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SUMMARY

A suspension flow model based on the “suspension balance” approach (Nott and Brady,

1994, Morris and Boulay 1999) has been developed. This work modifies the model to

allow the solution of suspension flows under general flow conditions. This requires the

development of a frame-invariant constitutive model for the particle stress which can take

into account the spatially-varying local kinematic conditions. The mass and momentum

balances for the bulk suspension and particle phase are solved numerically using a finite

volume method. The method is termed the “solver-evolver” because of the form of the

update algorithm: first, the flow equations are “solved” for a given particle concentration

field, φ(x), and then the flow information is used to update, or “evolve,” this φ(x) field.

The particle stress is based upon the computed rate of strain and the local kinematic

conditions, which impact primarily the potentially anisotropic normal stress. A nonlocal

stress contribution corrects the continuum approximation of the particle phase for finite

particle size effects. Local kinematic conditions are accounted through the local ratio of

rotation to extension in the flow field. The coordinates for the stress definition are the local

principal axes of the rate of strain field.

The developed model is applied to a range of problems. (i) Axially-developing conduit

flows are computed and model predictions compared to experimental results for cross-stream

particle concentration profiles and axial development lengths. Good agreement is found

in comparison between the full two-dimensional solution and the more computationally

efficient “marching” method which takes advantage of the small axial gradients of these

flows. (ii) Model predictions are compared to experiments for wide-gap circular Couette

flow of a concentrated suspension in a shear-thinning liquid. With minor modification,

the suspension flow model predicts the major trends and results observed in this flow.

(iii) As an example of a complex-geometry suspension flow, a sharp-edged contraction

xiii



flow is studied. Comparisons are made to experiments for an axisymmetric contraction-

expansion. The influence of model formulation on the two-dimensional planar contraction

flow is explored. Model predictions are obtained for variations of the magnitude of an

isotropic particle normal stress with local kinematic conditions, and allowing anisotropy in

the in-plane normal stresses. The formulation of the particle phase stress is found to have

significant effects on the solid fraction and velocity. (iv) Finally, for two other complex flow

fields, a rectangular piston-driven flow and an obstructed channel flow, a “computational

suspension dynamics” study explores the effect of particle migration on the bulk flow field,

system pressure drop and particle phase composition.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Many important and practical applications contain solid-liquid suspensions flows. Ceramic

injection molding involves the flow of a highly concentrated particulate suspension into

a mold. The process objective is to pack as much ceramic powder as possible into the

suspension while maintaining the necessary fluidity. For these suspensions, some rheology

measurements have been taken but very little attention has been given to predicting flow

behavior through the use of models (Mutsuddy and Ford, 1995). Textile inkjet printing

can involve two-phase dyes, consisting of pigment molecules encapsulated into hydrophilic

carrier particles. These particles can jam print heads or distribute unevenly on the de-

posited surface if experimental conditions are not right. Other practical applications include

proppant transport in petroleum and natural gas wells, solid rocket propellant processing

(Husband, 1989), paper coating, paper manufacturing, electro-rheological and magneto-

rheological fluids (von Pfeil et al, 2003) or any number of other solid-liquid slurry flows. All

these applications would benefit from the addition of a general, rigorous suspension flow

model.

Current methods of study include experimental investigation, particle tracking simula-

tions (Brady et al, 1988; Dratler and Schowalter, 1996; Phung, Brady and Bossis, 1996;

Singh and Nott, 2000) based on methods such as Stokesian dynamics (Brady and Bossis,

1988) and continuum based modeling approaches (Nott and Brady, 1994; Mills and Snabre,

1995; Phillips et al, 1992; Morris and Boulay, 1999). Both experimental studies and particle

tracking simulations provide valuable insight into specific systems, but are time consuming

and the results are not easily generalized. Continuum based modeling approaches approxi-

mate the particle phase as a pseudo-continuum. By representing the particle phase concen-

tration as a field variable governed by an additional conservation equation, the continuum

based approaches are in a format readily adaptable to coupling with current computational
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fluid dynamics (CFD) solvers. This makes them a powerful tool for the modeling of solid-

liquid suspension flows and can provide insight into a broad number of problems.

The objective of this work is to develop a frame-invariant normal stress based rheological

model for concentrated particulate suspensions and to use this model to predict suspension

flow in general geometries. The modeling approach is based on the suspension balance model

of Nott and Brady (1994) with the fundamental modifications made by Morris and Boulay

(1999). The basic development of this modeling approach is presented in Chapter 2 along

with the method used to discretize the transport equations, which is a finite volume method.

This results in a working computational tool, which we call the “solver-evolver” approach.

It is called this because each time step is broken up into two pieces. First, the flow equations

are “solved” for a given particle concentration field and then the flow information is used

to update, or “evolve,” the particle volume fraction field. Chapter 3 presents a study of

particle migration in axially developing flows, specifically rectangular and circular conduits.

The entrance lengths and steady-state particle concentration profiles are predicted for a

number of different experimental and model conditions. In Chapter 4, a circular wide-gap

Couette flow with a non-Newtonian suspending fluid is examined. Chapter 5 illustrates the

formulation of the particle phase constitutive model in a frame invariant manner for general

flow conditions. Various formulations of the particle phase constitutive law are explored

and what effect these variations have on the flow through a sudden contraction or expan-

sion is examined. Chapter 6 probes various general flow problems utilizing “computational

suspension dynamics” to study a rectangular piston-driven channel flow and a rectangular

channel flow with an obstruction. Finally, Chapter 7 puts this work into context with the

current state of suspension flow research and illustrates research directions for the future.

1.1 Suspension forces

We divide the forces significant in a two-phase particulate suspension into two categories:

non-hydrodynamic forces and hydrodynamic forces. The non-hydrodynamic forces are

present at all times and include Brownian motion, interparticle interactions, and exter-

nal field effects such as gravity or imposed electrical and magnetic fields. Brownian motion
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results from the random thermal fluctuations of the particles and is significant when the

particle length scale is less than 1 µm. Interparticle interactions include short-range forces

such as hard-sphere repulsion or van der Waals forces. The influence of gravity is significant

if the densities of the two phases do not match and electric/magnetic fields are important

if the particulate phase carries a charge or has significant polarization (Russel, Saville and

Schowalter, 1989). The balance between these forces determines the equilibrium particle

phase structure or configuration. Hydrodynamic forces present themselves only in an im-

posed flow field and include particle inertia and viscous interactions between the particulate

phase transmitted through the fluid.

We limit our focus to non-colloidal (Pe = γ̇a2/Do → ∞), non-inertial (Rep = γ̇a2ρp/ηo →

0) particles with no external field effects except gravity. The particle Reynolds number, Rep,

represents the balance between the particle inertia and the viscous forces of the fluid where

γ̇ is the shear rate of the flow field, a is the radius of a particle, ρp is the density of a particle

and ηo is the viscosity of the fluid phase. The Peclét number, Pe, represents the balance be-

tween shear and Brownian forces in the suspension flow, where Do is the Brownian diffusion

coefficient for an isolated particle. In addition, we focus on rigid, spherical bodies which

eliminates the need to account for particle orientation or deformation. The only interpar-

ticle interactions considered are short range (∼ O(a)) repulsive forces or roughness, which

can account for certain observed non-Newtonian suspension behavior (Brady and Morris,

1997), as noted below. This leaves hydrodynamic interactions as the dominant influence on

the particle phase.

Hydrodynamic forces result from the continuum nature of a fluid. A discrete fluid

element deforms with the stress induced by a flow field. A rigid particle, taking the place of

this fluid element, reacts differently. As shown in Figure 1, it resists deformation and pushes

back on the fluid. This causes a local stress field around the particle which affects the local

velocity field. If particles are close enough together, like in a concentrated suspension, they

feel the influence of the particles around them. This leads to hydrodynamic interactions

between the particles and can effect the bulk flow field.

The work of Batchelor and Green (1972) found that for a dilute suspension of spheres
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Figure 1: Imposed flow field effects on a fluid element versus a rigid, suspended particle.

with hydrodynamic interactions only (Pe → ∞), the predicted microstructure of the sus-

pension from analytical relationships maintains spherical symmetry. This implies that such

suspensions behave in a Newtonian fashion. For a weakly sheared suspension (Pe ≪ 1),

Batchelor (1977) found the microstructure to be asymmetric with a build up of particles in

the extensional quadrant of a shear flow. An asymmetric microstructure can account for

the non-Newtonian behavior and normal stresses observed in the suspension flows discussed

in the next section. However, these flows occur in a flow regime where the Peclét num-

ber is large, such as in the experimental findings of Parsi and Gadala-Maria (1987) where

Pe = 3 × 105 or the simulation results of Phung et al (1996) where Pe ≤ 104. The work

of Brady and Morris (1997) addresses this issue through the analytical prediction of an

O(aPe−1) boundary layer surrounding each particle. In this boundary layer, the hydrody-

namic advection of particles toward one another is balanced by weak Brownian diffusion or

interparticle forces. The effect of this boundary layer leads to the asymmetric particle mi-

crostructure and non-Newtonian behavior. They further show that the interparticle forces

can result from surface discontinuities or particle “roughness.” This leads to the conclu-

sion that to observe the behavior predicted by Batchelor and Green (1972), infinitesimally
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smooth particles must be used.

1.2 Shear induced particle migration

Leighton and Acrivos (1987) first recognized and described shear-induced particle migration

as a way to explain anomalies observed in a Couette viscometer. Since then, shear-induced

migration has been observed in a number of other two-phase flow experiments and simula-

tions. Koh, Hookham and Leal (1994) and Lyon and Leal (1998a) observed the migration

of monodisperse spherical particles in pressure driven channel flow experiments while Nott

and Brady (1994) observed such behavior in particle tracking simulations of channel flow.

Hampton et al (1997) experimentally observed particle migration in pressure driven pipe

flow. In these cases, particles migrate from regions of high shear (near the walls) to regions

of low shear (the centerline). In addition, a number of curvilinear flows have been studied

including wide-gap circular Couette flow, parallel-plate torsional flow and small angle cone-

and-plate torsional flow. In wide-gap Couette flow, Abbott et al (1991) and Phillips et al

(1992) observed particles migrating away from the rotating inner cylinder, a region of high

shear. Chapman (1990) and Chow et al (1994) observed little to no particle migration in

a parallel-plate torsional flow while Chow et al (1995) observed migration radially outward

from the cone apex in a torsional cone-and-plate flow. The last two results do not follow

the assumption of migration from regions of high to low shear. If this held, the particles

would have migrated radially inward from the higher shear experienced on the outer edges

of the plate in the parallel-plate torsional flow and there would have been no migration

in the cone-and-plate torsional flow where the shear rate remains constant throughout the

domain, leaving no shear rate gradients to drive particle migration. This suggests that some

other “forces” in the suspension must be driving particle migration.

Morris and Boulay (1999) suggest that normal stresses generated by the interaction

of the particles drive particle migration in suspension flows. Gadala-Maria (1979), Laun

(1994), Zarraga, Hill and Leighton (2000) and Singh and Nott (2003) have experimentally

observed normal stresses in particulate suspensions. In addition, simulations by Phung et

al (1996) and Singh and Nott (2000) have revealed the existence of normal stresses over a
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broad range of experimental parameters in both bounded and unbounded shear flow. The

experimental results of Zarraga et al (2000), utilizing multiple experimental techniques to

fully characterize the normal stress state of a particulate suspension in shear flow, observe

similar values for the normal stress differences as those proposed in the modeling efforts of

Morris and Boulay (1999).

1.3 Modeling efforts

There are two main types of continuum based modeling approaches in use. One is the

phenomenological approach which utilizes experimentally observed behavior and scaling

arguments to form an expression for particle migration. Based on the scaling arguments of

Leighton and Acrivos (1987), the diffusive flux model of Phillips et al (1992) assumes that

particle migration is driven by local particle-particle interaction frequency and viscosity

variation. This leads to a particle migration flux, j⊥, which is proportional to the local

shear rate gradient, j⊥ ∼ ∇γ̇. The particle migration flux represents the movement of the

particle phase relative to the motion of the bulk suspension. The diffusive flux method

captures basic particle migration phenomena but breaks down in its initial unaltered state

for flows with curved streamlines, such as cone-and-plate and parallel plate torsional flows.

A number of studies have worked to extend the diffusive flux model to more generalized

applications (Zhang and Acrivos, 1994; Subia et al, 1998; Rao et al, 2002; Fang et al, 2002),

but none of these extensions are based on solid physical principles. Instead, they represent

attempts to “fit” the model to general conditions.

Another approach is the suspension balance model, based on averaging the mass and

momentum conservation equations over the particle phase to form a particle phase transport

equation. This approach, presented in Nott and Brady (1994), requires a constitutive model

for the particle phase stress, ΣP, which drives migration through the particle migration

flux, j⊥ ∼ ∇ · ΣP. The form of the constitutive model is based on rheological theory and

experiment and contains experimentally accessible quantities such as stress and shear rate.

Nott and Brady (1994) propose a form of ΣP with an isotropic particle phase pressure

while Morris and Boulay (1999) illustrated the importance of anisotropy and normal stress
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difference effects for predictions of migration in curvilinear flows.

For our work here, we choose to build on the suspension balance approach of Nott

and Brady (1994) with the anisotropic particle stress law introduced in Morris and Boulay

(1999). This places our key focus on the proper formulation of the particle stress constitutive

model. In this study, we generalize the particle stress model of Morris and Boulay (1999)

for application to general geometries. This involves careful consideration of the frame of

reference used to define the model parameters. In addition, local kinematic effects on the

particle stress relationship need to be addressed. The consideration of kinematic effects

in a constitutive definition has been shown to work for polymer solutions (Schunk and

Scriven, 1990; Ryssel and Brunn, 1999a,b), but has not been completely considered for

suspension flows, even in the few cases where it has been addressed (Fang et al, 2002). We

illustrate through our work here a method to account for general flow conditions in the

particle stress model and use this constitutive relationship to model suspension flow for a

number of general geometries, including a sharp-edged contraction flow, an expansion flow,

a rectangular piston-driven flow and a channel flow with an obstruction near the entrance.
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CHAPTER 2

COMPUTATIONAL TOOL: SOLVER-EVOLVER

This section explains the development of a computational tool used to solve the suspension

flow problems presented here. We base the work on the suspension balance model of Nott

and Brady (1994) with the fundamental modifications made by Morris and Boulay (1999).

These studies both illustrate particle volume fraction, φ, dependent stress leading to particle

phase migration. Morris and Boulay (1999) further this by highlighting the importance of

normal stress differences in predicting particle migration in curvilinear flows. The objective

of our work is to further the development of this modeling approach into flows of a general

nature. In Chapter 5, we extend the application of the model to general flow geometries

through modification of the particle stress constitutive model.

The model is implemented for two-dimensional, Cartesian geometries (x,y) as well as

for two-dimensional, axisymmetric flows (z,r). The finite volume method (FVM) is utilized

for the spatial discretization of the transport equations. The resulting computer code is

built of a series of MATLAB script files run in a PC environment. This allows flexibility

in the implementation and provides adequate computational speed for the two-dimensional

geometries considered.

The method is called the “solver-evolver” approach due to the way the flow field and

particle migration equations are coupled. In one computational step, the flow field, u(x), is

determined for a given particle volume fraction, φ(x). This flow field solution then provides

the necessary stress information to determine the change in the φ field over a single explicit

time step. This sequence of steps is repeated to provide the solution of the u and φ fields

as they evolve over time. In addition, this approach allows for the use of alternate flow

solvers, such as commercial CFD packages, as long as they can handle a spatially varying

viscosity and user defined source terms.

The goal of this chapter is to provide a general overview of the suspension flow model
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and numerical implementation. In Section 2.1, we present the development of the model,

leaving detailed explanation of the extension of the constitutive model to general geometries

for later chapters. In Section 2.2, a summary of the finite volume method approach is

provided, along with details for the implementation of the suspension flow model utilizing

the FVM. In Section 2.3, we verify the flow field solution of the FVM code for the flow of

a Newtonian fluid through a complex geometry, specifically a sharp-edged contraction. In

addition, we compare numerical and analytical solutions of particle migration in a channel

flow.

2.1 Governing Equations

The governing equations are established for the flow of suspensions of rigid, spherical par-

ticles in a Newtonian fluid. We assume viscous conditions and non-Brownian particles with

no external field effects except gravity. This results in hydrodynamics as the dominant

interaction between the particles.

For the flows considered, it is assumed that the Reynolds number is sufficiently small

that bulk inertia has little influence, Re = 〈ρ〉UsLs/ηo ≪ 1 where 〈ρ〉 is the mixture density,

Us and Ls are the velocity and length scales of the bulk flow, and ηo is the suspending fluid

viscosity. For the suspended particle phase, the particle radius, a, is represented through

the ratio, ǫ = a/Ls. We assume ǫ is small enough to allow the continuum description of

the particle phase to remain valid, a point which is explored in more detail in Chapter 3

through the discussion of a nonlocal stress correction in Section 3.1.1. The particle Reynolds

number, given by Rep = ǫ2Re, is assumed to be vanishingly small. Note that the assumption

of an inertia free bulk flow can be relaxed while still maintaining Rep ≪ 1, although we do

not address finite-Re flows here.

2.1.1 Suspension balances

Description of the flow for a two-phase suspension requires mass and momentum balances

for either the bulk suspension and one of the components, or alternatively for each compo-

nent. We choose to consider balances for the bulk mixture and particle phase, an approach

motivated by the work of Nott and Brady (1994). The equations are developed by assuming
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that the particle phase can be approximated as a continuum, as noted above. An ensemble

average, as explained in Drew and Lahey (1993), is taken of the mass and momentum equa-

tions over the bulk suspension (fluid and particle phases) and over the particle phase only.

This development (Nott and Brady, 1994; Morris and Boulay, 1999) leads (with Re ≪ 1

eliminating unsteady and inertial terms) to the suspension mass and momentum balances,

respectively given by

∇ · u = 0, (1)

∇ · Σ + 〈ρ〉g = 0, (2)

where u is the bulk suspension velocity, Σ is the bulk suspension stress, and 〈ρ〉g is the mean

gravity force. For neutrally-buoyant particles, the gravitational body force may be absorbed

into the hydrostatic pressure and this term will thus not appear. The particle-phase mass

balance is

∂φ

∂t
+ ∇ · (φup) = 0, (3)

which may be expressed by virtue of the incompressibility of the bulk flow as

∂φ

∂t
+ u · ∇φ = −∇ · j⊥. (4)

In this expression, the term j⊥ = φ(up − u) is the particle migration flux which is the

particle flux relative to the bulk motion. The term up is the particle phase average velocity

and φ is the particle phase volume fraction. The subscript ⊥ is used to emphasize the usual

focus on the cross-stream migration. The migration flux may be obtained from the particle

momentum balance, given by

0 = ∇ · ΣP + n < FH > +φ∆ρg, (5)

where n = 3φ/4πa3 is the number density of particles, ∆ρ = ρp − ρf is the excess density

of the particles, and ΣP the particle contribution to the bulk stress. By noting that for

Stokes flow the mean drag force, < FH >, may be modeled as analogous to the drag in

sedimentation, we set

< FH >= −6πηaf−1(φ)(up − u). (6)
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The sedimentation hindrance function, f(φ), represents the mean mobility of the particle

phase, and thus f−1 is the mean resistance. Substituting Eq. (6) into Eq. (5), we obtain

j⊥ = φ(up − u) =
2a2

9ηo
f(φ)[∇ · ΣP + φ∆ρg]. (7)

Since we will consider only neutrally-buoyant particles, ∆ρ = 0.

2.1.2 Suspension stress law

We take Σ = Σf + ΣP as the form for the bulk suspension stress, where Σf is the fluid

phase contribution and ΣP is the particle phase contribution. The fluid phase stress is

assumed to be

Σf = −〈P 〉fδ + 2ηoE, (8)

where 〈P 〉f is the fluid phase averaged pressure which will be referred to as simply P , δ is

the identity tensor, E is the local rate of strain defined as E = 1
2 [∇u + (∇u)T ], and ηo is

the viscosity of the suspending liquid. The constitutive law for the particle stress is that

suggested by Morris and Boulay (1999) for shear flows,

ΣP = −ηoηn(φ)γ̇Q + 2ηoηp(φ)E, (9)

and contains both shear and normal stress portions.

The particle contribution to the shear stress, ΣSH
P = 2ηoηpE, combines with 2ηoE from

the fluid stress and can be represented using a φ-dependent shear viscosity in the bulk

stress, η̄s = ηoηs(φ) = ηo(1+ηp). This viscosity can be modeled using a number of different

forms, including

Morris and Boulay (1999)1 : ηs(φ) = 1 + 2.5φm
(φ/φm)

(1 − φ/φm)
+

Ks(φ/φm)2

(1 − φ/φm)2
,

Krieger (1972) : ηs(φ) = (1 − φ/φm)−m,

where φm is the maximum packing particle volume fraction and Ks and m are rheological

fitting parameters (see Figure 2a); we use φm = 0.68, m = 2, Ks = 0.1 here.

The normal stress is given by ΣNS
P = −η̄nγ̇Q where η̄n = ηoηn(φ). The “normal stress

viscosity,” ηn(φ) = Kn(φ/φm)2(1 − φ/φm)−2 captures the φ dependence of the magnitude

1This form corrects a typographical error in Morris and Boulay (1999).
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Figure 2: (a) Shear viscosity models, ηs; (b) modified sedimentation hindrance function,
f(φ) = (1− φ/φm)(1− φ)α−1, where φm = 0.68 is the assumed maximum packing fraction.
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of this stress and takes its form from Morris and Boulay (1999) with Kn = 0.75 to match

experimental data (Phillips et al, 1992). The shear rate, γ̇ =
√

2E : E, gives the stress

its dependence on the strength of the local flow. The tensor parameter Q captures the

anisotropy of the normal stress with the form

Q =













1 0 0

0 λ2 0

0 0 λ3













, (10)

where λ2 ≈ 0.8 and λ3 ≈ 0.5 provide reasonably good agreement with concentrated suspen-

sion rheology (Zarraga, Hill and Leighton, 2000) and with observed migration behavior in

viscometric flows (Phillips et al, 1992; Chow et al, 1994). The directions of Q correspond to

the principal directions of a viscometric shear flow with 1, 2 and 3 denoting flow, gradient,

and vorticity, respectively.

In general flow conditions, the determination of the local principal directions for the

flow becomes less obvious. Local kinematics can vary spatially within the flow which leads

to a non-uniform environment for the particle phase. These local kinematics define the

particle stress which in turn drives the particle migration. In Chapter 5, the formulation of

a constitutive model for the particle stress under spatially varying kinematic conditions is

discussed.

The combination of the above definitions for fluid and particle phase stress results in a

bulk stress definition of

Σ = −Pδ + 2ηoηsE + ΣNS
P , (11)

where ΣNS
P is the particle-phase normal stress, i.e. the first term on the right hand side of

Eq. (9).

We set f(φ) to a form similar to the sedimentation hindrance function described in

Richardson and Zaki (1954),

f(φ) = (1 − φ/φm)(1 − φ)α−1, (12)

but alter the original form for the bounded flows studied here. This is done to ensure that

particle migration ceases when the particle concentration approaches maximum packing,
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φm. The parameter, α, is given by Richardson & Zaki (1954) as α = 2-5, and we have used

values in the range 2 ≤ α ≤ 4 (see Figure 2b).

2.2 Numerical Implementation

We utilized the finite volume method (FVM) as illustrated in Patankar (1980) and Ferziger

and Peric (2002) for the spatial discretization of Eq. (1), Eq. (2), and Eq. (4). This method

proves advantageous due to the conservative nature of its construction which enforces mass

and momentum conservation over each computational element or control volume (CV) by

balancing the fluxes between one CV and its neighbors. In addition, its relative ease of

implementation allows more flexibility in the numerical set-up and solution than a finite

element implementation or commercial software package.

In the FVM, the solution domain is divided up into a finite number of elements, which we

will call cells. The cell arrangement utilizes a structured, Cartesian grid with the capability

of refinement in regions of interest. Each cell contains nodes at the center, wall mid-

points and corners as illustrated in Figure 3. The dependent variables are stored in a

fully-staggered arrangement, which means P and φ are solved at the central node of each

cell and the velocity components (u, v) are solved at the wall node normal to the velocity

direction. We integrate Eq. (1) and Eq. (4) over a CV centered on the central node and

integrate Eq. (2) over a CV centered on the appropriate wall node as shown in Figure 4.

The fully-staggered variable arrangement provides strong coupling of the velocity and

pressure field solutions which avoids oscillations and convergence problems that can arise in

a collocated variable arrangement, where all of the dependent variables are stored at the cen-

tral node of the cell, as noted in Ferziger and Peric (2002). In addition, the fully-staggered

arrangement eliminates some of the need for variable interpolation that a collocated ar-

rangement requires and provides straightforward flux definitions at the various CV walls,

both of which will be illustrated in the section below. The only major drawbacks include

the necessity for added indexing and variable storage in the program and the possibility of

complications if we move to non-orthogonal grids.
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Figure 3: Fully-staggered computational grid arrangement.

Figure 4: Illustration of control volume elements for each dependent solution variable.

15



2.2.1 Discretization of the transport equations

For the spatial discretization, we consider the bulk continuity (mass conservation) and

momentum conservation equations, Eq. (1) and Eq. (2), and the right-hand side (RHS)

of the particle phase migration equation, Eq. (4), after the following adjustment. The

convection term on the left-hand side (LHS) of the equation is combined with the particle

migration flux on the RHS to form an overall particle flux, j ,

∂φ

∂t
= −∇ · j = −∇ · (φu + j⊥). (13)

The treatment of the time dependence of the migration equation is discussed in Section 2.2.2.

We begin by integrating each equation over the appropriate control volume as given in

Figure 4. The Gauss theorem is applied to the divergence terms ( ∇ ·u, ∇ ·Σ, ∇ · j) which

converts the volume integral to an integration over the CV surface,
∫

∇·[∗] dV →
∫

[∗]·n dA

where n is the outward normal. We divide the surface integration into a sum of integrals

over each CV face and approximate these using a quadrature formula that assumes the

midpoint value prevails over the entire area of the face. Volume integrals not converted are

approximated by assuming the integrand to be constant. This approximation results in

0 =
∑

fc

[u · n]fcAfc, (14)

0 =
∑

fw

[Σ · n]fwAfw, (15)

∂φ

∂t
=

∑

fw

[j · n]fwAfw, (16)

where Afc is the area of a face for a CV centered on the computational cell, Afw is the area

of a face for a CV centered on a wall node of the computational cell and fc, fw represent

a summation over the faces of the respective CV’s.

The next step is to determine the stress and flux values at the CV walls utilizing nodal

data. Looking first at the bulk stress, after the substitution of the appropriate velocity

gradients for the rate of strain,

Σ = −Pδ + η̄s∇u + η̄s(∇u)T + ΣNS
P , (17)
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we see there are four terms to consider. The first term represents the pressure force at

the CV walls normal to the velocity direction, the second and third terms are the velocity

diffusion at the CV wall, and the fourth is the influence of the particle phase normal stress at

the CV wall. The third term represents an “extra” diffusion term which only has influence

when η̄s varies spatially and is eliminated by the continuity constraint when η̄s is constant.

In the staggered arrangement, the CV walls normal to the velocity direction conveniently

align with the central node of the computation cells, allowing direct substitution for the

pressure value at these locations. The gradients for the velocity diffusion are approximated

by assuming a linear variation between the velocity values at the nodes bracketing the face,

which is termed a central difference scheme (CDS). When the bulk stress of Eq. (17) is

summed over the CV faces as in Eq. (15), the main diffusion term is fashioned into an

expression for the velocity at the central node of the CV. We include the extra-diffusion

and particle normal stress as source terms, calculating them with information from previous

iterations or time steps. In a two-dimensional, axisymmetric flow, an additional curvature

based source term results from the expansion of the velocity gradients and is handled in

the same manner. The extra-diffusion term, calculated using CDS, is only included when

variations in the φ(x) field cause the viscosity to vary spatially and the particle normal stress

term is only included when an anisotropic stress model is used. Under isotropic conditions,

the particle stress term can be lumped in with the pressure. When the normal stress is

anisotropic, care must be taken to determine the effect that this term has on the flow field

solution.

The resulting algebraic equations for the solution of the bulk momentum conservation

are

aPuP =
∑

nb

anbunb + SP
u + SD

u + SNS
u , (18)

where nb represents the neighboring velocity nodes, anb = [η̄sA/∆]fw and aP =
∑

nb anb

with ∆ corresponding to the distance between the two nodes bracketing CV face, fw. The

source terms correspond to the pressure source, extra-diffusive source and normal stress

source associated with velocity, uP .
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The particle flux,

j = φu +
2a2

9ηo
f(φ)∇ · ΣP, (19)

consists of two terms. The first is the convective flux and the second represents the stress-

induced migration flux, both calculated at the CV wall. The convective term is approx-

imated using an upwind difference scheme (UDS) to determine the value of φ at the CV

wall. Despite the possibility of false diffusion effects from this method (which we did not

observe in our work), it avoids convergence problems due to oscillations in the φ field which

result from taking a simple linear interpolated value (i.e. CDS) of φ at the CV wall. Instead

the φ value is set equal to the node “upwind” of the velocity vector. The particle diffusion

term consists of ∇ · ΣP, which we approximate with a CDS. This requires the calculation

of ΣPii (where i corresponds to the direction of the particle flux) at the central nodes and

ΣPij (where i 6= j) at the corner nodes of each cell . These terms are readily available, if

we interpolate φ values as needed and utilize the CDS to calculate the velocity gradients in

order to formulate E and γ̇ which are required to solve for ΣP.

2.2.2 Solution method

The spatial discretization of the conservation equations leads to algebraic expressions over

each CV. Summing these expressions over all the CV’s in the solution domain leads to

a global system of equations. Focusing initially on just the continuity and momentum

equations, we assume a constant φ(x) field.

The resulting system of equations for the bulk flow field presents two main issues. First,

there is no independent equation for the pressure field. Second, in an incompressible flow

the continuity equation contains no dominant variables to affect the momentum equations

and therefore acts as a passive constraint on the flow field. To address these issues, we utilize

a pressure-correction based projection method as illustrated in Ferziger and Peric (2002).

Projection methods consist of constructing an approximate velocity field, which does not

necessarily satisfy continuity, and then correcting this velocity field to satisfy continuity.

The particular algorithm used, called the SIMPLE method presented in Patankar (1980),

involves calculating the initial velocity field from an assumed pressure field solution. The
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approximate velocity and pressure solutions are then corrected by calculating a pressure-

correction which satisfies the continuity equation. These steps are iterated, taking the

corrected pressure field as the new “guess”, until the velocity field adequately satisfies

continuity. To achieve convergence, under-relaxation is applied to the correction factors,

with an extreme under-relaxation on the pressure field solution used here. In addition,

special consideration and care is taken to achieve convergence in the case of axisymmetric

flows due to the decrease in CV volume and surface area near the center or line of symmetry.

The relaxation factors were set on a problem-by-problem basis, with typical values of 0.8

for the velocity relaxation and 0.005 - 0.0025 for the pressure relaxation.

In the case of an axisymmetric flow, an ad-hoc correction method was used to “push” the

numerical solution toward convergence. The LHS of the velocity estimation and pressure

correction, given below in Eq. (20), were multiplied by a factor which was greater than one.

This was done to counter the effects of the vanishing CV volumes and surface areas near

the centerline. Typical values for this factor were 100 for the velocity equations and 10 for

the pressure equations. This correction, while on the surface may not seem mathematically

sound, is eliminated through the pressure-correction iterations. Since the factor is applied

to estimation and correction equations, it cancels itself out through the solution scheme.

In the end, it serves to control the pressure correction near the center so that is does

not catastrophically overshoot the solution value and lead to divergence of the numerical

iterations. The algorithm used ensures that the velocity field must satisfy continuity for

convergence and it produces valid results which match literature solutions for an complex,

axisymmetric flow in Section 2.3.2.

This method requires two sets of linear equations to be solved for in each iteration.

These equations are

AUU = SU ,

APP = SP , (20)

where AU , AP are the global coefficient matrices for the velocity estimation and pressure

correction solutions, U is the global velocity solution, P is the global pressure correction,
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and SU , SP are the global source terms. The global velocity source consists of the terms

given in Eq. (18). The term, SP , is know as the mass source and is a measure of how close

the current velocity estimate is to satisfying continuity. This term is used as the convergence

criteria for the SIMPLE iterations (SP → 0).

The coefficient matrices are set-up utilizing the sparse matrix capabilities in MATLAB

and solved with the built in direct solver. The MATLAB direct solver tests the coefficient

matrix, A, to determine the best solution method. The algorithm involves first testing to

see if A is triangular or a permutation of a triangular matrix. If not, it attempts to convert

the matrix solution to series of triangular solutions through Cholesky or LU factorization

(MathWorks, 2002).

After the flow field solution is determined, we solve for a new φ field using Eq. (16) and

Eq. (19). The LHS of Eq. (16) is integrated over the appropriate CV and approximated as

an explicit time step. This allows calculation of the RHS with information from the flow

field solution and previous φ time step. While this formulation leads to some stability issues

and requires the use of small time steps when fine spatial resolution is needed, it provides

great flexibility in the implementation of complex constitutive models for ΣP. Without the

necessity of an implicit φ field solution, changes to the model can be readily made without

the necessity to alter the solution algorithm.

2.3 Numerical Verification

To verify the FVM flow solver in a general geometry, we solved for the Newtonian flow

solution in a sharp-edged contraction flow for both the two-dimensional planar and axisym-

metric cases. A sketch of the conditions for the contraction flow is given in Figure 5. The

inlet is set to a unidirectional, parabolic profile while at the outlet the velocity gradients

normal to the outlet plane are set equal to zero. In addition, the pressure is set equal to

zero at the outlet to provide a frame of reference for the pressure field solution. The walls

are assumed to be no-slip (u = v = 0) and the centerline is set to a symmetric boundary

which means that the velocity normal to the centerline is set equal to zero and the velocity

gradients tangent to the centerline are set equal to zero. These boundary conditions are
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Figure 5: Sketch of a of sharp-edged contraction geometry.

the same for the axisymmetric case (which is essentially the planar solution equations with

curvature terms) except that the coordinate directions are changed from (x, y) to (z, r).

The half-width/radius of the upstream section is labelled B while the downstream di-

mension is labelled b. We define the term β as the contraction ratio, which is the ratio of the

upstream dimension to the downstream dimension (β = B/b). For verification purposes,

we solved a β = 4 planar contraction to compare to the numerical data of Mompean (2002)

and Bao (2002). For the axisymmetric contraction, we solved a β = 2 geometry to compare

to the numerical data of Christiansen, Kelsey and Carter (1972) and Kelsey (1971).

The computation grid used for the contraction flow solutions is shown in Figure 6. This

grid is for a β = 4 rectangular contraction, but is similar to the one used for the β = 2

axisymmetric contraction. The grid is refined in the y-direction around the corner and

through the neck region (y < 0.5) to a value of dy = 0.025 with dy = 0.05 away from the

corner. This is the same mesh as for the axisymmetric contraction (with dr replacing dy)

except that the entire neck region is not refined. Instead only the region by the corner,

rcnr ± 0.25 where rcnr = 0.5, is refined to dr = 0.0025 with the rest of the domain at

dr = 0.05. In the axial direction, the grid refinement is the same for both the planar (dx)

and axisymmetric (dz) cases. The immediate vicinity of the corner, xcnr ± 0.1, is refined

to a value of dx = 0.025, which is equal to that of the cross-stream direction. This sets
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Figure 6: Typical computational grid for a contraction flow geometry.

the cell immediately next to the contraction corner to be square in shape. In the range,

xcnr ± 0.1 to xcnr ± 1.0, the axial spacing is equal to dx = 0.1 and finally expands to a

value of dx = 1.0 for the rest of the upstream/downstream domain. The figure only shows

a portion of the computational grid, whereas the full domain goes from xcnr ± 10.

2.3.1 Flow of a Newtonian fluid through a planar β = 4 contraction

The flow solution for a rectangular, β = 4 contraction is presented in Figure 7. It can be

seen that the maximum axial velocity increases from umax = 1 to the expected umax = 4

in the transition from the larger to smaller channel section. In addition, a corner vortex

forms in the region upstream of the contraction. The size of this vortex is xvort = 0.354,

yvort = 0.488 as illustrated on the streamline plot in Figure 7.

Both Bao (2002) and Mompean (2002) solved the two-dimensional mass and momentum

balance equations for a low-Reynolds-number flow of a Newtonian fluid into sharp-edged,

planar contraction at the ratio β = 4. Bao utilized a finite element approach while Mompean

used a finite volume approach, as was done here. Bao predicts xvort = 0.334. In addition

from streamline plots in the paper, it is evident that yvort > xvort was predicted in their

results as well with yvort ≈ 0.5. Mompean predicts an xvort = 0.36 which is very close to

the value predicted here. In both cases, the literature data matches our predicted vortex

size relatively well and provides an independent verification of the code for a 2-D planar
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contraction.

2.3.2 Flow of a Newtonian fluid through an axisymmetric β = 2 contraction

The flow solution for a β = 2, axisymmetric contraction flow is shown in Figure 8. Again

the model predicts the correct factor of 4 increase in the maximum velocity for the transition

from the larger to smaller contraction sections. In addition, the presence of a corner vortex

is predicted. Figure 9 shows a quantitative comparison with the numerical solution data

from Christiansen et al (1972) and Kelsey (1971). For their work, the authors solved

the vorticity-transport equations by quasilinearization and the method of lines (QL-ML

method) or they used an alternate approach where they solved the fourth-order stream

function equation by relaxation (SF-R method). Their data was obtained at Re = 0.01,

where they also predicted the presence of a corner vortex. The experimental velocity data

of Iwamiya, Chow and Sinton (1994), taken using an NMR technique, displayed a corner

vortex in an axisymmetric β = 2 contraction, as well.

The quantitative comparison in Figure 9 shows excellent agreement between the FVM

solution here and the solutions of Christiansen et al (1972) and Kelsey (1971). In the plots,

the open circles represent the literature data and the solid lines the data generated in this

work. Velocity values were normalized by the average axial velocity in the downstream

section of the contraction. Length measurements were normalized by the radius of the up-

stream tube and the position of the contraction opening was set to z = 0. Figure 9(a) shows

the normalized axial velocity (Ux) versus z along the centerline (r = 0) and Figure 9(b)

shows the normalized axial velocity as a function of r at the contraction opening (z = 0).

Figure 9(c,d) are of the normalized radial velocity (again normalized by the average down-

stream axial velocity). Figure 9(c) is of Ur(z) at r = 0.4 (the downstream tube wall is at

r = 0.5) and Figure 9(d) is Ur(r) at z = 0.

2.3.3 Particle migration in a channel flow

To verify the “evolver” portion of the code, we compare the converged particle concentration

and velocity profiles for a two-dimensional, Cartesian solution of an axially-evolving chan-

nel flow with the one-dimensional, analytic solution. The details of the two-dimensional,

24



8
9

10
11

12

0

0.5

1
0

1

2

3

4

zr

u
z

8
9

10
11

12

0

0.5

1
−1

−0.5

0

0.5

1

zr

u
r

Figure 8: Plot of the velocity streamlines and z, r velocity components for a axisymmetric
β = 2 contraction flow.

25



−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

z

U
z

(a)

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

r

U
z

(b)

−2 −1 0 1 2
−0.50

−0.25

0 

0.25  

0.50 

z

U
r

(c)

0 0.1 0.2 0.3 0.4 0.5

−0.2

−0.1

0

0.1

0.2

r

U
r

(d)

Figure 9: Comparison of the FVM velocity solution [solid line] of an axisymmetric, New-
tonian contraction flow (β = 2) to literature solutions [open circles] (Christiansen et al,
1972; Kelsey, 1971). Lengths have been scaled to the radius of the larger section, z = 0 has
been set to the entrance of the contraction and velocities have been scaled to the average
velocity in the smaller section (Uz = uz/ < uz >sm, Ur = ur/ < uz >sm) (a) Uz(z) at r = 0;
(b) Uz(r) at z = 0; (c) Ur(z) at r = 0.4; (d) Ur(r) at z = 0.

26



Cartesian solution are provided in Chapter 3 and use the same set of boundary conditions

as explained above for the sharp-edged contraction flows in Figure 5. The inlet is set to a

unidirectional, parabolic flow, while the particle volume fraction is held at the initial bulk

concentration. The gradients normal to the outlet are set equal to zero, which now includes

the φ gradient. Wall boundaries are set to no-slip conditions and the particle migration

flux normal to the wall is set equal to zero, j⊥ · n = 0. The centerline is set to a symmetry

boundary condition with the normal velocity and tangential velocity gradient set to zero

with the particle migration flux normal to the line of symmetry set equal to zero. We look

at the case where the initial bulk particle concentration is φB = 0.4 and assume model

parameters of α = 2, φm = 0.68 and set the particle size to B/a = 18. The viscosity model

of Krieger (1972) with m = 2 is used for ηs(φ). In the steady-state solution, it will be shown

below that for the one-dimensional prediction the values of α and a do not effect the final

particle concentration profile.

The one-dimensional, analytic solution is determined from Eq. (2) and Eq. (4). With the

x- and y-directions defined as in Figure 5, we assume there is no variation of parameters

in the x-direction and that the cross-stream velocity can be set to zero, uy = 0. Under

these assumptions, the continuity relation given in Eq. (1) provides no further information

and we assume a constant axial pressure drop, dP/dx. Substituting the expression for the

bulk stress (Σ) from Eq. (11) into the bulk momentum equation, Eq. (2), and applying the

assumptions, we get

2η̄sExy = (
dP

dx
)y. (21)

The shear-rate can be expressed, γ̇ =
√

2Exy, which when substituted into Eq. (21) results

in the following expression for the shear rate which can be integrated to determine the

velocity field,

γ̇ =

√
2

2

∂ux

∂y
=

√
2

2
(
dP

dx
)

y

η̄s
. (22)

The particle field solution is determined by simplifying Eq. (4) with the above assumptions,

along with the assumption of a steady-state where ∂φ
∂t = 0. That leaves

∂j⊥,y

∂y = 0, which

implies j⊥,y = constant. From the boundary conditions, this constant is determined to be

equal to zero. Substituting in the expression from Eq. (7) for j⊥,y and simplifying, results
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in

2a2

9ηo
f(φ)

∂ΣP,yy

∂y
= 0. (23)

Integrating this expression and substituting in for the particle stress with Eq. (9), we get

−η̄n(φ)γ̇λ2 = Aconst. (24)

Now we substitute in for γ̇ with Eq. (22) and absorb the constants, −
√

2
2 (dP

dx
)λ2, into the

RHS.

ηn

ηs
y = Aφ. (25)

The solution for this equation is determined by setting the value of φ at the wall and

solving for Aφ. This value of Aφ is then used to determine the rest of the φ profile. At

the centerline (y = 0), since γ̇ → 0, we assume φ/φm = 1.0. This assumption is necessary

for the one-dimensional solution, but is not necessary for the two-dimensional numerical

solution where the centerline boundary condition is enforced through the vanishing particle

migration flux. The proper value of φwall is determined by enforcing that the particle phase

mass flux, ρ < φux >, remains equal to that at the inlet, ρφB < ux,parb >. For the velocity

field solution, the proper pressure drop is determined by enforcing that the overall mass

flux, ρ < ux >, remains equal to that at the inlet. For our calculations, it is assumed that

the density of the particle phase and fluid phase are equal and therefore remain constant

throughout the suspension.

The results in Figure 10 show good agreement between the two-dimensional solver-

evolver solution and the one-dimensional analytic solution. There is some discrepancy,

mainly due to the way the centerline boundary condition is handled. In the analytic solu-

tion, the centerline value of φ is assumed to be at maximum packing since the shear rate

vanishes. In the numerical code, the value is calculated at a node off of the centerline

boundary (as illustrated in Figure 4) utilizing the fact that the particle flux vanishes at

the symmetry boundary. Despite the slight difference, this comparison illustrates that the

solver-evolver code can produce a stable solution for the particle concentration for a simple

two-dimensional flow. The velocity solution for both cases shows a flattening in the cen-

ter compared to the inlet parabolic profile. The numerical and analytical predictions vary
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slightly in this flattening, most likely due to the difference in the predicted φ profile near

the centerline.

In conclusion, this illustrates that the explicit particle solution procedure is able to

correctly calculate the φ profile without producing major instabilities. As for the issue of

the vanishing shear rate at the centerline, this is addressed in the discussion of a non-local

shear rate correction in Chapter 3, Section 3.1.1.
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CHAPTER 3

SIMPLE GEOMETRY: AXIALLY DEVELOPING FLOWS

In this chapter, we focus on the case of modeling axially-developing pressure-driven sus-

pension flows in rectangular and circular conduits. For the rectangular conduit, we assume

that the depth of the channel cross-section is much greater than the width (2B) allowing us

to model the flow as two-dimensional. For the circular conduit, we assume an axisymmetric

non-swirling flow, which allows us to use a two-dimensional domain as well.

Pressure-driven flow of suspensions is relevant to a range of applications. Wherever

transfer from one vessel to another is required, the suspension must undergo a pressure-

driven flow through some form of conduit. The impact of bulk migration of the solid

particles on the system pressure drop or particle distribution can have significant effect on

the design parameters. The particle volume fraction, φ, and velocity profiles resulting from

flow through rectangular and circular conduits have been considered experimentally for

what is assumed to be the fully-developed state (Koh, Hookham and Leal, 1994; Hampton

et al, 1997; Lyon and Leal, 1998a, Han et al, 1999; Frank et al, 2003). Simulation (Nott

and Brady, 1998; Morris and Brady, 1998) has also been used to examine this problem

and provides rate information but has been performed in a periodic system and thus is not

directly in correspondence with the experiments. The study by Hampton et al (1997) is, to

our knowledge, the only work to provide experimental data on the axial development. While

scaling arguments have been offered to describe the development length, little attention has

been given to modeling the development of the φ profile and the associated changes to the

velocity field and axial pressure variation.

We study predictions based on the suspension flow model presented in Chapter 2, with

one specific modification. We take into account nonlocal effects on the stress. By nonlocal,

we are referring to the concept that the “continuum point” for the material, by which we

mean the minimum scale on which a continuum approach may validly be applied, is of finite
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size. This issue has already been shown to be significant for a channel flow application in

the evolver verification solutions presented in Chapter 2, Section 2.3.3. To account for this,

a simple averaging of the computed strain-rate field over a finite volume is performed. This

is explained in more detain in Section 3.1.1.

Our primary objective in this chapter is to explore suspension behavior in axially-

developing flows, where certain simplifications based upon the nearly unidirectional nature

of the flow appear justified. We develop a “marching” method which is derived from scaling

arguments in the spirit of the lubrication approximation. When compared with the solu-

tion of the complete two-dimensional governing equations used in the solver-evolver code,

the marching method approximated the results from the full model extremely well with a

substantial decrease in the size of the computational domain and required computational

time. The need for the full model still does arise in regions where the two velocity compo-

nents are comparable, and this is illustrated by the flow of a suspension through an abrupt

contraction.

We begin in the following section by reviewing the suspension flow model, explaining the

concept of a nonlocal stress and how it is implemented, and illustrating the unidirectional

simplification for conduit flows to form a marching method solution. Section 3.3 states the

problems to be solved, Section 3.3 presents an overview of the numerical methods used in

each solution method, Section 3.4 states the results with some discussion, and Section 3.5

presents concluding comments. Comparisons are made between model predictions and

experimental results as well as between the two solution methods.

3.1 Governing Equations

For the solution of a suspension flow through a rectangular or circular conduit, we utilize

the suspension flow equations developed in Chapter 2. These equations are established for

the flow of suspensions of rigid, spherical particles in a Newtonian fluid. We assume viscous

conditions and non-Brownian, neutrally buoyant particles. For the flows considered, it is

assumed that the bulk and particle Reynolds numbers are sufficiently small that bulk and

individual particle inertia have little influence.
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The bulk mass and momentum conservation equations and particle phase conservation

equations result in

∇ · u = 0, (26)

−∇P + ∇ · (2η̄sE) + ∇ · ΣNS
P = 0, (27)

∂φ

∂t
+ u · ∇φ = −∇ · j⊥, (28)

where u is the bulk suspension velocity, P is the suspension pressure, η̄s is the shear viscosity,

E is the rate of strain, ΣNS
P is the particle phase normal stress, φ is the particle volume

fraction and j⊥ is the particle migration flux. The shear viscosity is a function of φ and

defined in Chapter 2, according to the forms suggested by Morris and Boulay (1999) or

Krieger (1972). The bulk rate of strain is defined as E = 1
2 [∇u + (∇u)T ] and the form of

the particle normal stress, ΣNS
P , is given below in the particle phase stress definition. The

particle migration flux is determined from the particle momentum conservation equation to

be

j⊥ =
2a2

9ηo
f(φ)∇ · ΣP. (29)

In this expression, a is the particle radius, ηo is the Newtonian suspending fluid viscosity,

f(φ) is the sedimentation hindrance function, and ΣP is the particle phase stress. The sedi-

mentation hindrance function is based on the form described in Richardson and Zaki (1954)

with a modification to ensure that particle migration ceases when the particle concentration

approaches maximum packing, φm,

f(φ) = (1 − φ/φm)(1 − φ)α−1. (30)

We use α values in the range 2 ≤ α ≤ 4. The particle stress model is taken from the form

suggested by Morris and Boulay (1999) for shear flows,

ΣP = −η̄n(φ)γ̇Q + 2η̄p(φ)E, (31)

and contains both a shear, ΣSH
P = 2η̄pE, and normal, ΣNS

P = −η̄nγ̇Q, stress portion. The

normal stress viscosity (η̄n), particle phase viscosity (η̄p), and anisotropic tensor (Q) are

defined in Chapter 2. The shear rate is defined, γ̇ =
√

2E : E.
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3.1.1 Nonlocal stress contributions

When modeling the particle phase as a continuum, difficulties may arise at points where

the shear rate approaches zero, as at the centerline of channel or pipe flow. At such points,

continuum models based on the local shear rate have been shown (Phillips et al, 1992; Nott

and Brady, 1994) to predict that the particle volume fraction must approach maximum

packing. This produces an aphysical cusp in the φ profile.

This behavior represents a breakdown of the “local” description of the stress, by which

we refer to the definition of continuum field variables at an infinitesimally small point in

space. This does not take into account the finite size of the particles, and when the scale

of interest approaches that of the individual particles, the continuum approximation may

be expected to break down. To remedy this, it has been suggested to use a nonlocal stress

correction (Nott and Brady, 1994; Morris and Brady, 1998; Mills and Snabre, 1995; Morris

and Boulay, 1999). The nonlocal stress takes into account that particles sample neighboring

flow regions over their own size scale or over the scale characteristic of interactions with

near neighbors, a concept illustrated in Figure 11.

There have been several methods used to model nonlocal suspension stresses. In Nott

and Brady (1994) and Morris and Brady (1998), the nonlocal stress is written as a function of

the fluctuational motions of the particles, employing the “suspension temperature,” defined

as the mean square translational velocity fluctuation in the particle phase, T susp ≡< u′ ·

u′ >P. This leads to an additional field variable, T susp, and thus requires development and

solution of an added transport equation describing this quantity. Mills and Snabre (1995)

propose that the nonlocal stress is the effect of large scale particle structures. They suggest

that the nonlocal stress should consist of the local stress integrated over the length scale of

these proposed structures. Morris and Boulay (1999) suggest a similar, but less mechanistic,

approach of taking a spatial average of the shear rate over a finite volume in the constitutive

law for the normal stresses.

Further arguments specific to the centerline of a channel/pipe flow may be applied to

justify a nonlocal contribution to the mean shear rate by noting that no point in such a flow

has, on average, a root-mean-square (RMS) shear rate of zero. The centerline represents
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Figure 11: Illustration of the nonlocal stress. The section on the left illustrates a con-
tinuum point value and the section on the right illustrates a finite volume for the nonlocal
contribution.
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the maximum velocity in average only, as fluctuations in particle concentration alter the

viscosity and hence the shear rate at points to either side of the centerline. Consequently,

the maximum velocity may instantaneously be displaced to either side of the centerline of a

channel, or radially in any direction in a tube flow. The centerline of a suspension flow thus

experiences a distribution of shear rates, which will depend upon ǫ = a/Ls, where Ls is the

channel half width (B) or pipe radius (R). This is due to the fact that the concentration

fluctuations depend upon the number of particles within a volume of scale L3
s.

In this work, the nonlocal stress model is a simplification of the spatial averaging ap-

proach. Specifically, a small constant nonlocal contribution – depending upon the particle

size – is added to the local shear rate. This reflects the fact that the RMS value of γ̇ is larger

than the mean shear rate, owing to fluctuations resulting from finite size of the particles.

The normal stress portion of Eq. (31) is thus computed as

ΣNS
P = −ηoηn(φ)[γ̇(x) + γ̇NL]Q, (32)

with the nonlocal contribution depending on the mean shear rate and particle size,

γ̇NL = as(ǫ)γ̇s, where γ̇s = umax/Ls. (33)

We examine values of as(ǫ) = 0, ǫ, and ǫ2. The finite γ̇NL values satisfy γ̇NL ≪ γ̇(x)

except where γ̇ → 0, giving the model the desired effect of influencing results only near the

centerline in the present context. In fact, for the linearly-varying shear stress of a pressure-

driven flow in a conduit, this method differs little from taking an average of the shear rate

(defined positive) about the point of interest, and can readily be extended to this form for

the general case, which we do in Chapter 5 and Chapter 6 for general flow conditions. In

these chapters, we determine the nonlocal stress by averaging the shear rate about the point

of interest over a small, finite volume.

3.1.2 Scaling and unidirectional flow

We consider the flow of a neutrally-buoyant suspension in a channel or tube with steady

inlet conditions. Following an initial transient as the flow is introduced to the conduit,

the flow is steady and the volume fraction develops axially according to the steady form of
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Eq. (28),

u · ∇φ = −2a2

9ηo
∇ · (f(φ)∇ · ΣP) . (34)

Assuming there is no average cross-stream velocity of the bulk material (a reasonable as-

sumption given that this velocity component must vanish at both the centerline and the

wall), the left-hand side becomes

u · ∇φ ≈ u‖
∂φ

∂x‖
(35)

where ‖ represents the axial direction (x for the channel flow and z for the pipe flow).

The right-hand side of Eq. (34) can be simplified under the assumption that the de-

velopment length in the channel or pipe, L, is much greater than the cross-stream length

scale, Ls ≪ L. Scaling the cross-stream direction (x⊥ which is y for a channel and r for

a pipe) with Ls and the axial direction (x‖) with L leads to ∂
∂x‖

∼ 1/L ≪ 1/Ls ∼ ∂
∂x⊥

.

Variations in the axial direction are much smaller than those in the cross-stream direction,

and therefore may safely be neglected in computing the particle migration flux; note that

it is not clear this must hold true for extremely concentrated suspensions. This reduces the

particle-evolution equation to

∂φ

∂x
= − 1

ux

2a2

9ηo

∂

∂y

(

f(φ)
∂ΣP,yy

∂y

)

(36)

for the axial variation of φ in a two-dimensional channel flow and to

∂φ

∂z
= − 1

uz

2a2

9ηo

∂

∂r

(

f(φ)

[

∂ΣP,rr

∂r
+

N2

r

])

(37)

for an axisymmetric tube flow, where N2 = ΣP,rr − ΣP,θθ.

3.2 Pressure-driven Flow of a Concentrated Suspension Through

a Long Conduit

Pressure-driven flows in a two-dimensional channel and a circular pipe are studied. The

domain for the channel flow is illustrated in Figure 12, which is similar to that of the

pipe flow with axisymmetric conditions assumed. At the inlet the velocity is set to a

unidirectional parabolic profile while φ has the imposed bulk value (φB). No-slip velocity

conditions are imposed at the wall while the particle migration flux normal to the wall is set
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Figure 12: Sketch of the channel flow geometry and imposed boundary conditions.

equal to zero. At the centerline a symmetry boundary condition is imposed resulting in a

vanishing normal velocity and particle migration flux with normal gradients of the tangential

components vanishing as well. At the exit, all the normal gradients of components are set

equal to zero while the pressure is set to zero to provide a reference value. In the finite

volume approach, the domain is initially filled with suspension at φB.

3.2.1 Experimental comparisons

The numerical studies performed include conditions which match those of experiments pre-

sented in Lyon and Leal (1998a) for a rectangular conduit and in Hampton et al (1997) for a

circular conduit. Both sets of experiments used density-matched particles sufficiently large

to rule out Brownian diffusion effects (diameters 50−100µm for Lyon and Leal; 650µm and

3175µm for Hampton et al).

Lyon and Leal (1998a) measured φ and axial velocity using a laser-Doppler velocimetry

(LDV) method. Data was extracted across the width of the channel at a length of 224B

downstream of the entrance to the channel, where B is the half width of the channel. The

longer dimension of the channel in their experiments was 50B for the results of interest,

and the flow is thus well-approximated as two-dimensional. Results at B/a = 18 and bulk

concentrations of φB = 0.3, 0.4, and 0.5 are considered. This value of B/a is below the
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lower bound of continuum behavior, B/a = 50, argued by Hampton et al (1997) based on

capillary rheometry experiments (Seshadri and Sutera, 1970; Mondy, Graham and Gottlieb,

1988), but we will apply the continuum model (with the non-local stress) nonetheless. The

LDV data tends to obtain φ values which are systematically low near the channel walls,

apparently due to a lower signal to noise ratio in the regions near the wall; this finding was

confirmed by direct optical measurements in another study (Lyon and Leal, 1998b). This

should be borne in mind when considering experimental results used for comparison in the

near-wall region, i.e. outside −0.8 ≤ x ≤ 0.8.

The results of Hampton et al (1997) were taken at bulk concentrations of φB = 0.20,

0.30, and 0.45 for R/a = 16 and 40 where R is the inner radius of the pipe. This data

was obtained using nuclear magnetic resonance (NMR) imaging which has been shown to

provide accurate results in a number of flows (Altobelli, Givler and Fukushima,1991; Abbott

et al, 1991; Subia et al, 1998).

3.3 Numerical Implementation

3.3.1 Full two-dimensional solution: the solver-evolver tool

The suspension flow model given by Eq. (26), Eq. (27), and Eq. (28) is solved using a

tool termed the “solver-evolver,” developed in Chapter 2 for the study of flow and particle

migration in general geometries. The tool solves for the velocity field, u(x), for a given

φ(x) field. This is followed by an “evolve” step which updates φ(x) based upon the particle

stress field evaluated using u(x).

The solver-evolver code utilizes the finite volume method (FVM) as explained in Patankar

(1980) and Ferziger and Peric (2002) to solve the suspension flow equations. For the conduit

flow problems, the solution domain is divided into CV’s, as illustrated in Figure 13 for a

rectangular channel. The cross-stream direction is divided as dy = 0.05B (dy = 0.05 in

dimensionless form). Since gradients in the axial direction are smaller, a larger mesh size is

utilized for the axial coordinate. For the first 10B of the axial direction dx = 10dy, which

is increased to dx = 200dy for x = 10B to 100B. Finally beyond 100B, dx is increased to
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Figure 13: Computational grid used for the channel flow.

2000dy. This is allowable as gradients in the axial direction drop rapidly after the initial mi-

gration near the inlet, consistent with the decrease in rate of migration in the cross-stream

direction beyond 100B. The circular conduit was discretized similarly, but required a finer

mesh for a longer axial distance near the inlet. For these calculations the first 10R in axial

distance was set to dz = 5dr and the region of 10R through 250R was set to dz = 10dr,

while the region beyond 250R was set to dz = 100dr.

Even with the variable length in the axial direction, the full solution with the solver-

evolver is computationally demanding. With 20 cross-stream elements, in MATLAB the

method requires on a 2.5 GHz PC about 24 hours to complete the 5000 time steps required to

converge a 1000B length channel and 72 hours to complete the 15000 time steps required to

converge a 5000B length channel. In a pipe flow the necessary time is longer due to increased

axial refinement and larger numbers of iterations for the flow field solution. Recall that the

flow begins from a conduit filled with a uniform φB and the time is required to allow the

initial volume to be displaced completely.

3.3.2 Marching method solution

The long solution times noted at the end of the previous section result from the slow

axial variation and consequently large domain. We have also used the wide separation of

gradients in the flow and cross-stream directions to motivate a solution technique in which

the governing equation for the axial variation of φ, namely Eq. (36) for the two-dimensional
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channel or Eq. (37) for the tube flow, is discretized with an Euler scheme for the axial

coordinate (x‖) and a one-dimensional FVM scheme in the cross-stream coordinate ( x⊥).

This leads to a sequential solution algorithm where the velocity field at an axial cross-section

is determined and used to calculate the particle volume fraction profile at the next axial step

downstream. This leads to a solution which “marches” axially down the channel or pipe.

The method addresses only the steady solution following the initial transient associated

with the propagation through the conduit, and thus is intrinsically less complete than the

first approach.

With φ(x⊥) known at the first position, the pressure-driven velocity profile is determined

subject to the constraint that the total mass flux (particles and fluid) is equal to the

value at the inlet. This constraint sets the pressure drop, dP/dx‖, at this axial position.

Note that the cross-stream average of φ need not equal the inlet average or initial bulk

concentration, but that global mass conservation should be maintained. To satisfy the

particle flux requirement the φ profile is linearly rescaled to ensure that the particle phase

mass flux remains at the inlet value; such an ad hoc approach is not needed in the full

solution. Finally, the new velocity and stress information is used to determine the φ(x⊥)

profile at the next axial step, with the change given for the channel flow following from

Eq. (36) as

∆φ = − ∆x

ux(y)

∂jy

∂y
= − 2a2 ∆x

9η ux(y)

∂

∂y

(

f
∂Σyy

∂y

)

, (38)

with a similar form, but involving N2, following from Eq. (37) for the pipe flow. This

process is continued until the φ profile has reached its fully-developed form.

The results presented use dx⊥ = B/100 or R/100, i.e. 100 uniformly spaced elements in

the cross-stream direction. The axial discretization varies depending upon the concentra-

tion, but is quite different from the FVM, and always such that dx‖ < dx⊥ as suggested by

the CFL stability criterion condition (Ferziger and Peric, 2002). Typically, dx‖ = 0.1dx⊥ for

φB ≤ 0.3 and dx‖ = 0.01dx⊥ for φB = 0.5. While we have made certain that the results are

not substantively grid-dependent, no effort has been made to optimize the axial discretiza-

tion, as the method is sufficiently rapid that it is not necessary. With 100 cross-stream

elements, the method completes 1.5 × 105 axial steps per minute on a standard 1.3 GHz
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PC, and thus provides results for comparison with fully-developed flows from experiments

in minutes.

3.4 Results and Discussion

We begin by considering a comparison of the predictions of the full model with experimental

data. This will be followed by a more limited examination of the comparison between the

full model and the marching method solution, with an illustration of the limitation of the

marching model.

To explore the axial evolution of the solids fraction, a scalar measure of the cross stream

φ profile was used. We utilized the Ep term introduced in Hampton et al (1997),

Ep =
1

A

∫ |φ − φref |
φavg

dA (39)

taking φref as the bulk solids fraction at the inlet (φB) and taking φavg as the local cross-

sectional average solids fraction at the given axial position. This measure starts at zero

and asymptotically approaches a constant value as the profile reaches its fully-developed

state as illustrated in Figure 14 for a typical channel flow. A curve fit of the form suggested

by Hampton et al (1997), namely Ep = α1(1 − eα2Z0.8

) + α3, is used to fit the data with

Ep(L
φ) = 0.95E∞

p taken as the definition of the convergence length for the solids fraction,

which corresponds to the definition used by Hampton et al. The terms E∞
p and Lφ are the

fully-developed Ep value and convergence length for the solids fraction, respectively.

Predicted axial development of the solids fraction in a channel flow is shown in Figure 15

and for a pipe flow in Figure 16 and Figure 17. In each case, the plot at right illustrates the

axial development by presenting the normalized solids fraction at the centerline and wall;

the left plot in each pair provides the fully-developed cross-stream solids fraction profile.

The predictions illustrate the influence of a nonlocal stress on both the fully-converged

profile and the development length; it aids in considering these results to recall that ǫ ≪ 1.

In the channel flow, a nonlocal factor of as(ǫ) = ǫ2 has little more effect than no nonlocal

contribution (as = 0). A nonlocal factor of as = ǫ results in a readily observable reduction

of the predicted centerline φ value and reduces the predicted entrance lengths, as reported

in Table 1. The fully developed profile matches the Lyon and Leal (1998a) data except
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Figure 14: Calculated and curve-fitted values of Ep for the φ profile in a channel flow at
conditions of B/a = 18 and φb = 0.40, with model parameters of α = 4, γ̇NL = ǫ.

near the outer wall where the experimental data drops off at a steeper rate which, as

we have discussed in Section 3.2.1, may be due to experimental artifacts. These results

could, we believe, only be accounted for in the model through consideration of boundary

effects. The Lyon and Leal (1998a) measurements were taken 224B from entry to the

channel, substantially less than the Lφ computed. Note, however, that our definition of Lφ

is arbitrary and also that in the referenced experiments there may be some development in

the flow of the suspension in the tubing leading to the channel entry.

For the pipe flow, predictions obtained with a nonlocal factor of as = ǫ yield the best

match to experimental data, particularly at the centerline. In the Hampton et al (1997)

data, there again is a drop off near the wall, but less extreme than in Lyon and Leal

(1998a). In Hampton et al, the rapid decrease in φ is more localized near the wall. In

principle, the validity of the measured solid fraction near the wall could be assessed by

examining the pressure drop (lower near-wall φ would be associated with a reduced rate of

axial pressure drop), but such experimental data are not presently available. The predicted
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Figure 15: Fully-developed cross-stream (left) and axially-developing (right) φ/φm profiles,
comparing the effect of nonlocal stress contributions for channel flows with B/a = 18 and
α = 4. Cross-stream profiles are compared to the experimental data of Lyon and Leal
(1998a).
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Figure 16: Fully-developed cross-stream (left) and axially-developing (right) φ/φm profiles
comparing the effect of nonlocal stress contributions for pipe flows with R/a = 16 and α = 2.
Cross-stream profiles are compared to the experimental data of Hampton et al. (1997).
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Table 1: Predicted entrance lengths for the φ profile (Lφ) and pressure drop at the
wall (LP ) for axially-developing conduit flows at various model conditions and parameters.
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Table 2: Comparison of model predictions (γ̇NL = ǫ, α = 2) of the φ profile entrance
length (Lφ) for two-dimensional channel flow and axisymmetric pipe flow at similar condi-
tions. The experimental entrance length data of Hampton et al. (1997) for a pipe flow is
included for further comparison. Ls = B or R for channel and pipe flows, respectively.

entrance lengths based on the Lφ definition data for the pipe flow are given in Table 1

and Table 2. Table 2 highlights the difference in predicted φ profile entrance lengths be-

tween two-dimensional, rectangular channel flow and axisymmetric pipe flow with a further

comparison to experimental data from Hampton et al (1997) taken for a pipe flow. The

predicted entrance length for a channel flow is approximately double that of the pipe flow in

the cases presented. This is due to geometric differences as well as fundamental differences

in the particle stress model in an axisymmetric geometry, which is explained below and

illustrated in Figure 25. For a pipe flow, the predicted entrance lengths are much longer

than the measured lengths in Hampton et al (1997) for all φB at the smaller particle size

(R/a = 40). For the larger particle size (R/a = 16), the predicted values are considerably

closer to the experimental measurements, and in fact under-predict the experimental value

at φB = 0.2 for this ratio of particle to tube size. The dependence on φ and particle size of

the constitutive behavior apparently needs further consideration.

Fully-developed velocity profiles for the channel and pipe flows are given in Figure 18,

and these generally match experimental data well. However, the predicted channel velocity
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profile fails to fully capture the flattening observed experimentally.

Model and physical parameter influences are illustrated in Figure 19 and Figure 20.

Rationalization of the effects of the various parameters is aided by noting that the predicted

cross-stream migration flux has the form for the channel of

j⊥,y ∼ a2

ηo

dP

dx
(1 − φ/φm)(1 − φ)α−1 d

dy
(q y),

with q = ηn/ηs as defined by Morris and Boulay (1999). This form follows from noting

that γ̇ ∼ y (dP/dx)/ηs with y being the cross-stream coordinate normalized by the channel

half-width B. The exponent for the sedimentation hindrance function, α, has no effect upon

the fully-developed cross-stream profiles (where j⊥,y vanishes), but smaller α are associated

with larger migration flux and thus shorter predicted lengths for axial evolution. A value of

α = 2 matches experimental observations of Hampton et al (1997) in the tube flow better

than the α = 4 used in Morris and Boulay (1999) for fitting of migration rate in wide-gap

Couette flow evolution (and also in most channel flow predictions presented here). The

ratio of particle size to flow scale alters the fully-developed cross-stream profile only near

the centerline, but has strong effect upon the flux and hence upon the entrance length owing

to the a2, or in dimensionless form (a/B)2, dependence of migration rate. This decreases the

dimensionless convergence length for suspension of particles larger relative to the conduit

cross-section. Finally, the viscosity models are observed to yield very similar results, with

the Krieger (1972) form having a slightly slower migration than that proposed by Morris

and Boulay (1999); the Morris and Boulay form of ηs is smaller except as φ → φm and thus

q is larger than when the Krieger form is used, resulting in a larger |j⊥|.

Comparison between the predicted axial evolution of φ for the marching method and

full two-dimensional solution are made for a channel flow in Figure 21 and for a pipe flow

in Figure 22. The channel flow has B/a = 18 with α = 4 and as = ǫ; the pipe flow is

at R/a = 40 with α = 2 and as = ǫ. For the channel flow, the predictions of the two

methods match almost exactly. The pipe flow results match well but show some difference

in the predicted centerline value, a difference attributable in part to the higher resolution

in the marching method solution with 100 grid points across the radial domain where the
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Figure 18: Fully-developed axial-velocity predictions (γ̇NL = ǫ, α = 2) and experimental
results for (a) channel flow with B/a = 18 (Lyon and Leal, 1998a); (b) pipe flow with
R/a = 16 (Hampton et al, 1997).
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Figure 19: Comparison of the effect of model parameters on the predicted φ/φm profiles
for channel flows when φb = 0.4, γ̇NL = ǫ.
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Figure 20: Comparison of the effect of model parameters on the predicted φ/φm profiles
for pipe flows when φb = 0.3, γ̇NL = ǫ.
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two-dimensional solution has 20.

Although little if any experimental measurement has appeared addressing the issue, it

is found from modeling that the axial pressure variation decreases as the φ profile evolves

in neutrally-buoyant suspension flows. A similar temporal, as opposed to axial, decrease

was found in the periodic simulations of pressure-driven flow by Nott and Brady (1994).

The pressure drop scales proportionally with the shear stress at the wall, which in the

channel flow is of the order ηoηs|wallUs/B. The migration-induced decrease in φ and ηs,

adjacent to the wall, combined with the fixed axial flux (hence roughly fixed Us) implies the

primary variable in this scaling is the suspension viscosity. As ηs|wall decreases, the predicted

axial pressure drop decreases quite significantly in moderately and highly concentrated

systems, as illustrated in Figure 23 (the pressure is presented in the dimensionless form

P ∗ = P [Ls/ηoUs]). Consequently, a separate measure of development length, and one

which may be more readily experimentally accessible than Lφ, is provided by the distance

required for the pressure drop to complete 95% of its change in magnitude from inlet to

fully-developed conditions. This length is comparable to Lφ but we have generally found it

to be shorter in the cases presented here; see Table 1.

Noting that the particles accumulate on the high speed streamlines near the centerline,

it is not surprising that a simple un-weighted average of φ over a cross-section decreases with

axial position in either the channel or tube. This point has apparently not been addressed

in work where experimental measurement of axial development has been made, but was

noted by Frank et al (2003) as a possibility. The predicted variation of the cross-stream

average of φ is illustrated in Figure 24 for a channel and pipe flow, with the change in

mean concentration found to be slightly greater than 10% of the inlet uniform value in both

cases, with the pipe flow exhibiting the greater change. This variation in the mean solids

fraction may have some significance to flow systems, such as ceramics precursors, where the

suspension in the conduit may subsequently be solidified and the absolute shrinkage upon

loss of solvent will differ from that of the inlet material; although it is expected this will be

secondary to the strong cross-stream variation.

There are strong similarities in the predicted behavior of neutrally-buoyant suspensions
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Figure 21: Predicted fully-developed cross-stream (top) and axially-developing (bottom)
φ/φm profiles utilizing the full two dimensional numerical solution [open symbols] and a
one-dimensional marching approximation [×] for channel flows with B/a = 18, γ̇NL = ǫ,
and α = 4.
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Figure 22: Predicted fully-developed cross-stream (top) and axially-developing (bottom)
φ/φm profiles utilizing the full two dimensional numerical solution (open symbols) and a
one-dimensional marching approximation [×] for pipe flows with R/a = 40, γ̇NL = ǫ, and
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Figure 23: Predicted variation in pressure drop, with P ∗ = P ∗ (Ls/ηoUs), as a function
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Figure 24: Predicted variation of the cross-stream averaged solids volume fraction with
axial position for (a) channel flow at B/a = 18 and (b) pipe flow at R/a = 16. (φb = 0.3,
α = 2, and γ̇NL = ǫ)
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for the channel and tube flows, but an important difference arises from the appearance

of the second normal stress difference N2 in the expression for the migration flux for a

tube flow. This is a result of the form of the radial migration flux, which in cylindrical

coordinates has the form j⊥,r ∼ (∇ · ΣP)r = ∂ΣP,rr/∂r + N2/r, and the relevance to the

prediction of particle concentration evolution along the flow axis is illustrated by comparing

the marching method approximations of the particle conservation equations for the channel,

Eq. (36), and pipe, Eq. (37). While normal stress differences are known to have a role in

curvilinear flows, here the relevance is seen in pipe flow. Figure 25 illustrates the role of N2

by providing the predicted fully-developed φ in a channel and two separate computations

of the pipe flow (using the full two-dimensional solution). The suspension conditions are

φB = 0.3, B/a = 18 or R/a = 16 with model parameters of α = 2, as = ǫ. The pipe flows are

run such that N2 is set equal to zero or has the value recommended by Morris and Boulay

(1999) of N2 ≈ −0.3ηoηnγ̇; the full φ-dependence of N2 for a noncolloidal suspension of

hard spheres is not known, but at φ > 0.3 the negative value is reliable (Phung, Brady and

Bossis, 1996; Morris and Katyal, 2002). The fully-developed φ profile satisfies (∇·ΣP)r = 0

or

∂ΣP,rr/∂r + N2/r = 0. (40)

The inclusion of N2 influences not only the fully-developed φ profile, increasing the value

near the centerline and decreasing it near the wall, but also speeds the migration rate and

thereby reduces the development length (see Table 2). In fact, Fang et al (2002) noted the

role of stress anisotropy in the radial migration in tube flow, although their expression of

the fully-developed radial momentum balance (their equation 69) is expressed in terms of

the particle pressure rather than N2,

∂Π

∂r
+

Π

2r
= 0.

The results are nonetheless consistent with Eq. (40), given their constitutive model. To

see this, note first that Π = −(1/3)(Σ11 + Σ22 + Σ33) with 1, 2, and 3 corresponding here

to axial, radial and circumferential (z, r, and θ) directions, then combine this with their

modeling of the anisotropic normal stresses, Σ11 = Σ22 = 2Σ33; thus Σ11 = −6Π/5 and the
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Figure 25: (a) The effect of geometry and N2 on the predicted fully-developed cross-stream
φ/φm profile; (b) particle stress effects at the initial bulk concentration. (φb = 0.3, α = 2,
γ̇NL = ǫ, B/a = 18 and R/a = 16)
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quoted result follows by substitution.

We conclude our presentation of model predictions by pointing out a limitation to the

marching method, in particular by considering pressure-driven suspension flow through

a conduit with a rapidly-varying cross-section. The ability to obtain large cross-stream

resolution in the marching method for little computational cost is the advantage of the

approximate method where it is applicable. The marching method is not applicable to flows

with rapidly changing boundary geometry, with an example of some practical relevance

being a sudden contraction. This is illustrated using a channel flow with a sharp-edged

contraction of ratio 2:1 (upstream half-width B, downstream B/2) following a straight-

walled flow of 1000B. The same particle stress constitutive model and boundary conditions

are used for the contraction flow as for the previous channel flows. The solids fraction at

steady fully-developed conditions and the corresponding streamlines appear in Figure 26,

along with the scalar measure, Ep. While Ep does not have a readily understood meaning

within the contraction, the variation of this parameter shows a localized influence upstream

from the sudden contraction, as the curves with and without the contraction quickly become

indistinguishable a few B upstream. While inapplicable near the contraction, the marching

method may be used to determine the appropriate inlet conditions to a two-dimensional

model of the domain local to the contraction. The contraction represents a flow with

considerable variation of the flow type. A more thorough exploration of flow modeling in

general geometries is presented in Chapter 5 and Chapter 6.

3.5 Conclusions

The axial development of pressure-driven flows of suspensions under moderate to highly

concentrated conditions has been studied using the suspension flow model presented in

Chapter 2, in which gradients in the particle stresses, in particular the divergence ∇ · ΣP ,

drive particle migration. The physical basis of migration is relatively simple. In a flow in

which the shear-induced stress varies, the non-Newtonian contribution to the bulk stress

resulting from the presence of the particles need not be in balance, and the system may

undergo a de-mixing in order to relax the imbalance.
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Figure 26: Velocity streamlines near the contraction for a long channel with a 2:1 con-
traction at the exit (top). Plots of the axial variation of Ep (middle) and contours of φ/φm

(bottom) near the contraction are included.
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The form of the model used here, with the develop illustrated in Chapter 2, is that

presented in the work of Morris and Boulay (1999) and is similar in most features to

that presented in Fang et al (2002). Both constitutive models include stress anisotropy.

The model comparisons with experiment are generally favorable, as the salient features

of behavior observed in experiments are captured by the model. The detailed form of the

various quantities has not been fit by variation of parameters, but certainly could be. Hence

the model provides a potentially useful tool for engineering studies of suspensions.

One parameter, the exponent in the sedimentation hindrance function representing par-

ticle mobility relative to the suspending fluid, was found to be better represented by a

smaller value than the α = 4 used in Morris and Boulay (1999), and we have used α = 2

as this yields better agreement with the axial development data of Hampton et al (1997).

Fang et al (2002) used a different form of the sedimentation function, roughly equivalent

to taking α = 2.8.

The solution of the model was determined for the conduit flows by two approaches,

a finite-volume-method solution in two-dimensions and a marching method. The FVM

approach was implemented in a tool which sequentially solved the flow and then updated

the solids fraction field, termed the “solver-evolver.” The tool was designed for study of

general-geometry suspension flows and represents, in fact, a quite computationally expensive

approach for the extended domains encountered in axially-evolving flows. Consequently,

a marching method which uses a scaling analysis to reduce the governing equations was

developed. The approximation is in the spirit of a lubrication approximation based on the

strong cross-stream and weak axial gradients. Given conditions at one axial station, the

variation of φ between this station and the next (in this approximation) along the axial

direction may be expressed solely in terms of information from the upstream station. This

effectively reduces the partial differential equations to a set of coupled ordinary differential

equations of which one is an initial value problem readily resolved by an Euler-scheme.

Comparisons of the results of the two methods show the computationally efficient march-

ing method is satisfactory for all straight conduit conditions studied here. We have illus-

trated the failure of the method in flows with rapidly varying boundary geometry, a problem
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studied in detail in the following chapters and future work (Miller and Morris, 2004).

The work has illustrated that the cross-sectional mean particle volume fraction must

decline in a steady state flow as the mixture moves down axis (at least for neutrally-buoyant

suspensions). This is a result of the accumulation of solids on the fast moving streamlines,

and the need to maintain a constant flux of particles at any axial station (equivalent to

a constant cup mixing average of solid fraction). The pressure drop per unit length also

decreases quite significantly from its initial value, an expected result as the effective viscosity

at the wall drops with particle migration from the boundaries but one which has not been

explored in experiments, to our knowledge.

While the agreement with experiment is generally good, the predicted behavior near

boundaries has yet to be satisfactorily matched with data. The experiments with which

comparison was made here – channel flow (Lyon and Leal, 1998a), pipe flow (Hampton et

al, 1997) – both exhibit a drop off in φ near the boundaries. Although some of this may

be attributed to experimental artifacts, there is some doubt as to this being a complete

explanation. It may be necessary to consider wall influence upon mixture stress more

carefully for concentrated systems in order to resolve the issue.
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CHAPTER 4

SIMPLE GEOMETRY: SUSPENDING FLUID EFFECTS

In this chapter we model suspension flows with a non-Newtonian suspending fluid. The

ability to model a suspension with a complex suspending fluid is one with a great many

applications including ceramic injection molding, paper processing and even blood flow.

Being able to take into account the effect of the particle migration on such flows or the

effect of complex fluids on particle migration is thus relevant to many industrial and medical

applications. We have chosen to do some basic work to illustrate how to go about modifying

the suspension flow model to take into account a non-Newtonian suspending fluid for a very

basic case — a shear-thinning suspending fluid. But by showing that this basic case is

possible, we open up the avenue for the possible use of more complex non-Newtonian fluid

models.

In the following section, we review the suspension flow model and illustrate how it is

modified for a shear-thinning, non-Newtonian suspending fluid. In Section 4.2, we review

the experimental work of Rao et al (2002) for a wide-gap circular Couette flow and in

Section 4.3 develop the solution equations used to model this flow. In Section 4.4, we

compare our model predictions with the results of Rao et al and show how the addition of

a shear-thinning suspending fluid affects the approach of the model predictions to steady-

state. In Section 4.5, we end with some conclusion and observations.

4.1 Governing Equations

As in Chapter 3, we utilize the suspension flow equations developed in Chapter 2 to model a

suspension of rigid, spherical particles in a shear flow. We limit the study to non-Brownian,

neutrally buoyant particles under low-Reynolds-number flow conditions where both the

bulk and individual particle inertia effects are not significant. The resulting bulk mass and
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momentum conservation equations and migration equation governing the particle phase are

∇ · u = 0, (41)

−∇P + ∇ · (2η̄sE) + ∇ · ΣNS
P = 0, (42)

∂φ

∂t
+ u · ∇φ = −∇ · j⊥, (43)

where u is the bulk suspension velocity, P is the suspension pressure, η̄s is the shear viscosity,

E is the rate of strain, ΣNS
P is the particle phase normal stress, φ is the particle volume

fraction and j⊥ is the particle migration flux. The bulk rate of strain is defined as E =

1
2 [∇u + (∇u)T ] and the form of the particle normal stress, ΣNS

P , is given below in the

particle phase stress definition.

The particle migration flux is determined from the particle-phase momentum conserva-

tion to be

j⊥ =
2a2

9ηo
f(φ)∇ · ΣP, (44)

where a is the particle radius, ηo is the Newtonian suspending fluid viscosity, f(φ) is the

sedimentation hindrance function, and ΣP is the particle phase stress. We use a modified

form of the sedimentation hindrance function (Richardson and Zaki, 1954), which is given

in Chapter 2, Eq. (12). For our applications here, we use a value of α = 4 for the exponent.

This value was chosen for the Couette flow since it matched the value used by Morris and

Boulay (1999) in their model comparisons to Couette suspension flow results (Phillips et al,

1992) with a Newtonian suspending fluid.

The particle stress model is of the form suggested by Morris and Boulay (1999) for shear

flows

ΣP = −η̄n(φ)γ̇Q + 2η̄p(φ)E, (45)

and contains both a shear, ΣSH
P = 2η̄pE, and normal, ΣNS

P = −η̄nγ̇Q, stress portion. The

local shear rate is defined, γ̇ =
√

2E : E, and we chose not to include a nonlocal correction,

as explained in Chapter 3, Section 3.1.1. This is done because for a wide-gap circular

Couette flow the γ̇ profile across the gap is smooth with no regions where γ̇ → 0. The
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anisotropic tensor, Q, follows the form given in Morris and Boulay (1999)

Q =













1 0 0

0 λ2 0

0 0 λ3













, (46)

where λ2 ≈ 0.8 and λ3 ≈ 0.5. These were chosen to match observed migration behavior in

viscometric flows (Phillips et al, 1992; Chow et al, 1994). The directions of Q correspond to

the principal directions of a viscometric shear flow with 1, 2 and 3 denoting flow, gradient,

and vorticity, respectively. For the circular Couette flow this corresponds to (1, 2, 3) ⇒

(θ, r, z).

The normal stress viscosity (η̄n = ηoηn(φ)), particle phase viscosity (ηp), and shear

viscosity (η̄s = ηoηs(φ) = ηo(1 + ηp)) are defined in Chapter 2. We use the form suggested

by Morris and Boulay (1999) for ηs(φ). To modify the suspension flow model for a non-

Newtonian suspending fluid, we replace the suspending fluid viscosity value, ηo, in the

modeling equations with a value which is a function of the local shear rate, ηc(γ̇). This

includes replacing ηo in the above viscosity equations and in Eq. (44). To match the shear-

thinning nature of the suspending fluid used in Rao et al (2002), they chose to fit rheometric

data to a Carreau viscosity law,

ηc(γ̇) = η∞ + (ηo − η∞)[1 − (λTC γ̇)ac ](n−1)/ac , (47)

where η∞, ηo, λTC , ac, and n are fitting parameters which will be explained below.

4.2 Wide-gap Circular Couette Flow of a Suspension with

a Shear-thinning Suspending Fluid

For the case of a circular wide-gap Couette flow with a shear-thinning suspending fluid, the

model was solved at an inner cylinder rotation rate, ω, of 8.5 RPM and 82 RPM with a

suspended particle size of 675 µm in diameter. Solutions were also obtained at an inner

cylinder rotation rate of 8.5 RPM with a suspended particle size of 100 µm in diameter.

These conditions were chosen to match the experimental data of Rao et al (2002). This

data was taken for polymethyl methacrylate (PMMA) spheres suspended in a mixture of
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Figure 27: Sketch of the wide-gap Couette flow geometry.

70 wt% glycerine, 28 wt% water, and 2wt% Carbopol 940. Carbopol 940 is a long-chain

polymer which was chosen because it produces a highly shear-thinning, non-elastic fluid

when mixed in solution (Gheissary and van den Brule, 1996). The initial concentration

of the particle phase was φB = 0.5 and concentration measurements were taken using an

NMR to image an axial slice of the geometry after a given number of rotations of the inner

cylinder. The device length was much longer than the gap width and both ends were capped,

leaving axial variation in concentration and flow negligible. The outer radius of the rotating

inner cylinder was Ri = 0.64 cm and the inner radius of the stationary outer cylinder was

Ro = 2.38 cm. The suspending fluid was characterized using a cone-and-plate viscometer.

In Figure 28, the experimental viscosity measurements from Rao et al (2002) are plotted

against a curve fit to the Carreau viscosity model given in Eq. (47). Rao et al (2002) chose

fitting parameters of ηo = 4× 105 Poise for the zero-shear-rate viscosity, η∞ = 10 Poise for

the high-shear-rate viscosity, λTC = 2150 sec for the time constant, n = 0.178 for the power

law exponent, and ac = 1.0 for the transition exponent. The plot illustrates that these

parameters provide a very good fit (solid line) to the experimental data. The one problem
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Figure 28: Comparison of the experimental viscosity data of Rao et al (2002) for a
Carbopol 940 solution to a fit of the Carreau viscosity model given in Eq. (47). The line
with square endpoints represents the predicted shear rate range in a wide-gap circular-
Couette flow with a shear-thinning suspending fluid for an inner cylinder rotation rate of
8.5 RPM. The diamond endpoints represent the range for 82 RPM.

area occurs in the area of the high-shear-rate viscosity. The experimental data stops at

a shear rate of γ̇ = 10 sec−1, while the range of the shear-rate experienced for the inner

cylinder rotation rate of 82 RPM exceeds this. To explore the effect that the high-shear-rate

parameter has on migration we also look at cases where η∞ = 100 Poise, represented by

the dashed line in Figure 28.

Further cases beyond those matching the experimental data were modeled. This was

done to allow the examination of the effects of varying bulk rate and particle size on migra-

tion and to explore the approach of the Newtonian and shear-thinning cases to what the

model predicts should be an identical steady-state particle fraction profile.

4.3 Model Equations for a Wide-gap Circular Couette Flow

4.3.1 Flow field equations

For the flow field solution, we assumed no slip conditions at the wall, and a smooth variation

in γ̇ across the gap. In shear flow terms, the directions correspond as such: (θ, r, z) = (1,2,3)
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= (flow,gradient,vorticity) as explained in Section 4.1.

The flow conditions were limited by the assumption of no flow in the radial(r) or axial(z)

directions, ur = uz = 0, and the assumption of no variation in the azmuth(θ) or axial(z)

directions. This results in ∂P/∂θ = 0 and uθ = uθ(r). These assumptions leave the θ-

directed momentum equation as the only significant equation. After simplification and

integration, this yields

η̄sErθ =
Cγ̇

r2
, (48)

where Cγ̇ is a constant to be determined later. In addition, by definition 2η̄sErθ ∼ η̄sγ̇,

resulting an expression for the shear-rate as a function of position in the gap

γ̇ =
Cγ̇

η̄sr2
(49)

This equation for the shear rate is generally valid for both steady and unsteady solutions due

to the nature of zero-Reynolds-number conditions. This results in a quasi-steady solution

which changes on the time scale of the particle migration.

In order to solve for the constant, Cγ̇ , the form of the rate of strain, Erθ, is utilized.

Substituting into Eq. (48), we get

∂

∂r
(
uθ

r
) =

−Cγ̇

η̄sr3
, (50)

which is integrated across the Couette gap, applying boundary conditions of uθ(Ri) = ωRi

at the inner cylinder and uθ(Ro) = 0 at the outer cylinder. This results in an expression

for Cγ̇ ,

Cγ̇ =
ω

∫ Ro

Ri

dr
η̄sr3

, (51)

which is a function of the inner cylinder rotation rate, ω, and current φ(r) profile. This

equation can also be rearranged, with a substitution of the expression for γ̇, to solve for

uθ(r).

uθ(r) = −r

∫ r

Ro

γ̇

r′
dr′. (52)

4.3.2 Particle migration equations

The particle migration flux is determined from the assumptions for a wide-gap Couette flow

that particles migrate in the r-direction only. This results in the following expression for
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the particle migration flux,

j⊥,r =
2

9
a2 f(φ)

ηc(γ̇)
[∇ · ΣP]r, (53)

where,

[∇ · ΣP]r =
1

r

∂

∂r
(rΣP,rr) −

ΣP,θθ

r
=

∂ΣP,rr

∂r
− N1

r
, (54)

with the first normal stress difference defined as, N1 = Σ11 −Σ22 = Σθθ −Σrr. Substituting

the above expressions into Eq. (43) and noting that the convective term on the LHS drops

out, we formulate an expression for the unsteady particle migration in a wide-gap circular

Couette device,

∂φ

∂t
= −2a2

9

1

r

∂

∂r

{

r

[

f(φ)

ηc(γ̇)

(

∂ΣP,rr

∂r
− N1

r

)]}

. (55)

The shear-thinning viscosity, ηc(γ̇), remains within the differential due to the spatial varia-

tion of γ̇. For the steady-state expression, we set ∂φ/∂t = 0 and use the fact that j⊥,r = 0

at the boundaries to enforce no penetration of the particle phase into the walls. This leaves

a steady-state solution of

∂ΣP,rr

∂r
− N1

r
= 0 (56)

4.3.3 Numerical solution equations

The steady-state solution is determined from Eq. (56) by substituting in for the particle

stress with the definition in Eq. (45). This definition results in ΣP,rr = −η̄nγ̇λ2 and N1 =

−η̄nγ̇(1 − λ2) for the particle stress terms and

∂(−ηcηnγ̇)

∂r
=

ηcηnγ̇

r

(1 − λ2)

λ2
, (57)

for the steady-state solution. The group of variables, ηcηnγ̇, occur on both sides of the

equation and can be reduced by substituting for the shear rate with Eq. (49),

ηcηnγ̇ =
ηcηn

ηcηs

Cγ̇

r2
, (58)

This results in ηc dropping out of the expression. The fact that the shear-thinning viscosity

drops out of the equations is an interesting development because it results in the model

predicting an identical steady-state φ(r) profile for both a Newtonian and non-Newtonian
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suspending fluid, since the suspending fluid viscosity would drop out of the expression for

a Newtonian fluid as well.

After the substitution for the shear-rate, we combine the ratio ηn/ηs into a single vari-

able, q(φ). Then we rearrange Eq. (57) into an expression for q,

∂q

∂r
=

q

r

(1 + λ2)

λ2
, (59)

which is integrated to give

q(φ) = A1r
1+λ2

λ2 , (60)

where A1 is a constant. This equation is solved for φ(r) with a golden section search

root finding routine in MATLAB. The constant, A1, is determined by maintaining that the

average particle volume fraction matches the initial bulk concentration, φB. A few important

points to note about the steady-state solution are it does not depend on the rotation rate

of the inner cylinder, the suspended particle size, or composition of the suspending fluid.

In fact, it only appears to be dependent on λ2 and φB for our model assumptions.

The unsteady solution is developed in a manner similar to the steady-state solution.

Substituting for the particle stress terms and then for the shear-rate, Eq. (55) becomes

∂φ

∂t
= −2a2

9

Cγ̇

r

∂

∂r

{

f(φ)

ηc(γ̇)

[

− λ2

r

∂q

∂r
+

q

r2
(1 + λ2)

]}

. (61)

This equation was solved using a finite difference approximation with central differences

in the r-direction and an explicit time step. The values of q, f(φ), and ηc are obtained using

information from the previous time step. The RHS is then approximated with a central

difference scheme and used to update the particle volume fraction value for the next time

step.

∆φ = −2Cγ̇a2

9

[

rj⊥,r|i+1,t−1 − rj⊥,r|i−1,t−1

ri∆r

]

∆t. (62)

The boundary condition at the walls is taken to be

j⊥ · n|wall ∼ j⊥,r = 0. (63)

Utilizing Eq. (59) and applying the chain rule, an expression for the gradient in particle

volume fraction at the boundaries is obtained.

∂φ

∂r
=

q
∂q
∂φ

1 + λ2

rλ2
. (64)
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The solutions to the unsteady state migration equations were obtain utilizing a finite dif-

ference code written in FORTRAN.

4.4 Results and Discussion

4.4.1 Comparison with experiments

The model matched the experimental results in a qualitative fashion, following all the major

trends. Examining the data from Rao et al (2002) given in Figure 29(a) and Figure 30(a),

we conclude that migration rate increases with inner cylinder rotation rate and that migra-

tion is more pronounced with the large particle size. Rotations of the inner cylinder will

be used to characterize the overall strain imposed on the system and act as a measurement

of “time”, since this is roughly equivalent to the time non-dimensionalized by the rotation

rate of the inner cylinder. Migration rate is measured by noting the value of r/Ro, where

Ro is the radius of the outer cylinder, at the peak in the particle volume fraction concentra-

tion profile and the amount of strain (revolutions) to reach this condition. The larger the

value of r/Ro the farther the particles have migrated away from the rotating inner cylinder.

Therefore, the larger the value of r/Ro, the farther that migration effects have “penetrated”

into this zone of increased resistance and the larger the peak in particle volume fraction the

more initial resistance experienced at this point.

The model predictions are shown in Figure 29(a) and Figure 30(b,c). These predictions

illustrate the same basic trends found in the experiments: an increase in migration with

an increase rotation rate or an increase in particle size. In Figure 29, the increase in the

penetration of the φ peak may be due to the increased amount of strain, 1600 revolutions

for the 675 µm results as opposed to 1000 revolutions for the 100 µm case, but there is

a distinct difference between the two curves in the experimental case. The 100 µm curve

appears to be “flatter” than the 675 µm curve, which is not completely captured in the

model. The model predicts a small peak, but does match the decrease in the penetration of

this peak. For the case of increasing rotation rate in Figure 30, the model predictions match

the increase in penetration of the φ peak with the higher rate of rotation. Using a Carreau

model with a high-shear-rate viscosity of η∞ = 100 Poise better matches the extent of this
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Figure 29: Comparison of the effect of the suspended particle size on the results for a
circular-Couette device (Ri = 0.64 cm, Ro = 2.38 cm) with a shear-thinning suspending
fluid (Carbopol 940 in glycerin/water) at a bulk concentration of φB = 0.5 and inner cylinder
rotation rate of 8.5 RPM for: (a) experimental results taken from Rao et al (2002); (b)
model predictions with η∞ = 10 Poise in the Carreau viscosity model.
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Figure 30: Comparison of the effect of the inner cylinder rotation rate on the results for
a circular-Couette device (Ri = 0.64 cm, Ro = 2.38 cm) with a shear-thinning suspending
fluid (Carbopol 940 in glycerin/water) at a bulk concentration of φB = 0.5 and a suspended
particle diameter of 675 µm for: (a) experimental results taken from Rao et al (2002); (b)
model predictions with η∞ = 10 Poise; (c) model predictions with η∞ = 100 Poise.
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Table 3: Quantitative comparison between the experimental results of Rao et al (2002)
and the suspension flow model predictions (η∞ = 10, 100 Poise) for the position of the φ
peak and φ value at the inner cylinder with φB = 0.5.

**there was no defined peak, so the value was taken at the point the curve first levels off

increase. The one thing the model did not match was the drop in the value of the φ peak

for the higher rotation rate. The model, instead, predicted a slight increase.

Comparing the modeling and experimental results quantitatively in Figure 31 and Table 3,

it is observed that the modeling and experimental data agree very well for the 8.5 RPM,

675 µm case with the lower η∞ value, but deviate from the experimental measurements in

the other two cases. For the higher rotation rate of 82 RPM, the model over-predicts the

experimental value for the peak particle volume fraction by only 3% with η∞ = 10 Poise

and 5% with η∞ = 100 Poise which is relatively good, but under-predicts the penetration of

this peak into the Couette gap for both cases, with the higher value of η∞ better predicting

the penetration. The model predicts the position of the φ peak at an r/Ro value of 0.460

with η∞ = 10 Poise and 0.568 with η∞ = 100 Poise while experimental findings observe

the peak at an r/Ro of 0.605. While the higher η∞ better predicts the penetration of the

φ peak for the higher rotation rate, it does appear to over-predict the dip in φ near the

rotating inner cylinder. This leads to the conclusion that a better high-shear-rate set point

for the Carreau viscosity model is somewhere between 10 and 100 Poise. Looking back

at Figure 28, it is evident that the experimental data points fall between the two curves

in the higher shear-rate zone. In addition, the model produces a better fit at the lower
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Figure 31: Comparison of the experimental results from Rao et al (2002) with suspension
flow model predictions for a concentrated suspension (φB = 0.5) of spherical particles in a
circular-Couette device with a shear-thinning suspending fluid (η∞ = 10, 100 Poise) for the
cases of: (a) 8.5 RPM, 675 µm; (b) 82 RPM, 675 µm; (c) 82 RPM, 100 µm.
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rotation rate with the lower η∞ set point, where the two curves are closer together. When

the shear-rate is increased for the higher rotation rate, the increase in the η∞ set point is

necessary to match the observed migration behavior.

In Figure 32, we consider model predictions with a Newtonian suspending fluid in com-

parison with the experimental observations with a shear-thinning suspending fluid. We set

the Newtonian viscosity to the zero-shear-rate value used in the Carreau viscosity model,

ηo = 4× 105 Poise. With the higher level of shear experience across the gap for the Newto-

nian case (Figure 33b), the migration occurs with a much lower level of strain. The plots in

Figure 32 compare the Newtonian model predictions at 50 revolutions with the measured

experimental φ(r) results at 50 - 1600 revolutions. While not matching the strain level

or rate of migration, the Newtonian predictions do produce a similar profile in form. The

Newtonian model seems to better predict the up-turn in concentration at the outer cylinder

wall which was observed in the experiments and matched the form of the curves at 82 RPM,

675 µm quite well. It also produced a much “flatter” profile for the 82 RPM, 100 µm case,

which was closer to the experimental observations.

4.4.2 Approach to steady-state

It was predicted by the model that the shear-thinning suspending fluid did not have any

effect on the final steady-state particle volume fraction profile. This, as expected, holds

for the numerical modeling results. The interesting aspect of this prediction is that the

two cases approach this steady-state on drastically different time scales. Table 4 illustrates

that for a Newtonian suspending fluid with an inner cylinder rotation rate of 10 RPM, the

model predicts only about 11 hours to achieve the analytical steady-state φ(r) profile. For

the shear-thinning case with η∞ = 10 Poise at 10 RPM, the model predicts roughly 347

days to reach steady-state. This leads to the conclusion that the experimental results only

probed the very early stages of this phenomena and that much longer experimental runs

are required to fully characterize the migration process with a shear-thinning suspending

fluid.

This large difference between the predicted times to steady-state is due to the difference
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Figure 32: Comparison of the experimental results from Rao et al (2002) with suspension
flow model predictions for a concentrated suspension (φB = 0.5) of spherical particles in
a circular-Couette device with a Newtonian suspending fluid (ηo = 4 × 105 Poise) for the
cases of: (a) 8.5 RPM, 675 µm; (b) 82 RPM, 675 µm; (c) 82 RPM, 100 µm.
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Figure 33: Comparison of modeling results for steady-state (a) velocity profiles and (b)
shear-rate profiles across the gap of a circular-Couette device with an inner cylinder ro-
tation rate of 10 RPM and a suspended particle diameter of 675 µm with an initial bulk
concentration of φB = 0.5 for the cases of a Newtonian suspending fluid (SS: 7000 rotations)
with ηo = 4×105 Poise and a shear-thinning suspending fluid (SS: 5 million rotations) with
η∞ = 10 Poise.
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Figure 34: Comparison of modeling results for the evolution in time and strain of the φ(r)
profile across the gap of a circular-Couette device with an inner cylinder rotation rate of
10 RPM and a suspended particle diameter of 675 µm with an initial bulk concentration of
φB = 0.5 for: (a) a Newtonian suspending fluid (ηo = 4 × 105 Poise); (b) a shear-thinning
suspending fluid (η∞ = 10 Poise).
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between the flow conditions. Figure 33 shows that while some movement was predicted in

the fluid for the Newtonian case, the prediction for the shear-thinning case was practically

quiescent everywhere except directly adjacent to the inner cylinder. This point is further

illustrated in the plot of the predicted shear-rate profile across the gap. The predicted

shear-rate in the Newtonian case only varies about two orders of magnitude across the

gap while the predicted shear-thinning case varies about six orders of magnitude with the

first five orders of magnitude of the drop occurring before the mid-point of the gap. This

means that the time scale of particle migration was slowed down by roughly five orders of

magnitude from the inner cylinder to the middle of the gap.

This drastic variation of the shear rate in the shear-thinning case causes slower overall

particle migration. In the suspension flow model, the divergence of the particle stress drives

the particle migration, j⊥ ∼ ∇ · ΣP. In the case of a Couette flow, the particle stress is

directly proportional to the local shear rate, ΣP = −η̄nγ̇. Therefore, the particle migration

is initially (when ∇φ = 0) driven by the gradient of the shear-rate. The rapid drop of the

shear-rate in the inner half of the Couette gap is the result of a rapid migration near the

inner cylinder which quickly slows to leave the peaks in φ(r) profiles observed in Figure 34

for the shear-thinning suspending fluid case. The peaks are due to the decrease in driving

force resulting from the smaller shear-rate values. The Newtonian case was predicted to

almost reach steady state by 2,000 revolutions while the shear-thinning case was predicted

to remain far from steady state even at 10,000 revolutions. In fact, Figure 35 illustrates

that it is predicted to take O(107) rotations of the inner cylinder for the shear-thinning case

to approach steady state.

4.5 Conclusions

The suspension flow model proved to be both flexible and robust in predicting at least

the basic features of particle migration for a shear-thinning suspending fluid in a wide-gap

circular Couette flow. The model captured the major trends of the experimental data in

both inner cylinder rotation rate and suspended particle size. In addition, it illustrated a

good quantitative agreement for the lower rotation rate, larger particle size results.
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Figure 35: Modeling results for the approach to steady-state of the φ(r) profile across
the gap of circular-Couette device with an inner cylinder rotation rate of 10 RPM and a
suspended particle diameter of 675 µm at an initial bulk concentration of φB = 0.5 with a
shear-thinning suspending fluid (η∞ = 10 Poise).

Table 4: Comparison of time predicted to achieve the analytical steady-state φ(r) profile
from unsteady-state modeling results for a circular wide-gap Couette flow with 675 µm
suspended particles, φB = 0.5 and η∞ = 10 Poise.
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In our predictions, the only modification made to the basic suspension flow model pro-

posed in Morris and Boulay (1999) and presented in Chapter 2 was a substitution of the

Carreau viscosity model for the Newtonian viscosity. All other parameters matched those

used for previous Newtonian suspending fluid studies. The only parameter variations stud-

ied was in the high-shear-rate set point for the Carreau viscosity model. This illustrates

the flexibility of the model and possibilities for modification. By considering variation of

the η∞ value, we were able to illustrate that the model could be fit to the experimental

observations with additional rheometric data on the suspending fluid in the relevant range

of shear rates for the experimental conditions.

The major shortcomings in the modeling effort were in fully understanding the effects

of the shear-thinning fluid on the particle migration. While the simple substitution of a

shear-thinning viscosity law was able to produce remarkable good results, there were still

some areas of concern. The over-prediction of the φ(r) profile peaks and under-prediction

of the φ(r) profile near the wall are both concerns, especially when the Newtonian version

of the model appeared to capture these features better, even though not under the proper

amount of strain. This suggests that there should be some more thought and study on

the interaction of the particles and polymer in a shear-thinning suspension. Specifically

rheological measurements of the normal stress differences for both the suspension and sus-

pending fluid alone would be particularly enlightening. These could lead to a reformulation

and improvement of the normal stress and shear viscosities.

On the other hand, there is a possibility that the discrepancies may be due to the

inability of the Carreau model to completely capture the behavior of the Carbopol 940

solution. In Gheissary and van den Brule (1996), they note that Carbopol suspensions form

a gel structure which breaks up into smaller and smaller “blobs” of gel when the solution is

put under shear. Whether a simple shear-thinning viscosity model can completely capture

the consequences of this behavior is not clear. In addition, how “blobs” of gel effect the

migration of the particle phase is another issue entirely.

The main point to note is that a suspension of particles in a shear-thinning suspending

fluid is a complex system with many factors to consider. The fact that the model is able to
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capture the main qualitative behavior and even approach a quantitative fit with a simple

modification suggests that further progress may be made in this area of study by appropriate

use of ideas applied to suspensions in Newtonian liquids. However, the model illustrates that

the extreme variation in shear rate, and hence in time scale within a flow, must be considered

in the design of an experiment. Other work in particle transport in shear-thinning liquids

(Daugan et al, 2002a,b) shows that the flow history is important and thus thixotropy may

play a role.
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CHAPTER 5

COMPLEX GEOMETRY: FRAME INVARIANT

RHEOLOGY

The primary goal of this work is to propose a framework to adapt shear-based rheological

models for suspensions to general geometries. This is required due to the fact that the

local flow kinematics in a general flow field are not necessarily simple shear. The flow

can range from regions of solid-body rotation to areas of pure extension, with simple shear

representing an equal balance between the two. As a test case for a general flow with varying

local kinematics, we chose a sharp-edged contraction (or expansion) geometry. This case

was chosen since it varies between simple shear in the regions upstream and downstream of

the contractions to a region of nearly pure extensional flow at the mouth of the contraction.

It has been illustrated that particle migration does occur in such a geometry, particulary

an axisymmetric one (Iwamiya, Chow and Sinton, 1994; Altobelli, Givler and Fukushima,

1997; Moraczewski and Shapley, 2004). In fact, this migration has been shown to have a

measurable impact on the flow field in this geometry (Iwamiya et al, 1994; Altobelli et al,

1997).

The development of constitutive stress laws to represent complex, multi-phase fluids

has long standing roots in the polymer literature (Bird, Armstrong and Hassager, 1987)

and the many experimental techniques developed for characterizing polymeric solutions

can be extended to particulate suspensions. The key principle we explore here is that

particle induced normal stresses drive particle phase migration. This makes suspension

rheology especially influential in the particle distribution. By coupling the particle phase

mass and momentum balances into a particle migration equation, it is illustrated that the

change in particle volume fraction is driven by the divergence of the particle migration flux:

∂φ/∂t ∼ ∇ · j⊥ where j⊥ ∼ ∇ ·ΣP, as illustrated in Chapter 2, Eq. (7). The particle phase

stress is then defined by a rheological model based on the assumption of an anisotropic
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Figure 36: Polymer coils in shearing and extending flows. (taken from J. Rheol, Schunk
and Scriven (1990), Figure 1)

particle phase normal stress (Morris and Boulay, 1999), as demonstrated in Chapter 2. The

focus of this work is to determine a sufficient way to represent this anisotropic normal

stress in general (non-shear) flow fields and to explore effect of spatial variations in the

local kinematics on the particle stress.

Flow kinematics represent the local motion that a “particle” of fluid will undergo. Look-

ing at Figure 36, taken from Schunk and Scriven (1990), the effect of local kinematics for

shear and extensional flow are illustrated on an isolated polymer chain. In shearing flow,

the flow both stretches the polymer chain and causes it to tumble. In extending flow, the

polymer chain experiences stretching only. By analogy, for suspensions this difference in

local flow behavior may result in altered particle interactions and possibly alters the particle

phase stress behavior.

The model of Morris and Boulay (1999) was limited to flows where the local kinematics

could be defined in terms of simple shear. Attempts have been made to adjust other

continuum models to include anisotropic normal stresses in general flows (Fang et al., 2002).
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The solution proposed here involves representing the particle phase stress utilizing two

additional parameters: ρk and ei. The kinematic ratio, ρk, is a measure of the relative

strength of rotation versus extension locally in the flow. This gives a means to characterize

the local kinematic state of the flow field. The eigenvectors of the rate of strain, ei, present

a convenient reference frame in which to define the particle induced normal stresses. These

can then be readily transformed into the coordinate system required for computation.

In this chapter, we explore how to set up a frame invariant rheological definition in

Section 5.1 and how to apply this to forming a particle stress constitutive model for general

geometry suspension flows in Section 5.2. In Section 5.3, we first look at predictions for

particle migration utilizing the simplest form of the model, the isotropic normal stress. We

explore variations in contraction geometry, flow direction (i.e. expansion flow) and compare

to experimental results (Altobelli et al, 1997; Moraczewski and Shapley, 2004). We explore

the effect of added model complexity in Section 5.4, by varying particle pressure with local

kinematic conditions or by using an anisotropic normal stress to predict particle migration

and flow fields for a two-dimensional, rectangular contraction flow. Finally, in Section 5.5

we wrap up the modeling results and present some conclusions.

5.1 Frame Invariant Rheology

To form a constitutive equation we require a frame of reference that is independent of the

overall geometry/coordinate system boundaries and a function of local flow kinematics only.

To do this, we base the constitutive model on a stationary rate of strain similar to Brunn

and Ryssel (1997). This is done by defining the fundamental directions of the stress along

the principal axes of the rate of strain and taking rotation measurements relative to the

rotation of these axes. The principal axes of the rate of strain are defined as unit vectors, ei

(i = 1 or 2), along the directions corresponding to a diagonal rate of strain tensor, (Eij = 0

for i 6= j). These correspond to the eigenvectors of the rate of strain tensor and form an

orthogonal triad due to the symmetric nature of E.

As a frame invariant measure of local shear strength, we use the shear rate, γ̇, which

is based off of the second invariant of the rate of strain (IIE = E : E) and defined as
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γ̇ =
√

2E : E. For a frame invariant measure of local rotation, we follow the work of Schunk

and Scriven (1990) and later Ryssel and Brunn (1999a,b) where they described the idea

of a relative rotation which they utilized to model flows of inelastic polymeric solutions in

complex geometries. The relative rotation, ωrel, is defined as the difference between the

local angular velocity of a fluid element (ω/2) and the local rotation of the axes of the rate

of strain (w),

ωrel =
ω

2
− w. (65)

The local fluid rotation is one half of the local vorticity (ω = ∇× u), while the rotation of

the axes of the rate of strain is defined:

w ≡ ei × [
∂ei

∂t
+ u · ∇ei]. (66)

This formation sets the rotation relative to a stationary rate of strain and since each rota-

tion quantity (ω/2, w) is calculated in the same Cartesian frame of reference, taking the

difference produces a frame invariant measure of rotation.

5.1.1 Kinematic ratio

In general flow conditions, the local kinematics can vary spatially which leads to a non-

uniform environment for the particle phase. These local kinematics control the particle

stress which in turn drives the particle migration. To define a complete constitutive law, this

variation should be taken into account. In previous attempts, only local shear strength was

accounted for through the shear rate. A complete picture of the local kinematic conditions

takes into account the local material deformation (shear rate), rotation and relaxation.

Since the particles considered here are non-Brownian local material relaxation is not an

issue, but local material rotation effects remain. To account for this, we introduce a fitting

parameter based on both local deformation strength and rotation: the kinematic ratio, ρk.

Through this kinematic ratio, we provide a more complete picture of the local kinematics

that affect the particle interactions.

Following Schunk and Scriven (1990), the kinematic ratio can viewed as a ratio of the

time scale of fluid deformation (1/γ̇) to the time scale of fluid rotation (2π/|ωrel|). Dropping
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the 2π results in the ratio, ρk = |ωrel|/γ̇, which approaches zero in pure extension when the

time scale of deformation dominates and infinity in solid body rotation when the time scale

of fluid rotation dominates. In simple shear, the time scales of deformation and rotation are

balanced resulting in a value of unity. This definition, though, creates problems due to the

fact that it becomes unbounded as the shear rate approaches zero. To solve this problem,

Ryssel and Brunn (1999a) suggest reformulating the parameter as:

ρ̂k =
2ρk

1 + ρk
=

2|ωrel|
γ̇ + |ωrel|

. (67)

This scales the ratio so that it approaches a value of two rather than infinity in the limit

of solid body rotation and remains zero and one for pure extension and simple shear,

respectively.

5.1.2 Compression-tension coordinates

To define the normal stress directions, we designate a “compression-tension” coordinate

system. This corresponds to the principal axes of the rate of strain and represents the

compression and extension axes of a local fluid element. The extension or “tension” di-

rection is defined along the direction of the largest positive component of the diagonalized

rate of strain. This diagonal definition corresponds to the eigenvectors of the rate of strain

tensor, which in diagonal form has components Eii corresponding to the eigenvalues. The

compression direction is defined along the direction of the smallest or most negative diag-

onal component. This coordinate system depends only on the local kinematics of the flow

field and not on the bulk flow geometry, resulting in a frame invariant coordinate system.

In addition, since the eigenvectors form an orthogonal triad, it can be transformed into

Cartesian coordinates by a simple rotation or frame.

Fang et al (2002) define a similar frame invariant coordinate system, which they use to

define the principal direction of their flow-aligned tensor, similar to the tensor Q in Eq. (10)

and later tensor Qct in Eq. (69) defined below. They use the eigenvectors of the rate of

strain to determine the direction perpendicular to the flow plane (i.e. perpendicular to the

compression-tension axes defined here). This direction corresponds to λ3 in Eq. (10) and

Eq. (69). They assume the other two directions are indistinguishable, and set direction-1 to
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correspond to the tangent of the local flow streamlines (minus any influence of rigid body

rotation) and direction-2 to be perpendicular to the streamline, in the plane of flow. This

definition gives an adequate frame of reference and one particularly suited for the diffusive

flux model (Phillips et al, 1992), which only correctly predicts particle migration across

streamlines (or in the 2-direction) in its original form. But it has two major faults. First,

it does not provide for a way to take into account any stress directionality in the plane of

flow, since the 1, 2 directions are chosen arbitrarily to align with the local direction of the

velocity vector. Second, the directions do not take into account local kinematic conditions.

They accounts for the local direction of the flow, but not the local kinematic state of that

flow, which has significant consequences on the local stress state of the system, as illustrated

in Figure 36.

5.1.3 Three-dimensional kinematics

While not explored in this work, a three-dimensional kinematic description of a general flow

field is possible though increasingly complex. For axisymmetric flows, the mode of local

deformation can be uniaxial or biaxial extension. This ultimately affects the strength of

compression the local particle fraction experiences. In uniaxial extension, there are two

directions of compression while in biaxial extension there is only one. Since the effects of

compression are the dominant source of stress in a particulate suspension, this can be a very

important distinction for suspension stress calculations. This is accounted for by utilizing

the geometric mean straining rate, defined as the third invariant of the rate of strain tensor,

det|E|, as suggested in Schunk and Scriven (1990) and Brunn and Ryssel (1998). This

parameter is positive in uniaxial extension flow and negative in biaxial extension flow.

In fully three-dimensional flows, the job is even more difficult and requires the definition

of multiple relative rotations. Schunk and Scriven (1990) suggest using the rotation of the

directions of maximum and minimum eigenvalues around the intermediate values. This

corresponds to the compression-tension directions defined in three-dimensions. The second

rotation comes from the precessional rotation of the third axis which can be visualized as

the slow rotation of the axis of a spinning top.
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5.2 Particle Stress Constitutive Model

To study the effects of the particle stress model on the migration of particles in complex

geometries, we explore a series of constitutive models of varying complexity. We start with

an isotropic approach, where the normal stress portion of ΣP can be viewed as an isotropic

“pressure,” with no directional dependence. In the isotropic framework, the normal stress

term or suspension pressure depends only on particle phase concentration, φ, and local flow

strength, γ̇. In the next level of complexity, the suspension pressure depends on the ratio

of local deformation and rotation through the reformulated kinematic ratio, ρ̂k, along with

γ̇ and φ as in the isotropic case. We call this the weighed-isotropic approach. In the final

level of complexity, we define an anisotropic particle normal stress defined along the local

compression-tension axes. This allows for particle induced normal stress differences which

can lead to altered migration and flow behavior. The particle stress definitions are outlined

in Table 5.

Table 5: Constitutive models for the particle stress.

Pure Isotropic: ΣNS
P = ΠP = −η̄nγ̇δ

Weighted Isotropic: ΣNS
P = ΠP = −η̄nB(ρ̂k)γ̇δ

Anisotropic: ΣNS
P = [−η̄nγ̇Qct(ρ̂k)]xy

Constitutive Model: ΣP = ΣNS
P + 2η̄pE

5.2.1 Weighted-isotropic constitutive model

In the weighted-isotropic approach, a dependence on the balance between local deformation

and rotation is added through the addition of a kinematic weighting factor, B(ρ̂k), to the

particle pressure term. For the purely isotropic approach, the kinematic weighting factor

is set to B = 1 for all values of ρ̂k. In the weighted-isotropic approach, the value of B is

interpolated between two set points. We set B = 1 at simple shear conditions when ρ̂k = 1
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Figure 37: Plot of the kinematic weighing factor, B(ρ̂k), used in the particle-pressure term
as a function of ρ̂k with Bext = 2 for various interpolation functions.

and set B equal to an O(1) value which is greater than one at pure extension when ρ̂k = 0.

A simulation study (Sami, 1997) suggests that the value is greater than unity by a factor

which may be 2 or greater, but experimental evidence is unavailable. When ρ̂k > 1, there

is no strong indication what the local particle stress behavior is, therefore we leave B = 1.

To interpolate between the set points of B, we utilize an arithmetic weighting relation-

ship,

B(ρ̂k) = Bshf(ρ̂k) + Bext[1 − f(ρ̂k)], (68)

where Bsh and Bext equal the shear and extension set points and f(ρ̂k) is an interpolation

function. The interpolation function is chosen depending on what type of interpolation or fit

is desired between the values. The results of the different interpolation functions suggested

by Ryssel and Brunn (1999a) on B(ρ̂k) with Bext = 2 are shown in Figure 37. The function

used for the equal linear fit was f(ρ̂k) = ρ̂k. The symmetric fit was achieved with, f(ρ̂k) =

2sin(ρ̂kπ/2)

1+sin(ρ̂kπ/2)
, where the interpolation favors the endpoints and moves rapidly through the
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Figure 38: Sketch of the flow streamlines for a pure-extensional flow and a simple-shear
flow relative to the compression-tension coordinate axes.

transition region. The final two fits, shear dominated [f(ρ̂k) = 3sin4
(ρ̂kπ/2)

1+2sin4
(ρ̂kπ/2)

] and extension

dominated [f(ρ̂k) = sin5(ρ̂kπ/2),] both favor each endpoint accordingly. For the work here,

we chose to emphasize the effect of the changing particle pressure and therefore used the

extension dominated fit to emphasize its effect on the model. The other interpolation

functions illustrate the fact that the model can be tuned for a more quantitative fit, if

the data were available. In addition, as stated in Ryssel and Brunn (1999a, b) a geometric

weighting relationship, B(ρ̂k) = (Bsh)f(ρ̂k)(Bext)
[1−f(ρ̂k)], is also a possibility for an alternate

fit.

5.2.2 Anisotropic constitutive model

The anisotropic model is set up in the compression-tension coordinates, as mentioned above.

These provide a convenient frame of reference which does not depend on the geometry of the

flow, instead only on the local kinematic state of the flow field, as illustrated in Figure 38

and later in Figure 55. Therefore the anisotropic particle stress definition is developed in a

single form applicable to a range of flows and not limited to shear flows, as in Morris and

Boulay (1999).
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The new anisotropic tensor, Qct, is defined as:

Qct =













Bt(ρ̂k) Nct 0

Nct Bc(ρ̂k) 0

0 0 λ3













. (69)

The variables Bt(ρ̂k) and Bc(ρ̂k) represent functions that weight the normal stress in the

tension and compression directions, while λ3 produces a normal stress difference with the

out-of-plane stress. As in the case of the weighted-isotropic model, these parameters are

interpolated between set-points for simple shear (ρ̂k = 1) and pure extension (ρ̂k = 0). In

simple shear we set Bt = Bc = 1 and in pure extension we set Bt = 0, Bc = 2. This

imposes an extreme normal stress difference for pure extension, where all the stress is

compressive. This is chosen to match analytical (Brady and Morris, 1997) and simulation

data (Morris and Katyal, 2002) which predicts that particles tend to collect along the

compression direction in a flow field which results in efficient momentum transport along

this direction. The set point values are chosen to hold the dimensionless particle pressure,

(ΣNS
P,tt + ΣNS

P,cc)/2γ̇ηn, at a value of one. The values of Bt(ρ̂k) and Bc(ρ̂k) are determined

through interpolation utilizing an arithmetic weighing function with an extension weighted

interpolation, as in the weighted-isotropic case above. For the case when ρ̂k > 1 the values

of Bt, Bc are held at their simple shear values, as shown in Figure 39.

The variable Nct is used to impose a first normal stress difference (N1 = Σ11 − Σ22)

for simple shear conditions. This was found to be approximately N1 ≈ −0.2ηnγ̇ in Morris

and Boulay (1999) by fitting model predictions to experimental circular-Couette flow data

(Phillips et al, 1992). The parameter Nct is set to a constant value throughout the range of

ρ̂k and is only added to impose this slight normal stress difference at simple shear, if it is

so desired.

5.3 Suspension Flow Modeling with an Isotropic Constitu-

tive Law

In this section we look at model predictions with a purely isotropic (no ρ̂k effects) consti-

tutive model for a number of cases. We make comparisons to the experimental results of
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Figure 39: Plot of the normal-stress difference in compression-tension coordinates as
function of ρ̂k with Bt = 0, Bc = 2.

Altobelli et al (1997) and Moraczewski and Shapley(2004) for a 4:1:4 contraction-expansion

geometry. For these cases, since the experimental results are somewhat rate dependent, we

chose to use an α = 2 for the sedimentation hindrance function, because this value matched

the experimental axial development lengths of Hampton et al (1997) best in Chapter 3.

For the rest of the model predictions for which comparable rate data is unavailable, α = 4

was used because of better numerical stability. The α = 2 produces steeper particle stress

gradients (see Figure 2(b) in Chapter 2) at higher particle concentrations, which can cause

problems for the particle migration solver and force smaller time steps. Since the value of

α should have no effect on steady-state predictions and the other runs were for comparison

purposes at assumed long-time conditions, an α of 4 was used to help with convergence

issues. For the shear viscosity model (ηs), we chose to use the Morris and Boulay (1999)

form, presented in Chapter 2, for all cases here.

The suspension conditions for the contraction-expansion runs were chosen to match

experimental conditions, as will be explained below. For the rest of the runs, suspension
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conditions of φbulk = 0.50 (φ/φm = 0.735, with an assumed value of φm = 0.68) and

a particle size ratio of Ls/a = 18 were used. A high concentration was chosen since it

enhances the effects of the model and leads to faster convergence rates for steady-state

predictions (same as a larger particle size). Boundary conditions were set as illustrated

in Figure 5 from Chapter 2, with particle boundary conditions the same as for the axially

developing flows in Chapter 3. Particle flux in the direction normal to the boundary was

set equal to zero at the walls, concentration was held constant at the inlet, and normal

gradients were set equal to zero at the exit. At the centerline the normal flux and shear

gradients were set equal to zero for a symmetry boundary condition. The grids used were

the same as explained for the contraction runs in Chapter 2 and illustrated in Figure 6,

with refinement at the contraction corners.

For the non-local stress contribution, since the scale of the shear-rate changes from the

upstream to the downstream portion of the contraction, we chose to take a spatial average

of the shear rate instead. The quantity < γ̇ >ǫ represents a spatial average over a circular

area of radius ǫ around the computation point of interest. The value of ǫ is calculated as

ǫ = a/Ls, which is the dimensionless particle size. This is roughly equivalent to setting the

non-local stress parameter, as(ǫ), from chapter 3 equal to ǫ.

5.3.1 Piston-driven flow of a suspension in a 4:1:4 contraction/expansion

Altobelli et al (1997) studied the piston driven flow of a suspension through an abrupt con-

traction followed by an expansion. A schematic of the apparatus is shown in Figure 40. The

apparatus consisted of tubing sections joined end-to-end to form the contraction-expansion

geometry. The larger sections were 5.08 cm in inner diameter (ID) and the smaller section

was 1.27 cm ID, corresponding to both a contraction and expansion ratio of β = 4. The

center or neck section was 38 cm long, corresponding to approximately a length of 15R,

where R is the radius of the larger tube. For the experimental runs, the apparatus was

filled with suspension to an approximate length of 30 cm upstream of the contraction and 4

cm downstream of the contraction, initially. The upstream length of 30 cm corresponds to

about a length of 12R. The upstream piston section was moved by a motor-driven push rod
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at a rate of 0.0625 cm/s, which corresponds to mean velocity of 1 cm/sec in the smaller pipe

section. The entire apparatus was placed inside an NMR magnet to allow measurement of

the concentration and velocity.

The suspension consisted of a 50 vol% (φ/φm = 0.735) concentration of neutrally-

buoyant, suspended particles of sizes 675 µm and 100 µm, corresponding to R/a = 75 and 508,

respectively. An NMR was used to take concentration and velocity measurements at vari-

ous times during the travel of the piston, at both the contraction, expansion and along the

narrow neck region. Quantitative particle volume fraction data is provided along the neck

region after the upstream piston has travelled a distance of 12.5R. Also, NMR intensity

plots are reported at various times during the movement of the piston (4R, 8R, 12R) at

both the contraction and expansion.

To approximate this flow problem, we set up a domain as illustrated in Figure 41. Inlet

conditions were set at a distance 6R upstream of the contraction. The φ profile was held at

the initial bulk concentration of 0.50 and the velocity profile was set to a parabolic curve.

The walls were set to no-slip, no particle penetration conditions as before and the outlet

and centerline were set similar to the long-conduit flows. While the inlet/outlet conditions

are not exactly in-line with the physical case, this set-up allows us to approximate the

experimental conditions and to examine whether predictions agree with features of the

observed behavior. We choose to only look at the larger of the two particle sizes which

corresponds to R/a = 75. As will be seen later in Chapter 6, the parabolic profile is close

to that observed away from the piston face in a piston driven flow. Assuming a constant φ

profile at this distance is not necessarily a good approximation, but due to the size of the

upstream channel and large R/a ratio, not much migration should occur in the upstream

pipe. As for the drop in φ observed at the piston face, we assume that this is a highly

localized phenomena and not likely to affect the results in the neck of the contraction-

expansion to which we are comparing. This set-up provides a good approximation, that

could only be improved by the addition of moving boundary conditions to simulate the

movement of the piston face.

The contour and line plots in Figure 42 show that our results qualitatively match both
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Figure 40: A sketch of the experimental flow apparatus used in Altobelli et al (1997) for
an axisymmetric contraction/expansion geometry.

Figure 41: A sketch of the computational domain used to approximate the conditions of
the Altobelli et al (1997) experiments.
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Figure 42: Particle volume fraction measurements and predictions for the expansion sec-
tion (flow goes from right to left) of a βcont = βexp = 4 axisymmetric contraction-expansion
geometry. Plot (a) is an NMR image taken from Altobelli et al (1997) after six diameters
(12R) of piston travel. Plot (b) is an NMR image from Moraczewski and Shapley (2004),
run at the same conditions as the Altobelli et al experiments. Plot (c) is a contour plot
from a modeling run stopped at an equivalent of six diameters (12R) of piston travel and
(d) is a plot of φ(r)/φm profiles at various axial positions from the same run. In the NMR
images, darker areas represent areas of higher particle concentration.
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Figure 43: Comparison of model predictions with the experimental measurements of
Altobelli et al (1997) for the development of the φ/φm profile in the neck region of a
βcont = βexp = 4 contraction-expansion geometry. The experimental measurements were
taken after the piston had travelled > 6 dia. (12R), while the model predictions are at an
approximate distance of 6 dia. (12R) of piston travel. The radial coordinate is normalized
by the radius of the neck region, R∗ = r/Rneck, and the axial distance is normalized by the
length of the neck region, Lneck.

experimental runs. The results presented are taken after the piston has moved 6 diameters

(12R) of axial length in the Altobelli et al (1997) experiments and the Moraczewski and

Shapley (2004) results are an attempt to reproduce these results at the same experimental

conditions. All three contour/intensity plots and the line plot show an area of particle

depletion right at the sharp-edged corner which continues on downstream. The depleted area

in Altobelli et al appears to be more pronounced, but with the current data a quantitative

comparison cannot be made. In addition, both the model prediction and Moraczewski

and Shapley results show that the majority of the particles remain in the center of the

larger channel in a “jet”-like formation. Very little migration is observed into the corner,

which remains close to the initial bulk concentration. This is strikingly different from the

prediction for the contraction flow which will be illustrated below.
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Figure 43 shows a quantitative comparison between model predictions and the exper-

imental results of Altobelli et al along the neck region of the contraction-expansion. The

two match qualitatively with the predictions matching the observed dip at the mouth of

the contraction which the authors attributed to the dip in concentration at the piston face

(since these results were taken after the piston had travelled > 6 dia. (> 12R) and was

therefore nearly at the contraction opening or right on top of it depending on how much

the geometry was initially filled). The main discrepancy is the sudden rise in concentration

measured near the wall, which we have confirmed with the authors (Mondy, 2004) is due to

an artifact of the experimental method rather than actual behavior.

5.3.2 Effect of contraction ratio on predicted results

In Figure 44, we present surface plots of the initial nonlocal shear rate fields for a β = 2

and β = 4 contraction along with contour and line plots of the final converged (t = 500)

particle volume fraction profiles. The flow direction in the plots is from left to right. The

β = 4 contraction shows an extreme increase in shear rate as the flow moves from the large

to small section of the contraction, much more than for β = 2. As indicated on the plots,

< γ̇ >ǫ reaches a maximum value of 9.36 at the corner for β = 2 and a maximum value of

32.9 at the corner for β = 4. In actuality, the predicted value at the corner itself diverges

and approaches infinity for both cases causing problems with the numerics. Fortunately,

for our needs we only have to calculate it at the nodes adjacent to the actual corner point,

since that is where the particle volume fraction field is stored and calculated (i.e. at the

center of a computational cell).

The steady-state φ/φm profiles for the two contraction ratios show similar behavior in

both cases. The smaller channel for the β = 4 contraction results in a longer dimensionless

length, [Lsmall/b]β=4 > [Lsmall/b]β=2, and therefore more axial evolution of the φ(y) profile,

but both contractions show a similar build up of particles in the corner, right along the wall

perpendicular to the flow direction. In the contraction-expansion results of Altobelli et al

(1997), it is difficult to determine from the NMR images whether a build up in the corners

took place on the contraction side. Despite the fact that the Altobelli et al data was for an
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Figure 44: Comparison of isotropic model predictions for a contraction flow (flow from
left to right) with a ratio: (a) β = 2, (b) β = 4. Top plots are the initial nonlocal shear-rate
field. Underneath are the corresponding φ/φm plots at steady state. Model conditions:
α = 4, [φ/φm]bulk = 0.735, φm = 0.68, B/a = 18.
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Figure 45: Isotropic model predictions for the pressure (P ∗ = P/(ηoUs/B)) and flow fields
for a β = 2 contraction flow (flow from left to right, P = 0 at x = 20). (a) Pressure at
t = 0, (b) Pressure at t = 500, (c) Streamlines at t = 0 [solid], t = 500 [dashed]. Model
conditions: α = 4, [φ/φm]bulk = 0.735, φm = 0.68, B/a = 18.
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Figure 46: Isotropic model predictions for the pressure (P ∗ = P/(ηoUs/B)) and flow fields
for a β = 4 contraction flow (flow from left to right, P = 0 at x = 15). (a) Pressure at
t = 0, (b) Pressure at t = 500, (c) Streamlines at t = 0 [solid], t = 500 [dashed]. Model
conditions: α = 4, [φ/φm]bulk = 0.735, φm = 0.68, B/a = 18.
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axisymmetric geometry and the model predictions are for a rectangular geometry, the two

should be qualitatively similar. There are two possible reasons that this build up was not

obvious in the NMR images (since it is so extreme in the FVM predictions). First, as was

seen in the data for the neck region in Figure 43, there were some issues of resolution near

the wall. Second, they had not run their experiments very long, approximately equivalent to

a piston movement of 12B, where the steady-state results shown are equivalent to a piston

movement of 250B. Therefore, the experiments have not had enough time to achieve the

amount of build up observed in the model predictions.

The effect of particle migration on the predicted pressure and flow fields is illustrated in

Figure 45, Figure 46 and Table 6. The figures show contour plots of the pressure field near

the corner region of the contraction for the β = 2 and β = 4 contractions and show a plot

of the effect of migration on the flow streamlines near the corner. In these plots the flow

is from left to right. The pressure contours illustrate a peak in pressure at the sharp-edge

corner, but with little radial variation elsewhere. Overall, the pressure field shows a linear

decrease in pressure with axial distance, with a larger rate of descent (or pressure drop) in

the smaller channel. The contour plots and Table 6 show that the migration of the particle

field results in a decrease in the required pressure to drive the flow field. The streamline

plot shows that particle migration has some effect on the flow field near the contraction

opening, but not much. The main effect is a decrease in the size of the flow vortex in the

concave corner.

Figure 47(a,b) show unit vectors representing the direction of the particle migration flux,

j⊥, for the β = 4 and β = 2 contraction flows at t = 0 before any particle migration has

occurred (i.e. the entire domain is set equal to the initial bulk value of φ). The directions

of the flux vectors are roughly the same for both cases, with particles being pushed away

from the contraction opening and into the corner. There is also a general push away from

the flow direction. When we look at the magnitudes of these vectors in Figure 48(a,b) we

see there is a much greater push away from the contraction opening and high shear area at

the sharp-edged corner in the β = 4 contraction case.
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Figure 47: Comparison of unit vectors representing j⊥ for the isotropic model at t = 0. The
vector magnitudes are given in Figure 48. (a) β = 4, contraction; (c) β = 2, contraction;
(c) β = 4, expansion.
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Figure 48: Comparison of the predicted magnitude of j⊥ for the isotropic model at t = 0.
(a) β = 4, contraction; (c) β = 2, contraction; (c) β = 4, expansion. Note, for plot (a) the
surface is off the scale, with a maximum value of 0.241.
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Table 6: Predictions for the inlet pressure (P ∗ = P/(ηoUs/B)) before and after particle
migration has occurred. Model conditions: α = 4, [φ/φm]bulk = 0.735, φm = 0.68, B/a = 18.

5.3.3 Effect of flow direction on predicted results

Figure 49 shows the effect of the flow direction on the non-localized shear-rate at t = 0

and on the steady-state φ/φm predictions. For both cases the inlet was held at a constant

φ/φm value, which results in different conditions at the contraction opening for both cases.

For the expansion, the φ/φm was much closer to convergence than that going through the

larger contraction channel. The < γ̇ >ǫ conditions where nearly identical for both cases,

but from Figure 47(a,c) and Figure 48(a,c), it is evident that the migration conditions were

very different. In the expansion, the migration vectors went against the flow direction, just

as in the contraction, but that was now in the opposite direction. This resulted in just a

push away from the high shear region next to the sharp-edged corner, but not a push back

into the concave corner section as in the contraction flow.

From the magnitude plots, it can be seen that the push away from the sharp-edged corner

is not as strong as in the contraction flow, but the contour and line plots in Figure 49 show

a much greater predicted dip in particle concentration by the sharp-edge corner than for the

contraction, with the area just downstream of the sharp-edge corner almost completely free

of particles. This resulted in an almost “jet”-like behavior as in the contraction-expansion

flow, with most of the particles remaining in the center of the larger channel. The convex

corner did not show the build up that the contraction flow results did, but remained close

to the bulk concentration.

The predicted pressure field behavior for the expansion flow (Figure 50) showed a similar

trend to the contraction flow, just with a dip in pressure near the corner, rather than a
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Figure 49: Comparison of isotropic model predictions for a: (a) β = 4, contraction; (b)
β = 4, expansion. Top plots are the initial nonlocal shear rate field. Underneath are the
corresponding φ/φm plots at steady-state. Model conditions: α = 4, [φ/φm]bulk = 0.735,
φm = 0.68, B/a = 18.
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Figure 50: Isotropic model predictions for the pressure (P ∗ = P/(ηoUs/B)) and flow fields
for a β = 4 expansion flow (flow from right to left, P = 0 at x = 0). (a) Pressure at t = 0,
(b) Pressure at t = 500, (c) Streamlines at t = 0 [solid], t = 500 [dashed]. Model conditions:
α = 4, [φ/φm]bulk = 0.735, φm = 0.68, B/a = 18.
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peak. The same linear drop in pressure along the axial direction is evident, as it the overall

drop in pressure needed to drive the flow after migration has occurred (Table 6). The model

predicts a large increase in the recirculation zone in the corner after particle migration has

occurred.

5.4 Effects of the Constitutive Law on Model Predictions

For our study of the constitutive model we chose to focus on the β = 4, planar contraction

geometry. By looking at the planar geometry, we are able to focus on the in-plane stress

effects without worrying about the effect of λ3 on the equation. The β = 4 contraction was

chosen due the extreme shear predicted in the neck region, which will amplify any difference

between the model predictions.

Model conditions are the same as above with α = 4, φm = 0.68 and a suspension of

φbulk = 0.5, B/a = 18. The grid from Chapter 2, Figure 6 was used with a 10B inlet, a 10B

outlet and the same imposed boundary conditions.

5.4.1 Weighted-isotropic constitutive model predictions

The value of the normalized kinematic ratio (ρ̂k) in a β = 4 contraction is presented in

Figure 51(c) for the region around the contraction opening at the initial state (constant

particle field, Newtonian flow solution). For the majority of the domain (10B upstream:10B

downstream) a value of ρ̂k = 1, corresponding to simple shear, was predicted. Figure 51(a,b)

shows the magnitude of the shear rate and magnitude of the relative rotation which make

up the kinematic ratio. From these plots it can be seen that the shear increases near the

contraction opening to the point that ρ̂k drops below one just upstream of the contraction

opening in a region of extension-dominated flow. Right upstream and downstream of this

region of extension-dominated flow, there are regions of higher relative rotation, ωrel. This

rotation is due to the change in flow type which causes a rotation of the local eigenvectors

(as is evident in Figure 56). The same rise in ρ̂k is evident along the boundary between

the bulk flow and recirculation zone in the corner. This rise in the corner is then followed

by a decrease, signifying another extension dominated region due to the separation of the

streamlines where the secondary recirculation breaks away from the bulk flow into the
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contraction opening. A region of high rotation is also seen at the sharp-edged corner.
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Figure 51: Plots of the: (a) magnitude of the rate of strain; (b) magnitude of the relative
rotation; and (c) normalized kinematic ratio (ρ̂k), for a β = 4 contraction.

The effect of this variation in ρ̂k on the particle pressure is illustrated in the surface plots

(Figure 52) of the kinematic weighting function B(ρ̂k) for set point values of Bext = 2 and 5.

Through most of the domain the value of B(ρ̂k) remains at the simple shear value of one,

except in the regions of high extension near the contraction opening. Here, the value of B

increases, reaching the maximum value at the centerline just upstream of the contraction.

Also there is an increase in the weighting function in the corner near the recirculation
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zone. This is due to the extension generated by the separation of streamlines. The actual

consequence of the kinematic weighting function on the suspension pressure is illustrated in

Figure 53, when it is multiplied by the non-localized shear-rate. It is evident that despite

the rise of B in the corners, there is little effect on the particle pressure due to the low

shear-rate in this region. Also, an important point to note is that despite the appearance

of oscillation in the value of B(ρ̂k), it appears to be mainly limited to regions of low shear

where it does not have a significant effect on the stability of the solution scheme.

The predicted results for the steady-state particle volume fraction profiles when using

the weighed-isotropic particle stress model are presented in Figure 54. The only area of

significant difference between the predictions for different Bext is at the opening of the

contraction. From Figure 54(d), we can conclude that the value of the extensional set

point, Bext, controls the predicted drop in particle volume fraction at the mouth of the

contraction. There is some difference observed in the rise in φ/φm in the corner, but these

values are fairly close. This illustrates that by varying particle pressure in areas of high

extension, we can tune the model to predict the correct drop in particle volume fraction in

such regions of a complex flow field.

5.4.2 Anisotropic constitutive model predictions

The behavior of the eigenvectors near the contraction opening for a β = 4 contraction is

illustrated in Figure 56(a,b). Figure 56(a) is of unit vectors in the direction of the extension

eigenvector, or of the tension direction in compression-tension coordinates, and Figure 56(b)

is the angle that these unit vectors are rotated away from the x-axis, as illustrated Figure 55.

The eigenvectors are calculated from the relationship:

E · ei = aiei, (70)

where E is the rate of strain tensor and ei is the eigenvector for eigenvalue, ai, which was

determined from the relationship det|E − aδ| = 0. These equations result in the following

relationships for the rotation of the extension and compression eigenvectors away from the
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Figure 52: Plot of the kinematic weighting function, B(ρ̂k), of the particle pressure for the
weighted-isotropic particle stress model in a β = 4 contraction. (a) Bext = 2, (b) Bext = 5.
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Figure 54: Surface plots of the predicted φ/φm profiles at steady-state (t = 500) for a
β = 4 contraction using an isotropic-weighted constitutive law. (a) Bext = 1, (b) Bext = 2,
(c) Bext = 5. Plot (d) is φ/φm(x) at y = 0.
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Figure 55: Sketch of the orientation of the compression-tension coordinates in a β = 4
contraction flow. The variable θ is the angle from the x-axis to the tension axis and defined
in Eq. (71).

x-axis,

θext = tan−1(
aext − Exx

Exy
), (71)

θcomp = tan−1(
acomp − Exx

Exy
), (72)

where aext, acomp are the extension and compression eigenvalues as defined in Section 5.1.2.

The use of tan−1 for the calculation limits the values of the rotation to −90◦ ≤ θ ≤ +90◦,

even though for the definition of the compression-tension axis, the 180◦ equivalent would

be just as valid. The main concern is to make sure that all the eigenvectors are calculated

in a consistent manner to ensure that the calculation of the eigenvector rotation (Eq. (66))

used to determine ωrel is valid.

For simple shear conditions the rotation of the extensional eigenvector, θext, is ±45◦

from the flow direction. For an +x-directed channel flow, the rotation would be −45◦ above

the plane of symmetry and +45◦ below. As can be seen in the vector plot of Figure 56 and

sketch in Figure 55, the tension direction lines up with the x-axis as the flow approaches

the contraction opening. Another point to note is that the direction of the extensional

eigenvector abruptly changes signs (rotates 180◦) in the corner due to the change in the

orientation of shear (the flow near the wall is moving in the opposite direction) in the

recirculation zone.

The predicted difference between the x-directed and y-directed particle normal stress

(which we will call the geometric normal stress difference, Nxy = (ΣNS
P,xx−ΣNS

P,yy)/ < γ̇ >ǫ ηn)

for the initial flow field in a β = 4 contraction is shown in Figure 57. Figure 57(a) is with
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Figure 56: Vector plot of the extensional eigenvectors and a contour plot of the angle,
θext, that the eigenvectors make with the x-axis.
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Nct = 0 and Figure 57(b) is with Nct = 0.2 (to predict a slight normal stress difference in

simple shear). The plots have been rotated 180◦ from previous surface plots to give a better

view of the corner and centerline. The main influence of the normal stress difference is

again in the neck region of the contraction. For the stress values, compression is considered

negative stress and tension positive stress. Therefore, with Nct = 0.2 and the resulting

prediction of Nxy = −0.2 in the simple shear regions of the flow corresponds to more

compressive stress along the x-direction, since for the particle stress model, all stresses are

predicted to be compressive, and therefor negative. With Nxy < 0, the x-directed particle

normal stress is more negative than the y-directed, corresponding to a slight compression

of the streamlines in the x-direction, with the opposite true when Nxy > 0.

From the surface plots in Figure 57, the model predicts Nxy > 0 in the region of the

contraction opening with and area of Nxy < 0 along the wall perpendicular to the bulk

flow. There are some oscillations in the stress difference near the wall and centerline,

which is due to the calculation of the eigenvectors near the boundaries. These fluctuations

oscillate throughout the migration solution, resulting in some added stability concerns, but

eventually die out as a steady-state solution is approached.

The effect of this geometric normal stress difference on the streamlines of the flow

solution is explored in Figure 58. Figure 58(a) shows the influence of the anisotropic model

on the initial flow streamlines with φB = 0.50 and Figure 58(b) shows how this influence

dies off as the bulk concentration is decreased. In Figure 58(a), it can be seen that the

added y-directed compression (x-directed tension), pulls the streamline below the Newtonian

predicted position, with the addition of Nct = 0.2 amplifying this effect. The anisotropic

normal stress also increases the size of the corner recirculation zone.

The driving force behind the alteration of the flow streamlines for the anisotropic model

is explored in Figure 59, Figure 60, and Figure 61. Figure 59 and Figure 60 deal with

anisotropic stress conditions at the initial uniform particle concentration with Bt = 0,

Bc = 2 and Nct = 0, 0.2, respectively. In both figures, plot (a) is a vector plot of the

pressure gradient for the initial, isotropic, Newtonian flow field. This represents the driving

force for the isotropic flow solution. In both figures, plot (b) is a vector plot of the particle
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Figure 57: Plot of the geometric normal-stress difference, Nxy, in a β = 4 contraction flow.
Model parameters are Bc = 2, Be = 0. (a) Nct = 0, (b)Nct = 0.2 (Note: the perspective is
rotated 180 degrees from the previous surface plots.)
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Figure 58: Comparison of the effect of the particle normal stress on the streamlines in a
rectangular contraction (β = 4). The flow solutions are at the initial bulk concentration.
The top plot is at φB = 0.5 while in the bottom plot holds Nct = 0.

normal stress divergence, ∇ · ΣNS
P . This is calculated for a uniform particle concentration

using the Newtonian velocity field. This term is treated as a source in the momentum

equations for the determination of the altered streamlines in Figure 58. The effect of this

added source is illustrated in the plot (c) of both figures, which is a difference between the

pressure gradient and particle normal stress divergence. By taking the difference, we are

able to illustrate the effect that the addition of the particle normal stress divergence has on

the driving force of the flow field.

From the difference plots in Figure 59 and Figure 60, and the close up of the concave

corner region in Figure 61, it is evident that the addition of the stress divergence alters the

source field driving the bulk flow in a manner that compresses the streamlines toward the

contraction opening. This also results in the increase in the size of the corner vortex region.

As for the difference with the addition of Nct = 0.2, it seems only to effect the magnitude

of the change, with little difference between the direction of the difference vectors for the

two cases.

The effect of the anisotropic model on steady-state particle volume fraction predictions
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Figure 59: Vector plots of the pressure gradient for the initial Newtonian velocity field
and particle normal stress divergence with an anisotropic model, Nct = 0. (a) −∇P ; (b)
∇ · ΣNS

P ; (c) −∇P −∇ · ΣNS
P .
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Figure 60: Vector plots of the pressure gradient for the initial Newtonian velocity field
and particle normal stress divergence with an anisotropic model, Nct = 0.2. (a) −∇P ; (b)
∇ · ΣNS

P ; (c) −∇P −∇ · ΣNS
P .
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Figure 61: Close up of the corner region for vector plots of the Newtonian pressure gradient
and particle normal-stress divergence with an anisotropic model. (a) −∇P ; (b) ∇ · ΣNS

P ;
(c) −∇P −∇ · ΣNS

P .
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Figure 62: Surface plots of φ/φm at t = 500 for a β = 4 contraction solved with an
anisotropic constitutive law: (a) Nct = 0; (b) Nct = 0.2.
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is shown in Figure 62 and Figure 63. There is some difference between the predictions of

the anisotropic and isotropic models in the mouth of the contraction, but not much. The

anisotropic model predicts a slight drop in φ near the centerline and slight rise away from

it, which is not predicted in the isotropic model. The anisotropic model also predicts a dip

in φ right upstream of the convex corner. As for the effect of including an Nct = 0.2 on the

anisotropic model, the only significant effect seems to be in the amount of particles that

accumulate in the convex corner region. The addition of Nct = 0.2 appears to lower the

amount of this accumulation which is most likely due to the increase in predicted vortex

size.

5.5 Conclusions

In this chapter we illustrated how to adapt a rheological-based constitutive law developed

for simple shear flows into a form which can be applied to general flow fields. The process

involves modifying the particle phase stress constitutive law to take into account kinematic

variations in the local flow field. By looking at the local balance in rotation to shear in

the flow field, we characterized the kinematic state of the flow field and studied how such

variations could effect the flow field or local composition of the suspension.

We chose to study the sharp-edged contraction flow as our initial test case due its

varying local kinematics: pure extension at the contraction opening, simple shear upstream

and downstream. First, looking at predictions for a purely isotropic model we explored

how factors such as the contraction ratio or flow direction (contraction versus expansion)

effected the model predictions. For the contraction flow (flow into the smaller channel), we

found a build-up of particles along the contraction wall perpendicular to the flow direction,

with the particle concentration approaching maximum packing in the corner. This was

due to the fact that the particle migration flux pushed the particles away form the higher

stress levels in the smaller channel. This resistance then allowed the particles to be swept

up into the corner by bulk convective forces and deposited into the stagnant, recirculating

flow in the corner. The amount of particle migration was found to be greater for the larger

contraction ratio (large/small). In the expansion flow, the particle migration flux again
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pushed the particles away from the higher stress in the smaller channel, but in this case

the convective flux sweep the particles on downstream. This resulted in no build up in the

corner region for the expansion flow.

For the isotropic constitutive law, we also compared predictions to an experimental

contraction-expansion flow to which we achieved a qualitative match to the observed be-

havior. We matched an observed dip in the particle concentration at the mouth of the

contraction and the lack of migration into the corner region for an expansion flow. In ad-

dition, we matched the increase in particle concentration in the center of the flow channel

for the central region connecting the contraction and expansion.

To study the possible effect of complex flow conditions on particle migration, we looked

at two alternate constitutive models. One in which the strength or magnitude of the

isotropic particle normal stress increased in regions where the flow approached stronger

extension flow conditions (such as at the entrance of the smaller channel in a contraction

flow). Another in which we looked at the effect of an anisotropic particle normal stress,

where the predicted particle normal stress was different for different local directions.

For the weighted-isotropic approach, we accounted for kinematic variations through the

kinematic ratio (ρ̂k), a ratio of the local strength of rotation and to the local strength of

shear. In this measure, an equal balance between rotation and shear is considered simple

shear, while a rotationally dominated flow is considered solid body rotation and a shear

dominated flow is considered pure extension. In our exploration, we found that by weighting

the strength of the particle phase normal stress with local kinematics we could control

particle concentration predictions at the entrance to the smaller channel in a contraction

flow, an extensionally dominated region. The utility of this ability is a question that is still

open, due to a lack of quantitative experimental evidence for this particular flow or any

extensionally dominated complex flow field in general. What the work here enables is the

ability to account for such behavior, if it proves to be significant, by utilizing a method

which has been shown to work for polymeric flow field predictions.

For the anisotropic approach, we utilized a stress-based coordinate system to define the

particle normal stress. The compression-tension coordinated proved a frame of reference
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to define the relative magnitudes of our particle phase normal stresses in. We found that

using an anisotropic stress law has a significant effect on the predicted flow field, especially

on the size of the predicted stagnation or recirculation zone in a sharp-edged contraction

flow. There was also an effect on the predicted particle field concentration that appeared

to primarily result from the effect on the flow field. Again the validity of such an approach

remains dependent on quantitative experimental evidence. This approach does provide,

however, another tool for suspension flow modeling in complex flow fields. With further

experimental evidence, it may prove to be significant or necessary for the accurate prediction

of the flow fields or particle phase migration in a complex suspension flows.

The key to suspension flow study at this point lies with further experimental exploration

augmented through the guidance of computational modeling. Computation modeling allows

rapid exploration of multiple geometries and possibilities to help identify unique or inter-

esting predicted behaviors. The identification of these possible behaviors can then provide

a road-map to suggest which experiments would be the most interesting or significant to

undertake. With further experimental study, the constitutive models developed here can be

verified or deficiencies can be identified. Through this process, computational suspension

flow modeling will be able to mature into a practical, valuable tool for use in many areas.
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CHAPTER 6

COMPLEX GEOMETRY: APPLICATIONS

In this section, we explore the application of the solver-evolver code to a number of general,

experimentally relevant flows. The object is to illustrate the utility of the solver-evolver

code for comparison to experimental studies and its application to the design of processes

involving suspension flow. In the past, a rigorously-based method to study the flow of two-

phase, particulate suspensions through general geometries has not been available. There

are a number of methods, as discussed in Chapter 1, using continuum approaches, but none

that are immediately applicable to a broad range of complex flow conditions. The most

general continuum models, such as the diffusive flux approach of Phillips et. al. (1992), tend

to be oversimplified and cannot properly account for conditions such as anisotropic stress or

varying local kinematics. Our method has been shown to work in the complex contraction-

expansion environment, with some quantitative and qualitative matches to experimental

data. In this chapter, we illustrate how this code is used in a general study. There is not a

great deal of experimental data for the flows examined and thus modeling takes the lead.

The predictions generated by the method allow us to explore the range of suspension issues

which can be attacked with a continuum model implemented as a computational tool.

The solver-evolver method can be used for “computational suspension dynamics” (CSD)

This means that we can explore a number of issues and features of a general flow, as can

be done for Newtonian and non-Newtonian flows with a computational fluid dynamics

(CFD) package. We explore the effect the suspended particles have on the streamlines and

pressure conditions of the flow. We further consider how the evolution of the particle field

changes these conditions and suggest what consequences this may have on design decisions

or relevant pieces of complex processing equipment. In addition, the work allows one to

predict the exit composition from processing flow geometries which may affect downstream

processing conditions.

130



Figure 64: Sketch of the piston flow geometry.

We choose to explore the application of the solver-evolver code with an isotropic par-

ticle stress model for a rectangular piston-driven flow and a two-dimensional, rectangular,

pressure-driven channel flow with an obstruction near the entrance. For both cases a value

of α = 4 was used for the sedimentation hindrance function and ηs(φ) was represented by

the shear-viscosity model used in Morris and Boulay (1999). A shear-rate with an O(ǫ)

nonlocal contribution, < γ̇ >ǫ, was used, as in Chapter 5. The nonlocal shear rate was

determined by averaging the local shear-rate value over a circular area of radius ǫ around

the computational point of interest, making this area comparable to the dimensionless par-

ticle size as ǫ = a/Ls. For all cases, the entire domain was initially set to a bulk particle

concentration of φB = 0.50. For scaling purposes, it is assumed φm = 0.68. The particle

size chosen for both studies is B/a = 16, to match one set of the experimental conditions

of Subia et al (1998) as explained in detail below.

6.1 Piston-driven suspension flow in a closed rectangular

channel

We have modeled a piston-driven flow in a rectangular channel with both ends closed off

by piston faces. This allowed a qualitative comparison with the experimental data of Subia

et al (1998). In their work, they ran experiments for an axisymmetric piston-driven tube

flow with a set-up similar to the one illustrated in Figure 64. The tube was filled with a

particulate suspension and capped off at both ends. The downstream piston remained free

131



while the upstream piston was either: (1) fixed, while the tube walls were moved toward

the fixed piston or (2) the walls were fixed while the upstream piston was driven forward.

In both cases the moving surface was at a velocity of 0.0625 cm/s, corresponding to Re ≪ 1

conditions.

The experimental apparatus was a circular pipe with an inner radius of 2.54 cm. The

suspension consisted of neutrally-buoyant, spherical particles at an initial bulk concentration

of 50 vol% with particle diameters of 678 µm and 3178 µm (corresponding respectively to

R/a = 75 and 16). The initial volume of suspension in the tube corresponded to a length

of 30 cm (12R) between the two piston surfaces. Measurements of the concentration were

taken by placing the whole apparatus into the bore of an NMR magnet in order to take

static images along the length of the domain after the piston/wall had travelled a given

distance. Results were reported after 5 piston diameters (10R) of travel in the form of a

radial average of φ at axial distances along the pipe length. From static NMR images, a

liquid-rich region was observed next to the moving piston near the centerline. This result

was also observed near the piston face in the experiments of Altobelli et al (1997).

We ran a 2-D numerical simulation of the above piston flow by setting the end walls

stationary and moving the side walls. We assumed no-slip conditions at the walls for the

velocity field and no penetration for the particle field, which corresponds to setting the

migration flux normal to the wall equal to zero. The domain was discretized as illustrated

in Figure 65. The grid was refined in the axial direction near the two end caps. This

refinement corresponded to dx = 0.1 with dx = 0.5 throughout the rest of the domain. In

the radial or cross-stream direction, the domain was refined around the centerline and near

the walls. This corresponded to dy = 0.05 in the refined regions and dy = 0.1 through the

rest of the domain.

6.1.1 Results and discussion

The flow solution is shown in Figure 66 for the rectangular piston-driven flow before any

particle migration has occurred (i.e. constant viscosity conditions). The streamlines form
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Figure 65: Computation grid used for the piston-flow geometry.

a bulk recirculation, with a sharp bend at the corners by the piston faces. If the end-

caps were moving and side walls fixed, this would be a bulk recirculation relative to that

forward movement. The evolution of the particle volume fraction due to migration is given in

Figure 67 after 5, 10, and 15 diameters (10B, 20B, 30B) of piston travel. The model predicts

migration away from the side walls and toward the center of the channel. This qualitatively

matches the NMR images in Subia et al (1998), as does the decrease in particle concentration

near the upstream piston and increase near the downstream piston. As stated before,

the decrease near the upstream piston was also observed in the piston driven contraction-

expansion flow of Altobelli et al (1997).

In Figure 68, a plot of < φ/φm > (averaged over the cross-sectional area) along the

axial length of the domain is given for 5, 10 and 15 piston diameters (10B, 20B, 30B) of

travel. In addition, experimental measurements from Subia et al for an axisymmetric flow

after 5 diameters of piston travel are included. While not a quantitative match (considering

the differences between planar and axisymmetric conditions), they do display the same

qualitative behavior with the dip near the upstream piston and rise at the downstream one.

The main quantitative difference between the rectangular and axisymmetric cases is the

increased particle migration observed in the axisymmetric piston flow as opposed to the

migration predicted for the rectangular piston flow.

The key question is why does this drop/rise in particle concentrations at the two piston
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Figure 66: Initial flow solution (unform particle concentration) for a rectangular piston-
driven flow with suspension conditions of B/a = 16, [φ/φm]bulk = 0.735. (a) streamlines;
(b) axial velocity; (c) cross-stream velocity.
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Figure 67: Plots of the evolution of φ/φm for suspension conditions of B/a = 16,
[φ/φm]bulk = 0.735 after the piston has travelled: (a) 5 diameters (10B); (b) 10 diame-
ters (20B); (c) 15 diameters (30B).
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surfaces occur. Looking at the plot of the particle migration flux vectors (set to unit size) at

the initial conditions (i.e. before particle migration has begun), in Figure 69(a,b), it can be

noted that the vectors are similar at each end-cap, except for their opposition to the bulk

flow, given in Figure 69(c,d). It is this opposition of the particle migration flux to the bulk

flow which causes the difference in migration behavior at the two faces. At the upstream

face, since the flow is coming from the side walls toward the centerline, the particle migration

flux slightly opposes this resulting in a depletion in particles at the centerline. The opposite

holds true at the downstream piston, where particle migration opposes the flow toward the

outer wall from the center which causes the slow build up of particles at this piston face.

The surface and contour plots of the nonlocal shear rate in Figure 70 illustrates the driving

force behind the particle migration flux, with particles migrating “downhill” away from

peaks in < γ̇ >ǫ. The plot shows a very large shear-rate in the corners, which leads to a

depletion in particles in these regions. In addition, there is an increase in shear rate right

next to the piston surfaces but not right on them. This predicted “hump,” illustrated in

the close-up contour plot of the upstream piston, further drives the depletion/build up at

the surfaces, since the “hump” will add resistance to the particle migration toward/away

from the upstream/downstream piston surfaces.

6.2 Pressure-driven suspension flow in a rectangular chan-

nel with an obstruction near the entrance

The problem domain for studying a pressure-driven, two-dimensional, rectangular channel

flow with an obstruction near the entrance is illustrated in Figure 71. We look at cases

where the obstruction is square in shape with each side equal to the channel half-width (B).

The center of the obstruction is placed a length 10B from the entrance and the domain is

initially set to a bulk particle fraction of 0.50 everywhere. The inlet is held at this bulk

value throughout the run and the velocity field is set to a unidirectional parabolic inlet

condition. The distance beyond the obstruction is set to a length of 100B to look at the

effect that the obstruction has on the axial development of the φ(y) field. At the outlet all

normal gradients are set equal to zero while the pressure is set to zero in order to provide
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a reference value. All solid surfaces are assumed to be no-slip, with no particle penetration

(j⊥ · n = 0).

We explore two separate cases, one where the obstruction is placed at the center of the

channel (b1/b2 = 1). This corresponds to two gaps that are a quarter of the width of the

channel, B/b1 = B/b2 = 2. In the second case, the obstruction is placed off-center by

a distance of B/4 (b1/b2 = 1/3), corresponding to a narrow gap ratio of B/b1 = 4 and

wide-gap ratio of B/b2 = 4/3.

The domain is discretized as illustrated in Figure 72 for the off-centered obstruction

(b1/b2 = 1/3). The grid spacing in the axial direction is refined near the obstruction to

a value of dx = 0.1, with dx = 1.0 through the bulk of the domain. The grid is also

refined in the cross-stream direction near the corner of the obstruction on the wide-side and

throughout the entire region of the narrow gap. The refined step size is dy = 0.05, with

dy = 0.1 throughout the rest of the region.

6.2.1 Results and discussion

The streamlines for the centered (b1/b2 = 1) and off-centered (b1/b2 = 1/3) obstruction are

shown in Figure 73. For the off-centered obstruction, the majority of flow passes through

the larger opening, as is illustrated in the plots of the nonlocal shear rate in Figure 74.

The majority of shear takes place near the wall of the larger opening, corresponding to a

stronger flow field through this gap. For the centered-obstruction case, it can be seen that

the flow and stress fields are symmetric.

The migration of the particle field shown in Figure 75, shows a build up of particles on

the upstream side of the obstruction in both cases with a depletion on the downstream side,

as would be expected. For the off-centered obstruction (b1/b2 = 1/3), there is a sharp peak

in φ/φm in the center of the small gap, but this quickly dissipates as the suspension leaves

the gap. An interesting prediction to note is a zone of depleted particle concentration that

forms near the wall downstream of the obstruction. This depleted zone does not continue

downstream though, but remains local to the obstruction. Instead the bulk flow sweeps

past it and returns the φ value near the wall to a higher concentration until the migration
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Figure 71: Sketch of a channel with an obstruction.

Figure 72: Computational grid for a two-dimensional, rectangular channel with an ob-
struction, b1/b2 = 1/3.
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Figure 73: Streamline plots for a channel flow with an obstruction located: (a) center
(b1/b2 = 1); (b) off-center (b1/b2 = 1/3).

approaches the typical pattern for a channel flow, with a depletion of particles near the wall

and an increase of particles at the centerline, as is illustrated in Figure 76.

In the full domain contour plots of φ/φm in Figure 76, the particle migration pattern

quickly resumes that of an unobstructed channel, with most of the effects of the obstruction

on particle migration remaining close to the obstruction. In the line plots of Figure 77 and

Figure 78, this is further illustrated. The migration appears to resume the typical pattern of

the axial development of the φ(y) profile for a channel flow by about a length of 5B (x = 15)

downstream from the center of the obstruction. In Figure 78(b), it is evident that by about

a distance of 45B (x = 55) downstream from the center of the obstruction the migration

has completely resumed the pattern of the unobstructed channel flow. In this plot, one may

note that the three predicted solutions do not appear to match at the centerline of the flow.

This is due to grid spacing differences between the b1/b2 = 1 and b1/b2 = 1/3 obstruction

runs. In the meshing scheme for the off-centered obstruction, no computational node was

placed on the y = 0 centerline, which resulted in differences in the averaged shear-rate in

142



Figure 74: Plots of the nonlocal shear rate for a channel flow with an obstruction located:
(a) center (b1/b2 = 1); (b) off-center (b1/b2 = 1/3).
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Figure 75: Plots of φ/φm at steady-state for: (a) centered obstruction (b1/b2 = 1); (b)
off-centered obstruction (b1/b2 = 1/3).
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Figure 76: Plots of φ/φm at steady-state for: (a) no obstruction; (b) centered obstruction
(b1/b2 = 1); (c) off-centered obstruction (b1/b2 = 1/3).

this region. A final point to note is that the off-centered obstruction appeared to have less

effect on the migration and resulted in a quicker recovery to unobstructed conditions.

The values of the predicted inlet pressure conditions before and after particle migration

are presented in Table 7. The data shows that the unobstructed channel required the least

amount of pressure to drive the flow field. The off-centered obstruction requires a higher

inlet pressure with the centered obstruction requiring the highest. For all cases the particle

migration resulted in a lower predicted inlet pressure.
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Figure 77: Plots of φ(y)/φm at various points downstream of the obstruction (square
obstruction, 1B side length, centered at x = 10B) for: (a) un-obstructed channel; (b)
centered obstruction (b1/b2 = 1) in a channel; (c) off-centered obstruction (b1/b2 = 1/3) in
a channel.
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Table 7: Predictions for the inlet pressure, P ∗ = P/(ηoUs/B), before and after particle mi-
gration has occurred. The reported position of the obstruction is the distance from the inlet
of the channel to the center of the obstruction. Model conditions: α = 4, [φ/φm]bulk = 0.735,
φm = 0.68, B/a = 18.

6.3 Conclusions

We used the solver-evolver code for CSD, specifically to study suspension flow behavior in

a closed piston-driven channel flow and a pressure-driven channel flow with an obstruction

near the entrance. These represent just a sample of the flows which can be studied with a

computational tool able to predict particle migration and bulk suspension flow in general

geometries. While only predictions for the basic isotropic particle stress have been consid-

ered, these illustrate the type of information available from this modeling approach and the

model can be generalized to include stress anisotropy, if so desired.

For the piston-driven flow, the model predictions provide the basis for accumulation

of particles at the downstream piston face and depletion at the upstream piston face. By

showing how the predicted particle migration flux vectors oppose the recirculation of the

bulk flow in Figure 69, a possible mechanism for this nonintuitive experimental observation

(Subia et al, 1998; Altobelli et al, 1997) is revealed. Furthermore, model predictions of

the shear rate in Figure 70 illustrate an unusual pattern of shear next to the upstream

piston which further supports the prediction and observation of this behavior. For the

channel flow with an obstruction, the differences between identical centered and off-centered

obstructions are explored. It is found that the off-centered obstruction causes less disruption

in the flow field and the axial development of the particle concentration profile. The off-

centered obstruction also results in less of an increase in the inlet pressure than the centered

obstruction, when compared to an un-obstructed channel flow. The data can be used to
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predict how far downstream the effect of the obstruction is relevant on the particle phase

composition or bulk flow field.

In this study, the solver-evolver was able to provide some insight into two general flows.

This use of “computational suspension dynamics” or CSD is one that can be developed in

the future with the addition of further experimental data for suspension flows in complex

geometries. As more data becomes available for validation purposes, the model can be fully

explored and verified or revised for a wider range of conditions, including those requiring

anisotropic stress relationship or kinematic weighting of the model parameters to properly

predict the experimental observations. With further verification, the model can be extended

to completely general flow conditions and possibly packaged as part of a enhanced CFD

solver.
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CHAPTER 7

FUTURE DIRECTIONS

This work set up a framework to guide the study of suspension flows through the use of

numerical modeling. We built a numerical tool which can be used to model suspension

flows in general geometries. This was done by implementing a general geometry flow solver

which could take into account spatially varying viscosity. The particle migration solution

was then coupled to this flow solver through an iterative approach. This approach involved

solving for the flow field at a give particle volume fraction field and then using the new flow

field to update the particle volume fraction field through the particle migration equation.

This allows the migration solution to be used with other, more powerful computational fluid

dynamics (CFD) solvers, if the need arises.

The key to formulating a “general” geometry particle migration solution was in the

set-up of the particle stress constitutive model. Previous to this work, most suspension

flow models were tested in and limited to simple shear flows. In this work, we illustrated

some of the critical parameters to forming a frame invariant particle stress constitutive

model. Exploring parameters dealing with the local kinematics of a general flow field, such

as the kinematic ratio (ρ̂k) which is a measure of the balance of local rotation to shear, we

illustrated a systematic way to extend a model proposed for simple shear suspension flows

to general geometry conditions.

Now that a general suspension flow model has been developed, the next greatest need

in the area of suspension flow study is further experimental work. If data were available for

a wider range of suspension flow conditions, the solver-evolver tool could be used to greatly

increase the understanding of the phenomena of shear-induced phase segregation in solid-

liquid suspension flows. With each new flow studied, the assumptions of the model could be

tested and verified or disqualified. This would allow the formation of an appropriate scope

for the application of the suspension flow model.
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This work resulted in the development of a frame invariant normal stress based rhe-

ological model for the study of concentrated particulate suspension flows. Here we have

explored how this fits into the current state of suspension flow research by first exploring

the relationship between experiment, simulation and rheology in Section 7.1. Next, we look

at how the solver-evolver computational tool can be used effectively in the study of sus-

pension flows in Section 7.2. Finally, we look at ways that additional capabilities can be

added to the suspension flow model in Section 7.3 and wrap up the discussion with some

conclusions in Section 7.4.

7.1 Experiment, Simulation and Rheology

The use of experiment, simulation, rheology and continuum models forms the core of sus-

pension flow research. While we have looked extensively at the use of continuum-based

particle migration models, how this fits in with the other three is extremely important.

Experimental work represents the much needed look into “reality” that is needed for

any modeling approach. Verification of the model predictions with real world data brings

confidence that the modeling approach is appropriate and that the assumptions used are

valid. While experimental work is important, it is not the only means to provide model

verification or gain insight into suspension flow behavior. Simulation and rheology also

provide key tools for this process.

Simulation represents a numerical “experiment.” The suspension is studied by rigorously

tracking individual particles and using first principles to predict the effect of a bulk flow

field on their relative positions, as well a their effect on each other. One such method is

Stokesian dynamics, outlined in a paper by Brady and Bossis (1988). Simulations present

key information that is not easily accessible in a real-world experiment. They allow access

to stress data, particle correlation functions and large-scale structure formation. This data

can help provide insight into the form that a constitutive model should take on and had

a major part in the formation of the constitutive model used here (Nott and Brady, 1994;

Morris and Boulay, 1999).

Rheology, which is also an experimental approach, is more diagnostic in nature rather
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than an exploration of new territory. Rheology contains a tool-set of basic, well defined

flow fields used to extract data to quantify the behavior of a complex fluid. It has been

used extensively in the study of polymeric suspensions and other non-Newtonian fluids.

Rheological flows measure key modeling constants and parameters that make up most non-

Newtonian constitutive laws. In the same manner that the viscosity must be measured to

model the flow of a Newtonian fluid, for a non-Newtonian fluid there are a set of parameters

that must be known. These include things such as the γ̇ dependence of the viscosity or the

existence of directionally dependent or anisotropic normal stresses.

Anisotropic normal stresses result in a difference between the stress in different directions

and is behind some of the more unusual behaviors observed for non-Newtonian fluids. The

terms N1, N2 represent the normal stress differences observed in a simple shear flow. N1 is

the difference between the stress in the flow direction and stress in the gradient direction

with the directions defined as in Chapter 2. N2 is the difference between the stress in

the gradient and vorticity directions. Rheological flows provide a means to capture the γ̇

dependence of these term, as well as the φ dependence for a suspension flow.

For extensionally dominated or “shear-free” flows, there are usually separate sets of

experiments used to measure suspension flow behavior. In addition, there are separate

sets of parameters to quantify. This is because traditionally there have been two separate

sets of constitutive models for the two flow regimes, shear and shear-free. In our work,

we must take advantage of both “end-points” on the spectrum and rely on local kinematic

measurements to interpolate between the two.

Rheology therefore provides a very power tool in suspension flow study. It helps to

provide suspension dependent parameters that can be measured under controlled conditions

and then used to model more complex phenomena. While suspension rheology has proved to

be problematic, there are some newer techniques such as the parallel-ring geometry (Kolli,

Pollauf and Gadala-Maria, 2002) which have helped to get over the difficulties and shed

light into this area.
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7.2 Using the Solver-Evolver

With the support of experimental study, rheological observation and simulation results,

continuum modeling is a very power tool for the study of suspension flows. With a properly

verified modeling approach and constitutive relationship, new flows can be studied and

current results can be extrapolated out to provide insight into potential flow configurations

for experimental devices or point out shortcomings in current flow configurations. The

solver-evolver provides the ground work for such a computational tool. With the finite-

volume method (FVM) used to discretize the governing equations and the coupled flow-

migration solution, this tool proves to be flexible to a number of geometries and conditions.

Furthermore, the migrator portion can even be split off and used with other another flow

solver, including current commercial applications.

For a commercial application to be compatible there are only a few basic requirements

that would need to be in place. The commercial flow solver must allow a systematic iterative

solution such as the solver-evolver approach. This means that the commercial solver must

allow an outside or custom set of equations to update critical fluid parameters between

each time step or steady-state solution. The flow field would also have to allow the use

of user-defined, spatially varying viscosity functions, along with user-defined source terms.

All-in-all, for any flow solver capable of handling current non-Newtonian constitutive laws

for polymer solutions, these requirements should be relatively standard.

In itself, the solver-evolver provides a ready-made suspension flow solver for anyone

with a copy of MATLAB and a basic knowledge of how to use it. Beyond this, it provides

a foundation and starting point for the development of a viable commercial application or

plug-in to a commercial CFD solver.

7.3 Extending the Particle Stress Constitutive Model

The key aspect of the suspension flow model is that it is stress based. This means that any

modification to the assumptions and requirements of the model will first involve measuring

the stress of this new “type” of suspension on a basic rheometer and seeing how the viscosity

and normal stress differences (N1, N2) are effected by changes in the shear-rate (γ̇) and
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particle volume fraction (φ). After exploring basic shear-flow behavior, tests need to be

run for shear-free (extension) flow conditions. This allows the determination if the model

is fundamentally able to handle the new “type” of suspension with a minor modification

in the form of the viscosity model or if a more fundamental modification must be made.

By basing the suspension modeling approach on a particle stress constitutive model which

can be changed, the suspension flow equations can be altered to fit the needs of the “type”

of suspension to be modeled. Here we explain strategies for altering the solver-evolver and

particle stress model to attempt to take into account and model new “types” of suspensions.

Basic initial issues involve heavy/light particles, Brownian particles, electrically charged

particles, and finite-Reynolds-number flows. The ability to account for a mismatch between

particle density and suspending fluid density is in place, as can be seen in Chapter 2,

Eq. (2) and Eq. (7). The next step would be to verify that this portion of the code works

and matches some basic experimental data. As for Brownian particles, this has been done

in Frank et al (2003) to model the channel flow of Brownian suspensions. To add this ability

to the current suspension flow model, the normal stress portion (ΣNS
P ) from the constitutive

particle stress model given in Chapter 2, Eq. (9) would have to be altered,

ΣNS
P,ii =

aB(φ)

2/9Pe
+

ηoγ̇
1

Aηb(φ)PeQ
B

ii

+ 1
ηn(φ)Qii

. (73)

In this expression, Pe is the Peclét number which is a measure of the balance between

Brownian and shear forces. For non-Brownian particles, where Pe → ∞, this expression

would simply to the previous definition of the particle phase normal stress, ΣNS
P,ii = ηnγ̇Qii.

The term aB(φ) is the particle volume fraction dependence of the isotropic Brownian stress,

ηb(φ) is the φ dependence of the anisotropic Brownian stress, QB
ii takes into account the

degree of anisotropy of the Brownian stress and A controls the transition between low to

high Peclét number conditions.

Charged particles were addressed in von Pfeil et al (2003) with the addition of an

electric-field induced particle stress term. This term was,

Σelec
P = εo[(ε(φ, a1) − εf )EelecEelec − 1

2
(ε(φ, a1) − εf + a2)E

2δ], (74)

where εo is the permittivity of free space, ε(φ, a1) is the suspension dielectric constant, εf is
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the dielectric constant of the suspending fluid, a1 and a2 are electrostriction coefficients of

the suspension, and Eelec, E characterize the applied electric field. This addition allowed von

Pfeil et al to study the stability of particle banding in simple shear flow of electrorheological

suspensions.

Adding the ability to handle finite-Reynolds-number (or inertia) flow conditions is just a

matter of adding back in the convective terms to the flow solution, which were removed with

the assumption of zero-Reynolds-number flow conditions. The applicability of the flow solver

to the solution of finite-Reynolds-number flows would need to be verified with literature and

experimental data. As for the effect of finite-Reynolds-number conditions on the particle

stress or constitutive behavior, this was addressed in the work of Mikulencak and Morris

(2004). A further look into inertial influences, especially those involving turbulence, may

be beyond the scope of the model at this point or may just involve coupling the migrator to

a turbulent flow solver and observing how the predictions match up to experiments. Some

turbulent suspension flow work has been done (Matas, Morris and Guazzelli, 2003), but is

still in the early stages.

Other major issues include deformable particles, particle clumping, and non-spherical

suspended particles. These issues involve complex phenomena, which require careful consid-

eration to address. The first issue of deformable particles will most likely need to be resolved

with basic rheological measurement and determination of how this affects ηs = ηs(γ̇, φ) and

ηn = ηn(γ̇, φ) relationships. The next issue of particle clumping or the formation of large

scale structures presents a much more tricky problem, since this is a continuum based mod-

eling approach. If the structures approach the size scale of the geometry of the flow solution,

the continuum modeling approach will eventually break down. If they remain well below

this level, they could possibly be taken into account for by adjusting the value of the particle

size scale, a. It could be simply set to a larger value to represent the size of an average

clump. It could also be done more intelligently by setting a = a(γ̇, φ), if some information

is available on the mechanism of clumping or the observed parameter range of clumping

behavior.

The problem of non-spherical particle shapes, such as an oblong shape, results in the
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question of how does the orientation of the particles themselves effect the stress law. This

can lead to two possible adjustments. First, how this effects the stress law needs to be

determined through rheometric measurements, including “history” effects. If history effects

such as lining up along streamlines are observed, then an orientation parameter may need

to be added to the constitutive law to take into account these effects. The orientation

parameter acts as an approximation of the configuration of the particle and the amount

of resistance that they place on the bulk flow. Also some consideration might need to be

taken on how different flow types could affect these suspensions in general flow fields. Local

kinematics should have an effect on how particles will orient themselves to on another. This

kinetic dependence could eliminate the necessity for a history or orientation parameter, since

ρ̂k would track the kinematic history of the particles.

7.4 Conclusions

The suspension flow model developed in this work represents a solid starting point for

further suspension flow research. The solver-evolver is a rigorous computational tool which

can be applied to general geometry suspension flow solutions on its own or coupled to more

powerful commercial CFD packages.

The suspension flow model illustrates different strategies and methods for modeling

general flow-field conditions and waits only for further experimental work to verify which

method works best to match real-world behavior. Also, the suspension flow model is not

limited to the assumptions used in this work, but can be applied to a wide number of types

of suspensions. Here we have suggested ways to adjust the model to handle such complex

behavior as particle clumping, deformable particles and non-spherical particle shapes. In

addition, we have pointed out previous work in the literature where variations of the sus-

pension flow model have been used for Brownian particles and electrically charged particles

in an applied electric or magnetic field.

We believe that this work has set a solid foundation for future suspension flow study

and has added further insight in using a frame invariant formulation for the particle stress

constitutive law, in order to allow a fundamental basis for its use in general geometry
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suspension flow solutions.
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APPENDIX A

SOLVER-EVOLVER CODE: MATLAB M-FILES

If you are interesting in getting a copy of the Solver-Evolver m-files used for this work please

contact Ryan Miller at t_ryno76@hotmail.com with SOLVER-EVOLVER in the subject

line. (Note: if you do not put SOLVER-EVOLVER in the subject line, the message will

most likely be deleted)
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