2/2

3m2 + 3mr + r2
(A4a)

=
3(m + r/2)2 − (r/2)2

3(m + r/2)2 + (r/2)2
, (A4b)

cos θ ′ =
3p2/2 + 3ps + s2

3p2 + 3ps + s2
(A4c)

=
3(3p/2 + s)2 − (3p/2)2

3(3p/2 + s)2 + (3p/2)2
. (A4d)

The second form of each expression makes it clear that the
two families define the same set of angles: θ = θ ′, if m/r =
s/3p; all angles of commensurate structures are generated
[Eq. (A4a)] with m and r positive integers: θ ′(p,s) = θ (m,r)
if m = s and r = 3p.

Given two positive integers m,r , and the angle θ (m,r)
defined by Eq. (A4a), there is a unique set of integers p,q

for which one of the following representations

cos θ (m,r) =
3p2 + 3pq + q2/2

3p2 + 3pq + q2
, (A5a)

cos θ (m,r) =
3p2/2 + 3pq + q2

3p2 + 3pq + q2
(A5b)

has the smallest denominator. If the smallest denominator
occurs for the first form, we conclude that t1 := pa1 + (p +
q)a2 is a lattice translation, with the smallest norm (the
denominator is |t1|2) and, therefore, a primitive vector. The
other can be obtained by a π/3 rotation of t1. On the other
hand, if the second form has the smallest denominator, then,
by the same reasoning, t1 = (p + q)a1 + pa2 is a primitive
vector of the super-lattice.

From this point on, we assume that m,r are coprime because
otherwise we can always reduce the denominator by factoring
out the divisors of m and r . If

3m2 + 3mr + r2/2

3m2 + 3mr + r2
=

3p2 + 3pq + q2/2

3p2 + 3pq + q2
(A6)

and 3p2 + 3pq + q2 < 3m2 + 3mr + r2, we must have

3m2 + 3mr + r2/2 = λ(3p2 + 3pq + q2/2), (A7a)

3m2 + 3mr + r2 = λ(3p2 + 3pq + q2), (A7b)

where λ is a positive integer. Subtracting these equations, one
gets r2 = λq2, so that λ = s2, where s is a divisor of r . Solving
the second equation for m/s gives, recalling that m,r,p,q are
positive integers,

m

s
= −

q

2
±

1

2

√
q2 + 4p(p + q) = p. (A8)

So, s must a common divisor of m and r , and, since m,r are
coprime, s = 1, and the initial form already has the smallest
denominator. An entirely similar argument can applied to
reducing to the second form [Eq. (A5b)]. A form with
smaller denominator is possible if r is a multiple of 3, and
(p,q) = (m,r/3).

In conclusion, we can state that if (m,r) are coprime and

cos θ =
3m2 + 3mr + r2/2

3m2 + 3mr + r2
,

the superlattice basis vectors are given by ti =
∑

j Sij aj ,
and the matrix S is defined in Eqs. (6) and (7).

155449-11



LOPES DOS SANTOS, PERES, AND CASTRO NETO PHYSICAL REVIEW B 86, 155449 (2012)

Shallcross et al. define the angles and primitive vectors
in terms of two coprime integers p and q; their results
coincide with these with the following correspondence: if
r is odd, p = r and q = 2m + r; if r is even, p = r/2
and q = m + r/2.

From these results, one can obtain other useful relations.
Since t1 and t2 are lattice translations of both layers, they have
equally simple expressions in terms of the primitive vectors of
the rotated layers a′

1 and a′
2. The transformation between this

nonorthogonal basis is

[
a1

a2

]
=

[
cos θ + sin θ/

√
3 −2 sin θ/

√
3

2 sin θ/
√

3 cos θ − sin θ/
√

3

] [
a′

1

a′
2

]
.

(A9)

The rotation matrix can be expressed in terms of m and r using
Eq. (A4a), leading to

[
t1

t2

]
=

[
m + r m

−m 2m + r

] [
a′

1

a′
2

]
(A10)

for gcd(r,3) = 1 and
[

t1

t2

]
=

[
m + 2r/3 −r/3

r/3 m + r/3

] [
a′

1

a′
2

]
(A11)

for gcd(r,3) = 3.
The dual basis of {a1,a2} (reciprocal lattice primitive

vectors) can be chosen as
[

g1

g2

]
=

4π

3 |a1|

[
2 −1

−1 2

] [
a1

a2

]
, (A12)

with a similar relation for {t1,t2} and its dual basis
{G1,G2}. Knowing that the Dirac points are given as K =
(4π/3)(a1 − a2), and Kθ = (4π/3)(a′

1 − a′
2), one can show,

using Eqs. (A9)–(A12), (6), and (7), after some tedious but
trivial algebra, the following relations:

�Kθ := Kθ − K =

{
r
3

(2G1 + G2) if gcd(r,3) = 1,

r
3

(G1 + G2) if gcd(r,3) = 3.

(A13)

Note that, in the second case only, �K is a reciprocal lattice
vector.

*Corresponding author: jlsantos@fc.up.pt
†On leave from Department of Physics, Boston University, 590

Commonwealth Avenue, Boston, MA 02215.
1V. P. Gusynin and S. G. Sharapov, Phys. Rev. Lett. 95, 146801

(2005).
2K. S. Novoselov et al., Nat. Phys. 2, 177 (2006).
3N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B 73,

125411 (2006).
4Y. B. Zhang et al., Nature (London) 438, 201 (2005).
5T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science

313, 951 (2006).
6E. McCann and V. I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006).
7M. I. Katsnelson, Eur. Phys. J. B 52, 151 (2006).
8M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys. 2,

620 (2006).
9M. Koshino and T. Ando, Phys. Rev. B 73, 245403 (2006).

10I. A. Luk’yanchuk and Y. Kopelevich, Phys. Rev. Lett. 97, 256801

(2006).
11J. Nilsson, A. H. Castro Neto, F. Guinea, and N. M. R. Peres, Phys.

Rev. Lett. 97, 266801 (2006).
12J. H. Ho, C. L. Lu, C. C. Hwang, C. P. Chang, and M. F. Lin, Phys.

Rev. B 74, 085406 (2006).
13J. Nilsson, A. H. Castro Neto, N. M. R. Peres, and F. Guinea, Phys.

Rev. B 73, 214418 (2006).
14A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and

A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
15E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres,

J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and

A. H. Castro Neto, Phys. Rev. Lett. 99, 216802 (2007).
16E. McCann, Phys. Rev. B 74, 161403 (2006).
17J. Hass et al., arXiv:0706.2134.
18Z. Y. Rong and P. Kuiper, Phys. Rev. B 48, 17427 (1993).

19Z. Y. Rong, Phys. Rev. B 50, 1839 (1994).
20W. T. Pong and C. Durkan, J. Phys. D: Appl. Phys. 38, R329

(2005).
21W. T. Pong and C. Durkan, Jpn. J. Appl. Phys. 44, 5365 (2005).
22Z. Chen et al., Carbon 48, 3543 (2010).
23A. Reina et al., Nano Lett. 9, 30 (2009).
24G. Li et al., Nat. Phys. 6, 109 (2010).
25Z. Ni, Y. Wang, T. Yu, Y. You, and Z. Shen, Phys. Rev. B 77, 235403

(2008).
26J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto,

Phys. Rev. Lett. 99, 256802 (2007).
27A. Luican, G. Li, A. Reina, J. Kong, R. R. Nair, K. S. Novoselov,

A. K. Geim, and E. Y. Andrei, Phys. Rev. Lett. 106, 126802 (2011).
28S. Shallcross, S. Sharma, E. Kandelaki, and O. A. Pankratov, Phys.

Rev. B 81, 165105 (2010).
29E. Suarez Morell, J. D. Correa, P. Vargas, M. Pacheco, and Z.

Barticevic, Phys. Rev. B 82, 121407 (2010).
30S. Shallcross, S. Sharma, and O. A. Pankratov, Phys. Rev. Lett. 101,

056803 (2008).
31S. Latil, V. Meunier, and L. Henrard, Phys. Rev. B 76, 201402(R)

(2007).
32E. J. Mele, Phys. Rev. B 81, 161405 (2010).
33G. T. de Laissardière, D. Mayou, and L. Magaud, Nano Lett. 10,

804 (2010).
34R. Bistritzer and A. H. MacDonald, Proc. Natl. Acad. Sci. USA

108, 12233 (2011).
35M. S. Tang, C. Z. Wang, C. T. Chan, and K. M. Ho, Phys. Rev. B

53, 979 (1996).
36G. Trambly de Laissardière, D. Mayou, and L. Magaud, Phys. Rev.

B 86, 125413 (2012).
37P. San-Jose, J. Gonzalez, and F. Guinea, Phys. Rev. Lett. 108,

216802 (2012).

155449-12

http://dx.doi.org/10.1103/PhysRevLett.95.146801
http://dx.doi.org/10.1103/PhysRevLett.95.146801
http://dx.doi.org/10.1038/nphys245
http://dx.doi.org/10.1103/PhysRevB.73.125411
http://dx.doi.org/10.1103/PhysRevB.73.125411
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1126/science.1130681
http://dx.doi.org/10.1126/science.1130681
http://dx.doi.org/10.1103/PhysRevLett.96.086805
http://dx.doi.org/10.1140/epjb/e2006-00294-6
http://dx.doi.org/10.1038/nphys384
http://dx.doi.org/10.1038/nphys384
http://dx.doi.org/10.1103/PhysRevB.73.245403
http://dx.doi.org/10.1103/PhysRevLett.97.256801
http://dx.doi.org/10.1103/PhysRevLett.97.256801
http://dx.doi.org/10.1103/PhysRevLett.97.266801
http://dx.doi.org/10.1103/PhysRevLett.97.266801
http://dx.doi.org/10.1103/PhysRevB.74.085406
http://dx.doi.org/10.1103/PhysRevB.74.085406
http://dx.doi.org/10.1103/PhysRevB.73.214418
http://dx.doi.org/10.1103/PhysRevB.73.214418
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/PhysRevLett.99.216802
http://dx.doi.org/10.1103/PhysRevB.74.161403
http://arXiv.org/abs/0706.2134
http://dx.doi.org/10.1103/PhysRevB.48.17427
http://dx.doi.org/10.1103/PhysRevB.50.1839
http://dx.doi.org/10.1088/0022-3727/38/21/R01
http://dx.doi.org/10.1088/0022-3727/38/21/R01
http://dx.doi.org/10.1143/JJAP.44.5365
http://dx.doi.org/10.1016/j.carbon.2010.05.052
http://dx.doi.org/10.1021/nl801827v
http://dx.doi.org/10.1038/nphys1463
http://dx.doi.org/10.1103/PhysRevB.77.235403
http://dx.doi.org/10.1103/PhysRevB.77.235403
http://dx.doi.org/10.1103/PhysRevLett.99.256802
http://dx.doi.org/10.1103/PhysRevLett.106.126802
http://dx.doi.org/10.1103/PhysRevB.81.165105
http://dx.doi.org/10.1103/PhysRevB.81.165105
http://dx.doi.org/10.1103/PhysRevB.82.121407
http://dx.doi.org/10.1103/PhysRevLett.101.056803
http://dx.doi.org/10.1103/PhysRevLett.101.056803
http://dx.doi.org/10.1103/PhysRevB.76.201402
http://dx.doi.org/10.1103/PhysRevB.76.201402
http://dx.doi.org/10.1103/PhysRevB.81.161405
http://dx.doi.org/10.1021/nl902948m
http://dx.doi.org/10.1021/nl902948m
http://dx.doi.org/10.1073/pnas.1108174108
http://dx.doi.org/10.1073/pnas.1108174108
http://dx.doi.org/10.1103/PhysRevB.53.979
http://dx.doi.org/10.1103/PhysRevB.53.979
http://dx.doi.org/10.1103/PhysRevB.86.125413
http://dx.doi.org/10.1103/PhysRevB.86.125413
http://dx.doi.org/10.1103/PhysRevLett.108.216802
http://dx.doi.org/10.1103/PhysRevLett.108.216802

