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Abstract. This work is aimed towards deriving macroscopic models that describe pollutant mi-
gration through fractured porous media. A homogenisation method is used, that is, macroscopic 
models are deduced from the physical description over a representative elementary volume (REV), 
which consists of an open fracture surrounded by a porous matrix block. No specific geometry is 
at issue. The fractured porous medium is saturated by an incompressible fluid. At the REV’s scale, 
the transport is assumed to be advective-diffusive in the porous matrix and due to convection and 
molecular diffusion in the fracture’s domain. It is also assumed that there is no diffusion in the solid. 
We demonstrate that the macroscopic behaviour is described by a single-continuum model. Fluid 
flow is described by Darcy’s law. Four macroscopic single-continuum models are obtained for the 
contaminant transport: a diffusive model, an advective-diffusive model and two advective-dispersive 
models. One of the two advective-dispersive models accounts for the advection process in the porous 
matrix. The domains of validity of these models are defined by means of the orders of magnitude of 
the local Péclet numbers in the porous matrix block and in the fracture’s domain.

Key words: contaminant transport, fractured porous media, dual-porosity, continuum modelling, 
homogenisation.

1. Introduction

The focus of the present study is on the fundamentals of contaminant transport
in fractured porous media. Such formations are composed of an interconnected
network of fractures and blocks of porous medium. The practical applications
are important as many natural formations are fractured, and accurate models are
required for predicting the fate of pollutants in aquifers contaminated by industrial,
agricultural and radioactive waste.

In the study of contaminant transport in fractured porous media, the bulk of
the research effort has been devoted to the transport in discrete fracture network
models. Some of this literature has been reviewed in Sahimi (1995) and Bear
et al. (1993). These studies have proven to be useful for understanding transport



phenomena and discrete models are required when the continuum approach to the
description of the transport problem is not applicable. However, the applicability of
discrete models remains quite limited to field problems as they require the determ-
ination of the precise characteristics of the fracture network in its complete detail.
Thus, in many practical field problems it is worth using continuum models when
the conditions necessary to adopt this approach are met.

In the continuum approach, the transport problem is transformed from the mi-
croscopic level to a macroscopic scale at which the problem is expressed in terms
of averages of the microscopic quantities. The need to know the exact local charac-
teristics of the whole domain is circumvented by the use of these average quantities.
The averages are taken over a representative elementary volume (REV). The size
of this REV must be larger than the heterogeneity size and much smaller than the
macroscopic length-scale. It follows that the continuum approach is applicable to
a fractured porous medium provided that an REV can be determined. Two kinds
of continuum approaches may be distinguished: (i) phenomenological approaches
with which the form of the macroscopic model is postulated on the basis of physical
considerations and experimental results; (ii) upscaling methods with which the
macroscopic model is rigorously derived by starting with the physical behaviour
at the REV’s scale. Despite the applications, very few studies exist on continuum
modelling of contaminant transport in fractured porous media. A comprehensive
review of studies based on the use of continuum phenomenological models can be
found in Berkowitz et al. (1988). Two kinds of continuous models have been used:
the double-continuum models and the single-continuum models. In the double-
continuum models, the fractured porous medium is represented as two distinct and
interacting continua, one consisting of the network of fractures and the other of
the porous blocks. The interaction between both continua is formulated by an ex-
change function. This concept was originally proposed by Barenblatt and Zheltov
(1960) for describing fluid flow in a fractured porous medium. For transport of
contaminants, double-continuum models have been employed in Bibby (1981) and
Huyakorn et al. (1983). In the single-continuum approach, the whole fractured
porous domain is represented as an equivalent porous medium. Berkowitz et al.
(1988) underlined that in many cases a single conceptualization may be sufficient,
but no firm evidence exists whether one or the other approach should be used.

In this study, we demonstrate that when considering, at the REV’s scale, the
flow of an incompressible fluid and the transport by advection and diffusion in
the porous matrix with no diffusion in the solid, and by convection and molecular
diffusion in the fracture’s domain, the macroscopic model is a single-continuum
model. We apply the homogenisation theory which is a rigorous method of up-
scaling by multiple scales expansions. No specific geometry is at issue, the work
is aimed towards deriving the most general models. The REV consists of an open
fracture surrounded by a porous matrix block.

After introducing the method, we analyse the local description and define the
ranges of dimensionless parameters. The order-of-magnitude analysis of these



parameters leads to the determination of four distinct cases which are defined by
means of the orders of magnitude of the local Péclet numbers, Pef and Pem, in
the fracture’s domain and in the porous matrix, respectively. Then we employ
the homogenisation method systematically. The fluid flow is first analysed and
leads to Darcy’s law. Four macroscopic single-continuum transport models are fi-
nally obtained: a diffusive model, an advective-diffusive model and two advective-
dispersive models. One of the two advective-dispersive models accounts for the
advection process in the porous matrix.

2. An Introduction to Homogenisation

2.1. CONCEPT OF HOMOGENISABILITY

Modelling physical processes in heterogeneous media such as transport in porous
media turns out to be a difficult task, as the complete description and solution at
the microscopic level of the physical phenomenon being considered is impossible.
Nonetheless, the internal disorder may allow continuum modelling, that is, the
derivation of a large-scale continuous description. In other words, a physical pro-
cess evolving in a heterogeneous medium can, under specific conditions, be mac-
roscopically described by means of equations with transfer coefficients that are
independent of the macroscopic boundary conditions. The essence of homogenisa-
tion techniques is to derive such equivalent macroscopic continuous behaviours by
upscaling the so-called ‘local description’, that is, the physical description at the
heterogeneity scale.

Homogenisation is possible if the density of heterogeneities is sufficiently high.
For a material with a random structure, this intuitive condition entails the existence
of a REV, which is large compared to the heterogeneity size and small compared to
the macroscopic size. Thus, the fundamental assumption behind homogenisation is
the separation of scales, which can be expressed as follows:

l << L,

where l is the characteristic size of the REV and L is the characteristic macroscopic
length. Note that, even if not always explicitly stated, this fundamental assumption
of separation of scales is common to all continuum approaches including all ho-
mogenisation techniques. The concept of homogenisability is, therefore, linked to
the notion of separation of scales. Non-homogenisable situations can occur as the
condition of separation of scales is not always satisfied. But in these situations, the
physical phenomenon cannot be described by means of a macroscopic equivalent
continuum model.

2.2. HOMOGENISATION FOR PERIODIC STRUCTURES

In the present study, we use the method of homogenisation for periodic structures
– also called method of multiple scales – that has been introduced by Bensoussan



et al. (1978) and Sanchez-Palencia (1980). The method of multiple scales is based
on two assumptions: (i) the separation of scales; (ii) the periodicity.

As alluded to above, the fundamental assumption is the separation of scales.
The key parameter of this method is the length-scale ratio

ε = l

L
<< 1, (2.1)

in which l is the microscopic characteristic length and L is the macroscopic char-
acteristic length.

The medium is also assumed to be periodic and the period, �, is O(l). As natural
media are never periodic, it raises the question whether this assumption is a strong
restriction or not. The condition of periodicity with the multiple scale method is
actually the counterpart of the condition of local stationarity with statistic meth-
ods. The advantage of the multiple scale method is that, thanks to the condition of
periodicity, no preliminary assumption on the form of the macroscopic equations
is required. The macroscopic model results only from the physics being chosen at
the local scale. Note that for a periodic medium, the REV is fully determined as it
is merely the period. This method is thus a powerful tool for rigorously deriving
the macroscopic behaviour of the problem being considered by starting with the
detailed micro-scale physical description.

2.3. METHODOLOGY

2.3.1. Introduction

In this study, we use the approach suggested in Auriault (1991), with which the
problem is tackled in a physical manner. Indeed, it offers the additional benefit that
homogenisability conditions are explicitly stated. Thus, besides the macroscopic
model, its domain of validity is also provided. The methodology is based on the use
of the dimensionless numbers that arise from the local description. The domain of
validity of the derived macroscopic model is given by means of orders of magnitude
of the local dimensionless numbers.

2.3.2. Separation of Space Variables

Using the two characteristic lengths, l and L, two dimensionless space variables
are defined

�y = �X
l
, (2.2)

�x = �X
L
, (2.3)

where �X is the physical space variable. If the condition of separation of scales
is satisfied (ε << 1), then �y and �x appear as two independent space variables:



�y is the microscopic space variable and describes the local scale; whereas �x is
the macroscopic variable. As a consequence, the unknown field quantities being
considered (e.g. pressure, velocity, concentration, ...) are, a priori, functions of both
space variables �y and �x. Furthermore, invoking the differentiation rule of multiple
variables, the gradient operator with respect to the physical space variable, �∇X, is
written as

�∇X = 1

l
�∇y + 1

L
�∇x, (2.4)

where �∇y and �∇x are the gradient operators with respect to �y and �x, respectively.

2.3.3. Normalisation

The purpose of normalisation is to express the local description in a dimensionless
form and then to analyse the orders of magnitude of the dimensionless parameters
that arise from this new writing. The dimensionless writing is obtained by defining
a dimensionless counterpart for all physical variables as follows:

φ = �

�c

,

in which � is a given physical variable, φ is its dimensionless counterpart and �c

is a characteristic value of �.
The dimensionless writing of the equations requires the choice of a reference

length. Let us arbitrarily choose L as the reference length. Thus, according to (2.4),
the corresponding dimensionless operator gradient, �∇ , is given by

�∇ = L �∇X = ε−1 �∇y + �∇x. (2.5)

For a transient process a reference time is also required.
The approach consists in estimating all dimensionless numbers with respect

to the small parameter ε. A dimensionless number Q is said to be order of εq

when

εq+1 << Q << εq−1. (2.6)

2.3.4. Derivation of the Macroscopic Description

The homogenisation method of multiple scales is based on the fundamental state-
ment that if the scales are well separated (ε << 1), then all physical variables can
be looked for in the form of asymptotic expansions in powers of ε

φ(�y, �x) = φ0(�y, �x)+ ε φ1(�y, �x)+ ε2φ2(�y, �x)+ · · · , (2.7)

in which functions φi are �y-periodic and dimensionless.
The method consists in incorporating these asymptotic expansions in the di-

mensionless local description. This leads to approximate governing equations and



boundary-conditions at the successive orders, which together with the condition of
periodicity define boundary-value problems in the periodic cell. Once solved, their
average over the period yields the macroscopic behaviour.

The purpose of the present work is to apply this method for deriving the models
for contaminant transport in fractured porous media.

3. Contaminant Transport in Fractured Porous Media: Local-Scale Analysis

3.1. MEDIUM DESCRIPTION

The system considered in this study is a macroscopic volume of a densely fractured
porous medium whose characteristic size is L and in which we investigate the
transport of a contaminant. The medium is periodic, of period �, and has a scale
length l which is small compared to L

ε = l

L
<< 1. (3.1)

Within the periodic cell �, which is sketched on Figure 1, we denote by �f

the fracture’s domain, by �m the porous matrix domain and by � their common
boundary. �X represents the physical space variable of the medium. We consider
the dimensionless variables �y and �x defined by Equations (2.2) and (2.3). The sep-
aration of scales (3.1) implies that �y and �x are two separated space variables, that
is, that both variables are necessary for describing the medium. As a consequence,
the unknown field quantities are functions of both space variables and the gradient
operator with respect to �X takes the form (2.4).

3.2. LOCAL BEHAVIOUR

3.2.1. In the Fractures (�f )

The fracture’s domain is saturated by water and the presence of a solute in water
gives rise to convection and molecular diffusion. The fluid is assumed to be New-
tonian and incompressible. We further assume that the flow is slow. Fluid flow in
�f is, therefore, described by Stokes equation

µ�X
�Vf − �∇XPf = �0, (3.2)

where µ represents the viscosity, while �X and �∇X are the Laplacian and the
gradient operators with respect to the physical variable, �X, respectively. Symbols
�Vf and Pf represent the fluid velocity and the fluid pressure, respectively.

For an incompressible fluid, the mass-balance equation is written as

�∇X · �Vf = 0. (3.3)

The migration of the solute diluted in the liquid is described by the convection-
diffusion equation

∂Cf

∂τ
− �∇X · (d̃f �∇XCf − Cf

�Vf ) = 0, (3.4)



Figure 1. Periodic cell of the fractured porous medium.

in which τ represents the time, while Cf is the solute concentration in the fractures
and d̃f is the tensor of molecular diffusion.

3.2.2. In the Porous Matrix (�m)

Fluid flow in the porous matrix is described by Darcy’s law

�Vm = −κ̃m �∇XPm, (3.5)

where κ̃m is the permeability tensor of the porous matrix, �Vm and Pm represent the
fluid velocity and the fluid pressure in the porous matrix, respectively.

The mass-balance equation is written as

�∇X · �Vm = 0. (3.6)

The presence of the solute in the liquid gives rise to diffusion and convection in
the micropores. We assume that there is no diffusion within the solid skeleton.
Solute transport at the porous matrix scale is described by the advection-diffusion
equation

φm
∂Cm

∂τ
− �∇X · (d̃m �∇XCm − Cm

�Vm) = 0, (3.7)

in which Cm is the solute concentration in the porous matrix, and d̃m represents the
effective diffusion tensor. φm is the matrix porosity and is assumed to be such that
φm = O(ε0), which according to (2.6) means that φm >> ε.

Note that as a continuous model is considered at the porous matrix scale,
the pore length-scale, lp , is necessarily small compared to the period size:
lp << l.



3.2.3. Boundary Conditions (�)

Fluid flow and solute transport occur over the interface between the porous matrix
and the fractures. Boundary conditions must, therefore, describe the continuity of
fluid velocities

�Vf = �Vm on �, (3.8)

the continuity of pressures

Pf = Pm on �, (3.9)

the continuity of concentrations

Cf = Cm on �, (3.10)

and the continuity of solute fluxes, which according to (3.8) and (3.10) reduces to
the continuity of diffusive fluxes

(d̃f �∇XCf ) · �n = (d̃m �∇XCm) · �n on �, (3.11)

in which �n denotes a unit normal vector to �.
Equations (3.2) through (3.11) describe the behaviour at the local scale, that is

over the period �. The purpose of the next step is to normalise this local descrip-
tion.

3.3. NORMALISATION

Normalisation of the local description consists in defining a dimensionless counter-
part for each quantity by using characteristic quantities (see § 2.3.3). This requires
the choice of a reference length and of a reference time. We arbitrarily choose
L, the macroscopic characteristic length and Tf , the characteristic time of con-
taminant transfer in the fractures as the reference length and the reference time,
respectively. According to the transport regime, Tf is either related to the diffusion
or to the convection process. Equations (3.2)–(3.11) may be placed in a dimension-
less form by introducing the new variables. The resulting dimensionless equations
are

µVfc

LδP
��vf − �∇pf = �0, (3.12)

�∇ · �vf = 0, (3.13)

L2

DfcTf

∂cf

∂t
− �∇ ·

(
D̃f

�∇cf − LVfc

Dfc

cf �vf
)

= 0, (3.14)

�vm = − l2pδP

µVmc
L
K̃m

�∇pm, (3.15)



�∇ · �vm = 0, (3.16)

φmL
2

Dmc
Tf

∂cm

∂t
− �∇ ·

(
D̃m

�∇cm − LVmc

Dmc

cm�vm
)

= 0, (3.17)

�vf |� = Vmc

Vfc
�vm|�, (3.18)

pf |� = pm|�, (3.19)

cf |� = cm|�, (3.20)

[(D̃f
�∇cf ) · �n]� = Dmc

Dfc

[(D̃m
�∇cm) · �n]�. (3.21)

Thus, the dimensionless writing introduces eight dimensionless numbers

Ff = µVfc

LδP
, Nf = L2

DfcTf
, Pef = LVfc

Dfc

,

Qm = l2pδP

µVmc
L
, Nm = φmL

2

Dmc
Tf
, Pem = LVmc

Dmc

,

v = Vmc

Vfc
, d = Dmc

Dfc

.

Pef and Pem are the Péclet numbers in the fracture’s domain and in the porous
matrix domain, respectively.

The phenomenon is thus governed by a large number of dimensionless paramet-
ers. The purpose of the order-of-magnitude analysis presented below is to assess
the effect of each of these parameters and to sort out the transport regimes that can
physically exist and that can be homogenised. The orders of magnitude of these
dimensionless parameters are estimated with respect to powers of ε.

3.4. ORDER-OF-MAGNITUDE ANALYSIS

3.4.1. Order-of-Magnitude of v

v arises from boundary condition (3.18) and is the characteristic velocity ratio

v = Vmc

Vfc
. (3.22)

In an order-of-magnitude sense, Stokes equation in the fractures (3.2) and Darcy’s
law in the porous matrix (3.5) read

Vfc = O

(
l2δP

µL

)
, Vmc

= O

(
l2pδP

µL

)
.



Thus, we get

v = Vmc

Vfc
= O

(
l2p

l2

)
, (3.23)

where lp is the characteristic pore-size.

3.4.2. Order-of-Magnitude of d

d emerges from Equation (3.21) that characterizes the continuity of solute fluxes
and is defined as

d = Dmc

Dfc

. (3.24)

The tensor of effective diffusion in the porous matrix is such that

Dmc
= O(φmτmDmol). (3.25)

Dmol represents the characteristic molecular diffusion in the micropores, τm is the
tortuosity. The porosity φm has been assumed to be such that φm = O(ε0). Usual
values of tortuosities vary from 0.1 for clays to 0.7 for sands (De Marsily, 1986).
Thus, in general cases we have φm τm = O(ε0).
In the fractures, D̃f is the tensor of molecular diffusion

Dfc = O(Dmol). (3.26)

Therefore, in general cases the order of magnitude of d is

d = O

(
Dmc

Dfc

)
= O(ε0). (3.27)

3.4.3. Order-of-Magnitude of Ff

Ff arises from Stokes equation in the fractures (3.12) and is defined by

Ff = µVfc

LδP
. (3.28)

Stokes equation indicates that the local flow is generated by a macroscopic pressure
gradient, which in an order-of-magnitude sense reads

µVfc

l2
= O

(
δP

L

)
,

and from which we deduce

Ff = µVfc

LδP
= µVfcL

l2δP
× l2

L2
= O(1)× O(ε2) = O(ε2). (3.29)



3.4.4. Order-of-Magnitude of Qm

Qm results from the normalisation of Darcy’s law in the porous matrix (3.15) and
is defined as

Qm = l2pδP

µVmc
L
. (3.30)

Qm can be expressed with respect to Ff as follows:

Qm = l2pδP

µVmc
L

= F−1
f × l2p

L2
× Vfc

Vmc

, (3.31)

which according to (3.23) gives

Qm = O(ε0). (3.32)

3.4.5. Orders-of-Magnitude of Nf and Pef

Both numbers, Nf and Pef , arise from the convective-diffusive equation in the
fractures (3.14). Their orders of magnitude are actually linked. They are defined by

Nf = L2

TfDfc

, (3.33)

Pef = LVfc

Dfc

. (3.34)

The possible orders of magnitude for Pef , which correspond to three distinct
transport regimes in the fracture’s domain, are the following:

Pef � O(ε) (predominant diffusion),

Pef = O(ε0) (equivalent diffusion and convection),

Pef = O(ε−1) (predominant convection). (3.35)

It can easily be shown that when Pef <O(ε), the macroscopic behaviour is the
same as in the case Pef = O(ε). When Pef >O(ε−1), the situation is non-homo-
genisable. The above results on the possible orders of Pef have been demonstrated
in Auriault and Adler (1995) in the case of a single-porosity medium and remain
valid at the fracture’s scale in the present problem. We will, therefore, successively
consider the following orders of magnitude for Pef :

Pef = O(ε),O(ε0),O(ε−1). (3.36)

Now, let us define

Tdf = L2

Dfc

(characteristic time of diffusion in the fractures), (3.37)



Tcf = L

Vfc
(characteristic time of convection in the fractures). (3.38)

It follows that Nf and Pef can be expressed as time-scale ratios:

Nf = Tdf

Tf
, (3.39)

Pef = Tdf

Tcf
, (3.40)

Noticing that

Tf = Tdf when Pef = O(ε) (predominant diffusion),

Tf = Tdf = Tcf when Pef = O(ε0)

(equivalent diffusion and convection),

Tf = Tcf when Pef = O(ε−1) (predominant convection),

we get, according to (3.39) and (3.40)

Nf = O(1) when Pef = O(ε),O(1),

Nf = O(ε−1) when Pef = O(ε−1). (3.41)

3.4.6. Orders-of-Magnitude of Nm and Pem

Both dimensionless numbers arise from the normalisation of the advection-dif-
fusion equation in the porous matrix (3.17). They are defined by

Nm = φmL2

Dmc
Tf
, (3.42)

Pem = LVmc

Dmc

. (3.43)

The orders of magnitude of Nm and Pem can be deduced from those of Nf and
Pef , respectively, as follows:

Nm = O(d−1Nf ), (3.44)

Pem = Vmc

Vfc
d−1Pef . (3.45)

According to (3.27), we get

Nm = O(Nf ), (3.46)



Pem
Pef

= O

(
Vmc

Vfc

)
. (3.47)

The order of magnitude of Nm is, therefore, deduced from the order of Pef and
from (3.41). The determination of the order of Pem depends on the order of Pef
and requires the knowledge of O(Vmc

/Vfc).

3.4.7. Interpretation and Definition of Cases of Interest

According to the above estimations, the dimensionless local description may now
be written as follows:

ε2��vf − �∇pf = �0 in �f , (3.48)

�∇ · �vf = 0 in �f , (3.49)

Nf

∂cf

∂t
− �∇ · (D̃f

�∇cf − Pef cf �vf ) = 0 in �f , (3.50)

�vm = −K̃m
�∇pm in �m, (3.51)

�∇ · �vm = 0 in �m, (3.52)

Nm

∂cm

∂t
− �∇ · (D̃m

�∇cm − Pemcm�vm) = 0 in �m, (3.53)

�vf = Pem
Pef

�vm on �, (3.54)

pf = pm on �, (3.55)

cf = cm on �, (3.56)

(D̃f
�∇cf ) · �n = (D̃m

�∇cm) · �n on �, (3.57)

in which, according to (2.5), the dimensionless gradient operator, �∇, is written as

�∇ = ε−1 �∇y + �∇x. (3.58)

Thus, the local description (3.48)–(3.57) depends upon the orders of magnitude
of Pef , Pem, Nf , Nm. We have already determined the orders of magnitude of
interest for Pef (3.36), from which the orders of Nf (3.41) and of Nm (3.46) can
be deduced. The order of Pem is an important parameter of the problem as it char-
acterizes the transport regime in the porous matrix and, as a result, may condition
the macroscopic behaviour. According to (3.47), the order of Pem is obtained from
the orders of Pef and v. According to (3.23), we have

v = Vmc

Vfc
= O

(
l2p

l2

)
.



The continuous model for describing the phenomenon in the porous matrix is
valid provided lp << l, and thus Vmc

<< Vfc. Let a priori consider the following
possible orders of magnitude for v:

v = O(ε),O(ε2),O(ε3), . . . . (3.59)

The cases of interest are defined from the possible combinations between the
orders of Pem and Pef . According to the three situations defined in (3.35), to
relationship (3.47) and to the possible orders for v (3.59), the transport regimes
in the porous matrix and in the fracture’s domain can be combined in the four
following ways:

• Case I: Pef � O(ε) and Pem < O(ε).
Predominant diffusion in the fractures,
predominant diffusion in the porous matrix.

• Case II: Pef = O(ε0) and Pem � O(ε).
Equivalent diffusion and convection in the fractures,
predominant diffusion in the porous matrix.

• Cases III: Pef = O(ε−1).

Predominant convection in the fractures.

+Case III.a: Pem = O(ε0).

Equivalent diffusion and advection in the porous matrix
+Case III.b: Pem � O(ε).
Predominant diffusion in the porous matrix

Cases I and II show that when Pef = O(ε) or Pef = O(ε0), the transport re-
gime remains of predominant diffusion type in the porous matrix (i.e. Pem <ε0),
whatever the order of v is. Case III, corresponding to Pef = O(ε−1), is split into
two sub-cases which lead to two distinct transport regimes in the porous matrix:

Pef = O(ε−1) :



v = O(ε) ⇒ Pem = O(ε0).

(equivalent diffusion and advection in the porous matrix),

v� O(ε2) ⇒ Pem � O(ε)
(predominant diffusion in the porous matrix).

The homogenisation procedure may now be applied in each of the four cases
defined above. All physical (and dimensionless) variables, �vf , pf , cf , �vm, pm, cm,
are looked for in the form of asymptotic expansions in powers of ε

�vf (�y, �x) = �v0
f (�y, �x)+ ε�v1

f (�y, �x)+ ε2�v2
f (�y, �x)+ · · · , (3.60)

pf (�y, �x) = p0
f (�y, �x)+ εp1

f (�y, �x)+ ε2p2
f (�y, �x)+ · · · , (3.61)

cf (�y, �x, t) = c0
f + εc1

f (�y, �x, t)+ ε2c2
f (�y, �x, t)+ · · · , (3.62)

�vm(�y, �x) = �v0
m(�y, �x)+ ε�v1

m(�y, �x)+ ε2�v2
m(�y, �x)+ · · · , (3.63)



pm(�y, �x) = p0
m(�y, �x)+ εp1

m(�y, �x)+ ε2p2
m(�y, �x)+ · · · , (3.64)

cm(�y, �x, t) = c0
m(�y, �x, t)+ εc1

m(�y, �x, t)+ ε2c2
m(�y, �x, t)+ · · · , (3.65)

where the functions �vif , pif , cif , �vim, pim, cim are �-periodic.
Then, the method consists in incorporating these expansions, together with the

expression of the dimensionless gradient operator (3.58) in the set of dimension-
less Equations (3.48) through (3.57). The identification at the successive orders of
ε allows the construction of appropriate boundary-value problems. Solving these
boundary-value problems leads to the macroscopic behaviour. Application of this
procedure for analysing the distinct fluid flow and solute transport problems is
presented in the two next sections.

4. Homogenisation of Fluid Flow

Fluid flow is described by Equations (3.48), (3.49), (3.51), (3.52), and boundary
conditions (3.54) and (3.55). Substituting expansions (3.60), (3.63), (3.64) and
(3.64) into these equations and invoking the differentiation rule (3.58), we get a
set of perturbation equations

�∇yp
0
f = �0, (4.1)

�y �v0
f − �∇yp

1
f − �∇xp

0
f = �0, (4.2)

...

�∇y · �v0
f = 0, (4.3)

�∇y · �v1
f + �∇x · �v0

f = 0, (4.4)

...

�∇yp
0
m = �0, (4.5)

...

�v0
m = −K̃m( �∇yp

1
m + �∇xp

0
m), (4.6)

...

�∇y · �v0
m = �0, (4.7)

...

�v0
f = �0 on �, (4.8)

�v1
f =

{ �v0
m if v = O(ε),

�0 if v = O(ε2),
(4.9)

...



p0
f = p0

m on �, (4.10)

...

�vif , �vim, pif , pim are �-periodic.

It follows from (4.1), (4.5) and (4.10) that

p0
f = p0

m = p0(�x). (4.11)

Thus, at the first order the pressure field is the same in the fractures and in the
porous matrix and does not depend on the local variable, �y. This result is actually
a consequence of the separation of scales and means that, at the first order of
approximation, the pressure is constant over the REV. We now note that Equa-
tions (4.2), (4.3), (4.8) define a linear boundary-value problem of variable �y and
whose unknowns are �v0

f and p1
f . This boundary-value problem shows that �v0

f and

p1
f are linear functions of �∇xp

0. Therefore, we can write the solutions in the form

�v0
f = −k̃f �∇xp

0, (4.12)

p1
f = −�χf · �∇xp

0 + p̄1(�x), (4.13)

in which k̃f is a second-rank tensor, �χf is a vector and that are such that

− ∂kfij

∂xl∂xl
+ ∂χfj

∂yi
− Iij = 0 in �f , (4.14)

∂kfij

∂xi
= 0 in �f , (4.15)

kfij = 0 on �, (4.16)

kfij and χfj are �-periodic.
For details related to the derivation of these solutions, the reader is referred to

Ene and Sanchez-Palencia (1975), Sanchez-Palencia (1980), Auriault (1991). Next
we average Equation (4.4) over the period. This step requires the use of boundary
condition (4.9), which depends upon the order of v. In both cases we obtain

�∇x · 〈�v0
f 〉�f

= 0, (4.17)

where the average, over the period, of a quantity defined in �f is defined by

〈·〉�f
= 1

| � |
∫
�f

· d�. (4.18)

We shall now use the expression obtained for �v0
f (4.12) and the definition (4.18)

of the average to obtain 〈�v0
f 〉�f

. We deduce

〈�v0
f 〉�f

= −K̃f
�∇xp

0, (4.19)



 in which

K̃f = 〈k̃f 〉�f
= 1

| � |
∫
�f

k̃f d�. (4.20)

Equation (4.19) is Darcy’s law. The second-rank tensor K̃f is the effective
fracture permeability. It can be proved that K̃f is symmetrical and positive. For
determining K̃f , the boundary-value problem (4.14)–(4.16), from which we get k̃f ,
must be solved over the periodic cell. Therefore, K̃f depends only on the geometry
of the cell and on the fluid viscosity. The macroscopic behaviour of the flow of the
fluid is, therefore, given by Equations (4.17) and (4.19), and can also be written as

�∇x · (K̃f
�∇xp

0
f ) = 0. (4.21)

Thus, there is only one model for the fluid flow problem, which shows that the
order of magnitude of Pem/Pef in boundary-condition (3.54) has no influence. We
note that the flow in the matrix has no influence on this macroscopic behaviour.
The influence of the porous matrix at the macroscopic scale is actually linked
to the characteristic times of the flow in the porous matrix and in the fractures.
Thus, in a dual-porosity medium a steady-state phenomenon has a single-porosity
behaviour. In effect, investigation of the flow of an incompressible fluid in a de-
formable fractured porous medium (Auriault and Boutin, 1992, 1993) and of a
highly compressible fluid in a rigid fractured porous medium (Royer and Auriault,
1994) have shown a strong influence of the flow in the porous matrix.

5. Homogenisation of Contaminant Transport

The mass transfer of the solute in the fluid is described by Equations (3.50), (3.53)
and boundary conditions (3.54), (3.56) and (3.57). In this section we will suc-
cessively consider the cases defined in Section 3.4.7 that correspond to distinct
transport regimes in the fractures.

5.1. CASE I: PREDOMINANT DIFFUSION IN THE FRACTURES (Pef � O(ε))

We consider here the case defined by

Pef = O(ε), Pem = O(ε2) ⇒ v = Pem
Pef

= O(ε),

Nf = O(Nm) = O(ε0).

We get the following set of perturbations expansions.

In �f

�∇y ·
(
D̃f

�∇yc
0
f

)
= 0, (5.1)

�∇y ·
[
D̃f

( �∇yc
1
f + �∇xc

0
f

)]
+ �∇x ·

(
D̃f

�∇yc
0
f

)
= 0, (5.2)



∂c0
f

∂t
− �∇y ·

[
D̃f

( �∇yc
2
f + �∇xc

1
f

)
− c0

f �v0
f

]
−

−�∇x ·
[
D̃f

( �∇yc
1
f + �∇xc

0
f

)]
= 0, (5.3)

...

In �m

�∇y ·
(
D̃m

�∇yc
0
m

)
= 0, (5.4)

�∇y ·
[
D̃m

( �∇yc
1
m + �∇xc

0
m

)]
+ �∇x ·

(
D̃m

�∇yc
0
m

)
= 0, (5.5)

∂c0
m

∂t
− �∇y ·

[
D̃m

( �∇yc
2
m + �∇xc

1
m

)]
−

−�∇x ·
[
D̃m

( �∇yc
1
m + �∇xc

0
m

)]
= 0, (5.6)

...

On �

�v0
f = �0, (5.7)

�v1
f = �v0

m, (5.8)

...

c0
f = c0

m, (5.9)

c1
f = c1

m, (5.10)

...(
D̃f

�∇yc
0
f

)
· �n =

(
D̃m

�∇yc
0
m

)
· �n, (5.11)[

D̃f

( �∇yc
1
f + �∇xc

0
f

)]
· �n =

[
D̃m

( �∇yc
1
m + �∇xc

0
m

)]
· �n, (5.12)[

D̃f

( �∇yc
2
f + �∇xc

1
f

)]
· �n =

[
D̃m

( �∇yc
2
m + �∇xc

1
m

)]
· �n, (5.13)

...

We consider the first-order cell problem defined by (5.1), (5.4), (5.9) and
(5.11), which has the formal solution

c0
f = c0

m = c0(�x, t). (5.14)

Thus, at the first order the concentration is independent of the local spatial variable
and is the same field in the fractures and in the porous matrix.

Next we note that the problem defined by (5.2), (5.5), (5.10) and (5.12) con-
stitutes a linear boundary-value problem for the concentration c1 and leads to the
solution

c1 = �τ I · �∇xc
0 + c̄1(�x, t), (5.15)



where c̄1(�x, t) is an arbitrary function. �τ I is �y-periodic, continuous over �, average
to zero for uniqueness

〈�τ I〉� = 1

| � |
∫
�

�τ I d� = �0, (5.16)

and is the solution to the following boundary-value problem:

∂

∂yi

(
Dfij

(
Ijk + ∂τ I

k

∂yj

))
= 0 in �f , (5.17)

∂

∂yi

(
Dmij

(
Ijk + ∂τ I

k

∂yj

))
= 0 in �m, (5.18)

Dfij

(
Ijk + ∂τ I

k

∂yj

)
ni = Dmij

(
Ijk + ∂τ I

k

∂yj

)
ni on �. (5.19)

In other words, τ I
i is the particular solution to the boundary-value problem defined

by (5.2), (5.5), (5.10) and (5.12) when ∂c0/∂xj �ej = �ei .
Lastly we average (5.3) over �. After using the divergence theorem and bound-

ary condition (5.13), the �-average of (5.6) is then required to obtain

∂c0

∂t
− �∇x · 〈D̃f ( �∇yc

1 + �∇xc
0)〉�f

−
−�∇x · 〈D̃m( �∇yc

1 + �∇xc
0)〉�m

= 0, (5.20)

in which 〈·〉�f
is defined by (4.18) and 〈·〉�m

, the average over the period of a
quantity defined in �m, is

〈·〉�m
= 1

| � |
∫
�m

· d�. (5.21)

This can also be written as

∂c0

∂t
− �∇x · (D̃∗ �∇xc

0) = 0, (5.22)

in which the tensor of effective diffusion is defined by

D∗
ij = 1

| � |
∫
�f

Dfik

(
∂τ I

k

∂yj
+ Ikj

)
d�+

+ 1

| � |
∫
�m

Dmik

(
∂τ I

k

∂yj
+ Ikj

)
d�. (5.23)

The macroscopic behaviour of mass transfer of the solute is, therefore, de-
scribed by Equation (5.22). We note that this behaviour is purely diffusive and



that the influence of the porous matrix appears only in the tensor of effective
diffusion, D̃∗. It can be shown that D̃∗ is a symmetrical positive-definite tensor
that depends on the geometry of the periodic cell and on D̃f and D̃m. Note that D̃∗
is derived from vector �τ I, which is independent of time (Auriault and Adler, 1995).
This model is valid when Pef � O(ε) and Pem < O(ε).

5.2. CASE II: EQUIVALENT DIFFUSION AND CONVECTION IN THE FRACTURES

(Pef = O(ε0))

The case under consideration here is defined by the following orders of magnitude:

Pef = O(ε0), Pem = O(ε) ⇒ v = Pem
Pef

= O(ε),

Nf = O(Nm) = O(ε0).

At the two first orders, we get the same boundary-value problems as in the previous
case (§ 5.1). Thus, we have

c0
f = c0

m = c0(�x, t), (5.24)

c1 = �τ I · �∇xc
0 + c̄1(�x, t). (5.25)

The mass-balance equation at the third order in �f reads

∂c0
f

∂t
− �∇y ·

[
D̃f

( �∇yc
2
f + �∇xc

1
f

)
− c0

f �v1
f − c1

f �v0
f

]
−

−�∇x ·
[
D̃f

( �∇yc
1
f + �∇xc

0
f

)
− c0

f �v0
f

]
= 0. (5.26)

We then average (5.26) to obtain

∂c0

∂t
− �∇x · 〈D̃f ( �∇yc

1 + �∇xc
0)− c0�v0

f 〉�f
−

−�∇x · 〈D̃m( �∇yc
1 + �∇xc

0)〉�m
= 0, (5.27)

which can also be written as:

∂c0

∂t
− �∇x · (D̃∗ �∇xc

0 − c0〈�v0
f 〉�f

) = 0, (5.28)

where D̃∗, and 〈�v0
f 〉�f

are defined by (5.23) and (4.19), respectively. Solute migra-
tion is, therefore, described by Equation (5.28). This behaviour is of convection-
diffusion type. The tensor of effective diffusion is the same as in the previous
case.

This model is valid when Pef = O(ε0) and Pem � O(ε).



5.3. CASE III: PREDOMINANT CONVECTION IN THE FRACTURES

(Pef = O(ε−1))

We consider here the following orders of magnitude:

Pef = O(ε−1) ⇒ Nf = O(Nm) = O(ε−1).

As explained in Section 3.4.7, two cases must be considered.

CASE III.a. Pem = O(ε0) ⇒ v = Pem
Pef

= O(ε).

The perturbation equations are the following:

In �f

�∇y ·
(
D̃f

�∇yc
0
f − c0

f �v0
f

)
= 0, (5.29)

∂c0
f

∂t
− �∇y ·

[
D̃f

( �∇yc
1
f + �∇xc

0
f

)
− c0

f �v1
f − c1

f �v0
f

]
−

−�∇x ·
(
D̃f

�∇yc
0
f − c0

f �v0
f

)
= 0, (5.30)

∂c1
f

∂t
− �∇y ·

[
D̃f

( �∇yc
2
f + �∇xc

1
f

)
− c0

f �v2
f − c1

f �v1
f − c2

f �v0
f

]
−

−�∇x ·
[
D̃f

( �∇yc
1
f + �∇xc

0
f

)
− c0

f �v1
f − c1

f �v0
f

]
= 0, (5.31)

...

In �m

�∇y ·
(
D̃m

�∇yc
0
m

)
= 0, (5.32)

∂c0
m

∂t
− �∇y ·

[
D̃m

( �∇yc
1
m + �∇xc

0
m

)
− c0

m�v0
m

]
−

−�∇x ·
(
D̃m

�∇yc
0
m

)
= 0, (5.33)

∂c1
m

∂t
− �∇y ·

[
D̃m

( �∇yc
2
m + �∇xc

1
m

)
− c0

m�v1
m − c1

m�v0
m

]
−

−�∇x ·
[
D̃m

( �∇yc
1
m + �∇xc

0
m

)
− c0

m�v0
m

]
= 0, (5.34)

...

On �

�v0
f = �0, (5.35)

�v1
f = �v0

m, (5.36)

�v2
f = �v1

m, (5.37)

...



c0
f = c0

m, (5.38)

c1
f = c1

m, (5.39)

...(
D̃f

�∇yc
0
f

)
· �n =

(
D̃m

�∇yc
0
m

)
· �n, (5.40)[

D̃f

( �∇yc
1
f + �∇xc

0
f

)]
· �n =

[
D̃m

( �∇yc
1
m + �∇xc

0
m

)]
· �n, (5.41)[

D̃f

( �∇yc
2
f + �∇xc

1
f

)]
· �n =

[
D̃m

( �∇yc
2
m + �∇xc

1
m

)]
· �n, (5.42)

...

Considering Equations (5.29), (5.32), (5.40), (5.35) and (5.38), we get

c0
f = c0

m = c0(�x, t). (5.43)

Integration of Equation (5.30) over the periodic cell yields

∂c0

∂t
= −�∇x · (c0〈�v0

f 〉�f

)
.

Using this expression for ∂c0/∂t , Equations (5.30) and (5.33) reduce to

�∇y ·
[
D̃f

( �∇yc
1
f + �∇xc

0
)]

− �v0
f · �∇yc

1
f

= �∇xc
0 · (�v0

f − 〈�v0
f 〉�f

)
,

(5.44)

�∇y ·
[
D̃m

( �∇yc
1
m + �∇xc

0
)]

= 〈�v0
f 〉�f

· �∇xc
0. (5.45)

From Equations (5.44) and (5.45), boundary conditions (5.36), (5.39) and
(5.41), we deduce

c1 = �τ III · �∇xc
0 + c̄1(�x, t), (5.46)

where c̄1 is an arbitrary function. �τ III is �y-periodic, continuous over �, average to
zero for uniqueness

〈�τ III〉� = 0, (5.47)

and is the solution to the following boundary-value problem:

∂

∂yi

[
Dfij

(
Ijk + ∂τ III

k

∂yj

)]
− v0

fi

∂τ III
k

∂yi

= (
v0
fk

− 〈v0
fk

〉�f

)
in �f , (5.48)



∂

∂yi

[
Dmij

(
Ijk + ∂τ III

k

∂yj

)]
= 〈v0

fk
〉�f

in �m, (5.49)

[
Dfij

(
Ijk + ∂τ III

k

∂yj

)]
· �n =

[
Dmij

(
Ijk + ∂τ III

k

∂yj

)]
· �n on �. (5.50)

An important feature of �τ III is that it depends on �∇xp
0.

Finally, the average over the period of equation (5.31) leads to

∂〈c1〉�
∂t

− �∇x · 〈D̃f ( �∇yc
1 + �∇xc

0)− c0�v1
f − c1�v0

f 〉�f
−

−�∇x · 〈D̃m( �∇yc
1 + �∇xc

0
m)− c0�v0

m〉�m
= 0, (5.51)

which, according to the expression obtained for c1 (5.46), can also be written as

∂〈c1〉�
∂t

− �∇x · (D̃∗∗ �∇xc
0)+

+�∇x · [c0〈�v1
f 〉�f

+ c̄1〈�v0
f 〉�f

+ c0〈�v0
m〉�m

] = 0, (5.52)

where the effective tensor D̃∗∗ is defined by

D∗∗
ik = 1

| � |
∫
�f

(
Dfij

(
Ijk + ∂τ III

k

∂yj

)
− τ III

k v
0
fi

)
d�+

+ 1

| � |
∫
�m

(
Dmij

(
Ijk + ∂τ III

k

∂yj

))
d�. (5.53)

D̃∗∗ depends on the velocity, and therefore on the pressure gradient. It is, therefore,
a dispersion tensor. It can be shown that D̃∗∗ is a positive-definite tensor but, in
general cases, it is not a symmetrical tensor (Auriault and Adler, 1995).

We shall now use expression (4.6) to define 〈�v0
m〉�m

. Hence, by averaging we
obtain

〈�v0
m〉�m

= −K̃∗
m

�∇xp
0, (5.54)

where K̃∗
m, the effective permeability tensor of the porous matrix, is given by

K∗
mik

= 1

| � |
∫
�m

Kmij

(
Ijk + ∂χmk

∂yj

)
d�. (5.55)

Now we define the average concentration field and average velocity fields by

〈c〉� = 〈c0〉� + ε〈c1〉� = c0 + εc̄1, (5.56)

〈�vf 〉�f
= 〈�v0

f 〉�f
+ ε〈�v1

f 〉�f
, (5.57)

〈�vm〉�m
= 〈�v0

m〉�m
. (5.58)



When neglecting the terms in ε2, the equation that governs the average concentra-
tion 〈c〉� is

∂〈c〉�
∂t

− ε �∇x · (D̃∗∗ �∇x〈c〉�)+
+�∇x · [〈c〉�(〈�vf 〉�f

+ ε〈�vm〉�m
)
] = 0. (5.59)

This model describes a convective-dispersive behaviour. An important property
of this macroscopic behaviour is that it depends upon the fluid velocity in the
porous matrix. Note that the advection term due to the fluid velocity in the porous
matrix is as important as the dispersion process as they are both of order ε. This
model is valid only when Pef = O(ε−1) and Pem = O(ε0).

CASE III.b. Pem = O(ε) ⇒ v = Pem
Pef

= O(ε2).

The first-order problem is identical to that obtained in Case III.1. Furthermore,
it can easily be shown that the second-order problem leads to the same solution as
in Case III.1. We, therefore, get

c0
f = c0

m = c0(�x, t), (5.60)

c1 = �τ III · �∇xc
0 + c̄1(�x, t). (5.61)

The mass-balance equation at the third order in �f reads

∂c1
f

∂t
− �∇y ·

[
D̃f

( �∇yc
2
f + �∇xc

1
f

)
− c0

f �v2
f − c1

f �v1
f − c2

f �v0
f

]
−

−�∇x ·
[
D̃f

( �∇yc
1
f + �∇xc

0
f

)
− c0

f �v1
f − c1

f �v0
f

]
= 0. (5.62)

Its average over the period leads to

∂〈c1〉�
∂t

− �∇x · (D̃∗∗ �∇xc
0)+ �∇x · [c0〈�v1

f 〉�f
+ c̄1〈�v0

f 〉�f

] = 0, (5.63)

in which D̃∗∗ is defined by (5.53).
The difference between Equation (5.63) and its counterpart in Case III.1 (5.52)

is that the term �v0
m does not appear in (5.63). Therefore, the equation with respect

to the average concentration field and average velocity fields is the following:

∂〈c〉�
∂t

− ε �∇x · (D̃∗∗ �∇x〈c〉�)+ �∇x · [〈c〉�〈�vf 〉�f

] = 0. (5.64)

Fluid flow in the porous matrix has no effect on the macroscopic behaviour in this
case. This model is valid when Pef = O(ε−1) and Pem � O(ε).



6. Conclusion

We have shown that the macroscopic fluid flow is described by Darcy’s law, com-
bined with the mass-balance equation, and in which the permeability is that of the
fracture network. For the transport of contaminant, we have derived four macro-
scopic models and their domains of validity (Figure 2). These four macroscopic
models are single-continuum models: they are single-concentration-field models.
Thus, no fracture/matrix solute exchange term is involved, and as a consequence,
there is no memory effects. Dual-porosity effects actually occur when the charac-
teristic time of the phenomenon at the pore scale is of same order as the character-
istic time in the fractures

Tp

Tf
= O(1). (6.65)

Figure 2. Macroscopic models with respect to the orders of magnitude of Pef and Pem.



In the present problem, Tp is the characteristic time of diffusion at the pore scale

Tp = l2

Dpc

= O

(
l2

Dmol

)
,

and Tf is either Tdf or Tcf (see § 3.4.5).
Now, as the transport regime in the porous matrix is either predominantly dif-

fusive or of equivalent diffusion and convection type, the characteristic time in the
porous matrix is the characteristic time of diffusion

Tm = φmL
2

Dmc

= O

(
Tp × L2

l2

)
= O(ε−2Tp).

The condition for obtaining memory effects (6.65) can thus also be written as

Tm

Tf
= O(ε−2). (6.66)

Let now examine why this condition is not satisfied. By definition, Nm is such that
(3.42)

Nm = �mL
2

Dmc
Tf

= Tm

Tf
.

According to (3.46) and (3.41), we have

Nm = Tm

Tf
=
{

O(1) when Pef = O(ε),O(1),
O(ε−1) when Pef = O(ε−1).

(6.67)

Therefore, the order Tm/Tf = O(ε−2) cannot be reached. We note that

when Pef = O(ε),O(1): Tf = Tdf ⇒ Tm
Tf

= O

(
Dfc

Dmc

)
,

when Pef = O(ε−1): Tf = Tdc ⇒ Tm
Tf

= O

(
ε−1 Dfc

Dmc

)
.

Thus, the absence of memory effects is linked to the order of magnitude of
Dfc/Dmc

, which we have shown to be O(ε0) in general cases. The fact that for
purely diffusive problems, this ratio must be O(ε2) for obtaining memory effects
is a classical result of the homogenisation theory, which has first been demon-
strated in Auriault (1983). Consequently, memory effects may occur for contam-
inant transport in a single porosity medium (e.g. a fractured non porous medium)
provided that the solute does diffuse within the solid skeleton and that

Ds

Dmol
= O(ε2),

where Ds is the diffusivity in the solid (Auriault and Lewandowska, 1997).
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